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To Professor G.A Margulis with admiration

We prove that some power of the semi-simple and unipotent parts of the
Jordan decomposition of an element of a lattice of a semi-simple linear real
Lie group belong to the lattice.

As a corollary, we deduce that if the real rank of the Lie group is one, and
the above unipotent part is non-trivial, then the semi-simple part is of finite
order (i.e. the element of the lattice is quasi-unipotent).

In the special case when the symmetric space associated to the Lie group
is of Hermitian type, this will imply that any holomorphic map of the
punctured unit disc into the locally symmetric variety corresponding to the
lattice (provided the lattice is a neat subgroup) takes the generator of the
fundamental group of the punctured disc into a unipotent element of the
lattice. This extends a result of A.Borel to the case when the lattice is not
necessarily arithmetic.

1. Introduction

The Big Picard Theorem says that any holomorphic function of the punctured
unit disc ∆∗ = {z ∈ C :| z |< 1, z 6= 0} which misses two values can not have
an essential singularity at the puncture. This is, of course, equivalent to saying
that any holomorphic map from the punctured unit disc into P1(C) \ {0, 1,∞}
extends to a holomorphic map from the full unit disc ∆ = {z ∈ C :| z |< 1} into
P1(C). Note that the Riemann surface P1(C) \ {0, 1,∞} is the quotient of the
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upper half plane by the action of the discrete subgroup SL(2, 2Z) (the principal
congruence subgroup of level two in SL(2,Z)), and hence has finite hyperbolic
volume. Picard’s proof shows also that the image of the loop around the punc-
ture (in the fundamental group π1(P1(C) \ {0, 1,∞}), viewed as an element of
SL(2, 2Z)/{±1}, is unipotent (a power of the loop around one of the three
points in {0, 1,∞}).

If the upper half plane is replaced by any Hermitian symmetric domain D,
and SL(2, 2Z) is replaced by any (torsion free) lattice Γ in the group of holo-
morphic automorphisms of the domain D, we may ask if any holomorphic map
from ∆∗ into the locally Hermitian symmetric complex manifold Γ\D (in fact, a
quasi-projective variety, by [Bai-Bor]), takes the loop around the puncture into
a (possibly trivial) unipotent element of Γ. It is a well known result of A.Borel
(see [Del], [Gri], [Sch]) that if Γ is an arithmetic subgroup, then this is indeed
the case. Borel’s proof makes crucial use of the fact that Γ is arithmetic. The
Arithmeticity Theorems of [Mar], [Cor], [Gro-Sch] show that Γ is almost always
arithmetic.

In the present note, we will extend the result of Borel to the remaining case of
quotients of the unit ball in Cn by lattices (which are not necessarily arithmetic
groups).

To this end, we first analyse the Jordan decomposition of an element γ ∈ G as
a product γsγu, of two commuting elements such that γs is semi-simple and γu is
unipotent. We prove that the semi-simple and unipotent parts of an element of
Γ virtually belong to the lattice Γ. Precisely, we prove

Theorem 1. Let Γ be a lattice in G, the group of real points of a semi-simple
algebraic group over R. Let γ = γsγu be the Jordan decomposition of an element
γ of Γ. Then there exists an integer m ≥ 1 such that γm

s , γm
u ∈ Γ.

If the real rank of G is one, and γ ∈ Γ is such that γu 6= 1, then there exists
an integer m ≥ 1 such that γm = γm

u i.e. γ is quasi-unipotent.

Assume now that K is a maximal compact subgroup of G such that the quo-
tient D = G/K is a Hermitian symmetric domain (of non-compact type). Assume
that Γ is a neat subgroup of G, which is also a lattice in G (“Neat” [cf. [Ra],
Chapter 4] means that in every algebraic linear complex representation of G, if an
element of Γ has a root of unity as an eigenvalue, then that root of unity is one;
in particular, Γ is torsion free). Since a lattice is a finitely generated subgroup
of the linear group ([Ra], Remark (13.21)), it contains a neat subgroup of finite
index ([Ra], Theorem (6.11)). We may replace Γ by a subgroup of finite index,
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without loss of generality.

Then, the quotient Γ\D is locally Hermitian symmetric. Let f : ∆∗ → Γ\D
be a holomorphic map of the punctured disc; denote by f∗ the associated maps
of fundamental groups (based at some point of ∆∗ and its image under f). The
fundamental group of the punctured disc is isomorphic to Z; fix a generator θ of
this Z. The fundamental group of Γ\D is isomorphic to Γ.

Theorem 2. Under the foregoing assumptions, the image γ = f∗(θ) in Γ is a
unipotent element in Γ.

The proof imitates Borel’s proof of quasi-unipotence of the Picard-Lefschetz
transformation (see [Gri], [Del], section 6, [Sch], Lemma (4.5)) associated to a
variation of Hodge structure on ∆∗. It uses the fact that if ∆∗ is equipped with
the hyperbolic metric and Γ\D is equipped with a suitable multiple of the G-
invariant metric on D arising from the Killing form, then the holomorphic map
f decreases distances (see [Kob], [Kwa]). In section 4, we give an elementary
proof of this distance decreasing property.

It then follows from Borel’s argument that closure of the conjugacy class of
the element γ (of Theorem 2) in G intersects the compact group K. We then use
Theorem 1 to conclude that the semi-simple part γs is of finite order. The fact
that Γ is a neat subgroup implies that γ is actually unipotent.

Remark 1. If Γ is not assumed to be a lattice, but only a discrete subgroup,
then Theorem 2 is false in general. For example, suppose G = SL2(R)×SU(1, 1),

and k ∈ SU(1, 1) is a diagonal element k =
(

e2πiθ 0
0 e−2πiθ

)
, where θ is irrational,

and 0 < θ < 1/2. Now k acts on ∆, the unit disc in C, as multiplication by the

scalar e4πiθ. Let u ∈ SL2(R), where u is the matrix
(

1 1
0 1

)
. On the upper half

plane its action is τ 7→ τ + 1.

Set γ = (u, k) ∈ G. The group generated by γ is discrete in G. The map
F : τ 7→ (τ, e4πiθτ ) maps the upper half plane H into the product H × ∆ (the
symmetric space of G). Moreover, F (τ + 1) = γF (τ). This shows that F yields
a holomorphic map from ∆∗ into the quotient manifold γZ\(H × ∆) and the
monodromy being γ, is not quasi-unipotent.

Remark 2. However, suppose G = SL2(R), and Γ any (not necessarily of finite
covolume) discrete torsion-free subgroup. If f : ∆∗ → Γ\H is a holomorphic,
then the monodromy f∗(θ) is indeed a unipotent element of Γ. For example, this
follows from the fact that there are no holomorphic maps from ∆∗ into a bounded
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annulus in C inducing isomorphisms of the fundamental groups (the singularity
of any such map at the point 0 is removable).

2. Proof of Theorem 1

2.1. Preliminary Remarks. In the statement of Theorem 1, one may replace Γ
by a subgroup of finite index, and the conclusion remains the same. If G = G1×G2

is a product and Γ = Γ1×Γ2 with each Γi a lattice in Gi, it is easy to see that if
Theorem 1 holds for each Γi(i = 1, 2), then Theorem 1 holds for Γ as well. Hence
we can (and we do) assume that Γ is an irreducible lattice.

Suppose that Γ is arithmetic, and γ = γsγu. Then there exists a semi-simple
algebraic group G defined over Q, such that G(R) = G up to compact factors,
and G(Z) = Γ up to commensurability. We may assume (see the remarks of the
foregoing paragraph) that G = G(R), and Γ = G(Z). The Jordan components of
γ lie in G(Q), and since γu is unipotent, some power γm

u of it lies in the integral
group G(Z). Hence γm

s lies in G(Z), and this proves Theorem 1.

If R − rank(G) ≥ 2, then by [Mar], Γ is arithmetic and Theorem 1 holds. (If
G is locally isomorphic to Sp(n, 1) or the real rank one form of F4, then by [Cor],
[Gro-Sch], Γ is arithmetic and Theorem 1 again holds).

We may thus assume that G has real rank one (and even that G is locally
isomorphic to SO(n, 1) or SU(n, 1), but we do not use this assumption since the
arguments do not become any simpler under this assumption). Note that (e.g.)
by [GR-PS] in the case of SO(n, 1) and [Del-Mos] in the case of SU(n, 1) (for
small n), there do exist non-arithmetic lattices.

2.2. Notation. We refer to [Bor-Tit] for the following facts on algebraic groups.
In what follows, for ease of notation, we identify a real algebraic group H with
the group H(R) of real points (this causes no confusion, since the group of real
points is Zariski dense and completely determines the group).

Let G be a simple algebraic group over R of R-rank one. Fix a minimal para-
bolic subgroup P of G, and let U be its unipotent radical. There exists a maximal
split torus S of rank one in P such that if Z(S) denotes the centraliser of S in
P , then P is the product P = Z(S)U . Moreover, if M is a maximal compact
subgroup of Z(S) (then it is a maximal compact subgroup of P as well), then
Z(S) is the product MS. The split real torus S is isomorphic to R∗.
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The group U is a maximal unipotent subgroup of G; any two maximal unipo-
tent subgroups of G are conjugate under G. Any unipotent element of G lies in
a maximal unipotent subgroup of G. There exists an element w of G which nor-
malises S but does not centralise S, and it generates the Weyl group N(S)/Z(S)
(which is of order two). Here N(S) (resp. Z(S)) is the normaliser (resp. cen-
traliser) of S in the group G. We have the Bruhat decomposition G =
P

⋃
UwP . The Bruhat decomposition shows immediately that the intersection

of any two distinct maximal unipotent subgroups is the singleton {1}. Denote by
U− the conjugate wUw−1.

If u denotes the (real) Lie algebra of U , then the adjoint action of the split
torus S on u is semi-simple; in fact there exists a homomorphism (positive root)
α : S → Gm such that we have the root space decomposition u = uα ⊕ u2α. We
may identify α as a map x 7→ xr for some integer r ≥ 1 by a suitable isomorphism
S = Gm. Moreover, the exponential map u → U is an isomorphism of varieties
and is equivariant with respect to the conjugation action of S on both sides. It
follows that if s ∈ S = R∗ is an element with s > 1 (and therefore α(s) = sr > 1),
then for all u ∈ U ,

s−musm → 1

as m → +∞.

Lemma 3. If g ∈ G is an element with a Jordan decomposition g = gsgu with
gu 6= 1, then the semi-simple part gs lies in a compact subgroup.

Proof. After a conjugation, we may assume that gu ∈ U . Since gs commutes with
gu, gu also lies in the conjugate gsUg−1

s . Since R-rank of G is one, this means
that gs normalises U . Hence gs lies in P .

Let F be the connected component of the Zariski closure of the group gener-
ated by powers of the semi-simple element gs. Therefore, Z is commutative and
hence is a torus. Moreover, F centralises the element gu since gs does. If R-rank
of F is non-zero, then F contains an R-split torus; but all R-split tori in P are
conjugate to S in P . Hence, replacing gs by a conjugate, we may assume that F
contains the torus S.

But the torus S operates on the Lie algebra u by the characters α and α2

neither of which is one; hence under conjugation on U , the torus S has no fixed
point and therefore gu can not be centralised by S. This shows that R-rank of F
is zero: i.e. F is compact. Hence gs lies in a compact subgroup of G. ¤
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Lemma 4. If G is a simple algebraic group of real rank one and H is a connected
nilpotent subgroup of G generated by unipotent elements, then H is contained in
a conjugate of the maximal unipotent subgroup U of G.

Proof. Suppose that the Zariski closure H0 of H in G has no unipotent radical.
Then H0 is reductive. The group H0 is nilpotent since H is. Therefore, the
semi-simple part of H0 is trivial, i.e. H0 is a torus. But then H0 does not contain
any unipotent elements.

This shows that the unipotent radical of H0 is non-trivial. By a result of
[Bor-Tit], it follows that H0 (and hence H) is contained in a proper parabolic
subgroup of G. But since the real rank of G is one, all the proper parabolic
subgroups of G are conjugate to P .

However, the quotient P/U = SM has no unipotent elements since M is
compact and S is a torus. Since H is generated by unipotent elements, H lies in
U . ¤

Lemma 5. Suppose G is a simple Lie group of R-rank one. Let u and v be two
non-trivial elements of the unipotent group U and let g ∈ G. If u and g−1vg
generate a nilpotent Zariski closed subgroup of G, then g lies in the parabolic
subgroup P and g−1vg ∈ U .

Proof. Since u, v are nilpotent, the Zariski closed subgroup generated by them is
connected. Denote this group by < u, g−1vg >. If g /∈ P , then we may write its
Bruhat decomposition as g = u1wzv1 with u1, v1 ∈ U and z ∈ Z(S).

If F is a subgroup of G and f ∈ F, h ∈ G, denote by fh, F h (resp. h(f),h (F ))
the conjugate h−1fh, h−1Fh (resp. hfh−1, hFh−1).

We write g−1vg = ((zv1)−1)w−1u−1
1 )v(u1wzv1). Put w−1u−1

1 vu1w = v2 and
put u2 = (zv1)u(zv1)−1. It is then clear that the Zariski closed group < u2, v2 >
generated by u2, v2 is the conjugate

< u2, v2 >=<zv1 (u),w
−1u−1

1 (v) >=zv1< u, vg >=zv1 (H),

where H is the group < u, vg >. Since H is nilpotent by assumption, Lemma 4
shows that H is contained in a conjugate of U . But H contains u ∈ U and since
G has real rank one, every unipotent element is contained in a unique maximal
unipotent subgroup of G. Hence H is contained in U and since zv1 ∈ P normalises
U , it follows that < u2, v2 > lies in U . But v2 being a w-conjugate of a unipotent
element of U , clearly lies in the opposite unipotent group U− and hence can not
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lie in U .
This contradiction shows that g ∈ P , and the Lemma follows. ¤

2.3. Non-cocompact Lattices in rank one groups. Assume that Γ is a lat-
tice in the real rank one group G. We keep the notation of (2.2).

Lemma 6. There exist finitely many maximal unipotent subgroups U(Γ) in Γ
such that

(1) the group U(Γ) is a cocompact lattice in its Zariski closure; the latter is a
maximal unipotent subgroup of G.

(2) If {hn}n≥1 is a sequence of elements in G tending to infinity in the quo-
tient Γ\G, then there exists a sequence {θn}n≥1 of elements in Γ, some U(Γ)
among these finitely many, and and an element u = u(Γ) in U(Γ), such that
after replacing hn by a subsequence if necessary,

h−1
n θ−1

n uθnhn → 1.

Proof. Since G has real rank one, every unipotent element is contained in a unique
maximal unipotent subgroup of G. All maximal unipotent subgroups of G are
conjugate. Let U be one such, and S,P be as in (2.2). By Theorem (0.6) of
[Gar-Ra], there exists finite set Ξ of conjugates of U such that for each V ∈ Ξ,
V ∩Γ is a maximal unipotent subgroup of Γ and is a cocompact lattice in V and
hence has V as its Zariski closure. We take the collection U(Γ) in the Lemma to
be these groups V ∩ Γ with V ∈ Ξ.

Moreover, the description of the fundamental domain in Theorem (0.6) of
[Gar-Ra] is such that if a sequence hn ∈ Γ\G tends to infinity, then there exist
(1) a sequence θn of elements of Γ and (2) some V ∈ Ξ such that

h−1
n θ−1

n vhnθn → 1

for some v ∈ V ∩ Γ, v 6= 1. ¤

We record the well known Zassenhaus Lemma (see Theorem (8.16) of [Ra]).

Lemma 7. There exists a compact neighbourhood W of identity in G such that
if ∆ is any discrete subgroup of G, then the intersection W ∩ ∆ generates a
connected nilpotent subgroup of G.

2.4. Proof of Theorem 1. Let γ = γsγu be the Jordan decomposition of an
element γ of Γ and assume that the unipotent part γu is not identity. Let U be
the maximal unipotent subgroup of G containing γu. Let P be the normaliser of
U . Let S and M be as in (2.2). Since M is a maximal compact subgroup of P ,
after a conjugation by an element of P , we may assume that γs ∈ M . By (2.2), it
follows that there exists an element s ∈ S such that s−mγusm → 1 as m → +∞.
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Since s ∈ S s centralises M and hence centralises the semi-simple part γs. By
the remark at the end of (2.2), we have

(1) s−mlγsml = γss
−mlγusml → γs,

and gl tends to g.

We analyse two cases.

(i) There exists a sequence {ml}l≥1 of positive integers such that the sequence
sml converges in the quotient Γ\G. That is, there is a sequence {θl}l≥1 of elements

of the lattice Γ such that the sequence gl
defn
= θls

ml converges to an element g in
G. We have gls

−mlγsmlg−1
l = θlγθ−1

l .

Therefore, by equation(1), the sequence θlγθ−1
l of elements of Γ converges to

the semi-simple element gγsg
−1; hence this sequence is (after a certain stage)

constant, and hence γ is conjugate to γs. Therefore, γ is semi-simple, contradict-
ing the assumption that γu 6= 1.

(ii) The sequence {sm}m≥1 has no convergent subsequence in Γ\G. By Lemma
6, there exist a subsequence {sml}l≥1, a sequence θl of elements of Γ and a fixed
element u ∈ U(Γ) ⊂ Γ such that, as l tends to infinity,

(2) s−mlθ−1
l uθls

ml → 1.

The equations (1) and (2) show that the elements αl
defn
= θ−1

l uθl and βl
defn
=

γ−1αlγ are conjugated into an arbitrarily small nieghbourhood of identity in G,
provided l is large enough. Now Lemma 7 implies that if l is large enough, αl and
βl are (unipotent and) contained in a connected nilpotent subgroup H of G. Now,
Lemma 5 implies (since αl ∈ U θl) that γ ∈ P θl for some (large) integer l. We fix
this integer l. We may replace γ by the conjugate γθl and assume thus that θl = 1.

We therefore have: U ∩ Γ is a co-compact lattice in U . Moreover, γ ∈ P . By
Lemma 3, the semi-simple part γs lies in a compact subgroup of P , hence, after
a further conjugation by an element of P , we may assume that γs ∈ M (M being
the maximal compact subgroup of P . Now, the group MU is an extension of
the unipotent group U by a compact group, and U ∩ Γ is a lattice in U , hence
is a lattice in MU ∩ Γ. It follows that U ∩ Γ is of finite index in MU ∩ Γ. Since
γ ∈ M ⊂ MU , it follows that some power of γ lies in Γ ∩ U . That is, γ is
quasi-unipotent. This proves Theorem 1.
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3. Quasi-unipotence of Non-arithmetic Monodromy

3.1. Notation. We will now assume that G is a semi-simple real algebraic group,
such that if K is a maximal compact subgroup of G, then the symmetric space
G/K is a Hermitian symmetric domain of non-compact type. Let Γ be a
lattice in G.If Γ is torsion free, then it operates without fixed points on G/K and
the quotient Γ\G/K is a complex manifold with universal covering space G/K.
In fact, if Γ is arithmetic, it is even a quasi projective variety ([Bai-Bor]). We
consider holomorphic maps f from ∆∗ into Γ\G/K, where ∆∗ is the punctured
unit disc, i.e. unit disc in C with the origin removed.

As in Theorem 2, denote by f∗ the associated maps of fundamental groups.
The left side has fundamental group Z and the right side has fundamental group
Γ. Fix a generator δ of Z and denote by γ its image in Γ. Denote by f∗ a
lift of f - a map of the universal coverings ∆ into G/K; here ∆ is the unit disc
in C. As ∆ is bihomorphic to the upper half plane H, we have an associated
lifted map F : H → G/K. The covering H → ∆∗ is given by τ 7→ e2πiτ ; the
deck transformation group is (isomorphic to Z and is generated by τ 7→ τ + 1.
Therefore, the lift F has the transformation property

(3) F (τ + 1) = γF (τ).

Equip ∆ by the hyperbolic metric and G/K the G-invariant metric coming from
the Killing from on G. Denote the Riemannian manifolds by (∆, dhyp) and
(G/K, dg).

Lemma 8. Given any holomorphic map h : ∆ → G/K, there exists a constant
C > 0 such that for all p, q ∈ ∆, we have

(4) dg(h(p), h(q)) ≤ Cdhyp(p, q).

In other words, after rescaling the metrics, any holomorphic map from the disc
into the symmetric space G/K is distance decreasing.

For a proof of this result see [Kob], Theorem (4.1) of Chapter III. In section
4, we will give a simple proof of this Lemma.

3.2. Proof of Theorem 2.

Proof. Let F be the lift of f in Theorem 2, as a map from the upper half plane H
into the Hermitian symmetric domain G/K. For n ∈ Z, n ≥ 1, let τn = in ∈ H.
Then, as n tends to +∞,

(5) dhyp(τn, τn + 1) → 0.
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By (3),(4) and (5) it follows that as n → +∞,

(6) dg(F (τn), γ ◦ F (τn)) → 0.

Now, F (τn) is a point on G/K. Hence there exists a sequence {gn} of elements
of G such that gnK = F (τn) for each n. The equation (6) (and the fact that left
translation by gn is an isometry on (G/K, dg)) shows that as n → +∞,

(7) dg(K, g−1
n γgnK) → 0.

Therefore, since K is compact, we may replace gn by a subsequence and conclude
that the sequence g−1

n γgn converges to an element of K.

We may easily reduce the proof of Theorem 2 to the case when Γ is an irre-
ducible lattice in G; we assume this henceforth.

Case 1. The lattice Γ is arithmetic. We have a semi-simple algebraic group G
over Q such that G(R) = G up to compact factors and Γ = G(Z) up to com-
mensurability. We may replace G by G(R) and Γ by a torsion free neat subgroup
of G(Z) of finite index. Then the conclusion g−1

n γgn → k ∈ K implies that the
characteristic polynomial of γr (in some fixed Q-linear embedding of G in GLn

over Q) is that of the element kr which lies in the compact group K for each
r ≥ 1. But the characteristic polynomial of γr has integral coefficients, which
means that the characteristic polynomials of γr for varying r run through a fi-
nite set; therefore, all the eigenvalues of γ are roots of unity. Since Γ is a neat
subgroup, this implies that γ is unipotent. This yields Theorem 2.

Case 2. The lattice is non-arithmetic. Therefore, by [Mar], R− rank (G) = 1.
By Theorem 1, if the Jordan decomposition γ has non-trivial unipotent compo-
nent, then γ is quasi-unipotent; since Γ is neat, γ is actually unipotent.

The other possibility is that γ is semi-simple. In that case, the conjugacy class
of γ is closed ([Bor-Tit]). Hence k is conjugate to γ which shows that γ ∈ Γ lies
in a conjugate of K- a compact group. Therefore, γ is of finite order; but the
lattice Γ is neat, hence γ is trivial. This proves Theorem 2 in all cases. ¤
Remark 3. The foregoing proof follows closely, A.Borel’s proof of quasi-unipotence
of monodromy as explained in [Del], section 6. The proof in the non-arithmetic
case needs some modification, and that is provided by Theorem 1.

4. Distance Decreasing Property of Holomorphic Mappings.

4.1. Notation. We first prove a result which may be of independent interest. Let
D be a complex manifold, realisable as a bounded submanifold of the complex
n-space Cn with the standard metric on Cn. Suppose D ⊂ B(0, R) where B(0, R)
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is the ball of radius R centred at the origin. Suppose that there is a Hermitian
metric g on D such that the group G of holomorphic automorphisms of D which
are isometries of (D, g) act transitively on D. Let h : ∆ → D be a holomorphic
mapping from the open unit disc into D. Equip ∆ with the hyperbolic metric.
We then have

Lemma 9. If 0 ∈ D and h(0) = 0, then

| h′(0) |≤ R.

Proof. This is a part of Schwarz’ Lemma: fix an r with 0 < r < 1. Since
D ⊂ B(0, R), we have | h(z) |< R for all z ∈ ∆. Hence for z ∈ ∆ with
| z |= r, we have | h(z)/z |< R/r. The function h(z)/z is holomorphic on ∆ and
hence satisfies the maximum principle. Hence for z ∈ ∆ with | z |≤ r we have
| h(z)/z |≤ R/r. Letting r tend to 1, we see that | h(z)/z |≤ R for all z ∈ ∆.
Letting z tend to 0, we get the lemma. ¤
Remark 4. Note that by the Harish-Chandra Embedding Theorem, every Her-
mitian symmetric space of non-compact type is a bounded domain in Cn for some
n, and satisfies the hypotheses for the manifold D.

Let z ∈ ∆, v a non-zero vector in the tangent space Tf(z)(D) at the point f(z)
of D. Then g defines a Hermitian metric on Tf(z)(D); denote by || v ||2g the inner
product of v with itself with respect to this metric.
We may similarly define || w ||2hyp for w ∈ Tz(∆), with respect to the hyperbolic
metric on ∆. Denote by df the holomorphic differential of f . If w 6= 0, consider
the ratio

φf (z) =
|| df(w) ||2g
|| w ||2hyp

.

Note that since Tz(∆) is one dimensional, this ratio is independent of the non-zero
vector w ∈ Tx(∆) chosen.

Lemma 10. With the foregoing notation, we have

[1] If θ is a holomorphic automorphism of ∆ (hence an isometry) of (∆, dhyp)),
then for all z ∈ ∆,

φf◦θ(z) = φf (θ(z)).

[2] If γ ∈ G, the group of holomorphic automorphisms of the space D which
are isometries of (D, dg), then for all z ∈ ∆,

φγ◦f (z) = φf (z).

[3] There exists a constant C0 depending only on (D, dg) such that if 0 ∈ D
and h : ∆ → D is holomorphic,

| φh(0) |≤ C0 || h′(0) ||2 .
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Proof. The parts [1] and [2] follow immediately since θ is an isometry of (∆, dhyp)
and γ is an isometry of (D, dg). To prove [3]: let ∂/∂z is the standard generator
of the tangent space at z in ∆, let z1, z2, · · · , zn be the co-ordinate functions on
Cn and ∂/∂i the corresponding basis elements of the tangent space at h(0) = 0 in
Cn. Then, h(z) = (h1(z), h2(z), · · · , hn(z)), and h′(0) =

∑
h′i(0)∂/∂i. The inner

product g at T0(D) may be extended to a Hermitian inner product <,>g on the
bigger tangent space T0(Cn) = Cn in some arbitrary, but fixed fashion. Then,

φh(0) =
∑

1≤i,j≤n

h′i(0)h′j(0) < ∂/∂i, ∂/∂j >g .

In this equality, each term h′i(0)h′j(0) is bounded by || h′(0) ||2. Take C0 = n2C1

where C1 is the supremum of the absolute values of the numbers < ∂/∂i, ∂/∂j >g,
for varying i and j . This gives [3] of the Lemma. ¤
Lemma 11. If f : ∆ → D is a holomorphic map on the unit disc, and R > 0 is
chosen as before such that (0 ∈)D ⊂ B(0, R) ⊂ Cn, then for all z ∈ ∆,

φf (z) ≤ C0R
2,

with C0 chosen as in [3] of Lemma 10.

Proof. By Lemma 10, we may replace f by a composite h = γ ◦ f ◦ θ with γ and
θ holomorphic isometries on the left and right without changing the conclusion
of the present Lemma. Then φf (z) = φh(θz). Fix z ∈ ∆. Choose θ such that
θ(0) = z; choose γ such that γ(f(z)) = 0. Thus φf (z) = φh(0) with h(0) = 0.
Then, Lemma 9 and [3] of Lemma 10 complete the proof. ¤
Theorem 12. The holomorphic map h is distance decreasing. Precisely, there
exists a constant C > 0 such that for all p, q ∈ ∆, we have

dg(h(p), h(q)) ≤ Cdhyp(p, q).

Proof. We choose R as before and assume that D contains 0 (without loss of
generality). Then Lemma 11 is the infinitesimal version of our Theorem, with
C = C0R

2. The theorem immediately follows by integrating along differentiable
paths in ∆ joining p and q. ¤

Acknowledgments. I thank I.Biswas, N.Fakhruddin, P.Gastesi, A.J.Parame-
swaran, M.S.Raghunathan and V.Srinivas for interesting conversations and for
providing crucial references. I thank the referee for a careful reading of the
manuscript and for suggesting improvements.

References

[Bai-Bor] W.Baily and A.Borel, On Compactifications of Arithmetic Quotients of Bounded
Symmetric Domains, Ann. of Math. 84, (1966), 442-528.



Jordan Decomposition in Lattices and Quasi Unipotence 179

[Bor-Tit] A.Borel and J.Tits, Groupes Reductifs, Publ. IHES.27, (1965), 55-150.

[Cor] K.Corlette. Archimedean superrigidity, Annals of Math 2, 135, No. 1, (1992), 165-182.

[Del] P.Deligne, Travaux de Griffiths, Seminaire Bourbaki, (1969-70), No. 376, Springer,
Lecture Notes in Mathematics, Vol 180.

[Del-Mos] P.Deligne and G.D. Mostow, Monodromy of Hypergeometric Functions and non-
lattice integral monodromy, Publ.Math. IHES 63, (1986), 5-89.

[Gar-Ra] H.Garland and M.S.Raghunathan, Fundamental Domains for lattices in R-rank one
simple Lie groups, Annals of Mathematics 92, (1970) 279-326.

[Gri] P.Griffiths, Periods of integrals on algebraic manifolds, Bull. AMS 76, (1970), 228-296.

[Gro-Sch] M.Gromov and R.Schoen, p-adic superrigidity for spaces of real rank one, Publ.
IHES no. 76 (1992) 165-246. .

[GR-PS] M.Gromov and Piatetski Shapiro, Non-arithmetic Groups in Lobachevski spaces,
Publ. Math IHES, No. 66 (1988), 93-103.

[Kob] S.Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Pure and Applied
Mathematics, Vol 2, Marcel Dekker, (1970).

[Kwa] Kwack, Generalisation of the Big Picard Theorem, Annals of Mathematics (2) Vol 90,
(1969), 9-22.

[Mar] G.A.Margulis, Discrete Subgroups of semi-simple Lie groups, Ergebnisse der Mathe-
matik und ihrer Grenzgebiete 3.Folge. Band 17, Springer-Verlag (1991).

[Ra] M. S. Raghunathan, Discrete subgroups of Lie Groups, Ergebnisse der Math. und ihrer
Grenzgebiete-Band 68, Springer-Verlag (1972).

[Sch] W. Schmid, Singularities of the period mapping,Invent math 22, (1972), 211-319.

T. N. Venkataramana
School of Mathematics
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay - 400 005,
INDIA
E-mail: venky@math.tifr.res.in


