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It was around 1980 that Margulis got interested in the area of Diophantine ap-
proximation. The main focus at that time was on the Oppenheim conjecture, and
the Raghunathan conjecture formulated in that connection for flows on homo-
geneous spaces induced by unipotent one-parameter subgroups. Raghunathan’s
conjecture was formulated around 1975, and some of my work during the interim
was driven by it. In print it was introduced in my paper on invariant measures
of horospherical flows [6], where its connection with the Oppenheim conjecture,
pointed out to me by Raghunathan, was also noted. By mid-eighties it was in the
air that Margulis had proved the Oppenheim conjecture. I got a preprint, with
complete proof, in 1987. An announcement with a sketch appeared in Comptes
Rendus in 1987 [34], and expositions of proof followed [35], [36].

From then on Margulis has played a leading role in the study of problems
in Diophantine approximation via study of dynamics of flows on homogeneous
spaces, with an impressive array of results on a variety of problems in the area.
The aim of this article is to review some of this work, tracing along the way
the development of ideas on the themes concerned. To be sure there are various
survey articles, including by Margulis as also the present author, giving accounts
of the area. The present article, apart from including some recent results in the
area, is also different from the existing accounts in various respects: exposition
from a historical point of view, the measure of details with regard to various
concepts and results, focus on the contributions of Margulis etc. and the author
hopes that it would help the reader in getting a quick introduction to the topic.

The article is organised in terms of sections on the major themes involved.

Received June 30, 2006.
This is an expanded version of a talk given at the conference in honour Margulis at Yale Uni-
versity, New Haven, during 24-27 February 2006.
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§1. Oppenheim conjecture

The first result to be proved was the following:

1.1. Theorem (Oppenheim conjecture) Let Q(x1, . . . , xn) = Σn
i,j=1aijxixj

be a nondegenerate indefinite quadratic form in n ≥ 3 real variables, and suppose
that it is not a scalar multiple of a rational form, i.e. aij/akl is irrational for
some distinct pairs (i, j) and (k, l), with akl 6= 0. Then

min{Q(x) | x ∈ Zn, x 6= 0} = 0.

The conjecture goes back to a 1929 paper of Oppenheim (for n ≥ 5). Extensive
work was done on the conjecture by methods of analytic number theory in the
1930s (Chowla, Oppenheim), 40s (Davenport-Heilbronn), 50s (Oppenheim, Cas-
sels & Swinnerton-Dyer, Davenport, Birch-Davenport, Davenport-Ridout) . . . .
Papers of Birch-Davenport, Davenport-Ridout and one of Ridout in 1968 to-
gether confirmed the validity of the conjecture for n ≥ 21, together with partial
results for lower values of n, involving conditions on signature, diagonalisability
etc. (see [31] and [38] for details). Partial results continued to be obtained in
the 70s and 80s (Iwaniec, Baker-Schlickewei) by number-theoretic methods, but
there was a gradual realisation that the methods of analytic number theory may
not be adequate to prove the conjecture for small number of variables.

Margulis obtained the result by proving the following:

1.2. Theorem Let G = SL(3,R), Γ = SL(3,Z). Let H be the subgroup consist-
ing of all elements of G preserving the quadratic form Q0(x1, x2, x3) = x1x3−x2

2

(viz. the special orthogonal group of Q0). Let z ∈ G/Γ and Hz be the stabilizer
{g ∈ G | gz = z} of z in G. Suppose that the orbit Hz is relatively compact in
G/Γ. Then H/Hz is compact (equivalently, the orbit Hz is compact).

By the well-known Mahler criterion (see [47] for instance) Theorem 1.2 implies
Theorem 1.1, a priori for n = 3 and then by a simple restriction argument for
all n ≥ 3; for n = 3 the two statements involved are in fact equivalent. The
possibility of proving the Oppenheim conjecture via this route was observed by
Raghunathan, which inspired Margulis in his work. Margulis discovered later, as
reported in his survey article in Fields Medallists’ Lectures (1997) [41], that in
implicit form the equivalence as above appears already in an old paper of Cassels
and Swinnerton-Dyer [5].

In response to Margulis’s preprint [35] on the above mentioned theorems A. Borel
pointed out that Oppenheim was in fact interested, in his papers in the fifties,
in concluding the set of values Q(Zn) to be dense in R, under the hypothesis as
in Theorem 1.1. By a modification in the original argument this was also upheld
by Margulis in a later preprint [36].
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In 1988 Margulis was visiting the Max Planck Institute, Bonn, and he arranged,
with the help of G. Harder, for me to visit there and we could work together. We
strengthened Theorem 1.2 to the following [14]:

1.3. Theorem Let the notation be as in Theorem 1.2. Then for every z ∈ G/Γ
the H-orbit Hz is either closed or dense in G/Γ.

This implies Theorem 1.1, and it also implies the stronger assertion of density
of Q(Z3) more directly, without recourse to the Mahler criterion used earlier: the
quadratic form Q may be assumed to be given by v 7→ Q0(gv) for all v ∈ R3,
where g ∈ G; then Q(Z3) = Q0(gZ3) = Q0(HgΓZ3), and hence if HgΓ is dense
in G then Q(Z3) is dense in R; it turns out that if HgΓ is closed then Q is a
multiple of a rational form. The theorem also implies the following strengthening
of the Oppenheim conjecture.

1.4. Corollary If Q is as in Theorem 1.1 and P denotes the set of all primitive
integral n-tuples, then Q(P) is dense in R.

To prove the corollary, and in particular the Oppenheim conjecture, one does
not need the full strength of Theorem 1.3. Let ν be the matrix of the nilpotent
linear transformation given by e1 7→ 0, e2 7→ 0 and e3 7→ e1 ({ei} denotes the
standard basis). Then it suffices to prove that for z ∈ G/Γ such that Hz is not
closed, the closure Hz in G/Γ contains a point y such that either {(exp tν)y |
t ≥ 0} or {(exp tν)y | t ≤ 0} is contained in Hz. Based on this observation
we gave an elementary proof of Corollary 1.4, involving only basic knowledge of
topological groups and linear algebra [16]; see also [13].

One of the main ideas in the proof of Theorem 1.2 consists of the following: Let
U be a connected unipotent Lie subgroup of G and X be a compact U -invariant
subset of G/Γ which is not a U -orbit. The goal then is to show that X contains
an orbit of a larger connected Lie subgroup of G. To this end one studies the
minimal U -invariant subsets of X and the topological limits of orbits of points
from a sequence in X tending to one of the minimal sets. When we get a larger
subgroup as above, if it is unipotent we can continue further along the same
lines; if it is not unipotent, the strategy cannot be readily continued, but in the
cases considered the argument is complemented by structural considerations. For
example in the proof Theorem 1.2 given the compact H-invariant subset X = Hz,
this strategy is applied with respect to a unipotent one-parameter subgroup U
contained in H, and we get a larger subgroup W and a W -orbit contained in X.
The argument is then completed by showing that if W is not contained in H the
W -orbit cannot have compact closure, while W being contained in H implies that
X is a H-orbit; this is achieved by a closer look at the subgroups of SL(3,R). The
argument thus shows that the compact invariant subset Hz has to be a compact
orbit of H.
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In proving Theorem 1.3, as X = Hz may not be compact, in applying the
strategy one first needs to ensure that it contains a compact minimal U -invariant
subset. This depends on “non-divergence” properties of orbits of these actions,
which I shall discuss later, in §4.

§2. Raghunathan conjecture

I will next discuss the developments around the Raghunathan conjecture, which
had been formulated as means for proving the Oppenheim conjecture. In this
respect it will be convenient to consider a general connected Lie group G and a
lattice Γ in G, viz. a discrete subgroup such that the quotient space G/Γ admits
a finite measure invariant under the G-action, even though our primary interest
will be in the case of G = SL(n,R) and Γ = SL(n,Z) which is a lattice in
SL(n,R). In the general case we shall say that an element g ∈ G is unipotent, if
the adjoint transformation Ad g of the Lie algebra of G is unipotent.

The following is a more general form of the Raghunathan conjecture, formu-
lated by Margulis in his ICM address at Kyoto, 1990 [40].

Conjecture Let G be a connected Lie group and Γ be a lattice in G. Let H be a
Lie subgroup of G with the property that it is generated by the unipotent elements
contained in it. Then for any z ∈ G/Γ there exists a closed subgroup F of G such
that Hz = Fz.

(The Raghunathan conjecture is the special case of this, with H a unipotent
one-parameter subgroup of G).

In the case when G = SL(2,R), and H a unipotent one-parameter subgroup
this is a classical result due to Hedlund (1936). In this case the orbits are either
dense or closed, so F = G or H, and only the first case occurs if the quotient
SL(2,R)/Γ is compact. It is instructive to see a proof of this, especially in the case
when Γ is a cocompact lattice, using the overall strategy introduced by Margulis,
described at the end of the last section; see [1], Chapter IV, for details. A
distinguishing feature of this case is that H is a “horospherical subgroup”, namely
there exists a g ∈ G such that H = {h ∈ G | gjug−j → e, as j →∞}, e being the
identity element of G. The case of the conjecture with G any reductive Lie group
and H a horospherical subgroup was proved in [9], generalising Hedlund’s result
to this case. For solvable (connected) Lie groups G the conjecture was proved by
A.N. Starkov, in 1984 (see [52] for details).

Theorem 1.2 confirmed the conjecture for G = SL(3,R) and H the special
orthogonal group of a nondegenerate indefinite quadratic form.

Pursuing further the methods involved in the results of the last section Margulis
and I proved in [15] the following special case of the Raghunathan conjecture.
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2.1. Theorem Let G = SL(3,R) and Γ be a lattice in G. Let U be a unipotent
one-parameter subgroup of G such that u − I has rank 2 (as a matrix) for all
u ∈ U\{I}. Then for every z ∈ G/Γ there exists a closed subgroup F such that
Uz = Fz.

Unlike in the case of SL(2,R) mentioned above, F can have more possibilities in
this case; when Γ = SL(3,Z), the following subgroups of G have closed orbits on
G/Γ: the subgroup consisting of all elements of SL(3,R) fixing a nonzero vector
under the natural action on R3, the subgroup of elements leaving invariant a linear
functional on R3 under the contragradient action, and the special orthogonal
group consisting of elements leaving invariant the form Q0 as in Theorem 1.2 -
these subgroups can occur in the place of the subgroup F in the above discussion.

Theorem 2.1 has the following consequence in the study of values of quadratic
forms (see [15] and also [12]).

2.2 Corollary Let Q be a nondegenerate indefinite quadratic form on R3. Let L
be a linear form on R3. Let

C = {v ∈ R3 | Q(v) = 0} and P = {v ∈ R3 | L(v) = 0},
and suppose that the plane P is tangential to the cone C. Suppose also that no
linear combination αQ + βL2, with (α, β) 6= (0, 0) is a rational quadratic form.
Then {(Q(x), L(x)) | x ∈ P} (with P as before) is dense in R2, viz. given any
a, b ∈ R and ε > 0 there exists x ∈ P such that

|Q(x)− a| < ε and |L(x)− b| < ε.

It may be mentioned here that for n ≥ 4 the answer to the analogous problem
is not completely understood yet; see Theorem 2.5 and the remark following it.

Margulis nurtured the hope that the overall method of “building up” orbits of
larger subgroups inside a given closed set invariant under the action should lead
to a proof of Raghunathan’s conjecture. This however has not yet materialised.

The Raghunathan conjecture was in the meantime proved by Marina Ratner, in
1990-91 ([48], [49]), where she also proved the above-mentioned general conjecture
under the additional condition that every connected component of H contains a
unipotent element. The general statement of the conjecture was proved by Nimish
Shah, building up on her work [51].

Ratner’s work involved classifying the invariant measures of actions of unipo-
tent subgroups [48], proving a conjecture that I had formulated in connection with
the Raghunathan conjecture. The following classification theorem was proved by
Ratner [48] under the additional condition as mentioned above, and was com-
pleted by N.A. Shah [51].
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2.3 Theorem (Ratner) Let G be a connected Lie group and Γ be a discrete
subgroup of G (not necessarily a lattice). Let H be a closed subgroup of G which
is generated by the unipotent elements contained in it. Let µ be a finite H-
invariant and H-ergodic measure on G/Γ. Then there exists a closed subgroup
F of G and a F -orbit Φ such that µ is F -invariant and supported on Φ (the two
conditions determine the measure up to a scalar multiple).

Though a proof of the Raghunathan conjecture eluded Margulis, later he con-
tributed a more transparent proof of Theorem 2.3 (jointly with Tomanov) [45],
in the crucial case of G a real algebraic group. Though the proof is influenced by
Ratner’s arguments it also involves new approach and methods.

The Raghunathan conjecture was deduced by Ratner from Theorem 2.3, in
[49], by proving the following result on uniform distribution.

2.4 Theorem (Ratner) Let G be a connected Lie group, Γ be a lattice in G and
U = {ut} be a unipotent one-parameter subgroup of G. Let z ∈ G/Γ. Suppose
that there is no proper closed connected subgroup G1 of G, with U ⊂ G1, such
that G1z is closed and admits a finite G1-invariant measure. Then the U -orbit
of z is uniformly distributed in G/Γ, viz. for every bounded continuous function
f on G/Γ

1
T

∫ T

0
f(utz)dt →

∫

G/Γ
f(gΓ)dm(gΓ),

where m is the normalised G-invariant measure on G/Γ.

Note that if there exists a proper closed connected subgroup G1 containing
U and such that G1z is closed and admits a finite G1-invariant measure then
(by downward induction) there is a minimal one with that property and the U
orbit is uniformly distributed in the orbit under that subgroup; furthermore the
subgroup is unique.

Ratner also deduced from Theorem 2.4, with further work, the generalised
conjecture stated in the beginning of the section, under the additional condition
that every connected component of H contains a unipotent element. Her result
also yields that the orbit closure Hz = Fz as in the conclusion admits a finite
F -invariant measure; viz. the closure is a homogeneous space with finite invariant
measure. In [51] Nimish Shah showed, following up on the work of Ratner, that
the conjecture holds for any subgroup H which is contained in Zariski closure
of the subgroup generated by unipotent elements contained in it. However, in
the general case it was only concluded (in the place of the above assertion of Fz
admitting a finite F - invariant measure) that the the connected component F 0z of
Fz admits a finite F 0-invariant measure. It was proposed as a conjecture that Fz
has only finitely many connected components, and hence in fact admits a finite
F -invariant measure. The issue was reduced to the question whether the orbit
closure is finite whenever it is discrete. This question was settled in the affirmative
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by Eskin and Margulis [20], thus completing the picture. I may mention that the
proof in [20] involves a random walk version of recurrence properties that I will
discuss in § 5.

Ratner’s results have been used in various contexts, including in problems of
Diophantine approximation. The reader is referred to [4], [11], [30], [46], [52] for
details. I will however mention here the following recent result of A. Gorodnik
[25], which complements Corollary 2.2, and is proved using Ratner’s results.

2.5 Theorem (Gorodnik) Let Q be a nondegenerate indefinite quadratic form
on Rn, n ≥ 4, and let L be a linear form on Rn. Suppose that (i) the restriction
of Q to the subspace {v ∈ Rn | L(v) = 0} is an indefinite quadratic form, and
(ii) no linear combination αQ + βL2, with α, β ∈ R and (α, β) 6= (0, 0) is a
rational quadratic form. Then {(Q(x), L(x)) | x ∈ P} (with P as before) is dense
in R2.

The analogue of the above corollary is not true for n = 3; this was noted
in [12], and depends on Theorem 4.4 below, due to Kleinbock and Margulis.
On the other hand Theorem 2.5 does not complete the picture for n ≥ 4 since
condition (i) can not be expected to be a necessary condition for the conclusion
to hold. It is conjectured in [25] that the conclusion holds if (i) is replaced by
a condition equivalent to the following, which is indeed a necessary condition:
{(Q(v), L(v)) | v ∈ Rn} = R2. The case to be settled happens to be that of
a pair (Q,L) for which there exists g ∈ SL(n,R) such that v 7→ Q(gv) and
v 7→ L(gv) are the forms x2

1 + · · ·+ x2
n−2 + xn−1xn and xn (quadratic and linear

respectively). It is stated in [25] that the proof of the result in the other case
there can be adapted to prove this statement for n = 4. For n ≥ 5 however, it is
open.

Before concluding this section it may be remarked that the theme of address-
ing problems in Diophantine approximation via study of flows on homogeneous
spaces, got strengthened by Margulis’s work, and in turn inspired similar work
on the question of values of cubic forms at integer points and a conjecture of
Littlewood in the topic. It however involves actions of subgroups which are quite
the contrary to being generated by unipotent elements. In this context Margulis
has proposed a conjecture about the behaviour of orbits under actions of sub-
groups which are not generated by unipotent elements (see [42]). There has been
considerable work towards the conjecture and its applications to the Littlewood
conjecture; in the general form the conjecture is still open however. We will not
go into the details of these topics here. The reader is referred to [19] and [32],
and the references there for an exposition of the area.
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§3. Uniform versions of uniform distribution.

I had the opportunity of collaborating with Margulis once again, following
Ratner’s proof of Theorem 2.3. We proved certain uniform versions of uniform
distribution of orbits of unipotent flows, and applied them to study asymptotics
of the set of solutions of quadratic inequalities as in the Oppenheim conjecture
[17].

Let G be a connected Lie group and Γ be a lattice in G. For any x ∈ G/Γ, any
unipotent one-parameter subgroup U = {ut} of G and T > 0 let λ(x,U, T ) denote
the probability measure on the arc {utx | 0 ≤ t ≤ T} in G/Γ, uniform along the
parameter t; viz. λ(x,U, T ) is the measure such that for every continuous function
ϕ with compact support, on G/Γ,

∫

G/Γ
ϕdλ(x,U, T ) =

1
T

∫ T

0
ϕ(utx) dt.

For any closed subgroup F and x ∈ G/Γ such that Fx is closed and admits a
finite F -invariant measure let µ(x, F ) denote the F -invariant probability measure
on G/Γ.

Ratner’s uniform distribution theorem (viz. Theorem 2.4 above) means that
for any x ∈ G/Γ and any unipotent one-parameter subgroup U there exists a
closed subgroup F such that Fx is closed and admits a F -invariant measure, and
the family of probability measures {λ(x,U, T )} converges to µ(x, F ) as T → ∞
(in the weak topology with respect to bounded continuous functions). In this
respect one may also consider the dependence of the convergence on the point x
and the one-parameter subgroup U .

We say that a point x ∈ G/Γ is generic for the U -action of a unipotent one-
parameter subgroup U if Ux is dense in G/Γ, or equivalently uniformly dis-
tributed in G/Γ, and we say that x is singular, for the U -action, if it is not
generic.

Given a sequence Ui = {u(i)
t } of unipotent one-parameter subgroups of G and

a unipotent one-parameter subgroup U = {ut} of G, we say that Ui converges to
U , and write Ui → U , if u

(i)
t → ut for all t ∈ R. We proved the following (see

Theorem 2 in [17]; the statement there is formulated for individual integrals):

3.1 Theorem Let {xi} be a sequence in G/Γ converging to x ∈ G/Γ, and {Ui} be
a sequence of unipotent one-parameter subgroups of G converging to a unipotent
one-parameter subgroup U of G. Suppose that x is a generic point for U . Then for
any sequence {Ti} in R+ such that Ti →∞ the sequence of probability measures
{λ(xi, Ui, Ti)} converges to the G-invariant probability measure on G/Γ.

The main points in the proof in [17] are the following. Consider a limit point,
say σ, of the sequence {λ(xi, Ui, Ti)} of probability measures on G/Γ, viewed
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as measures on the one-point compactification of G/Γ. Using results on non-
divergence of orbits of unipotent flows one concludes that σ is a probability
measure on G/Γ, viz. point at ∞ carries zero measure. Clearly σ is a U -invariant
measure. By Ratner’s classification of invariant measures (see Theorem 2.3)
together with ergodic decomposition it follows that if the set of singular points
for the U -action has zero σ-measure then σ is the G-invariant probability measure.

For any closed subgroup H such that H∩Γ is a lattice in H let X(H, U) = {g ∈
G | Ug ⊂ gH}. If g ∈ X(H, U) then gΓ is a singular point for the U -action, since
UgΓ/Γ ⊂ gHΓ/Γ which is a proper closed subset. Conversely every singular point
is of the form gΓ for g ∈ X(H, U) for some H as above. Furthermore, considering
the minimal ones from the subgroups involved, one can see that H can be chosen
from a countable collection. It therefore suffices to prove that σ(X(H, U)Γ/Γ) = 0
for all proper closed subgroups H such that H ∩ Γ is a lattice in H. For this
purpose we associate to each H a linear action of G on a finite-dimensional vector
space VH in such a way that behaviour of trajectories of U of points near the
set X(H, U)Γ/Γ can be compared with that of trajectories of certain associated
points in VH near a U -invariant algebraic subvariety AH associated with XH .
For the latter one shows, using Lagrange interpolation formula together with the
fact that trajectories of unipotent one-parameter subgroups are polynomial maps,
that for any compact subset C of AH and ε > 0 there exists a compact subset
D of AH such that the proportion of time spent by near C to that spent near D
is at most ε. This means that asymptotically the trajectories spend arbitrarily
little time near any fixed compact subset of the variety, which then yields that
σ(X(H, U)Γ/Γ) = 0, for all H as above.

Theorem 3.1 can also be proved by an argument along the lines of Ratner’s
proof of uniform distribution theorem, namely Theorem 2.4 which it generalises;
Ratner has stated that this was pointed out to her by Marc Burger in 1990,
prior to our proving the result. The above approach, and especially the idea of
comparing the behaviour of trajectories on G/Γ with that of certain trajectories
in finite-dimensional vector spaces, referred to as linearisation, has on the other
hand been useful in proving Theorem 3.2 below, involved in quantitative versions
of the Oppenheim conjecture, and also in some subsequent work of other authors.

Clearly the condition in the hypothesis that x is a generic point for U is
necessary for the stated conclusion to hold. It turns out however that if we fix a
bounded continuous function ϕ and ε > 0, and want to know if

∫
ϕdλ(xi, Ui, Ti)

differs from
∫

ϕdµ by at most ε then a weaker hypothesis suffices. This turns out
to be important in applications. The following is a slightly more general version
of Theorem 3 of [17], allowing the unipotent one-parameter subgroups to vary,
which can be proved along the lines of the original proof.

3.2 Theorem Let {Ui} be a sequence of unipotent one-parameter subgroups of G
converging to a unipotent one-parameter subgroup U of G. Let K be a compact
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subset of G/Γ, ϕ be a bounded continuous function on G/Γ and ε > 0 be given.
Then there exist finitely many proper closed subgroups H1, . . . , Hk such that Hi∩Γ
is a lattice in Hi for each i = 1, . . . , k, and a compact subset K0 of K contained
in ∪k

i=1X(Hi, U)Γ/Γ such that the following holds: for any compact subset F of
K\K0 there exist i0 ≥ 1 and T0 > 0 such that for all x ∈ F , i ≥ i0 and T ≥ T0

∣∣∣
∫

ϕdλ(x,Ui, T )−
∫

ϕdµ
∣∣∣ < ε.

The proof consists of showing that if the assertion does not hold then there
exists a sequence {xi} in K converging to a generic point of U for which the
conclusion of Theorem 3.1 does not hold.

§4. Quantitative versions of Oppenheim conjecture

Theorem 3.2 was applied in [17] to obtain asymptotic lower estimates for the
number of integral solutions in large balls, for the quadratic inequalities as in the
Oppenheim conjecture.

Let ω be a positive continuous function on the unit sphere {v ∈ Rn | ||v|| = 1},
and Ω = {v ∈ Rn | ||v|| < ω(v)}. For T > 0 let TΩ denote the dilate {Tv | v ∈ Ω}
of Ω by T .

While considering asymptotics of the solutions of the inequalities involving
the quadratic form we shall also consider the dependence on the forms. In this
respect the spaces of quadratic forms will be considered equipped with the usual
topology, arising from the associated symmetric bilinear forms, or equivalently
the topology of convergence as functions. We proved the following.

4.1 Theorem Let O(p, q) denote the space of quadratic forms on Rn with dis-
criminant ±1 and signature (p, q), with p ≥ 2, q ≥ 1, p ≥ q and p+ q = n. Let K
be a compact subset of O(p, q). Let a, b ∈ R, with a < b be given. Then for any
θ > 0 there exists a finite subset F of K such that

i) each Q in F is a scalar multiple of a rational quadratic form, and

ii) for any compact subset C of K\F there exists a T0 > 0 such that for all
Q ∈ C and T ≥ T0,

#{x ∈ Zn ∩ TΩ | a < Q(x) < b} ≥ (1− θ)vol {v ∈ TΩ | a < Q(v) < b}.

The basic idea involved in proving the estimate may be explained as follows.
For any function f on Rn vanishing outside a compact subset let f̃ be the function
on G/Γ defined by f̃(gΓ) =

∑
v∈gZn f(v); since f vanishes outside a compact set

the right hand side expression is in effect a finite sum, and yields a well-defined
function on G/Γ. It can be seen that if f is a measurable function on Rn then f̃
is measurable on G/Γ. Furthermore, by a theorem of Siegel, if f is integrable on
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Rn then f̃ is integrable on G/Γ and
∫
Rn fdλ =

∫
G/Γ f̃dµ, where λ is the Lebesgue

measure on Rn and µ is the G-invariant probability measure on G/Γ.

For simplicity we consider only the case with n = 3, and K consisting of a single
quadratic form which is not a multiple of a rational form. Let Q0 be the quadratic
form as before, namely Q0(x1, x2, x3) = x1x3 − x2

2. Let g ∈ G = SL(3,R) and
let Q be the quadratic form v 7→ Q0(gv) for all v ∈ R3 (as seen before, it suffices
to consider only these quadratic forms). Let U = {ut} be a unipotent one-
parameter subgroup contained in SO(Q0). Let a, b ∈ R, with a < b be given. We
are interested in solutions of a < Q(x) < b, or equivalently a < Q0(gx) < b with
x an integral point in a region of the form TΩ as above. Let B be a subset of
R3 which is a “box” of the form {uts | |t| < τ, s ∈ S} where τ is a small positive
number and S is a small open set in a plane transversal to the U -action, contained
in {v ∈ R3 | a < Q0(v) < b}. Let χ denote the characteristic function of B. Let
0 < T1 < T2 and S(T1, T2) = {uts | T1 < t < T2, s ∈ S}. Then

∫ T2

T1
χ(utv)dt ≤ 2τ

for any v ∈ R3, and hence
∫ T2

T1
χ̃(utgΓ)dt =

∫ T2

T1

∑
v∈gZ3 χ(utv)dt is bounded by

2τ#(S(T1, T2) ∩ gZ3). Therefore,

#(S(T1, T2) ∩ gZ3) ≥ 1
2τ

∫ T2

T1

χ̃(utgΓ)dt.

When Q is not a multiple of a rational quadratic form, g can be chosen to be
such that gΓ is generic for the U -action. Then given θ > 0 as in the hypothesis,
when T1, T2 and T2 − T1 are sufficiently large the integral on the right hand side
exceeds (1 − θ)(T2 − T1)

∫
χ̃dµ which, by the theorem of Siegel recalled above,

equals (1 − θ)(T2 − T1)λ(B). Then the cardinality of S(T1, T2) ∩ gZ3 is at least
(1− θ)(T2 − T1)λ(B)/2τ , which may be seen to be the same as (1−θ)volS(T1, T2).
The proof of the lower estimates for Q as above essentially consists of “filling up”
more than (1− θ/2) proportion of the regions g(TΩ) ∩ {v ∈ R3 | a < Q0(v) < b}
as above, for large enough T , efficiently (in a way that the overlaps would not
matter) by subsets of the form mS(T1, T2) with m in a certain compact subgroup
M of SO(Q0); in the calculations it is convenient to use equality of the integrals

∫ T2

T1

∫

E

∑

v∈gZ3

χ(utmv)dσ(m)dt =
∫ T2

T1

∫

E
χ̃(utgmΓ)dσ(m)dt,

for various subsets E of M , where σ is the normalised Haar measure on M . Using
the comparison as above and using Theorem 3.2 we conclude that

#{y ∈ g(Z3 ∩ TΩ) | a < Q0(y) < b} ≥ (1− θ)vol(TΩ ∩ {v ∈ R3 | a < Q(v) < b}),
which is equivalent to the desired inequality in the case at hand. The proof in
the general case is analogous, using Theorem 3.2 as above.
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It is also proved in [17] that when n ≥ 5 for any compact subset K of O(p, q)
and ε > 0 there exist c > 0 and T0 > 0 such that for all Q ∈ K and T ≥ T0 the
number of x ∈ TΩ∩Zn for which |Q(x)| < ε is at least c vol {v ∈ TΩ | |Q(v)| < ε}.
This in particular gives a quantitative version of the classical theorem of Meyer
that for n ≥ 5 every nondegenerate indefinite rational form represents zero.

Remarks For an indefinite binary quadratic form the set of values at integral
points need not be dense in R, even when the form is not a scalar multiple of a
rational form; it can be seen that for Q(x, y) = (x+ ay)(x+ by), {Q(x, y) | x, y ∈
Z} has zero as a limit point if and only if one of a and b is an irrational number
which is not badly approximable. Conditions for density of the values on the set
of integral points, and also on the set of pairs with positive integer coordinates
are considered in [18]. In the context of the latter it may be mentioned here that
by an argument as in the first part of the sketch of the proof of Theorem 4.1 it can
be shown that for n ≥ 3 for a nondegenerate indefinite quadratic form Q on Rn

which is not a multiple of a rational form, if the cone {v ∈ Rn | Q(v) = 0} contains
vectors with all coordinates positive, then the set {Q(x1, . . . , xn) | x1, . . . , xn ∈ N}
is dense in R.

The lower estimates obtained in [17] were complemented in the work of Mar-
gulis with Eskin and Mozes [21] with upper estimates.

4.2 Theorem (Eskin-Margulis-Mozes) Let the notation be as in Theorem 4.1.
If p ≥ 3 then the subset F as in the conclusion can also be chosen so that for
any compact subset C of K\F there exists a T0 > 0 such that for all Q ∈ C and
T ≥ T0,

#{x ∈ Zn ∩ TΩ | a < Q(x) < b} ≤ (1 + θ)vol {v ∈ TΩ | a < Q(v) < b}.

The function f̃ as in the remarks following Theorem 4.1 is unbounded for any
nonnegative nonzero function f . Therefore the relation used in obtaining the
lower estimates is not amenable to computations for upper estimates. The dif-
ficulty is overcome in [21] via analysis of integrals of the form

∫
K f̃(atkΓ)1+δdk,

where δ > 0, K is a maximal compact subgroup of SO(p, q) and {at} is a diago-
nalisable one-parameter subgroup of SO(p, q).

We note that the right hand side of the inequalities in Theorems 4.1 and 4.2
are asymptotic to cTn−2 for a constant c > 0 (depending on a, b and Ω and the
quadratic form), and thus so is the number of solutions as on the left hand side,
provided p ≥ 3. It is also proved in [21] when p ≥ 3, given K, a, b and Ω as in
Theorems 4.1 and 4.2 there exists an effectively computable constant C > 0 such
that #{x ∈ Zn∩TΩ | a < Q(x) < b} is bounded by CTn−2; we note here that for
the results recounted earlier there are no effective proofs - the reader is referred
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to [42] for a discussion on this issue. The corresponding statement does not hold
for p = 2, but CTn−2 log T , serves as a bound, with an effective constant C.

Indeed, when p = 2, given q = 1 or 2, for every ε > 0 and interval (a, b) in
R there exists a quadratic form Q of signature (2, q), a constant δ > 0 and a
sequence Ti →∞ such that

#{x ∈ Zn ∩ TΩ | a < Q(x) < b} ≥ δT q
i (log Ti)1−ε

for all i (see [21]). The examples, first noticed by P. Sarnak, arise as irrational
forms which are very well approximable by split rational forms. Sarnak also
noted that a hypothesis suggested by Berry and Tabor, on the statistic of the
eigenvalues of the quantisation of a completely integrable Hamiltonian is related
to the asymptotics in the problem as above, in the case of signature (2, 2). In
this context, it is of interest to identify classes of quadratic forms with p = 2
for which the number of solutions is asymptotic to cTn−2, with c the constant
as above. Sarnak showed that this holds for almost all quadratic forms from the
two-parameter family (x2

1 + αx1x2 + βx2
2)− (x2

3 + αx3x4 + βx2
4).

Apart from the issue of very well approximability there is also another aspect
of forms of signature (2, 2) which precludes the asymptotics as desired. It may
be seen that the c as above depends linearly on (b − a). On the other hand,
whenever a quadratic form of signature (2, 2) has a rational isotropic subspace,
say L, then for any ε > 0,

#{x ∈ Zn ∩ TΩ | |Q(x)| < ε} ≥ #(Zn ∩ TΩ ∩ L) ≥ σT 2,

where σ > 0 is a constant independent of ε. In this respect the following result
is proved in the recent paper of Eskin, Margulis and Mozes [22].

4.2 Theorem (Eskin, Margulis, Mozes) Let the notation be as in Theo-
rem 3.1. Let Q ∈ O(2, 2), and suppose that it is not extremely well approximable,
in the sense that there exists N > 0 such that for all split integral forms Q′ and
k ≥ 2, ||Q− 1

kQ′|| > k−N . Let X be the set of points in Z4 which are not contained
in any isotropic subspace of Q. Then, as T →∞,

#{x ∈ X ∩ TΩ | a < Q(x) < b} ∼ vol {v ∈ TΩ | a < Q(v) < b}.

§5. View of orbits from infinity

When the underlying space of a flow is noncompact, questions arise about
whether some of the orbits are bounded (relatively compact), or diverge to infinity
etc.; these aspects I refer as view of the orbits from infinity. In the light of the
Mahler criterion, in the case of flows on SL(n,R)/SL(n,Z) these have close
connections with questions in diophantine approximation. One of the earliest
results of this kind was proved by Margulis, in [33]; the statement had been
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conjectured earlier by Piatetski-Shapiro, and was used by Margulis in his work
on the arithmeticity theorem for nonuniform lattices.

5.1 Theorem (Margulis) Let G = SL(n,R) and Γ = SL(n,Z). Let {ut} be a
unipotent one-parameter subgroup of G. Then for every x ∈ G/Γ there exists a
compact subset K of G/Γ such that {t ≥ 0 | utx ∈ K} is unbounded; (in other
words, the trajectory {utx}t≥0 does not “go off to infinity”).

Developing upon Margulis’s original proof I strengthened the result to the
following [8]:

5.2 Theorem Let G and Γ be as in Theorem 5.1. Then for every ε > 0 there
exists a compact subset K of G/Γ such that for any x = gΓ ∈ G/Γ and any
unipotent one-parameter subgroup {ut} of G one of the following holds:

i) l({t ≥ 0 | utx /∈ K}) < εT for all large T , or

ii) {g−1utg} leaves invariant a proper nonzero rational subspace of Rn.

Analogous results hold also for general Lie groups G and lattices Γ. One of the
consequences of these results is that every locally finite ergodic invariant measure
of a unipotent flow on G/Γ is necessarily finite; this turned out to be useful in
Ratner’s work on Raghunathan’s conjecture. From the theorem I deduced also
that every closed nonempty subset invariant under a unipotent one-parameter
subgroup contains a minimal closed invariant subset, and the minimal sets are
compact; this was used in our proofs of Theorems 1.3 and 2.1. The result was
extended by Margulis to actions of general connected unipotent Lie subgroups
acting on G/Γ [39].

The following quantitative version of Theorem 5.1 was proved by Kleinbock
and Margulis, in the course of their study [28] of Diophantine approximation on
manifolds.

5.3 Theorem (Kleinbock and Margulis): Let Λ be a lattice in Rn, n ≥ 2.
Then there exists ρ > 0 such that for any unipotent one-parameter subgroup {ut}
of SL(n,R), T > 0 and ε ∈ (0, ρ),

l({t ∈ [0, T ] | utΛ ∩B(ε) 6= 0}) ≤ cn(ε/ρ)1/n2
T,

where B(ε) denotes the open ball of radius ε with center at 0, and cn is an explicitly
described constant depending only on n.

(We note that the parenthetical set on the left hand side represents a neigh-
bourhood of infinity in the space of lattices in Rn, depending on ε.)

Actually the results in [28] apply also to a large class of curves, and also higher
dimensional submanifolds, in the place of orbits of unipotent groups involved in
the above theorem. The general results along the theme are involved in deal-
ing with questions in Diophantine approximation on manifolds which we discuss
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briefly in the next section. The method involved has been further sharpened in
recent years by Kleinbock; see [26].

It may also be mentioned here that results somewhat similar in flavour as the
above theorems, but in different direction and concerning local behaviour, may
be found in [23]; these were proved by the authors in preparation for their results
on asymptotics of lattice points on homogeneous varieties [24].

In [20] Eskin and Margulis prove a random walk analogue of the recurrence
properties as above, proving in particular that given a connected Lie group G
which is generated as a closed subgroup by the unipotent elements in it, a lattice
Γ in G, and a probability measure µ on G satisfying a certain moment condition,
for every ε > 0 there exists a compact subset K of G/Γ such that for every
x ∈ G/Γ there exists N ∈ N, such that for all n > N , (µ∗n ∗ δx)(K) > 1 − ε;
here µ∗n denotes the n th convolution power of µ and δx is the point measure
at x. The authors also discuss other variations on the theme. Using the result
the authors deduce the conjecture proposed by Nimish Shah, on the finiteness of
countable orbit closures, mentioned in § 2.

Theorem 5.2 was applied by Margulis to give a new proof of the theorem of
Borel and Harish-Chandra on arithmetic subgroups of semisimple groups being
lattices [37]. The study of recurrence properties of random walks on homogeneous
spaces in [20], discussed above, was also applied in a similar way, and recently
a self-contained proof of the Borel-Harish Chandra theorem was also given by
Margulis [44], via a simplified version of the approach from [20].

In the mid-eighties I observed that the notions of singular systems of linear
forms and badly approximable systems, studied by W.M. Schmidt (see [50]),
correspond to trajectories of points of SL(n,R)/SL(n,Z) under the action of
certain diagonal one-parameter subgroups of SL(n,R) being divergent (tending
to infinity) or being bounded respectively [7]. It was shown that in certain cases
the orbit being bounded, while certainly not generic, was quite prevalent, if one
took into account the Hausdorff dimension of the set of such points [10]. Margulis
followed up the theme and formulated a conjecture on the issue in his ICM
address at Kyoto. The conjecture as presented there needs some modifications.
However, the underlying question was completely solved in a paper of Kleinbock
and Margulis [27], proving the following.

5.4 Theorem (Kleinbock and Margulis): Let G be a connected Lie group
and Γ be a lattice in G. Let {gt} be a one-parameter subgroup of G. Let W be
the normal subgroup of G generated by the two opposite horospherical subgroups
with respect to {gt}. Suppose that WΓ = G. Let B be the set of points x in G/Γ
such that the orbit {gtx} of x is bounded (relatively compact). Then for every
nonempty open subset Ω of G/Γ the intersection B∩Ω is of Hausdorff dimension
equal to the dimension of G.
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It may be noted that if WΓ is a proper subgroup then the set B as above is
of Hausdorff dimension at most dimG− 1, unless it is the whole of G/Γ; this is
related to Ratner’s work for unipotent flows and its extension to quasi-unipotent
flows (see [52], § 21).

The correspondence between divergence or boundedness properties of trajecto-
ries of specific one-parameter subgroups on the one hand and issues in Diophan-
tine approximation on the other hand was also extended by Kleinbock to broader
classes of one-parameter subgroups (see [30] for details).

§6. Diophantine approximation on manifolds

We next come to yet another area of Diophantine approximation to which
Margulis has made important contributions, which in some ways are continuation
of the study of unipotent flows and their applications.

We recall that v ∈ Rn is said to be very well approximable (VWA) if for some
ε > 0 there exist infinitely many positive integers k such that dist (kv,Zn) ≤
k−( 1

n
+ε). Also v is said to be very well multiplicatively approximable (VWMA) if

for some ε > 0 there exist infinitely many positive integers k such that infp∈Zn Π(kv+
p) ≤ k−(1+ε), where Π is the function on Rn defined by Π(v) = |v1v2 · · · vn| for
v = (v1, v2, . . . , vn). Clearly, if a vector is VWA then it is also VWMA.

These concepts, arise naturally in higher-dimensional extensions of the theory
of approximation of irrationals by rationals in the one-dimensional case. A vector
being VWA or, more generally, VWMA is atypical and in particular the set of
points which are VWMA is of Lebesgue measure 0. In the higher-dimensional case
this raises an interesting question whether given a (differentiable) submanifold
of the ambient space the set of VWMA (or VWA) vectors contained in it has
measure 0 as a subset of the submanifold (on a differential manifold there is
a natural notion of a set being of measure zero, namely that the intersection
of the set with each chart be of Lebesgue measure zero). Motivated by a 1932
conjecture due to Mahler that vectors on the curves {(t, t2, . . . , tn) | t ∈ R} in Rn,
n ≥ 2 are not VWA for almost all t, this question, and certain generalisations,
were studied by several number theorists, including Kasch, Volkmann, Sprindzuk,
W.M. Schmidt, A. Baker, Bernik and also very recently by Beresnevich (see [43]
for some references on the work).

Kleinbock and Margulis (1998) [28] proved the following result settling a con-
jecture of Sprindzuk (1980); the latter was a generalisation of a conjecture of
A. Baker which corresponds to the special case of d = 1 and fk(t) = tk, k =
1, . . . , n in the statement below.

6.1 Theorem (Kleinbock and Margulis) Let Ω be a domain in Rd for some
d ≥ 1 and let f1, f2, . . . , fn be n real analytic functions on Ω such that Σaifi is
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not a constant function for any a1, . . . , an in R, not all zero. Then for almost all
v in Ω the vector (f1(v), . . . , fn(v)) is not VWMA (and hence not VWA either).

Actually the result is proved in [28] in greater generality, allowing f1, . . . , fn

to be Cr functions satisfying a certain “nondegeneracy” condition. The ques-
tion is reduced to one of estimating measures of subsets of the parameter set Ω
for which uf1(v),...,fn(v)Zn+1 belongs to certain neighbourhoods of infinity (com-
plements of compact subsets), where the neighbourhoods concerned depend on
numerical values for size and also on certain diagonal matrices, by way of “shape”;
for w1, . . . , wn ∈ R, uw1,...,wn denotes the unipotent element of SL(n + 1,R) cor-
responding to the linear transformation given by e0 7→ e0 and ei 7→ ei + wie0 for
i = 1, . . . , n, with {ei}n

i=0 as the standard basis of Rn+1. From this point on, the
ideas are akin to those in Theorems 5.1 and 5.2 but now appear in quantitative
and highly intricate form. The reader is referred to [43] for an exposition of the
ideas involved. A modification of the method was used in [3] to prove a part (the
convergence part) of the Khintchine-Groshev theorem for nondegenerate smooth
submanifolds of Rn; see also [2].
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