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1. Introduction

Let V be a finite dimensional vector space over R. A linear endomorphism g
of V is called proximal if it has a unique eigenvalue of maximal absolute value
and this eigenvalue has algebraic (and hence geometric) multiplicity one. Equiv-
alently, g is proximal iff there is a g–invariant line L+ with gv = λv for every
v ∈ L+ and a g–invariant hyperplane H− such that all the eigenvalues of g on
H− have absolute value smaller than |λ|. Then V = L+ ⊕H−. If g is proximal,
the eigenvalue λ is called the dominant eigenvalue of g.

For a proximal element g ∈ GL(V ) the dynamics of the semigroup gn, n ∈ N,
are very transparent. The properties are most conveniently formulated in terms
of the map Pg induced by g on the projective space P(V ) corresponding to V .
Namely, if g is proximal then on P(V ) r P(H−) the sequence of maps (Pg)n,
n ∈ N, converges to the constant map, which sends all of P(V )rP(H−) to the
point P(L+). The convergence is uniform on compact subsets of P(V )rP(H−).

Proximal linear maps have been used in many contexts. Let us mention a few.
The linear map of the Perron theorem turns out to be proximal, see section 3, cf.
[BP], [G] and [HJ] for applications and generalizations. Tits used proximal maps
to obtain a ping–pong situation for a Schottky construction of free subgroups
of linear groups, see [T] and theorem 3.4. Similar constructions were used in
[MS], in our work on the Auslander conjecture [A, AMS1–5] and in the work of
Breuillard and Gelander [BG]. See also the survey paper [S] of G. Soifer in this
volume. Furstenberg used proximal linear maps to study proximal actions in his
theory of boundaries [Fu], which in turn played an important role in Margulis’
proof of the arithmeticity and superrigidity theorems, see [M]. Other applications
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of the concept of proximality to boundary theory and random walks are in the
work of Guivarc’h and coauthors. Interesting new applications of the concept of
proximality are in the work of Benoist and his students. Proximal linear maps
were also used in Gol’dsheid–Margulis’ paper to analyze products of random
matrices [GM]. The proof of theorem 5.1 is taken from that paper. An essential
tool in this proof are quasiprojective maps, introduced by Furstenberg in the
paper cited above. We review this concept briefly in chapter 4.

In fact, this expository paper has as its main purpose to popularize the notion
of proximality and to draw attention to the theorem of Gol’dsheid and Margulis.
The proof of their very basic algebraic theorem, theorem 5.1 in our paper, is in
their paper [GM] somewhat hiding behind the notion of contractive sequence and
some probabilistic applications. The relation between contractive sequences and
proximality is described below, see the end of chapter 4, 4.10ff.

The notion of proximality, although very useful, seems very special. But by
using exterior products questions about maps with multiple eigenvalues of max-
imal modulus and more generally about Lyapunov filtrations can be reduced to
questions about proximality, see the discussion in [AMS1, chapter 5], cf. 5.5.

The word proximal denotes the opposite of the word distal. The notion of a
distal action was defined already in Hilbert’s Grundlagen der Geometrie. This
concept as well as the opposite notion of proximal actions were studied by Fursten-
berg. From there the notion of a proximal map is derived.

Let me take this opportunity to thank G. Margulis. It has been a great experi-
ence to work together with him and I owe him many insights. It was encouraging
to see him believe in ever so weird conjectures that finally turned out right.

Acknowledgment: I thank the SFB 701 in Bielefeld, the Clay Mathematical
Institute and the Institute of Advanced Study in Princeton for support and Yale
University and the IAS for their hospitality during the preparation of this paper.

2. Elementary properties of proximal maps

2.1. If n is a positive integer, then g is proximal iff gn is proximal. In which case
λ(gn) = (λ(g))n, L+(gn) = L+(g) and H−(gn) = H−(g).

2.2. Let h ∈ End(V ) have rank 1. Then h is proximal iff Im(h) 6⊂ Ker(h). In this
case L+ = Im(h) and H− = Ker(h).

2.3. The set of proximal elements in End(V ) is an open subset with respect to
the Euclidean topology, but not with respect to the Zariski topology. For an
example, g ∈ SL2(R) is proximal iff g is hyperbolic iff the trace of g has modulus
> 2. And the set of hyperbolic elements of SL2(R) is Euclidean open and Zariski
dense in SL2(R).



Proximal Linear Maps 129

2.4. Here is a partial converse of 2.2 and 2.3. If g is proximal with dominant
eigenvalue λ, then gn = gn

λn converges to a linear map as in 2.2. Namely, gn|L+ =
idL+ and gn|H− converges to 0.

3. The theorems of Perron and Tits

An important question is how to find proximal linear maps. We present here
three theorems answering this question, due to Tits, Perron and Gol’dsheid–
Margulis, resp.

A theorem with many applications is Perron’s theorem, see [BP], [G] and [HJ].
We present here a geometric version of it.

A convex cone is called pointed if it does not contain an affine line.

Theorem 3.1. Let C be a pointed closed convex cone in V and let A be a linear

endomorphism of V such that Am(C r {0}) ⊂
◦
C for some positive integer m,

where
◦
C is the interior of C. Then A is proximal, the dominant eigenvalue λ is

positive and has an eigenvector x in
◦
C, and the A–invariant hyperplane H which

is complementary to Rx intersects C only in 0.

Perron’s original theorem is the case that C is the cone of vectors in Rn with
non–negative coordinates. So A satisfies the hypotheses of the theorem iff all
entries of the corresponding matrix are positive. Thus:

Theorem 3.2 (Perron). Let A be a real n × n–matrix all of whose entries aij

are positive : aij > 0 for i, j = 1, . . . , n. Then the linear map induced by A is
proximal, its dominant eigenvalue λ is positive and has a corresponding eigenvec-
tor with all entries positive. Furthermore, there is an A–invariant hyperplane H
with the following properties: The only vector of H with non–negative entries is
the zero vector and the eigenvalues of A on H all have modulus less than λ.

Again, it suffices that some positive power Am of A fulfills these hypotheses,
by 2.1. The more general theorem of Frobenius admits also matrices with non–
negative entries but needs an irreducibility condition. We will not go into the
details here. As a warning see the example in 4.10.

Our proof of theorem 3.1 is an application of the Banach fixed point theorem.
I thank G. Noskov for showing me this proof [N]. The metric we use here is the
Hilbert metric. For the relevant facts about the Hilbert metric see the appendix.
Given a pointed closed convex cone C in V , then there is an affine hyperplane
H in V not containing 0 such that H ∩C is compact and C consists of the non–
negative multiples of vectors of H ∩ C. Suppose H is given by the linear form `
on V : H = {v ∈ V ; `(v) = 1}. We may suppose that m = 1 in the hypothesis
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of 3.1, by 2.1. Put C̃ = C ∩ H and Ã : C̃ → C̃, Ã(v) = A(v)
`(A(v)) . Note that for

v 6= 0, v ∈ C we have `(A(v)) > 0, since A(v) ∈
◦
C ⊂ C r {0} and ` is positive

on C r {0}. Then Ã(C̃) is compact and contained in the interior of C̃, hence Ã

is a contraction of C̃ with respect to the Hilbert metric, by 6 b) of the appendix.
Thus, by the Banach fixed point theorem

(1) Ã has a unique fixed point x in C̃, which must be an element of Ã(C̃) ⊂
◦
C,

and

(2) Ãnỹ converges to x for every ỹ ∈ C̃.

These two properties imply our claims. First of all, x is an eigenvector for A
for the positive eigenvalue λ = `(x). Every A–invariant vector subspace of V
which contains a non–zero vector of C must contain x, by (2). It thus remains
to show that λ is the only eigenvalue of modulus λ, has geometric and algebraic
multiplicity 1 and has maximal modulus among all eigenvalues. All of this is
also implied by (2), as follows. Suppose there is an eigenvalue of modulus > λ.
Let f(t) =

∏n
i=1(t − λi) be the characteristic polynomial of A,Ω = {λi ; |λi| >

λ}, f1(t) =
∏

λi∈Ω(t − λi) and W = ker f1(A). Look at the projective space
P(Rx ⊕ W ), the map P(A) induced by A and the point P(y) corresponding
to a line Ry 6= Rx. Then the cluster points of P(A)nP(y) are all in P(W ) 63
P(x), which contradicts the fact that P(A)nP(y) converges to P(x) for y ∈ C̃
near x. If the eigenspace of λ has dimension at least two or if there is another
eigenvalue, real or complex, of modulus λ, then there is a one or two–dimensional
A–invariant subspace W not containing x on which λ−1A acts by rotation and
hence λ−nAn(x + w), w ∈ W , remains in a compact subset not intersecting Rx,
if w 6= 0, again contradicting (2). Finally, if λ is an eigenvalue with algebraic
multiplicity at least two but only one–dimensional eigenspace Rx, then there
is a two–dimensional A–invariant subspace W containing Rx with the following
dynamics of A. Let ‖ · ‖ be a norm on W and let S be the norm–1–sphere
S = {w ∈ W ; ‖w‖ = 1}, a circle. Define A′ : S → S, A′(x) = A(x)

‖A(x)‖ . Then A′

has two fixed points on S, namely ± x
‖x‖ and on one of the remaining two half

circles A
′nw converges to x

‖x‖ for n → ∞ and on the other one A
′nw converges

to −x
‖x‖ , which again contradicts (2). ¤

3.3. The following theorem is due to Tits [T]. It holds for arbitrary local fields,
not only for R. To state it we need the concept of an admissible metric. Thus, let
k be a locally compact field endowed with an absolute value ω. The topology we
consider here on a finite dimensional vector space V over k and on the projective
space P = P(V ) = (V r{0})/k∗ is the one induced from the topology of k. Thus
the topology of V is the product topology for some linear isomorphism V ' kn

and the topology of P is the quotient topology of the topology of V r {0}.
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If x = (x1, . . . , xn) is an affine coordinate system in some affine space A over
k, in particular a linear coordinate system in a vector space, we denote by dx :
A×A → R the function defined by

dx(p, q) = sup
1≤i≤m

(ω(xi(p)− xi(q))).

If ξ = (ξ0, . . . , ξn) is a (linear) coordinate system in the vector space V over k, the
equation ξ0 = 0 defines a hyperplane H of the projective space P(V ) and xi =
ξ−1
0 ξi can be viewed as a function on P rH. Any such system x = (x1, . . . , xn)

will be called an affine coordinate system in P . The set Dx := P r H will be
called its “domain of definition”.

A metric d : P × P → R+ is called admissible if it induces the topology of P
and if for every affine coordinate system x in P and every compact subset K of
Dx there exist m, M ∈ R∗+ such that

m · dx|K×K ≤ d|K×K ≤ M · dx|K×K .

Let X be a set, Y a subset, d : X×X → R+ a metric and f : Y → X a mapping.
Then we denote by ‖f‖d the “norm of f with respect to d”, that is the number

sup
p,q∈Y
p6=q

d(f(p),f(q))
d(p,q) ,

where we set ‖f‖d = 0 if card Y ≤ 1.

Let us fix an admissible metric d on P .

Theorem 3.4 ([T 3.8 (ii)]). Let g ∈ PGL(P ) and K ⊂ P be a compact set. Let
◦

K

be the interior of K in P . Suppose that for some m ∈ N we have gmK ⊂
◦

K and
‖gm|K‖d < 1. Then every linear map representing g is proximal. Furthermore, let
L+ be the eigenline of its dominant eigenvalue and let H− be the complementary
invariant hyperplane, and let PL+ and PH− be the corresponding point and

hyperplane in P . Then PL+ ∈
◦

K and PH− ∩K = ∅.

4. Quasiprojective maps

A basic tool for the Gol’dsheid–Margulis theorem and their proof are quasipro-
jective maps. The definition of quasiprojective maps is due to H. Furstenberg. His
original definition is contained in 4.8. The definition given here is more general
and more categorical.

For a real vector space V we denote by PV the projective space of one–
dimensional vector subspaces of V . Let V and W be finite dimensional real
vector spaces. Let q : V → W be a linear map. Then q does not induce a projec-
tive map PV → PW , in general, but does so on PV r PKer q. We thus define
P(q) : PV rPKer q) → PW by P(q)(Rx) = Rq(x) for every x ∈ V rKer q.
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Definition 4.1. A map Q : PV → PW is called quasiprojective if for every
non–zero vector subspace U of V there is a non–zero linear map qU such that
Q | PU rPKer qU = PqU . We then say that qU represents Q on U .

4.2. For Q to be quasiprojective it suffices to have linear maps qU representing
Q for a sequence of subspaces U = Vi, i = 0, . . . constructed as follows: V0 :=
V, q0 := qV , V1 := Ker q0, q1 := qV1 : V1 → W , V2 := Ker q1, q2 := qV2 :
V2 → W , etc. Vi+1 := Ker qi, qi+1 := qVi+1 up to some qr : Vr → W with
Vr+1 := Ker qr = {0}. If we have a map Q : PV → PW and such a sequence of
subspaces Vi and linear maps qi, such that Q | PVi+1 = Pqi for i = 0, . . . , r then
Q is quasiprojective, since for every non–zero vector subspace U of V there is a
unique index i such that U ⊂ Vi but U 6⊂ Vi+1. If we put qU := qi | U , the system
of qU ’s has the required properties.

4.3. If Q is a quasiprojective map Q : PV → PW and R is a quasiprojective map
R : PW → PU then R ◦Q | PV → PU is a quasiprojective map, because for a
non–zero vector subspace V ′ of V we have R ◦ Q | PV ′ r PV ′′ = P(rW ′ ◦ qV ′),
where W ′ = qV ′(V ′) and V ′′ = Ker(rW ′ ◦ qV ′) < V ′ and qV ′ and rW ′ are the
linear maps representing Q and R on V ′ and W ′, resp. Thus, projective spaces
together with quasiprojective maps form a category.

4.4. For a quasiprojective map Q : PV → PW let us define M0(Q) ⊂ PW as
the Q–image of the set of points where Q is continuous and M1(Q) ⊂ PV as the
closure of the set of points where Q is not continuous.

Q is continuous on the dense open subset PV rPKer qV . It follows that

M0(Q) = P(qV (V )).

In particular, M0(Q) is a non–empty projective subspace of P(W) and dimM0(Q)=
rank qV − 1.

It follows that an isomorphism PV → PW in the category of quasiprojective
maps is the same as a projective isomorphism, i.e., a projective map induced by
a linear isomorphism V → W . And a quasiprojective map Q : PV → PW is an
isomorphism onto its image iff dim M0(Q) = dimPV , in which case Q(PV ) =
M0(Q).

Also note that
M0(Q1 ◦Q2) = M0(Q1 | M0(Q2))

for any two composable quasiprojective maps Q1, Q2, by 4.3.

4.5. Let us assume that M0(Q) consists of more than one point. Then qV has
rank at least two, and is easily seen to be uniquely determined by Q up to
multiplication by a non–zero scalar. Furthermore

M1(Q) = P(Ker qV ),
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because if RqV (e1) 6= RqV (e2) for two vectors e1, e2 ∈ V rKer qV , then Q(R(x+
εei)) = Rq0(ei) for x ∈ Ker qV and every ε 6= 0.

The case that M0(Q) consists of one point only is quite different. There may be
different sequences qi, Vi for the same quasi–projective map Q. And also different
maps qU for vector subspaces U of V . An extreme case is that the image of Q
consists of one point only. Still, in any case M1(Q) is a projective subspace of
P(V ), may be empty but is always a strict subspace of PV , as we shall prove
now.

4.6. Suppose M0(Q) consists of one point only. Put M ′
1(Q) = {x ∈ PV ;Q(x) 6=

M0(Q)} and let U be the vector subspace of V spanned by the lines corresponding
to the points of M ′

1(Q). Then M1(Q) = M ′
1(Q) = PU .

Proof. If M ′
1(Q) is empty, then Q sends all ofPV to M0(Q), hence Q is continuous

and M1(Q) = P({0}) is empty as well. So suppose M ′
1(Q) is not empty. The

dense open subset PV r PKer qV of PV has as Q–image the point M0(Q), so
M ′

1(Q) ⊂ M1(Q). And Q has value M0(Q) on the open subset PV rPU of PV ,
so M1(Q) ⊂ PU . On the other hand, qU is a non–zero linear map, but P(qU ) does
not map all of PU rPKer qU to M0(Q), since otherwise M ′

1(Q) ⊂ PKer qU and
hence U ⊂ Ker qU . Thus U contains a dense open subset O with P(O) ⊂ M ′

1(Q).
It follows that PU ⊂ M ′

1(Q) ⊂ M1(Q), by taking closures. This together with
M1(Q) ⊂ PU proves our claim. ¤
4.7. The set of quasiprojective maps from P(V ) to P(W ) is closed with respect
to the topology of pointwise convergence.

Proof. Let (Qα)α be a convergent net in the set Q of quasiprojective maps from
P(V ) to P(W ). Let U be a non–zero vector subspace of V and let qα

U be a
non–zero linear map U → V representing Qα | PU , so P(qα

U ) = Qα | P(U) r
P(Ker qα

U ). We choose norms on V and W . The norm on V induces a norm on U
and we thus have a norm ‖ · ‖ on the vector space L(U,W ) of linear maps from U
to W . We may assume that ‖qα

U‖ = 1 for every α. So there is a convergent subnet
(qβ

U )β of (qα
U )α converging to a linear map qU : U → W of norm 1. If qU (x) 6= 0

then qβ
U (x) 6= 0 for β large. For such x we thus have Q(Rx) = lim Qβ(Rx) =

limRqβ
U (x) = RqU (x). So Q is quasiprojective. ¤

4.8. If dimV ≤ dimW , in particular if V = W , the set of quasiprojective maps
V → W is the set of pointwise limits of projective maps P(V ) → P(W ).

Proof. By the last proposition it suffices to show that every quasiprojective map
Q : P(V ) → P(W ) is a pointwise limit of projective maps. So let qi, Vi, i =
0, . . . , r, be as in 4.2. Extend every qi : Vi → W to a linear map V → W , also
denoted qi and let qr+1 : V → W be an injective linear map. Define q(ε) =
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∑r+1
j=0 εjqj : V → W . We have q(ε) = εr+1q′(1

ε ) with q′(s) = qr+1 + sqr + · · · +
sr+1q0 for ε 6= 0, and q′(0) = qr+1 is injective, hence so is q′(1

ε ) for ε À 0 and
hence also q(ε) for ε À 0. It follows that q(ε) is injective except for at most a
finite number of ε, by looking at the determinant of an appropriate submatrix in a
matrix representation of q(ε) : V → W . Furthermore, q(ε) | Vi = εi

∑
j≥i ε

j−iqj ,
since Vi ⊂

⋂
`<i Ker q`, hence P(q(ε)) converges pointwise to P(qi) = Q on P(Vi)

for ε → 0. ¤

4.9. The set Q(V ) of quasiprojective maps of P(V ) to itself is a semigroup and
a compact topological space with respect to the topology of pointwise convergence.
Right translation in Q(V ) is continuous, but left translation is not, in general.
But if Q ∈ Q(V ) is a continuous map P(V ) → P(V ), in particular, if Q is a
projective isomorphism P(V ) → P(V ), then left translation in Q(V ) with Q is
continuous, i.e., the map Q(V ) → Q(V ), with R 7−→ Q ◦R, is continuous.

Note that contrary to what one might think after 4.8, the topological space
Q(V ) is not metrisable, in general. E.g., if dimV = 2, the quasiprojective not
projective maps P1 → P1 are exactly the maps which are constant on the com-
plement of one point. In the set of these maps with the topology of pointwise
convergence no point has a countable neighborhood base, hence this space is not
metrisable.

4.10. A quasiprojective map b is called a contraction if M0(b) consists of one
point only. The notion of contraction is closely related to that of a contractive
sequence of linear maps, see [AMS1, p. 6ff.] and [GM, Lemma 6.5 f.] Let H be a
subsemigroup of GL(V ) and let H be the closure of H in the semigroup Q(P) of
quasiprojective selfmaps of P = P(V ). If H contains a proximal element h, then
H contains a contraction. In fact, the sequence hn, n ∈ N, contains a subsequence
which converges in Q(P), and every limit b of a convergent subsequence of hn,
n ∈ N, is a contraction.

The converse is not true. Even if H rH consists of contractions, it does not
follow that H contains a proximal element. A simple counterexample — which
kills many hopes — is the following. Let H be the subsemigroup of SL2(Z) of
upper triangular unipotent matrices with upper right hand corner entry in N.
Let b be the quasiprojective map P1 → P1 whose image is P(e1), where e1 is the
first standard basis vector of R2. So b is a contraction. Then H consists of H
and b. But H contains no proximal element.

Also note that this semigroup H consists of non–negative matrices and maps
the open cone P = {(x, y) ∈ R2; x > 0 and y > 0} into itself. Still, in contrast
to Perron’s theorem, H does not contain a proximal element.
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The problem here is related to remark 2.2. In more detail, let hn be a sequence
in GL(V ) which converges to a contraction b ∈ Q(P). By passing to a subse-
quence we may assume that hn

‖hn‖ converges to a linear map h ∈ End(V ). Here
we suppose that a norm ‖ · ‖ on V was chosen. Then h has rank 1, since Ph :
PVrPKer h → P and b coincide on the open dense subset M0(b)∩(PVrPKer h)
of P. It follows that if Im(h) 6⊂ Ker(h), then H is proximal, by 2.2, and hence
so are hn for n À 0, by 2.3. But if Im(h) ⊂ Ker(h) this may or may not be the
case. And knowing b is not enough to decide if Im(h) 6⊂ Ker(h), as the example
above shows. In the proof of theorem 5.1 irreducibility of the semigroup H on V
lets us find an element h with Im(h) 6⊂ Ker(h), see the second paragraph of the
proof of 5.1.

Let us look at these questions from a different point of view, namely moduli
of eigenvalues vs. singular values.

4.11. The spectral radius ρ(g) of g ∈ End(V ) is by definition the maximal mod-
ulus of the eigenvalues of g. Let λ1, . . . , λn be the eigenvalues of g, each written
with its algebraic multiplicity and ordered such that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. So
ρ(g) = |λ1|. Let Λrg : ΛrV → ΛrV be the linear endomorphism of the exterior
power ΛrV induced by g, i.e., such that Λrg(v1∧· · ·∧vr) = g v1∧· · ·∧g vr. Then
ρ(Λrg) = |λ1 . . . λr|. Hence g is proximal iff ρ(g) > 0 and ρ(Λ2g)/ρ(g)2 < 1.

4.12. Suppose we have a norm ‖ · ‖ on the vector space V . Let ‖ · ‖ also denote
the associated operator norm on End(V ). Then limn→∞ n

√
‖gn‖ = ρ(g). Thus g

is proximal iff g 6= 0 and

lim
n→∞

n

√
‖Λ2gn‖
‖gn‖2

< 1,

or equivalently if g 6= 0 and

lim 1
n log ‖Λ2gn‖ < 2 lim

n→∞
1
n log ‖gn‖.

4.13. Note that limn→∞ ‖Λ2gn‖/‖gn‖2 = 0 does not imply that g is proximal.
E.g., if g ∈ SL2(R) is unipotent. Here Λ2g = id and ‖gn‖ grows only polynomi-
ally. For proximality we need exponential growth.

4.14. Suppose we have a norm on V and h ∈ End(V ) has large operator norm
and there is an h–invariant hyperplane H on which the norm of h|H is small.
These properties of h do not imply that h is proximal, e.g., if h is a multiple of
a unipotent upper triangular 2× 2–matrix. Thus information about the singular
values of h, equivalently, knowledge of ‖h‖, ‖Λ2h‖, . . . , does not imply proximal-
ity.
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5. The theorem of Gol’dsheid–Margulis

A subsemigroup Γ of GL(V ) is called strongly irreducible if there is no finite
union

⋃
i Vi of vector subspaces Vi of V with 0 < Vi < V , which is invariant

under Γ. Recall that the Zariski closure of a subsemigroup Γ of GL(V ) is an
algebraic subgroup. If G is the closure of Γ, then Γ is strongly irreducible iff the
connected component G0 of the identity in G is irreducible. Here one can take
the connected component of G with respect to the Euclidean topology or with
respect to the Zariski topology, the criterion will be the same.

Theorem 5.1 (Gol’dsheid–Margulis). Let G be a strongly irreducible subgroup
of GL(V ) which contains a proximal linear map. Then every Zariski dense sub-
semigroup Γ of G is strongly irreducible and contains a proximal element.

Proof. The first claim follows from what was said above. The point is to show
the second claim. We may and will assume that G is the Zariski closure of Γ.
Let P(Γ) be the semigroup {P(γ), γ ∈ Γ} of projective selfmaps of P(V ). Let H
be the closure of P(Γ) with respect to the pointwise topology of P(V ). So H is a
closed subsemigroup of Q(V ). We shall prove that H contains an element h with
M0(h) consisting of one point only.

This implies our claim by the following argument. Let e1, . . . , en be a basis
of V with P(ei) 6∈ M1(Q) for i = 1, . . . , n. Let hj , j ∈ N, be a sequence of
elements of Γ such that P(hj)P(ei) converges to M0(h) for j → ∞ and every
i = 1, . . . , n. Choose a norm ‖ · ‖ on V and let v be a vector of norm 1 such that
P(v) = M0(h). Then, for every i, we may assume that hj(ei)

‖hj(ei)‖ converges to +v

or to −v. It follows that the sequence of linear maps hj

‖hj‖ converges in End(V )

to a linear map h̃ of rank one with image Im(h̃) = Rv. If v 6∈ Ker h̃, then h̃

is proximal by 2.2 , hence so is hj

‖hj‖ for j large by 2.3 and hence so is hj ∈ Γ.

If v ∈ Ker h̃, take an element g ∈ Γ such that g v 6∈ Ker h̃, which is possible
since Γ is irreducible. Then g · hj

‖hj‖ converges to g h̃, which is of rank one and

Im(gh̃) = gRv 6⊂ Ker h̃ = Ker gh̃, hence ghj ∈ Γ is proximal for j large.

So suppose there is no h ∈ H with M0(h) consisting of one point only. Let d
be the minimal dimension of spaces M0(h), h ∈ H. So d > 0.

Lemma 5.2. Suppose b ∈ H and dimM0(b) = d. Then for every h ∈ H we have
dimM0(hb) = d and h|M0(b) is a projective isomorphism from M0(b) onto its
image and this image is M0(hb).

Proof. M0(hb) = M0(h|M0(b)) has dimension ≤ d = dim M0(b), by 4.4, so d =
M0(h | M0(b)) by minimality of d, which implies all our claims by 4.4. ¤
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Lemma 5.3. Suppose b ∈ H and dimM0(b) = d. Then for every h ∈ H we have

M0(b) ⊂ M1(h) or M0(b) ∩M1(h) = ∅.

Proof. If hV represents h on V , we have M1(h) = PKer hV , by 4.5, since
dimM0(h) ≥ d > 0. Hence if M1(h) ∩ M0(b) 6= ∅ but M0(b) 6⊂ M1(h), then
hV | W is non–zero but not injective. Here W is the vector subspace of V
such that M0(b) = PW . Suppose bV represents b on V , then Im bV = W and
(hV |W ) ◦ bV represents h ◦ b on V and hence M0(h ◦ b) = P Im((hV |W ) ◦ bV ) has
dimension < dimM0(b) = d, contradicting the minimality of d. ¤

Lemma 5.4. There is an element b ∈ H such that dimM0(b) = d and M0(b) ∩
M1(b) = ∅.

Proof. Recall that if g ∈ PGL(V ) and q is quasiprojective then

M0(gq) = gM0(q),

M0(qg) = M0(q),

M1(gq) = M1(q),

M1(qg) = g−1M1(q).

For b ∈ H with dim M0(b) = d look at the set of γ ◦ b, γ ∈ Γ. Then M0(γ ◦
b) = γM0(b) has either empty intersection with M1(γb) = M1(b) for one γ ∈ Γ
or, by the previous lemma, γM0(b) ⊂ M1(b) for all γ ∈ Γ, which contradicts
irreducibility of Γ. Recall that M1(b) 6= PV . ¤

We are now close to the key point of the proof. It has a very transparent
geometry, as follows. Lemma 5.4 will provide us with a linear subspace W of
V , namely PW = M0(b), and a quasiprojective map b ∈ H with the following
properties. 1) b is a retraction of P onto PW outside of some projective subspace
(our M1(b)) which does not intersect PW . 2) Every map ϕ ∈ H with ϕ(Pw) ⊂
PW induces a projective isomorphism β(ϕ) of PW . This is due to the minimality
of dimPW , technically speaking, it is a consequence of lemma 5.2.

We will set Φ = {ϕ ∈ H; ϕ(PW ) ⊂ PW}. It will follow that the compact
subsemigroup β(Φ) of PGL(PW ) is actually a compact subgroup and hence a
real algebraic subgroup of PGL(PW ), by a theorem of Chevalley.

Now for a certain Zariski open subset of G, the set Gb below, the composition
b ◦ g of g with the retraction b induces a projective isomorphism β(b ◦ g) of PW .
We just have to make sure that gPW does not intersect the singular set M1(b)
of the retraction b. But for the Zariski dense subset Γ ∩ Gb the image β(b ◦ g)
lies in Φ, hence so does β(b ◦ g) for every g ∈ Gb. But this will be easily seen to
contradict the hypothesis that G contains a proximal element and thus a sequence
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converging to a quasiprojective map with M0 a one point set. Remember that
we assumed that d = dimPW > 0.

Here are the details now. Let b ∈ H be as in lemma 5.4. Let W be the vector
subspace of V with PW = M0(b). Then every linear map bV representing b on
V is a surjection from V onto W . And PKer bV = M1(b), by 4.5, so bV restricts
on W to a linear automorphism of W . More generally, set

Φ = {ϕ ∈ H ; ϕ(PW ) ⊂ PW}.
Clearly, b ∈ Φ and Φ is a compact subsemigroup of H. For ϕ ∈ Φ let β(ϕ) be
the quasiprojective map PW → PW induced by ϕ. Then β(ϕ) is actually a
projective automorphism of PW , by lemma 5.2. Thus β gives a homomorphism
Φ → PGL(PW ). Its image β(Φ) is thus a compact subsemigroup of PGL(PW ).

We now use the following two facts.

• Every compact subsemigroup of a topological group is a subgroup.
• Every compact subgroup of a real algebraic group is Zariski closed.

The second one of these facts is a non–trivial theorem due to Chevalley. The
first one is quite elementary and we give a proof now. Let H be a compact
subsemigroup of the topological group G. Let g be an element of H. We only
have to prove that g−1 ∈ H. The sequence (gn)n∈N has a convergent subnet, say
(gni)i∈I converges to h ∈ H. For every m ∈ N the net (gni−m)i∈I converges to
g−mh which is an element of H, since ni−m > 0 for i sufficiently large. It follows
that the net (g−ni−1h)i∈I consists of elements of H. This net converges to g−1,
which is hence also in H.

It follows from the two facts stated above that β(Φ) is a Zariski closed compact
subgroup of PGL(PW ).

Again, let b be as in lemma 5.4. Set

Gb = {g ∈ G ; M1(b) ∩ gM0(b) = ∅}.
Then Gb is a non–empty Zariski open subset of G containing the identity element.
We claim that bg induces a projective isomorphism of PW . The proof is similar as
above: Let bV be the linear map representing b on V . We know that Im bV = W
and PKer bV = M1(b). Thus PIm bV ◦ g = PW = M0(b) and PKer bV ◦ g =
g−1M1(b) and these two subspaces of PW do not intersect, by definition of Gb.
So P(bV ◦ g) = bg | PV rPKer bV ◦ g, hence bg induces a projective isomorphism
of PW onto itself.

For g ∈ Gb let β(bg) ∈ PGL(PW ) be the projective map of PW to itself
induced by bg. We thus have a morphism Gb → PGL(PW ), g 7−→ β(bg), of
real algebraic varieties which maps the Zariski dense subset Γ∩Gb to the Zariski
closed compact subgroup β(Φ), hence so does Gb, i.e., β(bg) is contained in the
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compact subgroup β(Φ) for every g ∈ Gb. But this contradicts the hypothesis
that G contains a proximal element, as we will prove now.

Let G0 be the connected component of the identity in G, with respect to the
Zariski topology.

G contains a proximal element, hence so does G0, since G/G0 is finite and every
positive power of a proximal map is proximal. For a proximal linear map h let L+

h

be the eigenspace of the dominant eigenvalue and let H−
h be the complementary

h–invariant hyperplane. We claim that there is a proximal element h ∈ G0 such
that L+

h 6⊂ M1(b) and M0(b) 6⊂ H−
h . If h is proximal, then so are its conjugates

g hg−1, and L+
g hg−1 = g L+ and H−

g hg−1 = g H−
h . So for a fixed proximal element

h ∈ G0 the set of g ∈ G0 such that g L+
h 6⊂ M1(b) and g−1M0(b) 6⊂ H−

h is Zariski
open and not empty, since V is an irreducible G0–module. The set

P = {g ∈ G0; g proximal, L+
g 6⊂ M1(b),M0(b) 6⊂ H−

g }
is thus not empty. Also, P is open in G0 with respect to the Euclidean topology.
It follows that P ∩Gb is not empty, since Gb ∩G0 is Zariski open and not empty
in the irreducible variety G0. Now for g ∈ P ∩Gb the sequence gnPW converges
to PL+

g , uniformly, hence gn ∈ Gb for n large. It follows that the sequence of
quasiprojective maps b gn(PW ), represented by bV gn | W , converges to the map
which sends PW to the one point b(PL+

g ). So the sequence P (bgn) cannot be
contained in a compact subset of PGL(PW ). ¤

The quasiprojective maps in H are a method of bookkeeping of properties of
limits of sequences of maps in Γ. We used this here to prove that Γ contains
a proximal map if the minimal dimension of M0(h), h ∈ H, is zero and the
representation is irreducible.

Note that we used the hypothesis that G contains a proximal element only at
the very end of the proof of theorem 5.1. Thus the same proof gives the following
result. Let M(g) be the sum of the algebraic multiplicities of all eigenvalues λ of
g of maximal modulus. Thus g is proximal iff M(g) = 1.

Theorem 5.5. Let G be a strongly irreducible subgroup of GL(V ) and let M be
the minimum of the numbers M(g), g ∈ G. Then every Zariski dense subsemi-
group Γ of G contains an element γ with M(γ) = M .

The proof of theorem 5.1 given here is taken from [GM, §6]. The “elementary
proof” in [GM, §2,3] for the case that G = GL(V ) contains a gap. Lemma 2.17
in [GM], though true for projective space, is not true for the space of flags.

Other proofs of theorem 5.1 have been given. The proof in [P] avoids using the
topology of Q(V ) and uses only limiting maps in End(V ). The proof in [BL] is
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based on probabilistic results in [GR]. The argument of [GM], however, is very
basic and simple and we thus thought it useful to give a detailed account of it.

6. Generalizations and applications

6.1. One might ask if a similar result as theorem 5.1 holds for non–archimedian
fields. The definition of proximality is literally the same for local fields as for
R. The proof certainly does not work for non–archimedian fields since it uses
at a crucial point the theorem that a compact subgroup of an affine algebraic
group over R is Zariski closed. Thus the question above has a negative answer
for a trivial reason. For non–archimedian fields k there are compact Zariski dense
subgroups, e.g. SLn(O) in SLn(k), where O is the maximal compact subring of
k. But also the following non–trivial question has a negative answer. Suppose Γ
is a Zariski dense subgroup of a strongly irreducible Zariski closed subgroup G
of GL(V ). Suppose G contains a proximal element and Γ is not contained in a
compact subgroup of G. Does then Γ contain a proximal element? The answer
is again no. A counterexample is due to G. Margulis and published in [Pl].

6.2. In [AMS1] we prove that under the hypotheses of theorem 5.1 Γ not only
contains one proximal element, but a rich supply. The step from one proximal
to many works also for other local fields, we thus isolate this result for other
applications, see [S].

Theorem 6.3. Let Γ be a subsemigroup of the linear group GL(V ) of a finite
dimensional vector space V over a local field k. Suppose Γ is strongly irreducible
and that Γ contains a proximal element. Then there is a subset M of Γ with card
(M) ≤ (dim(V ))2 such that for every g ∈ GL(V ) there is a γ ∈ M for which γng
is proximal for every natural number n.

The proof is the same as for the k = R, see [AMS1, 4.1]. The result is actually
true for a quantitative version of proximality, taking into account the quotient
of the modulus of the dominant eigenvalue of g divided by the norm of g on the
complementary g–invariant hyperplane H− and the distance between L+ and
H−.

6.3 implies easily that under the hypotheses of 6.3 the set of proximal elements
of Γ is Zariski dense. One can furthermore show that the set of elements γ ∈ Γ
such that both γ and γ−1 are proximal is Zariski dense, see [AMS1, 4.11]. This
is important for applications of the ping–pong lemma.

6.4. Here is a nice and useful application of theorem 5.1. Now everything is
over R. Let G be a reductive subgroup of GL(V ) defined over R. Let Ad be
the adjoint representation of G on its Lie algebra g. We assume that G is not
compact. An element g ∈ G is called R–regular if the number of eigenvalues,
counted with multiplicities, of modulus 1 is minimum possible. It is known that
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every R–regular element is semisimple [PRa] and it is easy to see that an ele-
ment of SLn(R) is R–regular iff all its eigenvalues in the natural n–dimensional
representation are real and their moduli are distinct. The first two parts of the
following theorem were also proved in [BL] and [P].

Theorem 6.5. Let Γ be a Zariski dense subsemigroup of the reductive group G.
Then Γ contains an R–regular element. In fact, the set of R–regular elements
in Γ is Zariski dense. There is a finite subset M of Γ such that for every g ∈ G
there is at least one γ ∈ M such that γng is R–regular for every natural number
n.

The proof in [AMS1, 6.8] uses the following representation. Let u be the Lie
algebra of the unipotent radical of a minimal parabolic subgroup of G and let k
be its dimension. Let V be the smallest G–submodule of ∧k g containing the line
∧k u. Then V is a strongly irreducible representation of G, with highest weight
sum of the positive relative roots.

Let ρ be the corresponding representation. An element g ∈ G is R–regular iff
ρ(g) is proximal. Since such elements exist in G, the theorem follows.

Here is another description of the elements for which ρ(g) is proximal. Recall
that every element g ∈ GL(V ) has a multiplicative Jordan decomposition g =
s · u = u · s uniquely determined by the conditions that s is semisimple and u
is unipotent and s and u commute. Every semisimple element s ∈ GL(V ) has a
polar decomposition s = p · k = k · p uniquely determined by the conditions that
p and k are semisimple, the eigenvalues of p are positive real, the eigenvalues of
k have modulus one, and p and k commute. The elements s = s(g) and u = u(g)
are called the semisimple and unipotent part of g, and p and k are called the
polar and compact part of s or of g if s = s(g).

Now, g is R–regular iff the polar part pol(g) of g is regular, i.e., its centralizer
has maximal dimension or equivalently pol(g) is conjugate to an inner point of a
Weyl chamber of some maximal R–split torus of G. For results on the asymptotic
behavior of pol(γ), γ ∈ Γ, their limit directions and the number of elements below
a given upper bound, see the work of Benoist and Quint.

6.6. For our work on properly discontinuous and crystallographic affine groups
we needed a more precise result giving also information about the compact part
of elements of Γ: They should generate a dense subgroup of the maximal compact
subgroup of a maximal (non–split) torus in G. Such results are proved in the
papers [PR1, PR2] of Prasad and Rapinchuk. They use algebraic methods. These
results do not seem to be attainable by the methods presented here.
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7. Appendix

The cross ratio For any four points a, b, c, d on the real line R we define their
cross ratio by

[a, b, c, d] =
c− a

b− a
· d− b

d− c
.

Here we assume a 6= b and c 6= d in order to avoid that we have to calculate
with ∞. It is well known and easy to compute that for every real projective
automorphism f of P1

R = R ∪ {∞} we have

[f(a), f(b), f(c), f(d)] = [a, b, c, d],

where we suppose for convenience, that none of the points a, b, c, d is mapped to
∞ by f . Thus, if we have four points A,B, C, D with A 6= B and C 6= D on an
affine line L in a real vector space V , their cross ratio is well defined by

[A,B, C, D] = [λ(A), λ(B), λ(C), λ(D)],

if λ : L → R is an affine coordinate system on L. By denoting λ(B) − λ(A) by
AB etc. we obtain

[A,B, C, D] = AC
AB · BD

CD .

If furthermore the four points A,B, C, D are located in this order on L, we can
think of AC etc. as just the distance between A and C with respect to a given
norm on V . Then their cross ratio is ≥ 1 and > 1 if B 6= C.

The Hilbert metric The Hilbert metric dX of a bounded convex open subset
X of Rn is defined as follows: For any two different points x, y of X let x′ and y′
be the points of ∂X on the line ` through x and y such that x′, x, y, y′ are located
in this order on `. Then the Hilbert metric is defined by

dX(x, y) = log[x′, x, y, y′].

Properties of the Hilbert metric:

a) (Monotonicity) If X ⊂ Y then dX(x, y) ≥ dY (x, y) for x, y ∈ X, since
the term x′y

x′x = x′x+xy
x′x = 1+ xy

x′x in the cross ratio decreases for Y ⊃ X to
1+ xy

x′′x if x′′ is the point of ∂Y on the line ` through x and y, and similarly
for the other factor xy′

yy′ . And since x′x′′ is bounded below if X ⊂ Y , we
have:

b) if X ⊂ Y , then there is a number δ < 1 such that

dY (x, y) ≤ δ · dX(x, y) for every x, y ∈ X.

c) (Additivity) If z ∈ [x, y] then

dX(x, y) = dX(x, z) + dX(z, y),

by direct calculation.
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d) (Triangle inequality) Given x, y, z in X, the convex set X contains
the quadrilateral Y whose diagonals are the maximal segments [x′, y′]
and [y′′, z′′] in X containing [x, y] and [y, z], respectively. Let [x′′′, z′′′]
be the maximal segment in Y containing [x, z] and let p be the point of
intersection of the lines containing [x′, y′′] and [y′, z′′]. If these lines are
parallel we take p to be infinity. Projection from p sends y to a point, say
w, in [x, z]. Since projection between lines preserves cross ratios, we see
that [x′, x, y, y′] = [x′′′, x, w, z′′′] and hence
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Figure 1. Triangle inequality.

dX(x,w) ≤ dY (x,w) = dX(x, y)

and dX(w, z) ≤ dY (w, z) = dX(y, z)
and thus

dX(x, z) = dX(x,w) + dX(w, z) ≤ dX(x, y) + dX(y, z).

e) The Hilbert metric is complete and induces the topology of X, as is easy
to see.
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