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Abstract: Let Γ be an irreducible lattice in a connected, semisimple Lie
group with finite center. Assume that R-rankG ≥ 2, that G/Γ is not com-
pact, and that G has more than one noncompact simple factor. We show that
Γ has no orientation-preserving actions on the real line. (In algebraic terms,
this means that Γ is not right orderable.) Under the additional assumption
that no simple factor of G is isogenous to SL(2,R), applying a theorem of
É. Ghys yields the conclusion that any orientation-preserving action of Γ on
the circle must factor through a finite, abelian quotient of Γ.
The proof relies on the fact, proved by D. Carter, G. Keller, and E. Paige,
that SL(2,O) is boundedly generated by unipotents whenever O is a ring of
integers with infinitely many units. The assumption that G has more than
one noncompact simple factor can be eliminated if all noncocompact lattices
in SL(3,R) and SL(3,C) are virtually boundedly generated by unipotents.

1. Introduction

It is known that if Γ is a finite-index subgroup of SL(3,Z), then Γ has no
nontrivial actions by orientation-preserving homeomorphisms of the real line R
[W1]. (More generally, the same is true if Γ is any finite-index subgroup of the
integer points of any connected, almost-simple, algebraic group over Q, with
Q-rankG ≥ 2.) It is conjectured that the same conclusion is true much more
generally:

(1.1) Definition. A subgroup Γ of a Lie group G is an irreducible lattice in G if

(1) Γ is discrete,
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(2) G/Γ has finite volume, and
(3) ΓN is dense in G, for every noncompact, closed, normal subgroup N of G.

(1.2) Conjecture [G1]. Suppose

• G is a connected, semisimple Lie group with finite center,
• R-rankG ≥ 2, and
• Γ is any irreducible lattice in G.

Then Γ has no nontrivial, orientation-preserving action on R.

In this paper, we prove the conjecture in the special case where G is a direct
product of copies of SL(2,R) and/or SL(2,C).

(1.3) Example. The following theorem implies that no finite-index subgroup of
SL

(
2,Z[

√
3]

)
has a nontrivial, orientation-preserving action on R. (Such sub-

groups are noncocompact, irreducible lattices in SL(2,R) × SL(2,R)). Further-
more,

√
3 can be replaced with any irrational algebraic integer α, such that either

α is real or α is not a root of any quadratic polynomial with rational coefficients.

(1.4) Theorem. Let

• F be an algebraic number field that is neither Q nor an imaginary qua-
dratic extension of Q,

• O be the ring of integers of F, and
• Γ be a finite-index subgroup of SL(2,O).

Then Γ has no nontrivial, orientation-preserving action on R.

(1.5) Remark.

(1) See [G2] for a very nice introduction to this subject.
(2) A version of Conjecture 1.2 circulated informally in 1990, but it appar-

ently first appeared in print in [G1].
(3) The conclusion of the conjecture is equivalent to the purely algebraic

statement that Γ is not right orderable (see 3.3). That is, there does not
exist a total order ≺ on Γ, such that a ≺ b implies ac ≺ bc, for all c ∈ Γ.

(4) Theorem 1.4 was announced in [LM]. It provides the first known examples
of arithmetic groups of Q-rank 1 that have no right-orderable subgroups
of finite index.

(5) For an algebraic number field F with ring of integers O, the Dirichlet
Units Theorem (cf. [PR, Prop. 4.7, p. 207]) implies that the following two
conditions are equivalent:
(a) F is neither Q nor an imaginary quadratic extension of Q.
(b) The group O× of units of O is infinite.
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The above theorem considers only a very restricted class of lattices. However,
because subgroups of right orderable groups are right orderable, it has more gen-
eral consequences. For example, it implies that the conclusion of the conjecture
holds when G has more than one simple factor and Γ is not cocompact:

(1.6) Corollary (cf. 3.4). Assume

• G and Γ are as in Conjecture 1.2,
• the adjoint group of G is not simple, and
• G/Γ is not compact.

Then Γ has no nontrivial, orientation-preserving action on R.

The proof of Theorem 1.4 is based on the following simple lemma.

(1.7) Lemma (see 4.2). Suppose

• Γ is a group,
• U1, U2, . . . , Ur are subgroups of Γ,
• the product U1U2 · · ·Ur is a finite-index subgroup of Γ, and
• for every orientation-preserving action of Γ on R, and for each i ∈
{1, . . . , r}, the Ui-orbit of each point in R is a bounded set.

Then Γ has no nontrivial, orientation-preserving action on R.

Thus, Theorem 1.4 is a consequence of the following two theorems. Before
stating these results, we provide an important definition.

(1.8) Definition.

• A subgroup U of SL(`,C) is unipotent if it is conjugate to a subgroup of


1 ∗
. . .
0 1


 .

• A matrix group Γ is virtually boundedly generated by unipotents if there
are unipotent subgroups U1, . . . , Ur of Γ, such that the product U1U2 · · ·Ur

is a finite-index subgroup of Γ.

(1.9) Theorem (D. Carter, G. Keller, and E. Paige [CKP, Mo]). If F, O, and Γ
are as as described in Theorem 1.4, then Γ is virtually boundedly generated by
unipotents.

(1.10) Theorem (see §6). Suppose

• F, O, and Γ are as described in Theorem 1.4,
• no proper subfield of F contains a finite-index subgroup of the group O×

of units of O, and
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• U is any unipotent subgroup of Γ.

Then, for every orientation-preserving action of Γ on R, the U -orbit of each
point in R is a bounded set.

The following theorem shows that our methods will yield more general re-
sults if one can generalize the Carter-Keller-Paige Theorem (1.9) to establish the
bounded generation of additional groups.

(1.11) Conjecture. If Γ is any noncocompact lattice in either SL(3,R) or SL(3,C),
then Γ is virtually boundedly generated by unipotents.

(1.12) Theorem (see §8). Assume

• Conjecture 1.11 is true,
• G is a connected, semisimple Lie group with finite center,
• R-rankG ≥ 2, and
• Γ is a noncocompact, irreducible lattice in G.

Then Γ has no nontrivial orientation-preserving action on R.

(1.13) Remark.

(1) The Margulis Arithmeticity Theorem provides a concrete description of
the noncocompact lattices in SL(3,R) and SL(3,C) (cf. 7.4).

(2) Conjecture 1.11 is only a very special case of a much more general con-
jecture: it is believed that SL(3,R) and SL(3,C) can be replaced by any
simple Lie groups of real rank ≥ 2 (cf. [PR, p. 578]).

A beautiful theorem of É. Ghys [G1, Thm. 3.1] implies that if Γ is a higher-
rank lattice, then (up to finite covers) any action of Γ on the circle S1 must be
semiconjugate to an action obtained from projecting to a PSL(2,R) factor of G.
In particular, if there are no nontrivial homomorphisms from G to PSL(2,R),
then every action of Γ on S1 has a finite orbit. (In most cases, this conclusion
was also proved by M. Burger and N. Monod [BM1, BM2].) Combining this with
Theorem 1.12 yields the following conclusion:

(1.14) Corollary. Assume

• Γ and G are as in Theorem. 1.12,
• Conjecture 1.11 is true, and
• no simple factor of G is isogenous to SL(2,R).

Then any action of Γ on the circle S1 factors through a finite quotient of Γ.

Regrettably, our methods do not apply to cocompact lattices, because these
do not have any unipotent subgroups.

Here is an outline of the paper:
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§1. Introduction
§2. The S-arithmetic case
§3. Preliminaries on arithmetic groups
§4. Preliminaries on bounded generation
§5. Preliminaries on unbounded orbits of unipotent subgroups
§6. Proof of Theorem 1.10
§7. Lattices in SL(3,R) or SL(3,C)
§8. Proof of Theorem 1.12

(1.15) Acknowledgments. We thank V. Chernousov for very helpful conversa-
tions. The work of D.W.M. was partially supported by a grant from the National
Sciences and Engineering Research Council of Canada.

2. The S-arithmetic case

As an easy introduction to the methods that prove Theorem 1.10, let us first
consider the situation where the ring O of integers is replaced with a ring Z[1/r]
of S-integers (with r 6= ±1). (Thus, Γ is an S-arithmetic group, rather than an
arithmetic group.) B. Liehl [L] proved bounded generation by unipotents in this
setting, so we conclude that Γ has no nontrivial actions on R (see 2.2). This
yields analogues of Corollaries 1.6 and 1.14 in which some of the simple factors
of G are p-adic, rather than real (see 2.3 and 2.4). All of these results appeared
in [LM].

(2.1) Proposition [LM, Thm. 1.4(i)]. Let Γ be a finite-index subgroup of SL
(
2,Z

[1/r]
)
, for some natural number r > 1.

For each action of Γ on R, every orbit of every unipotent subgroup of Γ is
bounded.

Proof. Suppose Γ acts on R, and, for some unipotent subgroup U1 of Γ, the U1-
orbit of some point x is not bounded. (This will lead to a contradiction.) We
begin by establishing notation.

• For u, v, w ∈ Q, with w 6= 0, let

u =
[
1 u
0 1

]
, v =

[
1 0
−v 1

]
and w =

[
w 0
0 1/w

]
.

Note that u, v, and w each belong to SL(2,Q). (The minus sign in the
definition of v ensures that u is conjugate to v when u = v (see 2.6).)

• Let
U = {u | u ∈ Q } and V = { v | v ∈ Q },

so U and V are opposite maximal unipotent subgroups of SL(2,Q).
• Let

U = U ∩ Γ and V = V ∩ Γ.
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• Fix some ω ∈ { rn | n ∈ Z+ }, such that ω ∈ Γ (this is possible because Γ
has finite index in SL

(
2,Z[1/r]

)
. Note that ω > 1 (because n ∈ Z+).

Without loss of generality:

(a) The action is orientation preserving.
(b) We may assume that U1 = U (because U1 is contained in a maximal

unipotent subgroup of SL(2,Q), and all maximal unipotent subgroups of
SL(2,Q) are conjugate).

(c) We may assume that the U -orbit of x is not bounded above. (Otherwise,
it would not be bounded below, and we could reverse the orientation
of R.)

(d) We may assume
lim

u → +∞
u ∈ U

x · u = ∞.

(See 2.5(d).)
(e) We may assume

lim
v → +∞
v ∈ V

x · v = ∞.

(This would be obvious from (d) if V were conjugate to U in Γ. In the
general case, a bit of work is required (see 2.5(e)).)

(f) We may assume that ω fixes x. (It is not difficult to see that ω has a
fixed point in the interval [x,∞) (see 2.5(f)), and there is no harm in
replacing x with this fixed point.)

From (d), we know there is some u ∈ Z[1/r]+, such that x · 1 < x · u. Then,
because the action of Γ is orientation preserving, we have

x · 1ωn < x · uωn

for all n ∈ Z. On the other hand, as n →∞, we have

x · 1ωn = (x · ωn) · (ω−n1ωn) = x · ω2n → +∞,

and
x · uωn = (x · ωn) · (ω−nuωn) = x · ω−2nu < x · u is bounded.

This is a contradiction. ¤

Because B. Liehl [L] proved that SL
(
2,Z[1/r]

)
is boundedly generated by

unipotents (or see [CKP] or [Mo]), the above proposition has the following con-
sequence:

(2.2) Corollary. Let Γ be a finite-index subgroup of SL
(
2,Z[1/r]

)
, for some

natural number r > 1. Then:
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(1) Γ has no nontrivial, orientation-preserving action on R, and
(2) Γ is not right orderable.

This immediately implies the following generalization. (The noncompactness
of the semisimple groups was omitted from the hypotheses by mistake in [LM].)

(2.3) Corollary [LM, Thm. 1.1]. Suppose

• G∞ is a connected, noncompact, real, semisimple Lie group with finite
center,

• S is a finite, nonempty set of prime numbers,
• Gp is a Zariski-connected, noncompact, semisimple algebraic group over

the p-adic field Qp, for each p ∈ S,
• G is isogenous to ×

p∈S∪{∞}
Gp, and

• Γ is a noncocompact, irreducible lattice in G.

Then:

(1) Γ has no nontrivial, orientation-preserving action on R, and
(2) Γ is not right orderable.

Proof. The Margulis Arithmeticity Theorem [Mar, Thm. A, p. 298] tells us that Γ
must be an S-arithmetic subgroup of G. This means there is an algebraic number
field F, a semisimple algebraic group G over F, and a finite set S of places of F,
such that (a finite-index subgroup of) Γ is isomorphic to a finite-index subgroup
of G(OS) (where OS is the ring of S-integers of F.

• Since Γ is noncocompact, we must have F-rankG ≥ 1, so G contains a
subgroup that is isogenous to SL(2, ·).

• Since S is nonempty, there is a (rational) prime p, such that Z[1/p] ⊆ OS .

Therefore, Γ contains a subgroup that is commensurable to SL
(
2,Z[1/p]

)
. So

Proposition 2.1 applies. ¤

The following conclusion is obtained by combining the above corollary with a
generalization of Ghys’ Theorem [G1] to the setting of S-arithmetic groups [WZ,
Cor. 6.11]:

(2.4) Corollary. Assume

• the hypotheses of Corollary 2.3, and
• no simple factor of G∞ is isogenous to SL(2,R).

Then any action of Γ on the circle S1 factors through a finite quotient of Γ.

(2.5) Justification of the assumptions in the proof of Proposition 2.1.
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(d) It is easy to see that the additive group of Z[1/r] has only two total
orderings (such that u1 ≺ u2 ⇒ u1 + u3 ≺ u2 + u3); namely,

either u1 ≺ u2 ⇔ u1 < u2 or u1 ≺ u2 ⇔ −u1 < −u2.

This implies that either
(i) x · u1 < x · u2 ⇔ u1 < u2, or
(ii) x · u1 < x · u2 ⇔ −u1 < −u2.
(This conclusion can also be obtained as a special case of Corollary 5.4(1)

below.) We may assume (i) holds (by conjugating by
[−1 0

0 1

]
if necessary).

The desired conclusion now follows from (c).
(e) There is some element γ of Γ that does not normalize U (since U is not

normal in Γ). Then γ does not normalize U , so U 6= γ−1Uγ. Since
Q-rank

(
SL(2, ·)) = 1, this implies some element g of SL(2,Q) conjugates

the pair (U , γ−1Uγ) to the pair (U ,V) (see 3.6). Thus, replacing Γ with
(g−1Γg) ∩ SL

(
2,Z[1/r]

)
, and letting Γ̂ = g−1Γg, we may assume Γ is

contained in a subgroup Γ̂ of SL(2,Q), such that
(i) the action of Γ on R extends to an orientation-preserving action of

Γ̂ on R, and
(ii) g−1Ûg = V̂ for some g ∈ Γ̂ (where Û = U ∩ Γ̂ and V̂ = V ∩ Γ̂).
By generalizing (d) to the subgroup Û and noting that g preserves orien-
tation, we see that

lim
u → +∞
u ∈ Û

xg · (g−1ug) = ∞.

Because

(2.6)
[

0 1
−1 0

]−1

u

[
0 1
−1 0

]
=

[
1 0
−u 1

]
= u,

we see that this implies

lim
v →∞
v ∈ V̂

xg · v = ∞.

Replacing x with max{x, xg} (and restricting to the subgroup V of V̂ )
yields the desired conclusion.

(f) We wish to show that ω has a fixed point in the interval [x,∞); that is, we
wish to show that the orbit of x under the group 〈ω 〉 is bounded above.
For definiteness, let us assume that x · ω ≥ x. (This causes no loss of
generality, because the transpose-inverse automorphism of SL

(
2,Z[1/r])
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sends ω to its inverse while interchanging U with V .) From (d), we know
there is some u > 0, such that x · ω < x · u. For convenience, let

un = u(1 + ω−2 + · · ·+ ω−2n) ∈ Z[1/r],

so
un = u + ω−2un−1.

Then, by induction on n, we have

x · ωn = (x · ωn−1) · ω < (x · un−1) · ω
= (x · ω ) · (ω−1un−1ω ) < (x · u) · (ω−1un−1ω ) = x · un.

Since the geometric series {un} converges (hence is bounded above), we
conclude that {x · ωn} is bounded above.

(2.7) Remark. The main difficulty in proving the result with a ring O of inte-
gers in the place of Z[1/r] is that the additive group of O has infinitely many
different orderings. (It is isomorphic to Zk, for some k > 1, and any faithful
homomorphism to R yields an ordering.) Because of this, the natural analogue
of assumption (d) is not at all obvious. By using the fact that U is normalized
by ω , it will be shown that only finitely many orderings of O can arise (see
Step 2 on page 16). It is then easy to adapt the proof of Proposition 2.1 to apply
to SL(2,O).

3. Preliminaries on arithmetic groups

We recall some well-known facts.

(3.1) Theorem (Margulis Normal Subgroup Theorem [Mar, (A), p. 258]). If

• G is a connected, semisimple Lie group with trivial center,
• R-rankG ≥ 2,
• Γ is an irreducible lattice in G, and
• N is a nontrivial, normal subgroup of Γ,

then Γ/N is finite.

(3.2) Corollary. If Γ is as in Theorem 3.1, then any nontrivial, orientation-
preserving action of Γ on R is faithful.

Proof. If an action of Γ is not faithful, then its kernel is a nontrivial, normal
subgroup of Γ. Hence, the kernel has finite index, so Γ acts via homeomorphisms
of finite order. Since R has no nontrivial, orientation-preserving homeomorphisms
of finite order, we conclude that the action is trivial. ¤
(3.3) Corollary. Suppose Γ is as in Theorem 3.1. Then Γ is right orderable if
and only if Γ has a nontrivial, orientation-preserving action on R.
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Proof. It is well known that a countable group is right orderable if and only if it
has a faithful, orientation-preserving action on R [G2, Thm. 6.8]. ¤
(3.4) Proposition. Suppose

• G is a connected, noncompact, semisimple Lie group with finite center,
• R-rankG ≥ 2,
• the adjoint group of G is not simple, and
• Γ is a noncocompact, torsion-free, irreducible lattice in G.

Then some subgroup of Γ is isomorphic to a finite-index subgroup of SL(2,O),
where O is the ring of integers of a number field F that is neither Q nor an
imaginary quadratic extension of Q.

Proof. The Margulis Arithmeticity Theorem [Mar, Thm. A, p. 298] tells us that
Γ must be an arithmetic subgroup of G. This means there is an absolutely
almost-simple algebraic group G over some algebraic number field F, such that

• a finite-index subgroup of Γ is isomorphic to a finite-index subgroup of
G(O) (where O is the ring of integers of F), and

• G is isogenous to ×
v∈S∞

G(Fv), where S∞ is the set of infinite places of F.

(The assumption that Γ is noncocompact implies that each G(Fv) is noncom-
pact.) Since Γ is noncocompact, we must have F-rankG ≥ 1, so G contains a
subgroup that is isogenous to SL(2, ·). Therefore, Γ contains a subgroup that is
commensurable to SL(2,O). Since the adjoint group of G is not simple, we know
that the product×v∈S∞ G(Fv) has more than one factor, so F has more than one
infinite place. Therefore, F is neither Q nor an imaginary quadratic extension
of Q. ¤

The following observation is a simple case of much more general superrigidity
theorems [Go, St, W2]. Its proof can be reduced to the abelian case by using the
fact that [Γ,Γ] is a lattice in [U ,U ].

(3.5) Lemma (cf. [R1, Thm. 2.11, p. 33]). If

• U is a 1-connected, nilpotent Lie group,
• Γ is a lattice in U , and
• σ : Γ → R is any homomorphism,

then σ extends uniquely to a continuous homomorphism σ̂ : U → R.

The following well-known property of groups of rank 1 is useful.

(3.6) Proposition (cf. [BT, (8.4) and (4.8), pp. 124 and 88]). Suppose

(1) G is a semisimple algebraic Q-group,
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(2) Q-rankG = 1,
(3) U1, V1, U2, and V2 are maximal unipotent subgroups of G, and
(4) Ui 6= Vi for i = 1, 2.

Then there exists g ∈ G(Q), such that g−1U1g = U2 and g−1V1g = V2.

4. Preliminaries on bounded generation

The following observation shows that being virtually boundedly generated by
unipotents is not affected by passing to a finite-index subgroup.

(4.1) Lemma (cf. [Mu, Prop. on p. 256]). Suppose

• Γ is a group,
• U1, . . . , Um are subgroups of Γ,
• the product U1U2 · · ·Um is a finite-index subgroup of Γ, and
• Γ′ is a finite-index subgroup of Γ.

Then there is a list U ′
1, . . . , U

′
n of finitely many subgroups of Γ′, such that

(1) each U ′
i is conjugate (in Γ) to a subgroup of some Uji, and

(2) the product U ′
1U

′
2 · · ·U ′

m is a finite-index subgroup of Γ′.

(4.2) Proof of Lemma 1.7. Suppose we are given a nontrivial, orientation-
preserving action of Γ on R. (This will lead to a contradiction.) Because the
action is nontrivial, some point x0 of R is not fixed by all of Γ. Let

a = inf(x0 · Γ) and b = sup(x0 · Γ),

where x0 · Γ denotes the Γ-orbit of x0. Then (a, b) is a (nonempty) Γ-invariant
open interval, so it is homeomorphic to R. By replacing R with this subinterval,
we may assume that

inf(x0 · Γ) = −∞ and sup(x0 · Γ) = ∞;

thus, the Γ-orbit of x0 is not bounded.

By passing to a finite-index subgroup, we may assume that

Γ = U1U2 · · ·Um.

By induction on m, we see that x0 · Γ = x0 · (U1U2 · · ·Um) is bounded. This
contradicts the conclusion of the preceding paragraph. ¤

5. Preliminaries on unbounded orbits of unipotent subgroups

Let us recall the following fundamental result on right-orderings of nilpotent
groups that was proved (independently) by J. C. Ault [Au] and A. H. Rhemtulla
[Rh]. We state only a weak version.
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(5.1) Theorem (Ault, Rhemtulla [MR, Thm. 7.5.1, p. 141]). Suppose

• U is a finitely generated, nilpotent group, and
• we have an orientation-preserving action of U on R, such that 0 is not

a fixed point.

Then there is a nontrivial homomorphism p : U → R, such that

(5.2) for all u ∈ U with p(u) > 0, we have 0 · u > 0.

Furthermore,

(1) p is unique, up to multiplication by a positive scalar.
(2) If z, u ∈ U with p(z) = 0 < p(u), then z has a fixed point in the closed

interval [0, 0 · u].

(5.3) Remark. For all u1, u2 ∈ U with p(u1) < p(u2), we have 0 · u1 < 0 · u2.
This is because p(u2u

−1
1 ) = p(u2)− p(u1) > 0, so 0 · u2u

−1
1 > 0.

(5.4) Corollary. Suppose

• U is a 1-connected, nilpotent Lie group,
• U is a lattice in U ,
• we have an orientation-preserving action of U on R, and
• the U -orbit of 0 is not bounded above.

Then:

(1) There is a nontrivial, continuous homomorphism pU : U → R, such that,
for
• all u1, u2 ∈ U with pU (u1) < pU (u2), and
• all x ≥ 0,

we have x · u1 < x · u2.
(2) The homomorphism pU is unique up to multiplication by a positive scalar.

Proof. (2) The uniqueness of pU is a consequence of the uniqueness in (5.1) and
(3.5).

(1) Let

• p : U → R be the homomorphism provided by the Ault-Rhemtulla Theo-
rem (5.1).

• pU : U → R be the (unique) continuous homomorphism that extends p
(see 3.5).

• C be the component of

{x ∈ R | for all u ∈ U with pU (u) > 0, we have x · u > x },
that contains 0.
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• y be the upper endpoint of the interval C.

It suffices to show that y = ∞ (cf. 5.3).

Let us suppose y is finite. (This will lead to a contradiction.) Since the U -
orbit of 0 is not bounded above, we know that U has no fixed points in [0,∞);
therefore, y is not a fixed point. Thus, combining the Ault-Rhemtulla Theorem
(with y in the role of 0) with (3.5) yields a nontrivial, continuous homomorphism
p′U : U → R, such that for all u ∈ U with p′U (u) > 0, we have y · u > y. Because
U acts continuously on R, we have

{u ∈ U | pU (u) > 0 } ⊆ {u ∈ U | y · u ≥ y } ⊆ {u ∈ U | p′U (u) ≥ 0 }.
This implies that p′U (u) = pU (u) (up to a positive scalar multiple).

• Fix some u0 ∈ U with pU (u0) > 0.
• Consider any x ∈ [y, y · u0).

For any u ∈ U with pU (u) > 0, there is some positive integer k, such that
pU (uk) > pU (u0). Thus,

x · uk ≥ y · uk > y · u0 > x,

so x · u > x. Since x is an arbitrary element of [y, y · u0), we conclude that
[y, y · u0) ⊆ C.

This contradicts the fact that y is the upper endpoint of C. ¤

(5.5) Notation. Suppose we are given an orientation-preserving action of a
group Γ on R. For convenience in the remaining proofs of this section, we define
a partial order ≺ on Γ by

g ≺ h ⇔ 0 · g < 0 · h.

(5.6) Corollary. Suppose

• G is an almost simple algebraic Q-group,
• Γ is an arithmetic subgroup of G,
• we are given an orientation-preserving action of Γ on R,
• U is a unipotent Q-subgroup of G,
• T is a Q-torus of G that normalizes U,
• U = U ∩ Γ and T = T ∩ Γ,
• the U -orbit of 0 is not bounded above, and
• pU : U → R is as specified in Corollary 5.4(1).

Then there exist

• a one-parameter R-subgroup U1 of U that is normalized by T , and
• a T -equivariant projection π : UR → U1,
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such that
pU (u) = pU

(
π(u)

)

for all u ∈ UR.

Proof. It suffices to show that T normalizes the kernel of pU . (Because T is
a torus, this implies there is a complementary subgroup U1 that is normalized
by T .)

Suppose some t ∈ T does not normalize the kernel of pU . (This will lead to
a contradiction.) We may assume, without loss of generality, that e ≺ t (by
replacing t with t−1, if necessary). It is not difficult to see there must be some
u ∈ U , such that pU (u) > 0, but

(5.7) pU (tut−1) < 0.

There is some v ∈ U , such that t ≺ v (because the U -orbit of 0 is not bounded
above). Choose a large integer k > 0, so that k pU (u) > pU (v); thus, e ≺ ukv−1.
Then

e ≺ t (ukv−1) (vt−1) = tukt−1 = (tut−1)k,

so e ≺ tut−1. This contradicts (5.7). ¤

(5.8) Corollary. Suppose

• G is an almost simple algebraic Q-group,
• Γ is an arithmetic subgroup of G,
• we are given an orientation-preserving action of Γ on R,
• U and V are unipotent Q-subgroups of G,
• T is a Q-torus of G that normalizes both U and V,
• U = U ∩ Γ, V = V ∩ Γ, and t ∈ T ∩ Γ, and
• the U -orbit of 0 and the V -orbit of 0 are not bounded above.

Then:

(1) There are real scalars ωU and ωV , such that

pU (t−1ut) = ωU pU (u) and pV (t−1vt) = ωV pV (v),

for all u ∈ U and v ∈ V .
(2) If |ωU | 6= 1 and |ωV | 6= 1, then t fixes some point x of R, such that the

U -orbit of x and the V -orbit of x are not bounded above.
(3) If |ωU | < 1, then |ωV | ≤ 1.

Proof. (1) This follows from Corollary 5.6.

(2) Let FU and FV be the fixed-point sets of U and V , respectively, and let

α = max{supFU , supFV }.
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(Note that α < 0, because the U -orbit of 0 and the V -orbit of 0 are not bounded
above.) It suffices to show that t has a fixed point in (α,∞).

Assume, without loss of generality, that α = sup FU . Because t normalizes U ,
we know that FU is t-invariant, so the interval (α,∞) is t-invariant. By replacing
R with this interval (and ignoring V ), we may assume α = −∞. Thus,

• the U -orbit of 0 is neither bounded below nor bounded above, and
• it suffices to show that t has a fixed point (anywhere in R).

We may assume

• ωU > 0, by replacing t with t2,
• ωU < 1, by replacing t with t−1, if necessary, and
• t Â e, by reversing the orientation of R, if necessary.

Because the U -orbit of 0 is not bounded above, there is some u ∈ U with

t ≺ u.

Choose some u0 ∈ U with

p(u0) >
p(u)

1− ωU
.

Then, for every k > 0, we have

pU

(
(t−0ut0)(t−1ut1)(t−2ut2) · · · (t−(k−1)utk−1)

)

= pU (u) (1 + ωU + ω2
U + · · ·+ ωk−1

U )

< p(u0),

so
(t−0ut0)(t−1ut1)(t−2ut2) · · · (t−(k−1)utk−1) ≺ u0.

Therefore

e ≺ (ut−1)k

= u (t0t−1) u (t1t−2) u (t2t−3) · · ·u (tk−2t−(k−1)) u (tk−1t−k)

= (t−0ut0)(t−1ut1)(t−2ut2) · · · (t−(k−1)utk−1)t−k

≺ u0t
−k.

This means tk ≺ u0 (for every k), so the 〈t〉-orbit of 0 is bounded above (by 0·u0).
Therefore t has a fixed point.

(3) Suppose |ωU | ≤ 1 and |ωV | > 1. (This will lead to a contradiction.) By
replacing t with t2, we may assume ωU and ωV are positive. We may also assume
that t fixes 0 (see (2)). Fix

• v ∈ V with pV (v) > 0, and
• u ∈ U with 0 · v < 0 · u and pU (u) > 0.
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Because the action of Γ is orientation preserving, we have

(5.9) 0 · vtn < 0 · utn

for all n ∈ Z. Note that, as n →∞, we have pV (t−nvtn) = ωn
V pV (v) → +∞, so

0 · vtn = (0 · tn) · (t−nvtn) = 0 · (t−nvtn) → +∞.

On the other hand, we have pU (t−nutn) = ωn
UpU (u) → 0 < pU (u), so

0 · utn = (0 · tn) · (t−nutn) = 0 · (t−nutn) < 0 · u is bounded.

This contradicts (5.9). ¤

6. Proof of Theorem 1.10

Throughout this section, the conditions in the statement of Theorem 1.10 are
satisfied:

• F is an algebraic number field that is neitherQ nor an imaginary quadratic
extension of Q,

• O is the ring of integers of F,
• no proper subfield of F contains a finite-index subgroup of O×, and
• Γ is a finite-index subgroup of SL(2,O).

Furthermore, we are given an orientation-preserving action of Γ on R. We wish
to show that every orbit of every unipotent subgroup of Γ is bounded.

(6.1) Notation.

• For u, v, w ∈ C, with w 6= 0, let

u =
[
1 u
0 1

]
, v =

[
1 0
−v 1

]
and w =

[
w 0
0 1/w

]
.

• Let
U = {u | u ∈ F } and V = { v | v ∈ F },

so U and V are opposite maximal unipotent subgroups of SL(2,F).
• Let

U = U ∩ Γ and V = V ∩ Γ.

(6.2) Assumption. Assume some orbit of some unipotent subgroup U0 of Γ is
not bounded. (This will lead to a contradiction.) There is no harm in assuming,
for definiteness, that:

(1) U0 = U is a maximal unipotent subgroup, and
(2) the U -orbit of 0 is not bounded above.
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The proof now proceeds in a sequence of steps.

Step 1. There is a sequence g1, g2, g3, . . . of elements of Γ, such that

(a) the conjugates g−1
1 Ug1, g

−1
2 Ug2, g

−1
3 Ug3, . . . are distinct, and

(b) for each j, the g−1
j Ugj-orbit of 0 is not bounded above.

Because the normalizer NΓ(U) has infinite index in Γ, there is a sequence
g1, g2, g3, . . . of elements of Γ, such that the cosets NΓ(U)gj are distinct. By
passing to a subsequence (and taking inverse of every term in the sequence, if
necessary), we may assume 0 · g−1

j ≥ 0, for each j.

(a) The conjugates g−1
1 Ug1, g

−1
2 Ug2, g

−1
3 Ug3, . . . are distinct, because the cosets

NΓ(U)gj are distinct.
(b) Because 0·U is not bounded above, and 0·g−1

j ≥ 0, it is clear that 0·g−1
j U

is not bounded above. Therefore, 0 · g−1
j Ugj is not bounded above.

Step 2. For each j, define pg−1
j Ugj

: g−1
j Ugj → R as in Corollary 5.4(1). There is

a field embedding σj : F ↪→ C, such that

pg−1
j Ugj

(
g−1
j (ω−1uω )gj

)
= σj(ω)−2 · pg−1

j Ugj
(g−1

j ugj),

for every u ∈ U , and every ω ∈ O, such that ω ∈ Γ. To simplify the notation,
assume, without loss of generality, that gj = e. Let

• S be the set of all archimedean places of F,
• Fσ be the completion of σ(F), for each σ ∈ S, so

Fσ =

{
R if σ(F) ⊂ R
C if σ(F) 6⊂ R,

• GS = ×
σ∈S

SL(2,Fσ),

• US = ×
σ∈S

Uσ, where Uσ = {u | u ∈ Fσ },
• TS = ×

σ∈S
Tσ, where Tσ = { w | w ∈ Fσ, w 6= 0 }, and

• −→ : SL(2,F) ↪→ GS be defined by −→g =
(
σ(g)

)
σ∈S

.

It is well known from “restriction of scalars” [PR, §2.1.2, pp. 49–51] that GS can
be viewed as the R-points of an almost simple algebraic Q-group, such that

• −→Γ is an arithmetic subgroup of GS , and
• US and TS are Q-subgroups of GS .

Let

• pU : US → R be the homomorphism provided by Corollary 5.4,
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• U1 be the one-parameter subgroup of US provided by Corollary 5.6, and
• O′ = {ω ∈ O | ω ∈ Γ }.

Since the Lie algebra of U1 is a one-dimensional real subspace normalized by
Ad O′ , it must be contained in a single real eigenspace of Ad ω , for each ω ∈ O′.
Because no proper subfield of F contains a finite-index subgroup of O×, we know
that

• no two distinct elements of S have the same restriction to (O′)2, and
• σ

(
(O′)2) 6⊆ R whenever σ is a complex place.

Hence, U1 must be contained in a single factor Uσ of US (for some σ ∈ S), and σ
must be a real place. (Furthermore, the kernel of the projection π of Corollary 5.6
must contain Uσ′ , for every σ′ 6= σ.) Since Uσ

∼= R, there are only two nontrivial
homomorphisms from Uσ to R, up to multiplication by a positive scalar. Thus,
we may assume

pU

(
α
)

= ±σ(α) for α ∈ F
(and the same sign is used for all α). Because ω−1 α ω = ω−2α, we conclude
that

pU

(
ω−1 α ω

)
= ±σ

(
ω−2α

)
= σ(ω)−2 pU

(
α
)
,

as desired.

Step 3. We may assume

(a) the U -orbit of 0 and the V -orbit of 0 are not bounded above, and
(b) we have

pU (ω−1uω ) = ω−2 · pU (u) and pV (ω−1vω ) = ω2 · pV (v),

for all u ∈ U , all v ∈ V , and all ω ∈ O, such that ω ∈ Γ.

Note that:

• Because there are only finitely many embeddings of F in C, we may as-
sume, by passing to a subsequence of {gj}, that σ1 = σ2.

• By replacing Γ with σ1(Γ), we may assume σ1 is the natural inclusion
σ1(α) = α.

• Because F-rank SL(2,F) = 1, we know that any pair of (unequal) maximal
unipotent Q-subgroups of SL(2,F) is conjugate to any other pair (see 3.6),
so, by passing to a conjugate, we may assume g−1

1 Ug1 = U and g−1
2 Ug2 =

V (cf. 2.5(e)).

(a) From Step 1, we know that the U -orbit of 0 and the V -orbit of 0 are not
bounded above.
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(b) The first half of (b) is immediate from Step 2 (with j = 1). Taking

g2 =
[

0 1
−1 0

]
,

noting that g−1
2 ωg2 = ω−1 and σ2 = Id, and letting v = g−1

2 ug2, we see, from
Step 2, that

pV (ω−1vω ) = pg−1
2 Ug2

(
g−1
2 (ωuω−1)g2

)
= ω2 · pg−1

2 Ug2
(g−1

2 ug2) = ω2 · pV (v).

This establishes the second half of (b).

Step 4. We obtain a contradiction. Choose a unit ω ∈ O, such that ω ∈ Γ and
ω is not a root of unity. (This is possible because O has infinitely many units.)
Step 3(b) implies that ω2 is real, so (by passing to a power) there is no harm
in assuming ω > 1. In the notation of Corollary 5.8(1), with t = ω , Step 3(b)
asserts that

ωU = ω−2 < 1 and ωV = ω2 > 1.
This contradicts Corollary 5.8(3), and thereby completes the proof of Theo-
rem 1.10. ¤
(6.3) Remark. For the lattices of Q-rank one in SL(3,R) that are discussed in
the following section, we have ωU = ωV , instead of ωU = 1/ωV . For this reason,
it is not so easy to obtain a contradiction for those groups.

7. Lattices in SL(3,R) or SL(3,C)

In this section, we prove the following theorem.

(7.1) Theorem. Assume

• G is either SL(3,R) or SL(3,C),
• Γ is a noncocompact lattice in G,
• we have a continuous action of Γ on R, and
• either G = SL(3,R), or Γ does not contain any subgroup that is isomor-

phic to a noncocompact lattice in SL(3,R).

Then every orbit of every unipotent subgroup of Γ is a bounded subset of R.

(7.2) Assumption. Throughout this section, G and Γ are as described in The-
orem 7.1.

(7.3) Notation. Write G = SL(3,F∞), so F∞ = R or C.

The Margulis Arithmeticity Theorem provides a precise algebraic description of
some finite-index subgroup of the lattice Γ. Because there is no harm in replacing
Γ with this subgroup, we may assume the description applies to Γ itself:
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(7.4) Lemma. We may assume there exist fields F and K, such that

(1) K is a quadratic extension of F, so K = F
[√

r
]
, for some r ∈ F,

(2) either
(a) F∞ = R, F = Q and K ⊂ R, or
(b) F∞ = C, F is an imaginary quadratic extension of Q, and K∩R = Q,
and

(3) Γ is a finite-index subgroup of

SU2,1(O) = { g ∈ SL(3,O) | gJgT = J },
where
• O is the ring of integers of K.

• J =




0 0 1
0 1 0
1 0 0


,

• denotes the nontrivial Galois automorphism of the quadratic ex-
tension K/F, and

• T denotes the transpose.

Proof. Because R-rankG = 2 > 1, the Margulis Arithmeticity Theorem [Mar,
Thm. 8.1.11, p. 298] tells us that Γ is an arithmetic subgroup of G. (Note
that, since Γ is not cocompact, we have no need to allow compact factors in the
definition of an arithmetic subgroup [Mar, Rem. 9.1.6(iii), p. 294].) Thus, there
is an algebraic number field F, with ring of integers O, and an F-form G of G,
such that

• either F∞ = R and F = Q, or F∞ = C and F is an imaginary quadratic
extension of Q, and

• (after passing to a finite-index subgroup) Γ is isomorphic to a finite-index
subgroup of the group of O-points of G.

Because Γ is not cocompact, we know F-rankG > 0 (cf. [PR, Thm. 4.12, p. 210]).
On the other hand, because Γ acts on R, we must have F-rankG < 2 [W1].
Therefore F-rankG = 1.

Because F-rankG = 1, the classification of F-forms of SL(3,F∞) [PR, Props. 2.17
and 2.18, pp. 87 and 88] asserts that Γ must be exactly as described, except the
requirement that K ∩ R = Q when F∞ = C.

To complete the proof, suppose F∞ = C and K∩R 6= Q. Then K∩R is a real
quadratic extension of Q. Letting OR = O∩R be the ring of integers of K∩R, we
see that SU2,1(O∩R) is a noncocompact lattice in SL(3,R). This contradicts the
assumption that Γ does not contain any noncocompact lattice in SL(3,R). ¤

(7.5) Notation.
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(1) For α, ζ ∈ K with ζ + ζ = −αα, let

u(α, ζ) =




1 α ζ
0 1 −α
0 0 1


, and v(α, ζ) =




1 0 0
−α 1 0
ζ α 1


.

Note that u(α, ζ) and v(α, ζ) both belong to SU2,1(K) (because ζ + ζ =
−αα).

(2) Let

U =
{

u(α, ζ)
∣∣∣∣

α, ζ ∈ K
ζ + ζ = −αα

}
and V =

{
v(α, ζ)

∣∣∣∣
α, ζ ∈ K

ζ + ζ = −αα

}
,

so U and V are opposite maximal unipotent subgroups of SU2,1(K).
(3) Let

U = U ∩ Γ and V = V ∩ Γ.
(4) For ω ∈ O with ωω = 1, let

ω =




ω 0 0
0 ω2 0
0 0 ω


 .

Note that ω ∈ SU2,1(O).
(5) Because Γ has finite index in SU2,1(O), we may fix a positive integer m,

such that

if α, ζ ∈ mO (with ζ + ζ = −αα), then u(α, ζ) ∈ Γ and v(α, ζ) ∈ Γ.

The following calculation of Raghunathan is crucial when F = Q.

(7.6) Lemma (Raghunathan [R2, Lem. 1.7]). Suppose g and ω are elements
of Γ, with

g =




a b c
∗ ∗ ∗
∗ ∗ ∗


, ω =




ω 0 0
0 ω2 0
0 0 ω


, ωω = 1, and ω ≡ 1 (mod aam).

If we let η = (ω3 − 1)b/a and ξ = bη/a, then
(
g u(η, ξ)

)
(ωgω−1)−1 ∈ V .

Proof. Note that η, ξ ∈ mO (because ω ≡ 1 (mod aam)) and

−ηη = −(
(ω3 − 1)b/a

)(
(ω3 − 1)b/a

)

= −(ω3 − 1)(ω3 − 1)bb/(aa)

= −(1− ω3 − ω3 + 1)bb/(aa)

= (ω3 − 1)bb/(aa) + (ω3 − 1)bb/(aa)

= ηb/a + ηb/a

= ξ + ξ,
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so u(η, ξ) ∈ Γ. Therefore,
(
g u(η, ξ)

)
(ωgω−1)−1 ∈ Γ.

Easy calculations show that the two matrices g u(η, ξ) and ωgω−1 have the same
first row, namely

[
a ω3b c

]
. Therefore, the first row of the product

(
g u(η, ξ)

)
(ωgω−1)−1

is the same as the first row of (ωgω−1)(ωgω−1)−1 = Id. This means that the
first row of the product is

[
1 0 0

]
, so the product belongs to V . ¤

Recall that r is an element of F, such that K = F
[√

r
]

(see 7.4(1)).

(7.7) Corollary. Given β ∈ 2mO, ` ∈ mZ, and ω ∈ O, such that

ωω = 1 and ω ≡ 1
(
mod (1− `2y2r)m

)
, where y = −ββ/2,

let

η =
(ω3 − 1)`β

√
r

1 + `y
√

r
and λ =

(1− ω3)β
1− y`

√
r

.

Then there exist

v(λ) = v(λ, ∗), v(β) = v(β, ∗), v(ω3β) = v(ω3β, ∗),
u(η) = u(η, ∗), and z = u(0, `

√
r)

in Γ, such that
v(β) u(η) =

(
z−1 v(λ) z

)
v(ω3β).

Proof. Let

• v(β) = v(β, y) and v(ω3β) = ω v(β) ω−1 = v(ω3β, y), and
• u(η) = u(η, ξ), where

ξ =
`βη

√
r

1 + `y
√

r
=

ηη

ω3 − 1
.

Note that v(β), v(ω3β), u(η), and z are elements of Γ (cf. 7.5(5)).

By letting

g = z v(β) =




1 0 `
√

r
0 1 0
0 0 1







1 0 0
−β 1 0
y β 1


 =




1 + `y
√

r `β
√

r `
√

r
∗ ∗ ∗
∗ ∗ ∗


 ,

we see, from Lemma 7.6, that there exists v ∈ V , such that z v(β) u(η) =
v

(
ω z v(β) ω−1

)
. Because

• z commutes with ω , and
• ω v(β) ω−1 = v(ω3β),
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we conclude that
v(β) u(η) = (z−1vz) v(ω3β).

Writing
v = v(µ, ∗),

we see that:

• the (2, 1) entry of v(β) u(η) is

(−β)(1) + (1)(0) + (0)(0) = −β,

• the second row of z−1vz is
[−µ 1−`µ

√
r
]
,

• the (2, 1) entry of (z−1vz) v(ω3β) is

(−µ)(1) + (1)(−ω3β) + (−`µ
√

r)(y) = −µ(1 + y`
√

r)− ω3β.

The (2, 1) entries that we calculated must be equal, so we conclude that

µ =
(1− ω3)β
1− y`

√
r

= λ.

Thus, we may let v(λ) = v. ¤

Proof of Theorem 7.1. Assume some orbit of some unipotent subgroup U0 is
not bounded. (This will lead to a contradiction.) There is no harm in assuming,
for definiteness, that:

(1) U0 = U is a maximal unipotent subgroup, and
(2) the U -orbit of 0 is not bounded above.

The proof now proceeds in a sequence of steps.

Step 1. We may assume that the V -orbit of 0 is not bounded above. See the
argument at the start of Step 3 of the proof of Theorem 1.10 in §6.

Step 2. We may assume

(a) F∞ = R, and
(b) pU

(
u(α, ζ)

)
= α, for all u(α, ζ) ∈ U .

It is well known (cf. [PR, Prop. 2.15(3), p. 86]) that SL(3,F∞) can be viewed as
the R-points of an almost simple algebraic Q-group, such that

• Γ is an arithmetic subgroup of SL(3,F∞), and

• U =




1 ∗ ∗
0 1 ∗
0 0 1


 and T =



∗ 0 0
0 ∗ 0
0 0 ∗


 are Q-subgroups of SL(3,F∞).
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(a) Suppose F∞ = C. Then the group O× ∩ R of real units of O is finite
(cf. 7.4(2b)), so no finite-index subgroup of O× is contained in R. Therefore,
no one-parameter subgroup of U is normalized by T ∩ Γ. This contradicts the
existence of the subgroup U1 provided by Corollary 5.6.

(b) We may now assume F∞ = R. The only one-parameter subgroups of U
that are normalized by T ∩ Γ are the root subgroups

Uα =




1 ∗ 0
0 1 0
0 0 1


, Uα =




1 0 0
0 1 ∗
0 0 1


, and Uζ =




1 0 ∗
0 1 0
0 0 1


.

Now Uζ = [U,U] is in the kernel of pU , so we conclude that the one-parameter
subgroup of Corollary 5.6 is either Uα or Uα. Thus, up to a (nonzero) scalar
multiple, pU

(
u(α, ∗)) is either α or α. This implies that, up to a positive scalar

multiple, pU

(
u(α, ∗)) is either α, −α, α, or −α. Because

• replacing Γ with its Galois conjugate Γ transforms u(α, ∗) to u(α, ∗), and
• conjugation by the matrix ω with ω = −1 transforms u(α, ∗) to u(−α, ∗),

we may assume that pU

(
u(α, ∗)) = α.

Step 3. We may assume pV

(
v(β, ξ)

)
= ±β, for all v(β, ξ) ∈ V . Suppose

pV

(
v(β, ξ)

)
= ±β. (This will lead to a contradiction.) Choose a unit ω ∈ O, such

that ω ∈ Γ and ω is not a root of unity. (This is possible because O has infinitely
many units.) Step 2(a) implies that ω is real, so (by replacing ω with ω±2) there
is no harm in assuming ω > 1 and ω > 0. In the notation of Corollary 5.8(1),
with t = ω , Step 2(b) implies that

ωU = ω−3 < 1.

Our assumption that pV

(
v(β, ξ)

)
= ±β implies

ωV = ω−3 = ω3 > 1.

This contradicts 5.8(3).

(Alternatively, this step may be justified by the argument in Step 3(b) on
page 17. In fact, this method yields the more precise result that pV

(
v(β, ∗)) =

−β.)

Step 4. Fix some nonzero ` ∈ mZ, and let z = u(0, `
√

r); we may assume that z
fixes 0. Because z ∈ [U ,U ], we know that pU (z) = 0. Therefore, Theorem 5.1(2)
implies that z has a fixed point x in the interval [0, 0 · u] (for any u ∈ U with
p(u) > 0). There is no harm in assuming x = 0.

Step 5. There exist nonzero α, β ∈ 2mO and ω ∈ O, such that

(a) 0 · v(β, ∗) < 0 · u(α, ∗) < 0 · v(ω3β, ∗),
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(b) ωω = 1, ω > 1, ω ∈ Γ, and ω ≡ 1
(
mod (1−`2y2r)m

)
, where y = −ββ/2,

(c) pV

(
v(β, ∗)) > 0, and

(d) β > 0.

Because the sign of β is independent of the sign of β (and using Step 3), there
exists β ∈ 2mO, satisfying (c) and (d).

Because the U -orbit of 0 is not bounded above (but each orbit of [U,U ] or [V, V ]
is bounded (cf. 5.1(2))), there exists α ∈ 2mO, such that 0 · v(β, ∗) < 0 · u(α, ∗).
Similarly, because the V -orbit of 0 is not bounded above, there exists ω ∈ O,
such that ωω = 1, ω > 1, and 0 · u(α, ∗) < 0 · v(ω3β, ∗). This establishes (a).

By replacing ω with an appropriate power ωn (with n > 0), we obtain the
conditions of (b).

Step 6. We obtain a contradiction. Letting

η =
(ω3 − 1)`β

√
r

1 + `y
√

r
and λ =

(1− ω3)β
1− y`

√
r

,

we know, from Corollary 7.7, that there exist v(λ), v(β), v(ω3β), u(η), and
z = u(0, `

√
r), such that

(7.8) v(β) u(η) =
(
z−1 v(λ) z

)
v(ω3β).

From Step 5(a), we know 0 · v(β) < 0 · u(α). Therefore

(7.9) 0 · v(β) u(η) < 0 · u(α) u(η).

We may assume ` is large enough that |`√r| > 2, so 1 + `y
√

r has the same sign
as `y

√
r. Then, because

ω3 − 1 > 0, y = −ββ/2, and β > 0,

we see, from the definition of η, that η < 0. Therefore

pU

(
u(α) u(η)

)
= pU

(
u(α + η, ∗)) = α + η < α = pU

(
u(α)

)
,

so

(7.10) 0 · u(α) u(η) < 0 · u(α).

From Step 5(a), we have

(7.11) 0 · u(α) < 0 · v(ω3β).

Replacing ` with −` would not require any change in α, β, or ω (because the
conditions in Step 5(b) depend only on `2, not on `). Thus, we may assume
pV

(
v(λ)

)
> 0 (cf. Step 3). Then 0 < 0 ·v(λ). Because z fixes 0, this implies that

0 < 0 · z−1 v(λ) z, so

(7.12) 0 · v(ω3β) < 0 · (z−1 v(λ) z
)
v(ω3β).
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By combining (7.9), (7.10), (7.11), and (7.12), we conclude that

0 · v(β) u(η) < 0 · (z−1 v(λ) z
)
v(ω3β).

This contradicts (7.8). ¤

8. Proof of Theorem 1.12

Throughout this section, the conditions in the statement of Theorem 1.12 are
assumed to be satisfied:

• Conjecture 1.11 is true,
• G is a connected, semisimple Lie group with finite center,
• R-rankG ≥ 2, and
• Γ is a noncocompact, irreducible lattice in G.

We wish to show that Γ has no nontrivial, orientation-preserving action on R.

Because R has no orientation-preserving homeomorphisms of finite order, there
is no harm in modding out a finite group. Thus, we may assume that G has
trivial center. Hence, G is linear (and Corollary 3.2 implies that every nontrivial,
orientation-preserving action of Γ on R is faithful). We now recall the following
theorem:

(8.1) Theorem (Chernousov-Lifschitz-Morris [CLM]). Assume

• G is a connected, semisimple, linear Lie group,
• R-rankG ≥ 2, and
• Γ is a noncocompact, irreducible lattice in G.

Then Γ contains a subgroup that is isomorphic to either

(1) a noncocompact lattice in SL(3,R) or SL(3,C), or
(2) a finite-index subgroup of SL(2,O), where

• O is the ring of integers of a number field F, and
• F is neither Q nor an imaginary quadratic extension of Q.

By passing to a subgroup, we may assume Γ is as described in either 8.1(1)
or 8.1(2). Theorem 1.4 tells us that the groups in 8.1(2) have no nontrivial,
orientation-preserving actions on R, so we may assume Γ is a noncocompact
lattice in either SL(3,R) or SL(3,C).

Furthermore, by passing to a subgroup again, we may assume that either

• Γ is a noncocompact lattice in SL(3,R), or
• Γ does not contain any subgroup that is isomorphic to a noncocompact

lattice in SL(3,R).
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Now Theorem 7.1 tells us, for every orientation-preserving action of Γ on R, that
every orbit of every unipotent subgroup of Γ is a bounded subset of R. Also,
because Conjecture 1.11 is assumed to be true, we know that Γ is virtually bound-
edly generated by unipotents. So Lemma 1.7 implies that Γ has no nontrivial,
orientation-preserving action on R. This completes the proof of Theorem 1.12.
¤
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[Go] V. V. Gorbacevič: Generalized Ljapunov Theorem on Mal’cev manifolds. Math. USSR-
Sb. 23 (1974) 155–168. MR 0348040 (50 #538)

[L] B. Liehl: Beschränkte Wortlänge in SL2, Math. Z. 186 (1984), no. 4, 509–524.
MR 0744962 (86b:11034)

[LM] L. Lifschitz and D. Morris: Isotropic nonarchimedean S-arithmetic groups are not left
orderable, C. R. Math. Acad. Sci. Paris 339 (2004), no. 6, 417–420. MR 2092755
(2005f:11061)

[Mal] A. I. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. No. 39 (1951)
= 9 (1962) 276–307. MR 0039734 (12,589e)

[Mar] G. A. Margulis: Discrete subgroups of semisimple Lie groups, Springer, Berlin, 1991.
MR 1090825 (92h:22021)

[Mo] D. W. Morris: Bounded generation of SL(n, A) (after D. Carter, G. Keller, and E. Paige),
New York J. Math. (to appear). http://www.arxiv.org/abs/math/0503083

[MR] R. B. Mura and A. H. Rhemtulla: Orderable Groups. Marcel Dekker, New York, 1977.
MR 0491396 (58 #10652)

[Mu] V. K. Murty: Bounded and finite generation of arithmetic groups. in: K. Dilcher, ed.,
Number theory (Halifax, NS, 1994), Amer. Math. Soc., Providence, RI, 1995. CMS Conf.
Proc. 15 (1995) 249–261. MR 1353937 (96g:11039)

[PR] V. Platonov and A. Rapinchuk: Algebraic Groups and Number Theory, Academic Press,
New York, 1994. MR 1278263 (95b:11039)

[R1] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer-Verlag, New York, 1972.
MR 0507234 (58 #22394a)

[R2] M. S. Raghunathan: On the congruence subgroup problem, II, Invent. Math. 85 (1986)
73–117. MR 0842049 (87m:20125)



126 Lucy Lifschitz Dave Witte Morris

[Rh] A. H. Rhemtulla: Right-ordered groups, Canad. J. Math. 24 (1972) 891–895.
MR 0311538 (47 #100)

[St] A. N. Starkov: Rigidity problem for lattices in solvable Lie groups, Proc. Indian Acad.
Sci. (Math. Sci.) 104 (1994) 495–514. MR 1314393 (96d:22017)

[T] J. Tits: Classification of algebraic semisimple groups, in: A. Borel and G. D. Mostow,
eds., Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boul-
der, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62. MR 0224710
(37 #309)

[W1] D. Witte: Arithmetic groups of higher Q-rank cannot act on 1-manifolds, Proc. Amer.
Math. Soc. 122 (1994) 333–340. MR 1198459 (95a:22014)

[W2] D. Witte: Superrigidity of lattices in solvable Lie groups, Inventiones Math. 122 (1995)
147–193. MR 1354957 (96k:22024)

[WZ] D. Witte and R. J. Zimmer: Actions of semisimple Lie groups on circle bundles, Geom.
Dedicata 87 (2001), no. 1-3, 91–121. MR 1866844 (2002j:57068)

Lucy Lifschitz
Department of Mathematics, University of Oklahoma, Norman, Oklahoma, 73019,
USA
E-mail: llifschitz@math.ou.edu
http://www.math.ou.edu/∼llifschitz/

Dave Witte Morris
Department of Mathematics and Computer Science
University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
E-mail: Dave.Morris@uleth.ca
http://people.uleth.ca/∼dave.morris/


