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Abstract: This is a survey of the so-called “quantitative nondivergence”
approach to metric Diophantine approximation developed approximately 10
years ago in my collaboration with Margulis. The goal of this paper is
to place the theory of approximation on manifolds into a broader context
of studying Diophantine properties of points generic with respect to certain
measures on Rn. The correspondence between multidimensional Diophantine
approximation and dynamics of lattices in Euclidean spaces is discussed in
an elementary way, and several recent results obtained by means of this
correspondence are surveyed.

1. Introduction

Let us start with the following definition. For v > 0 and n ∈ N, say that
y = (y1, . . . , yn) ∈ Rn is v-approximable (notation: y ∈ Wv) if there are infinitely
many q = (q1, . . . , qn) ∈ Zn such that

|y1q1 + · · ·+ ynqn + p| < ‖q‖−v(1.1)

for some p ∈ Z. Here we interpret y ∈ Rn as row vectors, or linear forms.
It will be convenient to represent integers q ∈ Zn as column vectors, so that
y1q1 + · · ·+ ynqn can be written as yq, and (1.1) as

|yq + p| < ‖q‖−v .(1.2)

Hopefully such notation will cause no confusion. We remark that similarly one can
consider the column vector version, the so-called “simultaneous approximation”;
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most of the results mentioned in this paper have their simultaneous approximation
analogues.

Then let us define the Diophantine exponent ω(y) of y by

ω(y)
def
= sup{v | yis v-approximable} .

Note that the above definition, unlike the previous one, does not depend on
the choice of the norm ‖ · ‖. We will however always work with the sup-norm,
‖x‖ = maxi |xi|.

The fact that ω(y) is always at least n immediately follows from Dirichlet’s
Theorem, stating that the system{

|yq + p| < 1/T

0 < ‖q‖ ≤ T−1/n
(1.3)

has an integer solution (p,q) for every y ∈ Rn and T > 1. Also it is not hard to see
that ω(y) = n for λ-almost every y ∈ Rn, where λ stands for Lebesgue measure on
Rn. Vectors y with ω(y) > n are usually called very well approximable (VWA).

Let us now extend the notion of Diophantine exponents to measures. Namely,
if µ is a Radon measure on Rn, let us define the Diophantine exponent ω(µ) of µ
to be the µ-essential supremum of the function y 7→ ω(y). In other words,

ω(µ)
def
= sup

{
v

∣∣ µ({y | ω(y) > v}) > 0
}

= sup
{

v
∣∣ µ(Wv) > 0

}
.(1.4)

Clearly it only depends on the measure class of µ.

Very often (equivalence classes of) measures µ that we are going to consider
will be naturally associated with subsets M of Rn supporting µ. For example,
if M is a smooth submanifold of Rn, we will be taking (the class of) µ to be
(that of) the Riemannian volume on M, that is, the pushforward f∗λ of λ by
any smooth map f parametrizing M. In this case we will define the Diophantine
exponent ω(M) of M to be equal to that of µ. From what was said it follows
that ω(µ) ≥ n for any µ, and ω(λ) = ω(Rn) is equal to n.

This justifies the terminology which has been introduced by V. Sprindžuk: let
us say that a measure µ on Rn (resp. a subset M of Rn) is extremal if ω(µ) (resp.
ω(M)) is equal to n, that is, attains the smallest possible value; equivalently, if
µ-a.e. y ∈ Rn is not VWA.

The theory of Diophantine approximation on manifolds started with consider-
ing the map

f(x) = (x, x2, . . . , xn) .(1.5)

The extremality of f∗λ for f as above was conjectured in 1932 by K. Mahler [M]
and proved in 1964 by Sprindžuk [Sp1, Sp2]. At about the same time W. Schmidt
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[Sc1] proved the extremality of f∗λ when f : I → R2, I ⊂ R, is C3 and satisfies
∣∣∣∣
f ′1(x) f ′2(x)
f ′′1 (x) f ′′2 (x)

∣∣∣∣ 6= 0 for λ-a.e. x ∈ I .

Since then, a lot of attention has been devoted to showing that measures f∗λ
are extremal for other smooth maps f .

To describe a broad class of examples, let us recall the following definition. Let
x ∈ Rd and let f = (f1, . . . , fn) be a Ck map from a neighborhood of x to Rn.
For ` ≤ k, say that f is `-nondegenerate at x if

Rn is spanned by partial derivatives of f at x of order up to ` .(1.6)

We will say that f is nondegenerate at x if (1.6) holds for some `. If M is a
d-dimensional submanifold of Rn, we will say that M is nondegenerate at y ∈M
if any (equivalently, some) diffeomorphism f between an open subset U of Rd and
a neighborhood of y in M is nondegenerate at f−1(y).

It was conjectured by Sprindžuk [Sp3] in 1980 that real analytic nondegenerate
submanifolds of Rn are extremal. A number of special cases of this conjecture
were established in subsequent years, but the general case stood open until the
mid-1990s.

In Spring 1996, the following two events happened at Yale University. One
came out of our work with Margulis [KM1, KM3] on bounded orbits and excur-
sions to infinity of partially hyperbolic homogeneous flows. A substantial part
of that activity had been motivated by problems in Diophantine approximation,
and we were discussing possible number-theoretical applications of new results,
in particular some generalizations of Dani’s correspondence [D] between bounded
orbits and badly approximable systems. The credit for the other event goes to
Paul Lukasiewicz, the librarian of Yale Mathematics Department. As a result
of his thoughtful arrangement of books in the AMS Translations Series on the
library shelves, Sprindžuk’s monograph [Sp2] happened to offer an unobstructed
full frontal view of its title. The latter caught the eye of Margulis while he was
passing by, prompting him to turn his attention to this circle of problems.

Shortly thereafter, a strengthened (with analytic replaced by Ck for some k)
version of Sprindžuk’s conjecture was proved:

Theorem 1.1. [KM2] LetM be a d-dimensional smooth submanifold of Rn which
is nondegenerate at its almost every point. Then M is extremal. Or, slightly
more generally, if U is an open subset of Rd and f : U → Rn is nondegenerate at
λ-almost every point of U , then f∗λ is extremal.
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The method of proof in [KM2] was dynamical in nature1, and the main purpose
of this note is to explain its main ideas and a possibility to use them to solve more
general problems. Speaking of which, it seems natural not to restrict oneself to
smooth measures on submanifolds, and thus ask

Question 1.2. What other measures on Rn can be shown to be extremal?

In fact, pushing it even further, one can ask

Question 1.3. For what other measures µ on Rn can one compute or estimate
ω(µ)?

The present paper, among other things, provides answers to both questions.
The main tool is a dynamical description of Diophantine exponents of vectors/me-
asures described in §2. In §3 it is shown how that description can turn the
quantitative nondivergence phenomenon, dating back to the work of Margulis in
early 1970s, into a proof of Theorem 1.1. A partial list of further applications of
the method and related open questions is given in the last section of the paper.

Acknowledgements. Needless to say, I am immensely grateful to Gregory
Margulis for all his encouragement and guidance before, during and after our
collaboration, and am very happy to join other contributors to this volume to wish
him Happy Birthday and many more theorems, papers and graduate students in
years to come.

The exposition of the present paper roughly follows the author’s talk given at
the conference on “Diophantine analysis, uniform distributions and applications”
in Minsk, Belarus in August 2003; a preliminary shorter version of this note has
been submitted to the conference proceedings. The hospitality of the organizers
of this conference is gratefully acknowledged. Thanks are also due to Victor
Beresnevich and Barak Weiss for useful comments.

2. Diophantine approximation and dynamics

The correspondence between Diophantine properties of vectors in Rn and dy-
namical properties of lattices in Rn+1 dates back for n = 1 to E. Artin, and for
n > 1 to the work of Davenport-Schmidt [DS2], Schmidt [Sc2] and Dani [D].
Here we present a condensed exposition of the main principle behind a reduction
of Theorem 1.1 to a dynamical statement. Note that a similar exposition can be
found in survey papers [K1] and [Ma2], as well as in Chapter IV of [St].

Let us pick v0 ≥ n and y ∈ Rn with ω(y) > v0. According to the definition,
this means that for some v > v0 inequality (1.2) is satisfied for infinitely many

1Later an alternative proof was found by Beresnevich [Be].
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(p,q). Equivalently, for infinitely many s ∈ N the following system has an integer
solution (p,q): {

|yq + p| < 2−vs

2s ≤ ‖q‖ < 2s+1 .

We will drop the first of the inequalities in the second line, and conclude that
ω(y) > v0 implies that for some v > v0 there exist infinitely many s ∈ N such
that the system

{
|yq + p| < 2−vs

‖q‖ < 2s+1
(2.1)

has an integer solution (p,q) with q 6= 0.

The latter system can be conveniently written in a matrix form. Namely, y
gives rise to

uy
def
=

(
1 y
0 In

)
,

and the right hand sides of the inequalities in (2.1) define a certain rectangular
box in Rn+1, namely

Bv,s =
{
(x0, x1, . . . , xn)

∣∣ |x0| < 2−vs, |xi| < 2s+1 for i = 1, . . . , n
}

.

Thus ω(y) > v0 implies that for some v > v0 there exist infinitely many s ∈ N
such that uyZn+1 ∩Bv,s 6= {0}.

The next step is to transform this box into a cube, which naturally would be
easier to work with than Bv,s. This is where dynamics comes into play. There
is only one way to undertake such a transformation, preserving the volume: one
needs to act by

gt = diag(2nt, 2−t, . . . , 2−t) .(2.2)

Note that the volume of Bv,s is equal to 22n+1−(v−n)s, which tends to 0 when
s →∞ (recall that v is chosen to be bigger than v0 ≥ n). If for any s one chooses
t > 0 such that gtBv,s is a cube, then it is clear that the sidelength of this cube
will be very small for large s. In fact, an elementary computation shows that s
and t in this situation are not far from each other, and the sidelength of gtBv,s

is equal to Cn2−γt, where Cn is an explicit constant depending only on n and

γ = γ(v) =
v − n

n(v + 1)
.

We have almost proved
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Proposition 2.1. Suppose that ω(y) > v0 for some y ∈ Rn and v0 ≥ n. Then
for some γ > γ(v0) there exist infinitely many t ∈ N such that

the lattice gtuyZn+1 has a nonzero vector of norm less than 2−γt .(2.3)

Proof. It only remains to observe that taking γ between γ(v) and γ(v0) allows
one to get rid of the constant Cn, as well as to replace every t chosen as above
by its integer part. ¤

In fact, the converse to this proposition is also true and easy to prove, see [K2]
or [KM3], but it will not be needed here.

It might be helpful for the understanding to discuss the geometric meaning of
the conclusion of the above proposition. Denote by Ωk the space of lattices in Rk

of covolume 1, and let

Ωk(ε)
def
=

{
Λ ∈ Ωk

∣∣ ‖v‖ < ε for some v ∈ Λr {0}} .

Then (2.3) can be written as gtuyZn+1 ∈ Ωn+1(2−γt). It is well known that Ωk

is noncompact, but the complement of Ωk(ε) in Ωk is compact for any positive ε,
and, further, any bounded subset of Ωk belongs to such a complement for some
ε > 0 (Mahler’s Compactness Criterion, see [R] or [BM]). Thus vectors with
large Diophantine exponents give rise to gt-trajectories in the space of lattices
with “fast enough growth”. See [KM2, K1, K2] for more details.

Here is an application of Proposition 2.1:

Corollary 2.2. Let U be an open subset of Rd, µ a measure on U , and let f be
a map from U to Rn. Take v ≥ n, and suppose that for µ-a.e. x0 ∈ U one can
find a ball B ⊂ U centered in x0 such that for any γ > γ(v) one has

∞∑

t=1

µ
({

x ∈ B
∣∣ gtuf(x)Zn+1 ∈ Ωn+1(2−γt)

})
< ∞ .(2.4)

Then ω(f∗µ) ≤ v.

Proof. Indeed, in view of the Borel-Cantelli Lemma, (2.4) implies that

µ
({

x ∈ B
∣∣ gtuf(x)Zn+1 ∈ Ωn+1(2−γt) for infinitely many t

})
= 0 .

Hence it follows from the assumption and Proposition 2.1 that for µ-a.e. x0 ∈ U
one can find a ball B centered in x0 such that µ

(
x ∈ B | ω(

f(x)
)

> v}) = 0, and
the latter, in view of the definition (1.4), implies that ω(µ) ≤ v. ¤

Summarizing the above discussion, we can observe that an upper estimate for
ω(f∗µ), and in particular the extremality of f∗µ, can be derived from knowing
that sets of the form {

x ∈ B
∣∣ gtuf(x)Zn+1 ∈ Ωn+1(ε)

}
(2.5)
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have small enough measure. In other words, the gt-translate of the pushforward
of µ by the map x 7→ uf(x)Zn+1, B → Ωn+1, does not assign too much weight
to the “neighborhood of infinity” Ωn+1(ε) in the space of lattices. The latter is
precisely a consequence of so-called quantitative nondivergence estimates, to be
discussed in the next section.

3. Quantitative nondivergence and proof of Theorem 1.1

In order to state a general result which can be used to estimate the measure of
sets (2.5), we first introduce some notation and definitions. For a ball B = B(x, r)
in Rn and a > 0, we denote B(x, ar) by aB. If B is a subset of Rn and f is a
real-valued function on Rn, we let

‖f‖B
def
= sup

x∈B
|f(x)| ;

and if µ is a measure on Rn such that µ(B) > 0, we define ‖f‖µ,B to be equal to
‖f‖B ∩ supp µ .

Given D ≥ 1, say that a measure µ on Rn is D-Federer on an open U ⊂ Rn if

µ (3B) ≤ Dµ (B)

for every ball B centered in supp µ with 3B ⊂ U . We will say that µ is D-Federer
if for µ-a.e. point of Rn there exists a neighborhood U of this point such that µ
is D-Federer on U . In fact, for most of subsequent applications a non-uniform
version will suffice: µ will be called Federer if for µ-a.e. x ∈ Rn there exist a
neighborhood U of x and D > 0 such that µ is D-Federer on U .

Clearly λ and, more generally, volume measures on smooth submanifolds sat-
isfy the above conditions. But many other natural measures can also be proved
to be Federer. See [KLM, KW1, MU, S] for examples.

The next definition involves an important property of certain functions f with
respect to certain measures µ. Given C,α > 0, a subset U of Rn, a measure µ on
U and a real-valued function f on U , say that f is (C, α)-good on U with respect
to µ if for any open ball B ⊂ U centered in supp µ and any ε > 0 one has

µ
({

x ∈ B
∣∣ |f(x)| < ε

}) ≤ C

(
ε

‖f‖µ,B

)α

µ(B) .

The primary example is given by polynomial maps. See [KM2, BKM, KLM], as
well as §4.1 of the present paper, for various other examples.

We are now ready to state our main estimate. It was proved in [KM2] (Theorem
5.4) in the case µ = λ , and then generalized in [KLM] and [KT].
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Theorem 3.1. For d, n ∈ N, let a ball B ⊂ Rd, a measure µ on Rd such that B

is centered in supp µ and µ is D-Federer on B̃
def
= 3n+1B, and a continuous map

f = (f1, . . . , fn) : B̃ → Rn be given. Suppose also that for some C, α > 0 and
0 < % < 1 the following two conditions hold:

(i) for any c = (c0, c1, . . . , cn) ∈ Rn+1, the function c0 +
∑n

i=1 cifi is (C, α)-
good on B̃ w.r.t. µ;

(ii) for any c ∈ Rn+1 with ‖c‖ ≥ 1, ‖c0 +
∑n

i=1 cifi‖µ,B ≥ %.

Then for any positive ε ≤ % and any t > 0 one has

µ
({

y ∈ B
∣∣ gtuyZn+1 ∈ Ωn+1(ε)

}) ≤ E

(
ε

%

)α

µ(B) ,

where E is an explicit constant depending on d, n, C, α and D.

The proof of this theorem is not easy. But fortunately most of it has been
around since the early 1970s, when Margulis [Ma1] proved that unipotent flows on
the space of lattices do not go to infinity. In fact, his proof applies verbatim if one
replaces a unipotent subgroup by a polynomial map. Later it was realized that
the only way the polynomiality of the map is used is via the (C, α)-good property,
and that it can also produce a quantitative strengthening of non-divergence to
infinity, namely an estimate for a relative measure of the intersection of the
trajectory with a small “neighborhood of infinity” in the space of lattices.

Let us now show how this theorem can be applied to Diophantine approxima-
tion. Let a measure µ on Rd, x ∈ supp µ, and a map f = (f1, . . . , fn) from a
neighborhood of x to Rn be given.

The following definitions will be helpful. Let us say that the pair (f , µ) is

• (C,α)-good at x if

there exists a neighborhood V ⊂ U of x such that

any linear combination of 1, f1, . . . , fn is (C, α)-good on V w.r.t. µ;
(3.1)

• good at x if it is (C, α)-good at x for some C,α;
• nonplanar at x if

for any neighborhood B of x
the restrictions of 1, f1, . . . , fn to B ∩ supp µ

are linearly independent over R;
(3.2)

in other words, if f(B ∩ supp µ) is not contained in any proper affine
subspace of Rn.

We can now prove
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Theorem 3.2. Let µ be a Federer measure on Rd, U an open subset of Rd, and
f : U → Rn a continuous map such that (f , µ) is good and nonplanar at µ-almost
every point of U . Then f∗µ is extremal.

Proof. Take x ∈ U ∩ supp µ and C, α > 0 such that (3.1) and (3.2) hold, and
let B be a ball centered at x such that 3n+1B is contained in V . Then condition
(i) of Theorem 3.1 will be satisfied for C,α as above, and the existence of % > 0
satisfying (ii) follows from the compactness of the unit sphere in Rn+1. Thus
Theorem 3.1 applies, and it follows that for any small enough positive ε and any
t > 0 one has

µ
({

x ∈ B
∣∣ gtuf(x)Zn+1 ∈ Ωn+1(ε)

}) ≤ const ·εα ,

with the constant independent of ε or t. Putting ε = e−γt for an arbitrarily small
γ > 0 and using Corollary 2.2 finishes the proof. ¤

The above theorem first appeared in [KLM] in a slightly disguised version:
there n was equal to d, f was the identity map, and conditions sufficient for
extremality were stated in terms of µ. But the proof given there (which itself is a
generalization of the argument from [KM2]) in fact easily yields the result stated
above. The argument was generalized even further in [KT], where the wording
was similar to that of the present paper.

Note also that by definition, the set

{x | (f , µ) is nonplanar at x}
is closed, so the nonplanarity at µ-almost every point is equivalent to the same
at every x ∈ U ∩ supp µ.

In order to see that Theorem 1.1 is a special case of Theorem 3.2, it suffices to
show that for a smooth map f : U → Rn, (f , λ) is good and nonplanar at every
point where f is nondegenerate. The nonplanarity is straightforward (indeed, the
nondegeneracy of f at x clearly implies the existence of a neighborhood B 3 x
such that f(B) is not contained in any proper affine subspace of Rn). And the
(C, α)-good property of linear combinations of 1, f1, . . . , fn basically follows from
the fact that locally f can be approximated by a polynomial map, and is proved
in [KM2].

It seems to be worthwhile to compare the method of proof of Theorem 1.1
discussed above with the standard approach based on Sprindžuk’s solution of
Mahler’s problem and carried out in [Be]. As we have seen, the correspondence
between Diophantine approximation and dynamics is quite natural and easy to
explain. Also, the crucial measure estimate (Theorem 3.1) is the only hard part of
the argument, the rest is relatively easy. Another advantage is a chance to work
with non-smooth objects – we will mention in the next section how Theorem
3.2 gives rise to a wide variety of examples of extremal measures which are not
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volume measures on smooth submanifolds. Further, as will also be discussed in
the next section, the dynamical approach can be perturbed in many directions
and allows many generalizations and modifications of the result proved above.

However, the standard methods have a number of obvious advantages as well.
The dynamical approach is hard to use when more precise results are needed, for
example when the goal is to prove the divergence case of Khintchine-type theo-
rems, or compute/estimate the Hausdorff dimension of the set of v-approximable
points on a manifold. See [Be, BDV1, BDV2, VV] for examples of such results.
Roughly speaking, the correspondence between approximation and dynamics is
powerful but coarse, so that a substantial amount of information is being lost in
transmission.

4. Beyond Theorem 1.1

4.1. As was mentioned above, one of the main advantages of the method is that
the assumptions of Theorem 3.2 are much less restrictive that those of Theorem
1.1. Here is an example. Following [KLM], given C, α > 0 and U ⊂ Rd, say that
µ is absolutely (C, α)-decaying on U if for any non-empty open ball B ⊂ U of
radius r centered in supp µ, any affine hyperplane L ⊂ Rn, and any ε > 0 one
has

µ
(
B ∩ L(ε)

) ≤ C
(ε

r

)α
µ(B) ,

where L(ε) stands for the ε-neighborhood of L. We will say that a measure
is absolutely decaying if for µ-a.e point of Rd there exist a neighborhood U of
this point and C, α > 0 such that µ is absolutely (C, α)-decaying on U . Measures
which are absolutely decaying and Federer were called absolutely friendly in [PV],
see [KLM] for justification of this terminology.

If µ is absolutely decaying, it easily follows that

µ(L) = 0 for any affine hyperplane L ⊂ Rn(4.1)

(i.e., in the terminology introduced in §3, (Id : Rn → Rn, µ) is nonplanar at every
point of supp µ). It also follows that (Id, µ) is good at µ-almost every point. In
[KLM], much more than that has been proved:

Proposition 4.1. Let µ be an absolutely friendly measure on U ⊂ Rd, and let
f : U → Rn be a C`+1 map which is `-nondegenerate at x0 ∈ U . Then (f , µ) is
(a) good and (b) nonplanar at x0.

Part (b) is straightforward from (4.1), but part (a) is nontrivial and can be
thought of as a generalization of the case µ = λ worked out in [KM2]. However
note that the method of proof is completely different and has an advantage of pro-
ducing a better esponent α in many cases, although there is a slight disadvantage
of requiring an extra derivative.
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The above proposition, combined with Theorem 3.2, immediately implies that
f∗µ is extremal whenever µ is absolutely friendly and f is nondegenerate. The
result is interesting even when f is the identity map (see [PV] for an alternative
proof of the latter special case). Indeed, one can exhibit a wide variety of ab-
solutely friendly measures supported on very peculiar sets, such as self-similar
or self-conformal fractals. The prime example is the middle-third Cantor set C
on the real line: its extremality (or, more precisely, the extremality of the nat-
ural measure µC it supports) was established by Barak Weiss in [W], and later
in [KLM] higher dimensional generalizations of µC were shown to satisfy condi-
tions sufficient for extremality. More examples have been recently found by M.
Urbański [U1, U2], see also [SU].

4.2. The dynamical approach is indispensable in handling the so-called multi-
plicative generalization of the problems discussed in the introduction. Namely,
define Π+(q)

def
=

∏
qi 6=0 |qi|, say that y = (y1, . . . , yn) ∈ Rn is v-multiplicatively

approximable (notation: y ∈ W×
v ) if there are infinitely many q ∈ Zn such that

|yq + p| < Π+(q)−v/n

for some p ∈ Z, and then define multiplicative Diophantine exponents:

• ω×(y) of y by ω×(y)
def
= sup{v | y ∈ W×

v } ,

• ω×(µ) of µ by ω×(µ)
def
= sup

{
v

∣∣ µ(W×
v ) > 0

}
.

It is easy to see that ω×(y) is not less than ω(y) for all y, and yet ω×(y) = n
for λ-a.e. y ∈ Rn, that is, ω×(λ) = n. Following Sprindžuk, say that µ is
strongly extremal if ω×(µ) = n. The multiplicative analogue of Theorem 1.1
(more precisely, of its real analytic version) was conjectured by Sprindžuk in
1980 and proved in [KM2]. Likewise, the following can be proved:

Theorem 4.2. Let µ and f be as in Theorem 3.2. Then f∗µ is strongly extremal.

Thus in all the examples mentioned in §4.1, f∗µ actually happens to be strongly
extremal. The proof of the stronger statement is based on using the multi-
parameter action of

gt = diag(2t, 2−t1 , . . . , 2−tn) , where t = t1 + · · ·+ tn ,

instead of (2.2).

4.3. Obvious examples of non-extremal manifolds are provided by proper affine
subspaces of Rn whose coefficients are well enough approximable by rational
numbers. On the other hand, it is clear from a Fubini argument that almost
all translates of any given subspace are extremal. In [K2] the method of [KM2]
was pushed further to produce criteria for the extremality, as well as the strong
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extremality, of an affine subspace L of Rn. Further, it was shown that if L is
extremal (resp. strongly extremal), then so is any smooth submanifold of L which
is nondegenerate in L at its a.e. point. (The latter property is a straightforward
generalization of the definition of nondegeneracy in Rn: a map f is nondegenerate
in L at x if the linear part of L is spanned by partial derivatives of f at x.) In
other words, extremality and strong extremality pass from affine subspaces to
their nondegenerate submanifolds.

A more precise analysis makes it possible to study Diophantine exponents of
measures with supports contained in arbitrary proper affine subspaces of Rn.
Namely, in [K4] it is shown how to compute ω(L) for any L. Furthermore, the
following generalization of Theorem 3.2 is obtained:

Theorem 4.3. Let µ be a Federer measure on Rd, U an open subset of Rd, L an
affine subspace of Rn, and let f : U → L be a continuous map such that (f , µ) is
good and nonplanar in L at µ-almost every point of U . Then ω(f∗µ) = ω(L).

Here we say that (f , µ) is nonplanar in L at x if for any neighborhood B of
x, the f -image of B ∩ supp µ is not contained in any proper affine subspace of
L, thus generalizing the definition from §3. It is easy to see that for a smooth
map f : U → L, (f , λ) is good and nonplanar in L at every point at which f is
nondegenerate in L.

4.4. Another application concerns badly approximable vectors. Recall that y ∈
Rn is called badly approximable if there exists c > 0 such that for any q ∈ Znr{0}
and p ∈ Z one has

|yq + p| > c‖q‖−n .

Denote the set of badly approximable vectors in Rn by BA. It is a theorem of
Dani [D] that y ∈ BA if and only if the trajectory

{gtuyZn+1 | t > 0} ,

where gt and uy are as in §2, does not intersect Ωn+1(ε) for some ε > 0, i.e. is
bounded in Ωn+1.

Using this and Theorem 3.1 it turns out to be possible to find badly approx-
imable vectors inside supports of certain measures on Rn. Here is one way to
state the result of the paper [KW1]. Denote by dim(K) the Hausdorff dimen-
sion of a subset K of Rn, and for β > 0 let us say that a measure µ on Rn is
β-scaling if there is a positive c > 0 such that for every ball B of radius r one
has µ (B) ≤ c rβ. It is well known (Mass Distribution Principle + Frostman’s
Lemma) that

dim(K) = sup{β | K supports a β-scaling measure} .
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Now let us define

dimaf (K)
def
= sup{β | K supports a β-scaling absolutely friendly measure} .

Naturally, it is always not bigger than dim(K) (but can be much less). The
following is shown in [KW1] (see also [KTV] for a similar result):

Theorem 4.4. For any compact subset K of Rn, one has

dimaf (K ∩ BA) ≥ dimaf (K) .

In particular, if a set K of Hausdorff dimension β supports an absolutely
friendly β-scaling measure (and many examples of such sets have been found in
[KLM, KW1, U1, U2, SU]), then dim(K ∩ BA) = β.

4.5. For positive ε < 1, say that Dirichlet’s Theorem can be ε-improved for
y ∈ Rn, writing y ∈ DIε, if for every sufficiently large T the system

{
|yq + p| < ε/T

0 < ‖q‖ < εT 1/n

(that is, (1.3) with the right hand side terms multiplied by ε) has an integer
solution (p,q). This is easily seen to be equivalent to

gtuyZn+1 ∈ Ωn+1(ε) for large enough t .

Since the complement to Ωn+1(ε) has nonempty interior for any ε < 1, it follows
from the ergodicity of the gt-action on Ωn+1 that

λ(DIε) = 0 for any ε < 1 .(4.2)

The above is roughly the outline of the proof of (4.2) by Davenport and Schmidt
[DS2], who gave a direct proof of density of gt-orbits of almost all lattices, without
reference to ergodicity.

Similar questions with λ replaced by f∗λ for some specific smooth maps f were
considered in [DS1, Ba1, Ba2, DRV, Bu]. For example, [Bu,Theorem 7]provides
an explicitly computable constant c = c(n) such that for f as in (1.5),

f∗λ(DIε) = 0 for ε < c .

This had been previously done in [DS1] for n = 2 and in [Ba1] for n = 3.

In [KW3] we use Theorem 3.1 to generalize this to a much broader class of
measures:

Theorem 4.5. Given d, n ∈ N and C, α,D > 0, there exists c = c(d, n, C, α, D)
with the following property. Let µ be a D-Federer measure on Rd, U an open
subset of Rd, and f : U → Rn a continuous map such that (f , µ) is (C, α)-good
and nonplanar at µ-almost every point of U . Then f∗µ(DIε) = 0 for ε < c.
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In particular, almost every point on any nondegenerate smooth manifold is
not in DIε for small enough ε. See also [KW2] for a similar result about the set
of singular vectors, defined as the intersection of DIε over all positive ε; those
correspond to divergent gt-trajectories.

4.6. In all the problems mentioned above, the ground field R can be replaced
by Qp, and in fact several fields can be taken simultaneously, thus giving rise
to the S-arithmetic setting where S = {p1, . . . , ps} is a finite set of normalized
valuations onQ, which may or may not include the infinite valuation (cf. [Sp2, Z]).
The space of lattices in Rn+1 is replaced there by the space of lattices in Qn+1

S ,
where QS is the product of the fields R and Qp1 , . . . ,Qps . This is the subject
of the paper [KT], where S-arithmetic analogues of Theorems 1.1, 3.1 and 3.2
have been established. Similarly one can consider versions of the above theorems
over local fields of positive characteristic [G2]. See also [K3] where Sprindžuk’s
solution [Sp2] of the complex case of Mahler’s Conjecture has been generalized;
the latter involves studying small values of linear forms with coefficients in C at
real integer points.

4.7. Finally, let us mention that a generalization of Theorem 3.1 was used in
[BKM] to estimate a measure of the set of points x in a ball B ⊂ Rd for which
the system 




|f(x)q + p| < ε

|f ′(x)q| < δ

|qi| < Qi, i = 1, . . . , n,

where f is a smooth map B → Rn, has a nonzero integer solution. Here uf(x) has
to be replaced by the matrix 


1 0 f(x)
0 1 f ′(x)
0 0 In


 ,

and therefore conditions (i) and (ii) of Theorem 3.1 are replaced by more com-
plicated conditions, which nevertheless can be checked when f is nondegenerate.
This has resulted in proving the convergence case of Khintchine-Groshev Theorem
for nondegenerate manifolds, in both standard and multiplicative versions. The
aforementioned estimate was also used in [BBKM] for the proof of the divergence
case, and in [G1, G3] for establishing the convergence case of Khintchine-Groshev
theorem for affine hyperplanes and their nondegenerate submanifolds.
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[Z] F. Želudevič, Simultane diophantische Approximationen abhängiger Grössen in
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