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Navier-Stokes System on T3 for Small Initial

Conditions in the Spaces Φ(α).
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Abstract:We consider Cauchy problem for three-dimensional Navier-Stokes
system with periodic boundary conditions with initial data from the space
of pseudo-measures Φ(α). We provide global existence and uniqueness of
the solution for sufficiently small initial data.

1. Introduction

Three-dimensional Navier-Stokes system with periodic boundary conditions
after Fourier transform can be written in the form:

(1) v(t, k)=exp−t|k|2v0(k)+2πi

t∫

0

exp{−(t−s)|k|2}
∑

l∈Z3

〈k, v(s, k− l)〉Pkv(s, l)ds

Here k ∈ Z3, t ∈ R+, v(t, k) ∈ C3, v(t, k)⊥k for any k 6= 0 and v(t, 0) = 0 for
all t > 0. v0(k) is the initial condition and Pk denotes Leray projector to the

subspace orthogonal to k and has the form Pk = Id − 〈k, ·〉
|k|2 k. Also (1) assumes

that the viscosity ν = 1 and that the external forcing is absent.

T. Kato in [K] proved the local existence theorem for the 3D-Navier-Stokes
system on R3 and global existence and uniqueness theorem in the space L

3
2 (R3)∩

L1(R3) for small initial conditions.

In this paper we consider Cauchy problem for the system (1) with initial data
from the space Φ(α) which is analogous to the subspace Φ(α, α) introduced in
[S1], [S2] and consists of functions of the form
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Φ(α) =
{

f(k) =
c(k)
|k|α , k 6= 0 | sup

k
|c(k)| < ∞

}
, ‖f(k)‖α = sup

k∈Z3

|k|α|f(k)|

We assume α > 2 and shall write α = 2 + ε. V. Kaloshin and Yu. Sannikov
announced the global existence theorem in the spaces Φ(α), α > 2 for small
initial data (see [KS]). In this paper we give a detailed proof of this result which
shows also the character of decay of solutions in this case. It is worthwhile to
mention that according to our point of view a similar result is not valid in the
continuous case of k ∈ R3.

Second author acknowledges financial support from NSF Grant DMS 0600996

2. Main result

The purpose of this paper is to prove the following theorem.

Theorem 1. Let 0 < 3ε < 1 and ‖v0‖α 6 δ where v0 =
c0(k)
|k|α is the initial

condition and δ = δ(α) is sufficiently small. Then the equation (1) has a global

solution v(t, k) =
c(t, k)
|k|α such that c(t, k) is a continuous mapping of [0,∞) into

L∞(Z3 \ {0}), t > 0.

The proof of the Theorem 1 goes by induction. Put H
(0)
0 (k) =

c0(k)
|k|α , k 6= 0,

H
(1)
0 (k) = G0(k) = 0 and assume that for some integer m we constructed the

solution v(t, k), 0 6 t 6 m, such that

(2) v(m, k) = H(0)
m (k) + H(1)

m (k) + Gm(k)

where

H(0)
m (k) =

exp{−m|k|2}c0(k)
|k|α ,

H(1)
m (k) =

m∑

j=1

exp{−(m− j)|k|2}h(1)
j (k)

and

Gm(k) =
m∑

j=1

exp{−(m− j)|k|2}gj(k)
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Suppose that for all j 6 m functions h
(1)
j (k) satisfy the inequalities:

(3) |h(1)
j (k)| 6

D1δ
2 exp

{
− j

2 |k|2
}

|k|2ε
,

while the functions gj(k) satisfy the inequalities:

(4) |gj(k)| 6 D2δ
2 exp{−d1|k|

√
m}

|k|β

Here β > 3 is a constant and d, D with indices denote various absolute con-
stants which appear during the proof, but their exact values play no role in the
arguments.

Consider 0 6 t 6 1 and write down the solution of (1) in the form:

v(t + m, k) =
exp{−(m + t)|k|2}c0(k)

|k|α +
m∑

j=1

exp{−(m− j + t)|k|2}h(1)
j (k)

|k|2ε
+

+
h

(1)
m+1(t, k)
|k|2ε

+
m∑

j=1

exp{−(m− j + t)|k|2}gj(k) + gm+1(t, k)

(5)

We show that the inequalities (3), (4) holds for h
(1)
m+1(1, k) and gm+1(1, k) respec-

tively.

3. Proof of the main result

Denote

(6) H
(0)
m+1(t, k) =

exp{−(m + t)|k|2}c0(k)
|k|α ,

(7) H
(1)
m+1(t, k) =

m∑

j=1

exp{−(m− j + t)|k|2}h(1)
j (t, k)

|k|2ε
+

h
(1)
m+1(t, k)
|k|2ε

,

(8) Gm+1(t, k) =
m∑

j=1

exp{−(m− j + t)|k|2}gj(t, k)
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and

(
H ′ ~ H ′′) (t, k) = i

t∫

0

exp{−(t− s)|k|2}
∑

k∈Z3\{0}
k−l6=0

〈k, H ′(s, k − l)〉PkH
′′(s, l)

|k − l|α|l|α

If we substitute (5) into (1) we can write the expression for h
(1)
m+1(t, k):

(9) h
(1)
m+1(t, k) = |k|2ε

(
H

(0)
m+1 ~ H

(0)
m+1

)
(t, k)

and the expression for gm+1(t, k):

(10) gm+1(t, k) =
8∑

j1=1

I
(1,j1)
m+1 (t, k) +

3∑

j2=1

I
(2,j2)
m+1 (t, k) + I

(3)
m+1(t, k)

where

I
(1,j1)
m+1 (t, k) =

(
H ′ ~ H ′′) (t, k),

I
(2,j2)
m+1 (t, k) =

(
H ′ ~ gm+1

)
(t, k) +

(
gm+1 ~ H ′) (t, k)

and H ′, H ′′ are either H
(0)
m+1(t, k), or H

(1)
m+1(t, k) or Gm+1(t, k) except the case

H ′ = H ′′ = H
(0)
m+1 which corresponds to the h

(1)
m+1 according to (9). Therefore j1

changes from 1 to 8 and j2 changes from 1 to 3. Also

I
(3)
m+1(t, k) = gm+1 ~ gm+1.

We see that I
(1)
m+1 does not depend on gm+1(t, k), I

(2)
m+1 is a linear function

of gm+1(t, k) and I
(3)
m+1 is a quadratic function of gm+1(t, k). Therefore (10) is

a typical equation which can be solved by iterations if the coefficients are small
enough. Below we provide necessary estimates and later we come back to the
analysis of (8).

3.1. First estimates. Here we show that all functions h
(1)
m+1 behaves like gauss-

ian functions of t|k| and then provide necessary estimates for coefficients in (10).

As in [S1], [S2], we use the identity:

(11) a1|k − l|2 + a2|l|2 =
a1a2

a1 + a2
|k|2 + (a1 + a2)

∣∣∣∣l −
a1

a1 + a2
k

∣∣∣∣
2

An estimate of H
(1)
m+1. At first we estimate h

(1)
m+1(t, k). From (9) it follows

that
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h
(1)
m+1(t, k) =(H(0)

m+1 ~ H
(0)
m+1)(t, k) = 2πi

t∫

0

exp{−(t− s)|k|2}·

·
∑

l∈Z3\{0}
k−l6=0

〈k, c0(k − l)〉Pkc0(l)
|k − l|α|l|α exp{−(m + s)|k − l|2 − (m + s)|l|2}ds

Using (11) we can write

|h(1)
m+1(t, k)| 6 exp

{
−m|k|2

2

} t∫

0

exp{−(t− s

2
)|k|2}·

·
∑

l∈Z3\{0}
k−l6=0

〈k, c0(k − l)〉Pkc0(l)
|k − l|α|l|α exp{−2m|l − 1

2
k|2}ds 6

6 δ2 exp
{
−m|k|2

2

}
exp{− t

2 |k|2} − exp{−t|k|2}
|k|2 ·

·
∑

l∈Z3\{0}
k−l6=0

exp{−2m|l − 1
2 |k|2}

|k − l|α|l|α 6

6 D3δ
2

|k|2ε
exp

{
−(m + t)|k|2

2

}
1− exp{− t

2 |k|2}
|k|2

Substituting this inequality to (7) we conclude

∣∣∣H(1)
m+1(t, k)

∣∣∣ 6 D3δ
2

|k|2ε

(1− exp{− t
2 |k|2})

|k|2
m+1∑

j=1

exp
{
−(m + 1− j

2
)|k|2

}
6

6 D4δ
2

|k|2ε

(1− exp{− t
2 |k|2})

|k|2 exp
{
−(m + 1)|k|2

2

}(12)

Estimates for H
(j1)
m+1 ~ H

(j2)
m+1. We present detailed estimate only for H

(0)
m+1 ~

H
(1)
m+1 since all other terms can be estimated in the same manner. From (11) and
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(12) we have

∣∣∣(H(0)
m+1 ~ H

(1)
m+1)(t, k)

∣∣∣ 6 |k|δ3

t∫

0

exp{−(t− s)|k|2}·

·
∑

l∈Z3\{0}
k−l6=0

exp{−(m + s)|l|2 − m+s
2 |k − l|2}

|k − l|2ε|l|α ds 6

6 |k|δ3 exp
{
−m + 1

3
|k|2

} t∫

0

exp{−(t−s)|k|2}
∑

l∈Z3\{0}
k−l6=0

exp{−3
2(m + s)|l − m+s

3 k|2}
|k − l|2ε|l|α ds

Since α + 2ε > 2 the last sum is not more than some constant D5. We get

(13)
∣∣∣(H(0)

m+1 ~ H
(1)
m+1)(t, k)

∣∣∣ 6 |k|D5 exp
{
−m + 1

3
|k|2

}
1− exp{−t|k|2}

|k|2

Similarly, for (H(1)
m+1 ~ H

(1)
m+1)(t, k) we can write

(14)
∣∣∣(H(1)

m+1 ~ H
(1)
m+1)(t, k)

∣∣∣ 6 D6 exp
{
−m + 1

4
|k|2

}
1− exp{−t|k|2}

|k|

3.2. Spaces Fm(c). Fix positive constant β > 0 and introduce functional space
Fm(c)

Fm(c) =
{

f(k) | |f(k)| 6 D7

|k|β exp{−c
√

m|k|}, k 6= 0
}

, ‖f‖m,c = inf D7

We show that functions gm+1(t, k) belong to the spaces Fm with uniform con-
stant if only all coefficients in (10) are sufficiently small. First of all we show that
H(j1) ~ H(j2), j1 + j2 > 0 belongs to the space Fm(d2) for some constant d2. It
follows from previous estimates, that all of these functions decay as a Gaussian
functions. For our purpose it is convenient to consider them as functions from
the space Fm(d2). Since m|k| > 1 we can write

exp
{
−m|k|2

3

}
6 D8

|k|β exp
{
−
√

m|k|√
3

}

for some constant D8. We see that (H(0)
m+1 ~ H

(1)
m+1)(t, k) ∈ Fm+1( 1√

3
) and

(15) ‖H(0)
m+1 ~ H

(1)
m+1‖m+1, 1√

3
6 D9

for some constant D9, which does not depend on t.
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Assuming that Gm+1 ∈ Fm+1(d2) we can write for Gm+1 ~ H
(0)
m+1

|(Gm+1 ~ H
(0)
m+1)(t, k)| 6 ‖Gm+1‖m+1,d2δ|k|

t∫

0

exp{−(t− s)|k|2}·

·
∑

l∈Z3\{0}
k−l6=0

exp{−d2
√

m|k − l| −m|l|2}
|l|α|k − l|β1

ds

For the last expression we get

exp{−d2

√
m|k − l| −m|l|2} 6 exp{−d2

√
m|k|} exp{d2

√
m|l| −m|l|2} 6

6 D10 exp{−d2

√
m|k|} exp{|l − d2

2
√

m
|2}

So for (Gm+1 ~ H
(0)
m+1)(t, k) we obtain

|(Gm+1 ~ H
(0)
m+1(t, k))| 6 D11‖Gm+1‖m+1,d2δ

exp{−d2|k|
√

m}
|k|β1

1− exp{−t|k|2}
|k|2

All other terms in I
(1)
m+1(t, k) can be similarly estimated.

Thus we embed the first term in the representation of gm+1(t, k) given by (10)
into the space Fm+1(d2). Now we provide the necessary estimates for the terms
I

(3)
m+1 and I

(2)
m+1.

Estimate for I
(3)
m+1. We show, that for given functions f1, f2∈Fm+1(d2) f1~f2

also belongs to the space Fm+1(d2) and ‖f1, f2‖m+1,d26D12‖f1‖m+1,d2‖f2‖m+1, d2

for some constant D12.

Write down the estimate

|f1 ~ f2| 6 ‖f1‖m+1,d2‖f2‖m+1,d2 |k|
t∫

0

exp{−(t− s)|k|2}·

·
∑

l∈Z3\{0}
k−l6=0

exp{−d2

√
m + 1(|l| − |k − l|}
|l|β |k − l|β ds 6

6 D13‖f1‖m+1,d2‖f2‖m+1,d2

|k|2β−3
exp{−d2|k|

√
m + 1}1− exp{−t|k|2}

|k|
Since β > 3 and the last expression is not more than 1, we get

(16) |f1 ~ f2| 6 D14‖f1‖m+1,d2‖f2‖m+1,d2

|k|β exp{−d2

√
m + 1|k|}
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In particular, for gm+1(t, k) ∈ Fm+1(d2) it follows that

(17) ‖I(3)
m+1(t, k)‖m+1,d2 6 D14‖gm+1(t, k)‖2

m+1,d2

Estimates for I
(2)
m+1. Here we produce the upper bound for ‖I(2)(t, k)‖m+1,D14 =

3∑
j2=1

I
(2,j2)
m+1 (t, k) assuming, that gm+1(t, k) ∈ Fm+1(d2).

|(gm+1(t, k) ~ H
(0)
m+1(t, k))| 6 ‖gm+1‖m+1,d2δ|k|

t∫

0

exp{−(t− s)|k|2}·

·
∑

l∈Z3\{0}
k−l6=0

exp{−d2
√

m|k − l| −m|l|2}
|k − l|β|l|α ds

Again for the last expression holds

exp{−d2

√
m|k − l| −m|l|2} 6 D15 exp{−d2

√
m|k|} exp{|l − d2

2
√

m
|2}

So for (gm+1(t, k) ~ H
(0)
m+1(t, k)) we can write

|(gm+1(t, k)~H
(0)
m+1(t, k))| 6 D16‖gm+1‖m+1,d2δ

1− exp{−t|k|2}
|k|

exp{−d2
√

m|k|}
|k|β

For the terms gm+1 ~ Gm+1 we can produce an appropriate estimate using (16).
All other terms in I

(2)
m+1(t, k) can be estimated in a similar way.

Collecting all present estimates we see that for some constant newcon

(18) ‖gm+1(t, k)‖m+1,d2 6 D17δ
2 + D18δ‖gm+1‖m+1,d2 + D19‖gm+1‖2

m+1,d2

So for sufficiently small δ all coefficients in (18) are small and the equation (10)
can be solved by iterations. The solution gm+1(t, k) belongs to Fm+1(d2) and
unique in this class of functions. Each function gm+1(t, k) provides the unique
solution v(m + t, k) of (5). The Theorem 1 is proven.
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