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Abstract: For a class of symplectic manifolds, we introduce a functional
which assigns a real number to any pair of continuous functions on the man-
ifold. This functional has a number of interesting properties. On the one
hand, it is Lipschitz with respect to the uniform norm. On the other hand,
it serves as a measure of non-commutativity of functions in the sense of
the Poisson bracket, the operation which involves first derivatives of the
functions. Furthermore, the same functional gives rise to a non-trivial
lower bound for the error of the simultaneous measurement of a pair of
non-commuting Hamiltonians. These results manifest a link between the
algebraic structure of the group of Hamiltonian diffeomorphisms and the
function theory on a symplectic manifold. The above-mentioned functional
comes from a special homogeneous quasi-morphism on the universal cover
of the group, which is rooted in the Floer theory.

1. Introduction and main results

1.1. Symplectic quasi-states. Let (M2n, ω) be a closed connected symplectic
manifold. A symplectic quasi-state is a functional ζ : C0(M) → R with the
following properties:

(i) ζ(1) = 1;
(ii) F ≤ G ⇒ ζ(F ) ≤ ζ(G);
(iii) ζ(aF + bG) = aζ(F ) + bζ(G) for all a, b ∈ R and all functions F, G ∈

C∞(M) whose Poisson bracket {F, G} vanishes.
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In particular, ζ is a topological quasi-state in the sense of Aarnes [1]. It was
shown in [6] that certain symplectic manifolds carry a non-linear symplectic
quasi-state ζ. In this case the functional

Π : C0(M)× C0(M) → R
defined by

(1) Π(F, G) = |ζ(F + G)− ζ(F )− ζ(G)|
can be interpreted as a measure of Poisson non-commutativity of functions F and
G. This functional lies in the center of our study. In particular, we analyze the
relation between Π(F, G) and the Poisson bracket {F, G}. We show (see Theorem
1.4 below) that for certain symplectic quasi-states

(2) Π(F, G) ≤ const ·
√
||{F, G}||

for all F, G ∈ C∞(M). Here and below ||H|| stands for the uniform norm
maxM |H|. This inequality has a number of applications.

One application deals with the following problem (cf. [4]). The definition of
the Poisson bracket {F, G} of two functions F, G on a symplectic manifold M
involves first derivatives of the functions. Thus a priori there is no restriction on
possible changes of {F, G} when F and G are perturbed in the uniform norm.
Note that axiom (ii) of the quasi-state yields that Π is Lipschitz in the uniform
norm. Therefore inequality (2) gives rise to such a restriction (see Corollary 1.5
below).

As another application, we present a restriction on partitions of unity ρ1, . . . , ρN

on symplectic manifolds subordinate to coverings by sufficiently small sets (see
Theorems 1.7 and 1.8 below). It turns out that

max
i,j

||{ρi, ρj}|| ≥ const
N3

.

Interestingly enough, the functional Π appears in the context of simultane-
ous measurements of non-commuting observables F, G in classical mechanics (see
Section 1.6 below). We show that Π(F, G) gives a lower bound for the error of
such a measurement.

The above-mentioned quasi-states are closely related to certain homogeneous
quasi-morphisms (that is, homomorphisms up to a bounded error) on the uni-
versal cover G of the group of Hamiltonian diffeomorphisms of M . These quasi-
morphisms, which were found in [5], are rooted in Floer homology. The connec-
tion between quasi-states and quasi-morphisms is crucial for our methods.

1.2. Preliminaries on Hamiltonian diffeomorphisms.

In what follows we normalize the symplectic form ω on M2n so that the sym-
plectic volume

∫
M ωn equals 1. Recall that symplectic manifolds appear as phase
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spaces in classical mechanics. An important principle of classical mechanics is
that the energy of a system determines its evolution. The energy (or Hamiltonian
function) Ft(x) := F (x, t) is a smooth function on M × [0; 1]. Here t is the time
coordinate. Define the time-dependent Hamiltonian vector field sgradFt by the
point-wise linear equation isgrad Ftω = −dFt. The evolution of the system is de-
scribed by the flow ft on M generated by the Hamiltonian vector field sgradFt.
We shall call the time-one-map f1 of this flow a Hamiltonian diffeomorphism.
Hamiltonian diffeomorphisms form a group which is denoted by Ham (M, ω).
The universal cover G of this group plays an important role in this paper. El-
ements of G are smooth paths in Ham (M, ω) based at the identity, considered
up to homotopy with fixed end-points. We denote by φF the element of G rep-
resented by the path {ft}t∈[0;1] and refer to it as the element of G generated by
F .

It is instructive to view G as a (infinite-dimensional) Lie group whose Lie
algebra is naturally identified with the space C∞

0 (M) of smooth functions with
zero mean on M . The role of the Lie bracket is played by the Poisson bracket
which is defined by

{F, G} = ω(sgradG, sgradF ) = dF (sgradG) = −dG(sgradF ) .

In the canonical local coordinates (p, q) where ω = dp∧ dq the Poisson bracket is
written as

{F, G} =
∂F

∂q
· ∂G

∂p
− ∂F

∂p
· ∂G

∂q
.

Recall that for a function F ∈ C0(M) we denote by ||F || its uniform norm
maxM |F | and by 〈F 〉 its mean value

∫
M Fωn. A Hamiltonian function F ∈

C∞(M × [0; 1]) is called normalized if 〈Ft〉 = 0 for all t.

We refer to [10, 17] for further preliminaries on Hamiltonian diffeomorphisms.

1.3. Quasi-morphisms.

A real-valued function µ on a group Γ is called a homogeneous quasi-morphism
[2] if

(i) There exists C > 0 so that

|µ(ϕψ)− µ(ϕ)− µ(ψ)| ≤ C for all elements ϕ,ψ ∈ Γ;

(ii) µ(ϕm) = mµ(ϕ) for each ϕ ∈ Γ and each m ∈ Z.

The minimal constant C in the above inequality is called the defect of µ.
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In this paper we will deal with homogeneous quasi-morphisms on the group G
with the following property:

(3)
∫ 1

0
min
M

(Ft −Gt) dt ≤ µ(φG)− µ(φF ) ≤
∫ 1

0
max

M
(Ft −Gt) dt

for all normalized Hamiltonians F, G ∈ C∞(M × [0; 1]). We call them stable
quasi-morphisms.

Example 1.1. The group G is known to carry a stable homogeneous quasi-
morphism for the following list of symplectic manifolds [5, 7, 15]: complex pro-
jective spaces and Grassmannians; CP 2 blown up at k ≤ 3 points with a symplec-
tic form in a rational cohomology class; strongly semi-positive (see Section 1.5)
direct products of the above-mentioned manifolds. The existence of stable ho-
mogeneous quasi-morphisms is related to the algebraic structure of the quantum
homology of (M, ω). See Section 4.2 below for more discussion on the stability
property.

Given a stable homogeneous quasi-morphism µ, define a functional ζ : C∞(M) →
R by

(4) ζ(F ) =
∫

M
Fωn − µ(φF ) .

Recall that the Lie algebra of the group G can be identified with the space C∞
0 (M)

of smooth functions on M with zero mean. With this language the restriction of
ζ to C∞

0 (M) is simply the pullback of quasi-morphism −µ on the group to the
Lie algebra via the exponential map. One can show that ζ satisfies the axioms
of a symplectic quasi-state listed in Section 1.1: Axiom (i) is obvious (since,
according to our normalization,

∫
M ωn = 1), axiom (ii) is a simple corollary of

the stability property (3) of µ (see Section 4.1 below) and axiom (iii) follows
from the fact (which is an easy exercise) that the restriction of any homogeneous
quasi-morphism to an abelian subgroup is a homomorphism (see [6]).

As an immediate consequence of axiom (ii) we get that ζ is 1-Lipschitz with
respect to the uniform norm and thus extends to the space of continuous functions
C0(M). Furthermore, the functional

Π(F, G) = |ζ(F + G)− ζ(F )− ζ(G)|
(see formula (1) above) is Lipschitz as well:

(5) |Π(F, G)−Π(F ′, G′)| ≤ 2(||F − F ′||+ ||G−G′||)
for all functions F, G, F ′, G′ ∈ C∞(M).

It is important to emphasize that in the setting of Example 1.1 above the
quasi-state ζ is non-linear, that is Π(F, G) > 0 for some F, G ∈ C∞(M).
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Example 1.2. Even for the 2-sphere with the standard area form of total area
1 the explicit calculation of µ(f) for Hamiltonian diffeomorphisms f generated
by a generic time-dependent Hamiltonian is a transcendentally difficult problem.
However the corresponding quasi-state ζ has an easy-to-handle combinatorial
interpretation, see [5]: Since ζ is Lipschitz in the uniform norm, it suffices to
define its value on the dense subset consisting of Morse functions F on the sphere
with distinct critical values. Look at the set of connected components of the level
lines of F . One can show that there exists unique component, say, γF with the
following property: the area of every connected component of the complement
S2 \ γF is ≤ 1

2 . Then ζ(F ) is simply the value F (γF ). Moreover, if u : R→ R is
any smooth function, ζ(u ◦ F ) = u(ζ(F )).

Example 1.3. Think of the 2-sphere S2 as of the Euclidean unit sphere in
R3(x, y, z) with the center at zero. Let ω be the induced area form on S2 di-
vided by 4π. We claim that Π(x2, y2) = 1 and hence ζ is non-linear. Indeed,
apply the explicit formula for ζ presented in the example above: Note that for
F (x, y, z) = x the component γF is the equator {x = 0}, and so ζ(x2) = 0.
Similarly ζ(y2) = ζ(z2) = 0. On the other hand

ζ(x2 + y2) = ζ(1− z2) ∗= 1− ζ(z2) = 1 ,

where equality (∗) is valid in view of axioms (i),(iii) of a quasi-state. Summing
up,

Π(x2, y2) = |ζ(x2 + y2)− ζ(x2)− ζ(y2)| = 1 ,

which proves the claim.

1.4. A lower bound for the Poisson bracket. Let (M, ω) be a closed sym-
plectic manifold. Assume that the group G admits a stable homogeneous quasi-
morphism with defect C. Let ζ be the corresponding quasi-state and let Π be
the functional defined by (1).

Theorem 1.4.
Π(F, G) ≤

√
2C · ||{F, G}||

for all F, G ∈ C∞(M).

The proof is given in Section 2.1.

Let us describe an application of this result to C0-robust lower bounds on the
Poisson bracket. We start our discussion with the following result from [4]:

(6) Fn
C0−→ F, Gn

C0−→ G, {Fn, Gn} C0−→ 0 ⇒ {F, G} ≡ 0

(all functions are assumed to be smooth). For the sake of completeness, we
present a proof in Section 3 below. In particular, if {F, G} 6≡ 0,

∃ ε0 = ε0(F, G) > 0 : ∀ ε < ε0 ∃ δ = δ(ε, F, G) > 0
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so that for all smooth functions F ′, G′ with

||F − F ′||+ ||G−G′|| ≤ ε

we have ||{F ′, G′}|| ≥ δ.

This gives rise to the following definitions. Given ε > 0 consider an open
C0-neighborhood Uε of (F, G) in C∞(M)× C∞(M) defined as

Uε := { (F ′, G′) ∈ C∞(M)× C∞(M) | ||F ′ − F ||+ ||G′ −G|| < ε }.
Set

ΥF,G(ε) := inf
Uε

‖{F ′, G′}‖
and

Υ(F, G) := lim
ε↘0

ΥF,G(ε) = lim inf
F ′,G′ C0−→F,G

||{F ′, G′}|| .

The largest ε0 as above, denoted by εmax(F, G), can be represented as follows:

εmax(F, G) = sup { ε | ΥF,G(ε) > 0 }.
It reflects the size of the ”maximal” neighborhood Uε of (F, G) which does not
contain a pair of Poisson-commuting functions. Given a positive ε < εmax one
can pick the corresponding δ(ε, F, G) (see above) as ΥF,G(ε).

It is an interesting problem to find explicit (lower) estimates for the numbers
Υ(F, G), εmax(F, G) and the function ΥF,G : (0, ε0) → R (for at least some
ε0 ∈ (0, εmax)) in terms of F and G. As we shall see in Section 3 below, the proof
of (6) leads to such estimates which involve Hofer’s norm of the commutator of
the Hamiltonian diffeomorphisms generated by F and G (see formulae (22), (23)
below). Theorem 1.4 gives us an expression of a different nature, namely in terms
of Π(F, G), provided Π(F, G) 6= 0. As a consequence, in some examples, explicit
estimates on Υ(F, G), εmax(F, G) and ΥF,G(ε) can be easily obtained using the
machinery of symplectic quasi-states.

Corollary 1.5. Let F, G ∈ C∞(M) be two functions with Π(F, G) 6= 0. Then

‖{F ′, G′}‖ ≥ (Π(F, G)− 2‖F − F ′‖ − 2‖G−G′‖)2
2C

for all F ′, G′ ∈ C∞(M) with

||F − F ′||+ ||G−G′|| ≤ Π(F, G)
2

.

In particular, Υ(F, G) ≥ (Π(F, G))2/2C, εmax(F, G) ≥ Π(F, G)/2 and
ΥF,G(ε) ≥ (Π(F, G)− 2ε)2/2C for all ε ∈ (0,Π(F, G)/2).

This is an immediate consequence of Theorem 1.4 and inequality (5).
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The calculation of the defect C is so far an open problem even in the simplest
examples. However, upper bounds C ≤ C0 are available. In view of Corollary
1.5, if Π(F, G) 6= 0 we can pick ε0(F, G) = Π(F, G)/2 and give the following
estimates:

(7) Υ(F, G) ≥ (Π(F, G))2/2C0, ΥF,G(ε) ≥ (Π(F, G)− 2ε)2

2C0
∀ ε ∈ (0, ε0) .

Let us illustrate these inequalities in specific examples. We start with the
functions F = x2 and G = y2 on the two-sphere S2 (see Examples 1.2 and 1.3
above).

Proposition 1.6. The quasi-state ζ given in Example 1.2 is induced by a stable
homogeneous quasi-morphism with defect C ≤ 2.

This is proved in [5] with the exception of the upper bound on the defect. We
derive this bound in Section 4.3 below.

Taking into account that Π(x2, y2) = 1 (see Example 1.3 above) and that
C0 = 2 we get that

(8) εmax(x2, y2) ≥ 1/2 and Υx2,y2(ε) ≥ (1− 2ε)2/4 ∀ε ∈ (0, 1/2) .

We refer to Section 5 for further discussion of inequality (8).

Let us now outline what happens in a higher dimensional example. Consider
the product of two spheres M := S2×S2 equipped with the split symplectic form
ω ⊕ ω. Let µ be the stable homogeneous Calabi quasi-morphism on G defined in
[5] (see Example 1.1 above). The proof of the fact that µ is a quasi-morphism
presented in [5] is constructive, and hence gives rise to an upper bound for the
defect C of µ. In particular, unveiling the argument presented [5, Section 3.3] in
the case of S2 × S2 one gets the upper bound C ≤ 6 (the details are somewhat
technical and will be omitted). Denote by ζ the quasi-state associated to µ
by formula (4). Put F = x2

1 and G = y2
1 where (x1, y1, z1) are the Euclidean

coordinate functions on the first factor of M . It is an immediate consequence of
[3, 6] that Π(F, G) = 1. Thus Corollary 1.5 yields

εmax(x2
1, y

2
1) ≥ 1/2 and Υx2

1,y2
1
(ε) ≥ (1− 2ε)2/12 ∀ε ∈ (0, 1/2) .

1.5. A restriction on partitions of unity.

A subset U ⊂ M is called displaceable if there exists a Hamiltonian diffeomor-
phism ψ of M such that ψ(U) ∩ Closure(U) = ∅.
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In the situation of Example 1.1 the quasi-state ζ has the following additional
vanishing property: ζ(F ) = 0 provided F has a displaceable support3.

In this section we present a simple consequence of Theorem 1.4 which, in
particular, provides a restriction on partitions of unity on M subordinate to
coverings of M by sufficiently small sets.

Theorem 1.7. There exists a constant K > 0, which depends only on the sym-
plectic manifold (M, ω), with the following property: Given any N functions
ρ1, . . . , ρN on M with displaceable supports so that

∑N
i=1 ρi ≥ 1, the following

inequality holds:

(9) max
i,j

||{ρi, ρj}|| ≥ K

N3
.

Proof. Denote by a := maxi,j ||{ρi, ρj}|| the number in the left-hand side of (9).
For an integer k ∈ [1;N ] put rk = ρ1 + . . . + ρk. Note that ζ(ρk) = 0 by the
vanishing property. Thus Theorem 1.4 yields

|ζ(rk)− ζ(rk−1)| ≤
√

2C||{rk−1, ρk}|| ≤
√

2Ca
√

k − 1 .

Sum up these inequalities for k = 2, . . . , N . Note that ζ(rN ) ≥ ζ(1) = 1 in view
of monotonicity axiom (ii) of ζ. Furthermore ζ(r1) = ζ(ρ1) = 0. Hence we get
that

1 ≤
√

2Ca

N∑

k=2

√
k − 1 ≤ const · a 1

2 N
3
2 ,

which yields (9). ¤

A generalization: Interestingly enough, a slightly weaker version of Theorem
1.7 holds true for a much more general class of closed symplectic manifolds (M, ω)
than we considered before. For technical reasons we assume that M is rational,
i.e. the image of π2(M) under the cohomology class of ω is a discrete subgroup
of R. Furthermore, we assume that M is strongly semi-positive, that is

(10) 2− n ≤ c1(A) < 0 =⇒ ω(A) ≤ 0, for any A ∈ π2(M),

where c1 stands for the 1st Chern class of (M, ω). For instance, every symplectic
4-manifold is strongly semi-positive. We believe that eventually these assump-
tions will be omitted.

Fix a displaceable open subset U ⊂ M . A closed subset X ⊂ M is called
dominated by U if there exists a Hamiltonian diffeomorphism ψ of M with ψ(X) ⊂
U .

3In [6], the vanishing property, together with the invariance under Symp0(M, ω), was included
into the definition of a symplectic quasi-state. Today we believe that they should be considered
as additional properties rather than axioms.
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Theorem 1.8. There exists a constant K > 0 which depends only on the sym-
plectic manifold (M, ω) and on the subset U with the following property: Given
any N functions ρ1, . . . , ρN on M whose supports are dominated by U so that∑N

i=1 ρi ≥ 1 , the following inequality holds:

(11) max
i,j

||{ρi, ρj}|| ≥ K

N3
.

The proof repeats the argument above with one modification: a reference to
Theorem 1.4 is replaced by its weaker version, see Section 2.2 for the details.

1.6. Simultaneous measurability in classical mechanics. Symplectic quasi-
states are classical analogues of quasi-states in quantum mechanics. The latter
appeared as an attempt to revise von Neumann’s notion of a quantum mechanical
state as a linear functional on the algebra of observables. A number of physicists
considered the equation ξ(A + B) = ξ(A) + ξ(B), where ξ is a state and A,B
are observables, as lacking physical meaning unless A and B commute: indeed,
non-commuting observables are not simultaneously measurable and hence the
expression ξ(A + B) is not well defined. This gave rise to the notion of quasi-
state, a non-linear functional which is linear on any subspace generated by a pair
of commuting observables (compare with axiom (iii) of a symplectic quasi-state).
We refer to [6] for a detailed historical account.

In view of this discussion, the existence of non-linear symplectic quasi-states
on classical observables (that is on functions on symplectic manifolds) naturally
leads us to the problem of simultaneous measurability in classical mechanics. This
problem appears in physics literature (see e.g. books by Peres [16, Chapter 12-2]
and Holland [9]) as a toy example motivating the theory of quantum measure-
ments. Below we analyze simultaneous measurability in classical mechanics in the
framework of a measurement procedure, called the pointer model. We shall show
that Π(F1, F2) gives a lower bound for the error of simultaneous measurement of
observables F1 and F2.

Consider two observables F1, F2 ∈ C∞(M). Let M̂ = M × R4(p, q), p =
(p1, p2), q = (q1, q2), be the extended phase space equipped with the symplectic
form ω̂ = ω+dp∧dq. The R4 factor corresponds to the measuring apparatus (the
pointer), whereas q is the quantity read from it. The coupling of the apparatus
to the system is carried out with the aid of the Hamiltonian function p1F1(x) +
p2F2(x). The Hamiltonian equations of motion with the initial conditions q(0) =
0, p1(0) = p2(0) = ε and x(0) = y are as follows:

q̇i = Fi, i = 1, 2
ṗ = 0

ẋ = ε sgrad(F1 + F2) .
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Denote by gt the Hamiltonian flow on M generated by the function G = F1 +F2.
Then x(t) = gεty. Let T > 0 be the duration of the measurement. By definition,
the output of the measurement procedure is a pair of functions F ′

i , i = 1, 2, on
M defined by the average displacement of the qi-coordinate of the pointer:

F ′
i (y) =

1
T

(qi(T )− qi(0)) =
1
T

∫ T

0
Fi(x(t))dt =

1
T

∫ T

0
Fi(gεty)dt .

Note that for ε = 0 we have F ′
i = Fi. This justifies the above procedure as a

measurement of Fi and allows us to interpret the number ε as an imprecision of
the pointer.

Define the error of the measurement as

∆(T, ε, F1, F2) =
∥∥F ′

i − Fi

∥∥ .

Note that in our setting this quantity does not depend on i ∈ {1; 2} since the
sum F1 + F2 is constant along the trajectories of gt.

Theorem 1.9. For all T, ε > 0 and F1, F2 ∈ C∞(M)

∆(T, ε, F1, F2) ≥ 1
2
Π(F1, F2)−

√
C

Tε
·
√

min( ‖F1 − 〈F1〉‖, ‖F2 − 〈F2〉‖ ) .

In particular, if Π(F1, F2) 6= 0 and the pointer is not ideal, that is ε > 0, the
error of the measurement is bounded from below by Π(F1, F2)/2 when T → +∞
uniformly in ε. Theorem 1.9 is proved in Section 2.3.

ORGANIZATION OF THE PAPER: Section 2 contains proofs of Theorems
1.4, 1.8 and 1.9. Section 3 is a mock version of Section 1.4 where we revise
lower bounds for the Poisson bracket in terms of Hofer’s geometry. Section 4
contains proofs of auxiliary facts on quasi-morphisms and quasi-states used in
the introduction. Finally, in Section 5 we discuss some open problems.

2. Proofs

2.1. Proof of Theorem 1.4: It suffices to prove the theorem for functions F
and G with zero mean. Let ft and gt be the flows generated by F and G. Put
H = F + G and Kt = F + G ◦ f−1

t . Then Kt is a normalized Hamiltonian
generating the flow ftgt and so φK = φF φG. Observe that

‖H −Kt‖ = ‖G−G ◦ f−1
t ‖ = ‖G ◦ ft −G‖ .

Taking into account that

G(ftx)−G(x) =
∫ t

0

d

ds
G(fsx)ds = −

∫ t

0
{F, G}(fsx)ds ,
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we get that

(12) ‖H −Kt‖ = ‖G ◦ ft −G‖ ≤ t‖{F, G}‖ .

From the stability property of µ (see (3)) and inequality (12), we get that

(13) |µ(φH)− µ(φK)| ≤
∫ 1

0
||H −Kt|| dt ≤ ‖{F, G}‖ ·

∫ 1

0
tdt =

‖{F, G}‖
2

.

Combining this inequality with the fact that C is the defect of the quasi-morphism
µ we obtain that

Π(F, G) = |µ(φF+G)− µ(φF )− µ(φG)| ≤
≤ |µ(φH)− µ(φF φG)|+ |µ(φF ) + µ(φG)− µ(φF φG)| ≤

≤ |µ(φH)− µ(φK)|+ C ≤ ‖{F, G}‖
2

+ C.

Finally, let us balance this inequality. Let E > 0 be any number. Then

Π(EF, EG) ≤ E2 ‖{F, G}‖
2

+ C .

Since Π is homogeneous, after dividing both sides by E we obtain

Π(F, G) ≤ E
‖{F, G}‖

2
+

C

E
.

Choosing the optimal value E =
√

2C/||{F, G}||, we get that

Π(F, G) ≤
√

2C‖{F, G}‖
as required. ¤

2.2. Proof of Theorem 1.8: Let µ and ζ be the functionals introduced in [6,
Section 7]. These functionals satisfy a number of properties which are weaker
than the ones of a quasi-morphism and of a quasi-state, but still these properties
suffice to our purposes. Put Π(F, G) = |ζ(F + G)− ζ(F )− ζ(G)|. We claim that
there exists a constant K1 > 0 so that

(14) Π(F, G) ≤ K1

√
||{F, G}||

for all F, G ∈ C∞(M) so that the support of G is dominated by U . The proof
repeats verbatim the proof of Theorem 1.4 above. Now we repeat the proof of
Theorem 1.7 given in Section 1.5 with one modification: we replace the reference
to Theorem 1.4 by the reference to (14). This yields the desired result. ¤
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2.3. Proof of Theorem 1.9: It suffices to prove the theorem assuming that the
functions F1 and F2 have zero mean. The proof is divided into several steps.

Step 1: One readily checks the following scaling properties of the functional
∆(T, ε, F1, F2):

(15) ∆(T, ε, F1, F2) = ∆(εT, 1, F1, F2)

and

(16) ∆(T, ε, EF1, EF2) = E∆(ET, ε, F1, F2) ∀E > 0 .

The proofs are straightforward and we omit them.

Step 2: Put

F ′ =
1
T

∫ T

0
F1 ◦ gt dt .

For s ∈ [0, 1]
∥∥F ′ ◦ gs − F ′∥∥ =

1
T

∥∥∥∥
∫ T

0
F1 ◦ gt+s dt−

∫ T

0
F1 ◦ gt dt

∥∥∥∥

=
1
T

∥∥∥∥
∫ T+s

s
F1 ◦ gt dt−

∫ T

0
F1 ◦ gt dt

∥∥∥∥

=
1
T

∥∥∥∥
∫ T+s

T
F1 ◦ gt dt−

∫ s

0
F1 ◦ gt dt

∥∥∥∥

≤ 2‖F1‖s
T

.

Let fs be the flow generated by F ′. Recall that G = F1 + F2 generates the
flow gs. Therefore −G + F ′ ◦ gs generates the flow g−1

s fs whose time-one map
equals φ−1

G φF ′ . Put K = F ′ −G. Since µ is stable (see formula (3)) and all our
Hamiltonians are normalized we obtain

|µ(φ−1
G φF ′)− µ(φK)| ≤

∫ 1

0
‖ −G + F ′ ◦ gs − (F ′ −G)‖ds

=
∫ 1

0
‖F ′ ◦ gs − F ′‖ds ≤

∫ 1

0

2‖F1‖s
T

ds ≤ ‖F1‖
T

.

Since µ is a homogeneous quasi-morphism with defect C, we get

Π(F1 + F2,−F ′) =
∣∣µ(φF ′)− µ(φG)− µ(φK)

∣∣

≤
∣∣µ(φ−1

G φF ′)− µ(φK)
∣∣ + C ≤ ‖F1‖

T
+ C.

Since Π is Lipschitz in both variables with respect to the uniform norm (see
formula (5)),

|Π(F1 + F2,−F1)−Π(F1 + F2,−F ′)| ≤ 2||F1 − F ′|| = 2∆(T, 1, F1, F2) .
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Observe that Π(F1 + F2,−F1) = Π(F1, F2). Combining this with the previous
inequality we get

(17) ∆(T, 1, F1, F2) ≥ 1
2
Π(F1, F2)− ‖F1‖

2T
− C

2
.

Step 3: Using (15) and (17) we get that

∆(T, ε, F1, F2) ≥ 1
2
Π(F1, F2)− ||F1||

2Tε
− C

2
.

We shall now balance this inequality. Let E > 0 and τ = TE. We have that

∆(T, ε, EF1, EF2) ≥ 1
2
Π(EF1, EF2)− E||F1||

2Tε
− C

2
.

Recall that Π(EF1, EF2) = EΠ(F1, F2) and, in view of (16),

∆(T, ε, EF1, EF2) = E∆(ET, ε, F1, F2) .

Substituting this into the previous inequality, dividing by E and using τ = TE
we obtain that

∆(τ, ε, F1, F2) ≥ 1
2
Π(F1, F2)− E||F1||

2τε
− C

2E
.

This inequality is true for every τ > 0 and E > 0. Choosing the scaling factor E
in the optimal way as E =

√
Cτε/||F1|| we get that

∆(τ, ε, F1, F2) ≥ 1
2
Π(F1, F2)−

√
||F1||C

τε
.

Since ∆(T, ε, F1, F2) = ‖F ′
1 − F1‖ = ‖F ′

2 − F2‖ and Π(F1, F2) are symmetric with
respect to F1, F2, switching F1 and F2 in the proof above shows that

∆(τ, ε, F1, F2) ≥ 1
2
Π(F1, F2)−

√
||F2||C

τε
.

The last two inequalities immediately yield the needed result. ¤

3. Hofer’s metric and the Poisson bracket

In this section we revise the C0-robustness of the Poisson bracket (compare
with Section 1.4 and [4]) from the viewpoint of Hofer’s geometry on Ham (M, ω)
(see e.g. [17] for an introduction). We work on an arbitrary closed symplectic
manifold (M, ω). Denote oscF = maxM F − minM F . For a Hamiltonian F on
M × [0; 1] define ψF ∈ Ham (M, ω) as the time one map of the Hamiltonian flow
generated by F . The group Ham (M, ω) carries a bi-invariant metric ρ called the
Hofer metric which is defined as follows:

ρ(ψF , ψG) := inf
∫ 1

0
osc Ht dt,
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where Ht is a time-dependent Hamiltonian generating ψ−1
F ψG and the infimum

is taken over all such Ht. One can easily see that

(18) ρ(ψF , ψG) ≤
∫ 1

0
osc (Ft −Gt) dt

for all Hamiltonians F and G. For a, b ∈ Ham (M, ω) write [a, b] for the commu-
tator aba−1b−1. Denote by 1l the unit element of Ham (M, ω).

Take any F, G ∈ C∞(M). Using inequality (18) and arguing as in Section 2.1
(compare with formula (13)) we get that

ρ(ψF ψG, ψF+G) ≤ osc{F, G}
2

.

Switching F and G and using the bi-invariance of ρ, we conclude that

(19) ρ(1l, [ψF , ψG]) ≤ osc{F, G} .

Further,

[a, b][α, β]−1 = (aα−1) · α
(
(bβ−1) · β

(
(a−1α) · α−1(b−1β)α

)
β−1

)
α−1 .

Together with the bi-invariance of Hofer’s metric and the triangle inequality this
yields

(20) ρ([a, b], [α, β]) ≤ 2ρ(a, α) + 2ρ(b, β) .

Take any F ′, G′ ∈ C∞(M). It follows from (20) and (18) that

ρ([ψF , ψG], [ψF ′ , ψG′ ]) ≤ 2osc (F − F ′) + 2osc (G−G′).

Applying inequality (19) to the pair of functions F ′, G′ and using the bi-invariance
of ρ we get

(21) ρ(1l, [ψF , ψG]) ≤ osc{F ′, G′}+ 2osc (F − F ′) + 2osc (G−G′).

Taking into account that oscH ≤ 2||H|| we conclude that

(22) ‖{F ′, G′}‖ ≥ 1
2
ρ(1l, [ψF , ψG])− 2‖F − F ′‖ − 2‖G−G′‖.

Recalling the notations of Section 1.4 we see that

εmax(F, G) ≥ 1
4
ρ(1l, [ψF , ψG]), Υ(F, G) ≥ 1

2
ρ(1l, [ψF , ψG])

and moreover

(23) ΥF,G(ε) ≥ 1
2
ρ(1l, [ψF , ψG])− 2ε ∀ε ∈ (0,

1
4
ρ(1l, [ψF , ψG])).

Finally, assume that Fm → F, Gm → G and {Fm, Gm} → 0 in the uniform
norm. It follows from (22) that ψF and ψG commute. The same holds true for
ψtF and ψsG with any s, t ∈ R and hence {F, G} ≡ 0. This proves implication
(6) which appears in [4].
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We refer to [12, 14, 18] for other recent results related to C0-behavior of Hamil-
tonians.

4. Auxiliary results on quasi-morphisms and quasi-states

4.1. Proof of monotonicity axiom (ii) of ζ: Given a stable homogeneous
quasi-morphism µ on G, let ζ be the functional defined by (4). We have to check
that ζ(F ) ≤ ζ(G) for F ≤ G. This follows immediately from the inequality

(24) ζ(F )− ζ(G) ≤ max(F −G)

for all F, G ∈ C∞(M). Indeed, put F0 = F −〈F 〉 and G0 = G−〈G〉 and observe
that ζ(F ) = ζ(F0)+〈F 〉 and ζ(G) = ζ(G0)+〈G〉. Since F0 and G0 are normalized
we can apply (3) and get that

ζ(F0)− ζ(G0) ≤ max(F0 −G0) .

Taking into account that

max(F0 −G0) = max(F −G)− 〈F −G〉 ,

we get (24). ¤

4.2. On the stability property (3). Here we show that the homogeneous quasi-
morphism µ constructed in [5] is stable. First of all let us briefly recall the
construction of µ. Let QH be the even quantum homology algebra of M . Recall
that G denotes the universal cover of the group Ham (M, ω).

Let
c : QH × G → R

be the spectral invariant introduced by Y.-G. Oh [13, 11]. Then

(25) µ(f) = − lim
m→∞

c(e, fm)
m

for certain element e ∈ QH. (Recall that we normalize the symplectic form so
that the symplectic volume of M is 1 and therefore µ is defined precisely as in
[5]).

It is known that

(26)
∫ 1

0
min
M

(Ft −Gt) dt ≤ c(e, φF )− c(e, φG) ≤
∫ 1

0
max

M
(Ft −Gt) dt

for all normalized Hamiltonians F, G ∈ C∞(M × S1), see [5, formula (2.30)].

Let F, G be two normalized Hamiltonians on M × [0; 1]. Without loss of gener-
ality assume that they are defined on M ×S1. This can be achieved by a suitable
change of time in the flows generated by F and G which alters the values of the
integrals in inequality (26) in an arbitrarily small way.
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Put Fm(x, t) = mF (x,mt) and Gm(x, t) = mG(x,mt) and note that φm
F = φFm

and φm
G = φGm for all m ∈ N. Applying (26) to Fm and Gm and introducing the

time variable τ = mt we get that

m ·
∫ 1

0
min
M

(Fτ −Gτ ) dτ ≤ c(e, φm
F )− c(e, φm

G ) ≤ m ·
∫ 1

0
max

M
(Fτ −Gτ ) dτ .

Dividing by m and passing to the limit as m →∞ we conclude with the help of
(25) that

∫ 1

0
min
M

(Fτ −Gτ ) dτ ≤ µ(φG)− µ(φF ) ≤
∫ 1

0
max

M
(Fτ −Gτ ) dτ .

¤

4.3. Estimating the defect for the 2-sphere. Here we prove Proposition 1.6.
We start with some preliminaries from [5]: Consider the field k = C[[s] of Laurent
series in one variable (the series are possibly infinite in the negative direction but
finite in the positive one). The quantum homology algebra QH of S2 is the
algebra of polynomials with coefficients in k in the variable p modulo the ideal
generated by p2 − s−1:

QH = k[p]/{p2 = s−1} .

The quasi-morphism µ is defined by formula (25) above, where e = 1 ∈ QH.
Denote by 1l the unit element of G. We shall need the following properties of the
spectral invariant c : QH × G → R which can be readily extracted from [5]:

(i) c(ps, 1l) = 1;
(ii) c(ab, fg) ≤ c(a, f) + c(b, g);
(iii) c(1, g) = −c(p, g−1)

for all a, b ∈ QH and f, g ∈ G.

Proof of Proposition 1.6: We have to show that the defect C of µ satisfies
C ≤ 2. We claim that

(27) c(1, f) + c(1, g)− 1 ≤ c(1, fg) ≤ c(1, f) + c(1, g)

for all f, g ∈ G. Indeed, the inequality on the right is an immediate consequence
of property (ii) above. To get the inequality on the left we use (i), (ii) and (iii)
and observe that

c(1, f) = c(1 · p · ps, fg ◦ g−1 ◦ 1l) ≤ c(1, fg) + c(p, g−1) + c(ps, 1l)

= c(1, fg)− c(1, g) + 1 .

This proves (27).

It follows from inequality (27) that

mc(1, h)− (m− 1) ≤ c(1, hm) ≤ mc(1, h)
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and hence formula (25) yields

(28) c(1, h)− 1 ≤ −µ(h) ≤ c(1, h)

for all h ∈ G.

Take any f, g ∈ G. Substituting consecutively h = f , h = g and h = fg into
inequality (28) and using (27) we readily get that

−2 ≤ µ(fg)− µ(f)− µ(g) ≤ 2 ,

which completes the proof. ¤

5. Discussion and open problems

In Section 1.4 we have defined the functional

Υ(F, G) = lim inf
F ′,G′ C0−→F,G

||{F ′, G′}|| .

The main open problem concerning this functional is as follows:

Question 5.1. Is it true that we always have Υ(F, G) = ‖{F, G}‖?

In a recent work by one of the authors [19] this question is answered in the
positive for two-dimensional symplectic manifolds using methods of the topology
of surfaces.

In the case when M is the sphere S2, the symplectic quasi-state ζ, and hence
the functional Π, are defined in elementary terms (see Example 1.2 above). Thus
the formulations of Theorems 1.4 and 1.9 are “soft”. However our proofs of these
theorems are “hard”4: they use in a crucial way the fact that ζ is induced by
a stable homogeneous quasi-morphism on G which is defined by means of Floer
homology. This somewhat paradoxical situation was partially resolved in [19]:
For the sphere, Theorem 1.4 is proved in [19] by “soft” methods. Moreover,
an analogous theorem is proved with the sphere replaced by an arbitrary closed
symplectic surface Σ, and with the quasi-state of Theorem 1.4 replaced by an
arbitrary simple quasi-state (that is a quasi-state which is multiplicative on each
singly generated closed subalgebra of C(Σ)). It is still unclear to us whether
Theorem 1.9 on the error of a simultaneous measurement of non-commuting ob-
servables admits a “soft” proof in the case of S2.

At the moment the authors believe that in higher dimensions, the C0-robustness
of the Poisson bracket is a “hard” phenomenon and thus the Floer-theoretical
methods used above are adequate in this context.

4The terms “soft” and “hard” are understood here in the sense of Gromov [8].
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Another interesting circle of problems is related to the sharpness of various
estimates obtained in the present work. For instance, Zapolsky’s result mentioned
in the beginning of this section shows that inequality (8) stating that Υx2,y2(ε) ≥
(1− 2ε)2/4 is not asymptotically (as ε → 0) sharp: indeed one readily computes
that ||{x2, y2}|| ≈ 9.7 > 0.25. It would be interesting to understand whether the
approach of [19] gives rise to sharp lower bounds for Υx2,y2(ε) on surfaces.

Question 5.2. What is the sharp value of the constant C in Theorem 1.4 stating
that Π(F, G) ≤

√
2C · ||{F, G}||?

The answer is so far unknown even for the case of the quasi-state ζ from Example
1.2 on the 2-sphere. In this case Floer-theoretical Proposition 1.6 above yields
C ≤ 2, while the topological argument from [19] improves this to C ≤ 1/2.

Question 5.3. Can one improve (asymptotically in N as N →∞) the bound

max
i,j

||{ρi, ρj}|| ≥ const/N3

for the partitions of unity given by Theorem 1.7?

We claim that the asymptotic behavior of the right hand side cannot be made
better than ∼ N−2. Indeed, fix any partition of unity ρ′1, ..., ρ

′
d subordinate to a

covering by displaceable subsets. For any m ∈ N consider N = md functions ρi

where ρi = m−1 ·ρ′j for i = j (mod d). In other words, we take each function ρ′j/m
with multiplicity m. Of course, we again get a partition of unity subordinate to
the covering by displaceable subsets. When m → ∞, the left hand side of the
inequality above is of the order ∼ m−2 = d2N−2, and the claim follows. At the
moment, we do not know an answer to Question 5.3 even in dimension two.
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