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Induced Representations of the Infinite Symmetric
Group

N. V. Tsilevich∗ and A. M. Vershik∗

Abstract: We study the representations of the infinite symmetric group
induced from the identity representations of Young subgroups. It turns out
that such induced representations can be either of type I or of type II. Each
Young subgroup corresponds to a partition of the set of positive integers; de-
pending on the sizes of blocks of this partition, we divide Young subgroups
into two classes: large and small subgroups. The first class gives representa-
tions of type I, in particular, irreducible representations. The most part of
Young subgroups of the second class give representations of type II and, in
particular, von Neumann factors of type II. We present a number of various
examples. The main problem is to find the so-called spectral measure of the
induced representation. The complete solution of this problem is given for
two-block Young subgroups and subgroups with infinitely many singletons
and finitely many finite blocks of length greater than one.
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1. Introduction

In the classical representation theory of the symmetric groups, representations
induced from Young subgroups (i.e., subgroups that leave some partition fixed)
play a very prominent role (see, e.g., [4]). The irreducible components of such
representations contain all irreducible representations, and in the classical ap-
proach, this allows one to establish a connection between Young diagrams and
irreducible representations. Though at present there is an alternative approach
to establishing this correspondence (avoiding induction from Young subgroups),
nevertheless, the traditional problems concerning induction for representations of
the infinite symmetric group are of independent importance. In this paper, we
start the systematic study of representations of the infinite symmetric group SN
induced from infinite Young subgroups. Let us briefly present the main results.

One can roughly divide partitions and the corresponding Young subgroups
into two classes: large partitions, which have finitely many finite blocks and an
arbitrary number of infinite blocks (in this case, there is at least one infinite
block), and small partitions, which have infinitely many finite blocks (without
any assumption on the number of infinite blocks). In contrast to the case of
finite symmetric groups, induction from the identity representations of a Young
subgroup to SN often gives an irreducible representation — this is the case for
large Young subgroups corresponding to partitions with at most one finite block.
This can be proved using the well-known Mackey criterion of irreducibility, or by
direct arguments. Induction from an arbitrary large subgroup gives a type I rep-
resentation, which, as is well known, has a unique decomposition into irreducible
ones, and we describe this decomposition explicitly. It turns out to be finite, and,
in general, its irreducible components are not induced representations.

In contrast to this case, induction from small Young subgroups gives type II
representations. There is a well-developed theory of representations of SN of type
II1 with finite trace, but here we have another situation, which was not paid much
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attention to. Namely, the factor generated by the representation operators is of
type II∞, so that it has no finite trace, but its commutant is of type II1. Note that
even in the case where the factor generated by the representation operators is of
type II1, it may happen that it has no finite trace, because the cyclic vector of the
representation is not cyclic for the commutant. In [15], such representations were
called strange. The additional invariant of such representations is the so-called
coupling constant.

It seems that the classification of such representations (up to equivalence) was
not considered; it is not even known whether it is simpler than the classification of
irreducible representations, which, as is well known, is a wild problem for groups
that are not virtually commutative, such as SN. A very interesting problem is
whether each irreducible representation of SN appears in the decompositions of
induced representations (more exactly, is weakly contained in induced represen-
tations), as is the case for the finite symmetric groups. It should be noted that
there are few papers devoted to induced representations of the infinite symmet-
ric group (see, e.g., papers by Binder [1, 2, 3], Obata [11, 12], and Hirai [6, 7]).
In particular, [1] contains the irreducibility criterion for induction from Young
subgroups (our Theorem 1(b)).

Models of representations of the infinite symmetric group SN can be roughly
divided into two classes (see [14]): substitutional models and spectral models.
The first class contains models in which a group G (not necessarily SN) acts by
substitutions on some G-space. Induced (quasi-regular) representations belong
to this type. The notion of a spectral model uses specific properties of the infinite
symmetric group. The spectral analysis of a representation of a finite symmetric
group means its decomposition into irreducible components indexed by Young
diagrams (with some multiplicities). In a more rigorous style, this means that we
diagonalize the image of the group algebra in the representation with respect to
the so-called commutative Gelfand–Tsetlin algebra (see [20]). The group algebra
of SN also has a a distinguished maximal commutative subalgebra, the so-called
Gelfand–Tsetlin algebra, whose spectrum is the space of infinite Young tableaux.
The space of every cyclic unitary representation of SN can be diagonalized with
respect to this algebra. This gives a spectral model of this representation, which
is realized in the Hilbert space L2

µ(T, H), where T is the space of infinite Young
tableaux, µ is a measure on T (the spectral measure of a cyclic vector), and
H is an auxiliary Hilbert space. Thus two problems arise, which are similar to
problems of Fourier theory:

1) (Direct problem). To find a spectral model of a representation given in a
substitutional realization.

2) (Inverse problem). To find a substitutional realization of a representation
given in a spectral form.
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We consider these two problems as the main problems of this theory, and its
main analytic and probabilistic component is the analysis of spectral measures;
see, e.g., the authors’ papers [14, 22, 21]. In this paper, we consider the first prob-
lem for some classes of induced representations. The first result in this direction,
obtained in [22] and specified below, is that the representations induced from
Young subgroups corresponding to partitions into two infinite blocks are simple
and irreducible, and their spectral measures are Markov measures. Another non-
trivial example considered in this paper is the class of induced representations
corresponding to partitions with infinitely many singletons and finitely many fi-
nite blocks of length greater than one. In this case, the spectral measure is a
convex combination of conditional Plancherel measures. A more precise spectral
analysis of induced representations of SN will be presented elsewhere.

The paper is organized as follows. In Sec. 2, we introduce necessary defi-
nitions and notation related to induced representations of SN we are going to
consider. Section 3 is devoted to induced representations of type I; namely, we
give a condition under which the induced representation is of type I, describe
the decomposition of such a representation into irreducible components, give an
irreducibility criterion, and consider several classes of examples. In Sec. 4, in a
similar way we deal with induced representations of type II: we give a condition
under which the induced representation is of type II, describe the central decom-
position of such a representation into factors, give a criterion of its being a factor,
and consider several examples. Finally, in Sec. 5, we present two examples of the
spectral analysis of the induced representations corresponding to partitions with
two infinite blocks and to partitions with infinitely many singletons and finitely
many finite blocks of length greater than one.

2. Young subgroups and induced representations

We denote by Sn the symmetric group of degree n.

The irreducible representations of the symmetric group Sn are indexed by
the set Yn of Young diagrams with n cells. Let πλ be the irreducible unitary
representation of Sn corresponding to a diagram λ ∈ Yn, and let dimλ be the
dimension of πλ. The branching of irreducible representations of the symmetric
groups is described by the Young graph Y. The set of vertices of the Z+-graded
graph Y is ∪nYn, and two vertices µ ∈ Yn−1 and λ ∈ Yn are joined by an edge if
and only if µ ⊂ λ. By definition, the zero level Y0 consists of the empty diagram
∅.

Now let SN = ∪∞n=1Sn = lim−→Sn be the infinite symmetric group with the
fixed structure of an inductive limit of finite groups.

Consider an arbitrary partition Π = (A1, A2, . . .) of the set of positive integers
N into disjoint subsets A1, A2, . . .. The corresponding Young subgroup of the
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infinite symmetric group SN is SΠ = SA1 ×SA2 × . . ., where SA is the group of
all finite permutations of the elements of a set A.

Definition 1. Let Π = (A1, A2, . . .) be a partition of N. For i = 1, 2, . . .,∞, de-
note by ki ∈ N∪{∞} the number of j such that |Aj | = i. We say that the partition
Π and the corresponding Young subgroup SΠ are of type k = (∞k∞ , 1k1 , 2k2 , . . .).

It turns out that it is natural to divide partitions and the corresponding Young
subgroups into two classes. Namely, we introduce the following definition.

Definition 2. A partition Π of N and the corresponding Young subgroup SΠ

is called large if it has finitely many finite blocks (and, necessarily, at least one
infinite block). Otherwise, i.e., if Π has infinitely many finite blocks, it is called
small.

Our purpose is to investigate the representations IΠ = IndSN
SΠ

1SΠ
of the in-

finite symmetric group SN induced from the identity representations of Young
subgroups.

Note that two Young subgroups SΠ1 and SΠ2 of the same type can be sent
to each other by an automorphism of SN. If the partitions Π1 and Π2 are “tail-
equivalent” (i.e., can be obtained from each other by a finite permutation of N)
then this automorphism is an inner automorphism of SN, so that the subgroups
SΠ1 and SΠ2 are conjugate in SN, and the representations IΠ1 and IΠ2 are
obviously equivalent. In fact, the following lemma holds.

Lemma 1. The representations IΠ1 and IΠ2 are equivalent if and only if the
Young subgroups SΠ1 and SΠ2 are conjugate in SN (that is, the partitions Π1

and Π2 are tail-equivalent).

Proof. The “if” part is obvious. Let us prove the “only if” part. Assume that
IΠ1 and IΠ2 are equivalent, and let A be the corresponding intertwining operator.
As in the proof of Theorem 1, one can show that this operator is determined by a
function α defined on the left cosets SN/SΠ2 and constant on the orbit of the left
action of SΠ1 , that is, on left cosets lying in the same double coset SΠ1\SN/SΠ2 ,
so that α is concentrated on finite orbits, i.e., on double cosets that decompose
into the union of finitely many left cosets. Then it is not difficult to show that
there are no such finite orbits unless the partitions Π1 and Π2 differ by at most
finitely many blocks, so that the lemma follows from the fact that for a finite
symmetric group, the representations induced from the identity representations of
two Young subgroups are equivalent if and only if these subgroups are conjugate.

¤

Note that for irreducible induced representations, this assertion follows from a
result of Mackey (see, e.g., [9, Corollary 3, p. 158]).



1010 N. V. Tsilevich and A. M. Vershik

We see that partitions of the same type k can lead to a continuum of nonequiva-
lent induced representations. However, as we will see below, the rough properties
of these representations (such as being irreducible or being a factor) depend only
on the type k.

Note that, in general, the properties of induced representations IndG
H 1H are

not continuous with respect to H. For example, consider the simplest case —
an increasing sequence of partitions of type (∞, n) (one infinite block and one
finite block of size n). For a given n, all such Young subgroups are conjugate, so
that the corresponding induced representations are equivalent. Hence the limits
of sequences of invariants of induced representations also coincide. But such a
sequence of partitions can converge to different types of partitions: in the limit,
we have either the trivial partition into one block and hence the identity repre-
sentation, or a partition with two infinite blocks, in which case the possible limits
are a series of two-block representations, including a continuum of nonequiva-
lent ones. At the same time, if we consider an increasing sequence of partitions
with fixed cyclic vectors and embed them into one another preserving the cyclic
vectors, then the matrix elements will be obviously continuous.

Thus, in what follows, we denote by ξ the (normalized) distinguished cyclic
vector of the representation IΠ. If we consider the realization of IΠ in the l2

space over the homogeneous space SN/SΠ, then ξ is the delta function at the
coset SΠ ∈ SN/SΠ. Let Πn = Π ∩ {1, . . ., n}, denote by IΠn the representation
of the finite symmetric group Sn induced from the identity representation of the
Young subgroup SΠn ⊂ Sn, and let ξn be the distinguished cyclic vector in IΠn .
Then IΠ is the inductive limit of IΠn, and the corresponding embeddings preserve
the distinguished cyclic vectors. Note also that IΠn can be identified with the
restriction of IΠ to Sn in the cyclic hull Snξ of ξ; then ξn is identified with ξ.

3. Induced representations of type I

3.1. Large Young subgroups lead to type I representations.

Theorem 1. (a) The representation of the infinite symmetric group SN in-
duced from the identity representation of a large Young subgroup of type k =
(∞k∞ , 1k1 , 2k2 , . . .) with finitely many finite blocks (that is, with k1+k2+. . . < ∞)
is of type I and decomposes into a finite sum of irreducible representations.

(b) The induced representation IΠ of type (∞k∞ , 1k1 , 2k2 , . . .) is irreducible if
and only if the partition Π contains at most one finite element, that is, k1 + k2 +
. . . ≤ 1.

Proof. (a) Let Π = (A1, A2, . . .) be a partition of type k with finitely many finite
blocks. For convenience, assume that the blocks A1, . . ., An of Π are finite and the
remaining blocks are infinite. For brevity, denote by H = SΠ the corresponding
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Young subgroup, and let Sfin = Sfin(Π) = SA1 × . . .×SAn be the finite Young
subgroup corresponding to the finite blocks of Π.

By definition, the induced representation IΠ acts in the space l2(X) of square-
summable functions on the (countable) homogeneous space X = SN/H. Denote
by R(IΠ) the space of intertwining operators for the representation IΠ, and let
A ∈ R(IΠ). The basis of l2(X) consists of the delta functions at the left cosets
sH ∈ X of H in SN; by abuse of notation, we will denote a basis element by the
same symbol as the corresponding coset. Then the operator A is determined by
a matrix (asH,tH)sH,tH∈X in this basis. Let F ⊂ H\G/H be the set consisting of
those double cosets HgH that are unions of finitely many left cosets of H; and
let CommSN(H) be the group, called the commensurator of H in SN, consisting
of g ∈ SN such that HgH ∈ F . Denote by 1x the characteristic function of a
double coset x ∈ F . Using the standard arguments, which go back to Mackey
and his successors, one can show that the set of intertwining operators R(IΠ) is
generated by the operators Ax, x ∈ F , with matrix elements asH,tH = 1x(s−1tH).

In our case, it is easy to see that g ∈ CommSN
H if and only if g leaves invariant

all infinite blocks of the partition Π, i.e., g ∈ Sfin. It follows that R(IΠ) is
isomorphic to the space R(Ifin) of intertwining operators for the representation
Ifin of the finite symmetric group SN , where N = k1 + k2 + . . ., induced from
the identity representation of the Young subgroup Sfin. Denote by Pi ∈ R(Ifin)
the projections to the irreducible components of Ifin. Then their images P̃i in
R(IΠ) determine the finite decomposition of IΠ into irreducible components, and
assertion (a) follows.

(b) It is easy to see that the condition k1 + k2 + . . . ≤ 1 is equivalent to
CommSN(H) = H, and the latter condition means that there are no nonscalar
intertwining operators. ¤

Remark. The claim (b) of this theorem was proved in [1]. It also easily follows
from the irreducibility criterion for induced representations of discrete groups due
to Mackey (see, e.g., [9, Corollary 2, p. 158]).

3.2. Decomposition of type I representations into irreducible compo-
nents. Let Sλ = SA1 × . . . ×SAm be a Young subgroup of a finite symmetric
group SN associated with a Young diagram λ (which means that the lengths |Ak|
of blocks form the diagram λ). Then the decomposition of the representation of
SN induced from the Young subgroup Sλ into irreducible components is given
by the following formula (see [4] and also [16]):

(1) IndSN
Sλ

1Sλ
=

∑

µDλ

Kµ,λπµ,
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where D is the dominance ordering on partitions (see [8, Sec. I.1]) and Kµ,λ

are the Kostka numbers (see [8, Sec. I.6]). (Recall that µ D λ if and only if
µ1 + µ2 + . . . + µi ≥ λ1 + λ2 + . . . + λi for all i ≥ 1, and Kµ,λ is the number of
semistandard Young tableaux of shape µ and weight λ.)

Combining these observations with the proof of Theorem 1, we obtain the
following theorem.

Theorem 2. Let Π be a partition of N with finitely many finite blocks. Denote
by λ = λ(Π) = 1k12k2 . . . the Young diagram of size N = k1 + k2 + . . . formed by
the lengths of the finite blocks of Π. Then

(2) IΠ =
∑

|µ|=N, µDλ

Kµ,λπk∞
µ ,

where πk∞
µ is the irreducible representation of SN corresponding to the irreducible

component πµ of Ifin as described in the last paragraph of the proof of Theo-
rem 1(a).

The representation πk∞
µ can be explicitly described as follows. Let mi = |Ai|.

It is not difficult to see that the homogeneous space XΠ = SN/SΠ can be realized
as the space of ordered partitions of N into disjoint sets of given cardinalities

(3) r = (R1, R2, . . .), |Ri| = mi,

tail-equivalent to the original partition Π with the natural action of SN by per-
mutations. Moreover, the subset of all such partitions with fixed infinite blocks
Rn+1, Rn+2, . . . can be identified with the homogeneous space SN/Sfin, and the
corresponding set of functions can be identified with the space of the represen-
tation Ifin = IndSN

Sfin
1. Let Pµ be the projection to an irreducible component πµ

of Ifin. Then the representation πk∞
µ acts in the subspace obtained by applying

the projection Pµ to the first “coordinates” (R1, . . ., Rn) and leaving the other
coordinates unchanged:

(P̃µf)(R1, R2, . . .) = f(Pµ(R1, . . ., Rn), Rn+1, . . .).

3.3. Examples of type I induced representations.

3.3.1. Elementary representations. Let us consider induced representations of
type k = (∞, k) induced from Young subgroups with one infinite block and one
finite block of size n. First of all, note that all Young subgroups of this type are
conjugate, so that all representations of this type are equivalent; thus we may fix
an arbitrary partition Π of type (∞, k), say Π = ({1, . . ., k}, {k+1, k+2, . . .}), and
speak of the representation I(∞,k) = IΠ. By Theorem 1(b), this representation is
irreducible.
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Recall the definition of an elementary representation of the infinite symmetric
group SN.

Definition 3. A representation of the infinite symmetric group SN is called
elementary if it is the inductive limit of irreducible representations of finite sym-
metric groups Sn.

Remark 1. Thus an elementary representation is realized in the l2 space on one
class of tail-equivalent Young tableaux.

Remark 2. In this definition, we do not require that the embeddings preserve
some sequence of fixed cyclic vectors. However, it is easy to see that the successive
embeddings of the unit vector in the original one-dimensional representation of
S1 form such a sequence.

Obviously, the representation I(∞,k) of SN is the inductive limit of the represen-
tations In of the finite symmetric groups Sn induced from the identity represen-
tations of the Young subgroups S{1,...,k}×S{k+1,...,n}. These representations are
reducible; however, it turns out that only one irreducible component “survives”
in the limit, so that the following proposition holds.

Proposition 1. The representation of the infinite symmetric group induced from
a Young subgroup of type (k,∞) is elementary.

Proof. Observe that a two-row diagram λ(n) = (n − k, k) is majorized in the
dominance ordering precisely by the diagrams (n − m,m) with m ≤ k, and
all the corresponding Kostka numbers are equal to 1. By (1), we have In =∑

m≤k π(n−m,m). Consider the projection Pλ(n)ξ of the distinguished cyclic vector
ξ to the component πλ(n) = π(n−k,k). We have dim In = n!

k!(n−k)! , dimλ(n) =
n!(n−2k+1)
k!(n−k+1)! , and, obviously, Kλ(n),λ(n) = 1. Thus, by Lemma 2 (see Sec. 5),

‖Pλ(n)ξ‖2 =
Kλ(n),λ(n) dimλ(n)

dim In
=

n− 2k + 1
n− k + 1

→ 1 as n →∞.

It follows that the vectors Pλ(n)ξ converge to ξ, so that the inductive limit of the
irreducible representations πλ(n) coincides with IΠ, as required. ¤

It is well known (see, e.g., [10, 14, 22] and also Sec. 5.2) that the representation
In can be realized in the space of symmetric tensors of rank k and dimension n.
Then the representation I(∞,k) can be realized in the space of infinite-dimensional
symmetric tensors of rank k.

3.3.2. Representations of type (∞, λ). Let us consider induced representations of
type k with one infinite block and finitely many finite blocks, i.e., k∞ = 1 and
k1 + k2 + . . . = k < ∞. Note that all representations of this type are equivalent.
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Proposition 2. Let Π be a partition of N with one infinite block and finitely
many finite blocks, and denote by λ = λ(Π) = 1k12k2 . . . the finite Young diagram
of size k = k1 + k2 + . . . formed by the lengths of the finite blocks of Π. Then the
decomposition if IΠ into irreducible components is as follows:

(4) IΠ =
∑

|µ|=k, µDλ

Kµ,λπ1
µ,

where π1
µ is the elementary representation of SN, namely, the inductive limit

π1
µ = limn→∞ πµ(n), where µ(n) = (n− k, µ1, µ2, . . .) is the diagram with first row

n− k and the other rows forming the diagram µ.

Let us find the spectral measure of the distinguished cyclic vector ξ in this case.
The arguments generalize the proof of Proposition 1. Let λ(n) = (n−k, λ1, λ2, . . .).
Fix a digram µ = (µ1, µ2, . . .) D λ, |µ| = k, set µ(n) = (n− k, µ1, µ2, . . .), and let
n →∞. By Lemma 2,

‖Pµ(n)ξ‖2 =
Kµ(n),λ(n) dimµ(n)

dim In
,

where In = IndSn
S

λ(n)
1. (Note that IΠ is the inductive limit of In.) We have

dim In = n!
(n−k)!

∏
λi!
∼ nk∏

λi!
as n →∞. Further, it follows from the hook length

formula that dimµ(n) ∼ nk dim µ
k! as n → ∞. Finally, it can easily be seen from

the definition of Kostka numbers that Kµ(n),λ(n) = Kµ,λ (indeed, Kµ(n),λ(n) is the
number of fillings of the shape µ(n) with n−k zeros, λ1 ones, etc.; but, obviously,
the n− k zeros must occupy exactly the first row of µ(n)). Thus we obtain

(5) lim
n→∞ ‖Pµ(n)ξ‖2 =

Kµ,λ dimµ
∏

λi!
k!

.

Note that the sum of the right-hand sides over all µ D λ is equal to 1. It follows
that the spectral measure of ξ is discrete and supported by a finite set of classes
of tail-equivalent tableaux indexed by diagrams µDλ. In particular, IΠ is a finite
sum of elementary representations.

Remark 1. Thus we see that all elementary representations of SN corresponding
to inductive limits of sequences of irreducible representations associated with
Young diagrams with growing first row can be obtained by induction from Young
subgroups.

Remark 2. Note that for k∞ ≥ 2, the irreducible representation πk∞
µ of SN is

no longer elementary.

Important particular case: a hook with infinite hand and finite leg.
Let us consider the representation induced from “a hook with infinite hand and
finite leg,” i.e., a Young subgroup with one infinite block and n one-point blocks
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(the case of a hook with infinite hand and infinite leg will be considered in Sec. 4.2,
and that of a hook with finite hand and infinite leg, in Sec. 5.3). In this case, λ(Π)
is the column diagram 1n and Sfin = {e}, so that Ifin is the regular representation
Regn of Sn. Thus the decomposition (1) turns into the well-known formula

Regn =
∑

|µ|=n

dimµ · πµ,

and the decomposition (4) takes the form

(6) I(∞,1n) =
∑

|µ|=n

dimµ · π1
µ.

In this case, the homogeneous space XΠ can be identified (by “forgetting” the
infinite part of the partition r in (3)) with the space of n-sequences (r1, . . ., rn)
of distinct positive integers, that is, l2(XΠ) can be identified with the space of
diagonal-free infinite-dimensional tensors of rank n. On the other hand, the
regular representation Ifin = Regn has a realization in the space of tensors of
dimension n. The projections Pµ to the irreducible components of Ifin are the
standard Young symmetrizers; and the projections to the primary components,
i.e., subspaces of tensors with given symmetry type, are the central Young sym-
metrizers (see, e.g., [5, 23]). Applying these symmetrizers to infinite-dimensional
tensors of rank n, we obtain the irreducible (or primary) components of I(∞,1n).

For example, the representation I(∞,12) acts in the space of infinite-dimensional
tensors of rank 2, and

I(∞,12) = π1
(2) + π1

(12),

where the projections to the irreducible components are given by symmetrizing
and antisymmetrizing:

P(2)Tr1,r2 =
1
2
(Tr1,r2 + Tr2,r1), P(12)Tr1,r2 =

1
2
(Tr1,r2 − Tr2,r1).

As follows from (5), the spectral measure of the distinguished cyclic vector ξ
in this case has the Plancherel weights (see Sec. 5.1):

lim
n→∞ ‖Pµ(n)ξ‖2 =

dim2 µ

k!
.

3.3.3. Two-block representations. By Theorem 1(b), induced representations of
type ∞2, induced from Young subgroups with two infinite blocks, are irreducible.
(Note that there is a continuum of nonequivalent representations of this type.)
As mentioned above, in the case of a two-row diagram λ, all Kostka numbers
Kµ,λ for µ D λ are equal to 1. Thus we obtain the following assertion.

Proposition 3. The representation of the infinite symmetric group induced from
a two-block Young subgroup is irreducible, and its spectrum with respect to the
Gelfand–Tsetlin algebra is simple.
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As shown in [22], in this case one can obtain a complete spectral analysis of
the induced representations. We present these details in Sec. 5.2.

4. Induced representations of type II

4.1. Small Young subgroups lead to representations of type II. Now let
us consider small Young subgroups SΠ. We will assume that the partition Π
has finitely many finite blocks of finite multiplicities and denote by ν = ν(Π) the
Young diagram formed by the sizes of these blocks.

Theorem 3. Let Π be a partition of N of type k = (∞k∞ , 1k1 , 2k2 , . . .) that has
finitely many finite blocks of finite multiplicities (i.e.,

∑
j<∞: kj<∞ kj < ∞), and

assume that there exists at least one i ∈ N with ki = ∞. Then

(a) The representation IΠ of the infinite symmetric group SN is of type II.

(b) This representation is a (type II) factor representation if and only if the
diagram ν(Π) consists of at most one row.

(c) (Central decomposition) Let N = |ν(Π)|. The representation IΠ is a finite
sum of type II factor representations indexed by the primary components of the
representation IndSN

Sν(Π)
1, i.e., by Young diagrams µ such that |µ| = N and µ D

ν(Π).

Proof. Let J = JΠ = {j ∈ N : kj = ∞}. By our assumptions, J 6= ∅. For each
j ∈ J , let B

(j)
1 , B

(j)
2 , . . . be all blocks of size j, and set S(j) = S

B
(j)
1

×S
B

(j)
2

× . . ..
In a similar way, let A1, . . ., An be all finite blocks of finite multiplicities, and let
Sν = Sν(Π) = SA1 × SA2 × . . . be the corresponding finite Young subgroup of
SN , where N = |A1|+ |A2|+ . . . = |ν(Π)|. We also denote Iν = IndSN

Sν
1.

It follows from the proof of Theorem 1 that the set of intertwining operators
for IΠ (i.e., the commutant A′ of the algebra A generated by the representation
operators) decomposes into the tensor product

A′ = R(Iν)⊗
⊗

j∈J

Rj ,

where R(Iν) is the set of intertwining operators for Iν and Rj is the algebra of
operators generated by finite permutations of the sets B

(j)
1 , B

(j)
2 , . . .. Obviously,

Rj is (algebraically) isomorphic to the algebra generated by the regular repre-
sentation of the infinite symmetric group, which is a factor of type II1. Thus
⊗⊗

j∈J Rj is a factor of type II. Now if ν consists of a single row, than the rep-
resentation Iν is irreducible and R(Iν) consists of scalar operators, so that the
whole A′ is a factor of type II. Otherwise, taking in R(Iν) the projections to the
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primary components of Iν , we obtain the central decomposition of IΠ into a sum
of factors. ¤

Remark. Assume that #J = #{j ∈ N : kj = ∞} < ∞ and ν(Π) consists
of at most one row, i.e., IΠ is a factor representation. Then the commutant
A′ = ⊗j∈JRj is a finite tensor product of factors of type II1, which is a factor
of type II1. At the same time, it is not difficult to see that if Π is not the
trivial partition into singletons (i.e., IΠ is not the regular representation), then
the algebra A itself is a factor of type II∞.

Theorems 1 and 3, which describe induced representations of type I and II,
respectively, do not exhaust all induced representations. Namely, they leave out
the case when the partition Π has infinitely many finite blocks of finite multi-
plicities, i.e., #{i ∈ N : ki < ∞} = ∞. The most important example of such a
partition is a partition that has no infinite blocks and at most one block of each
finite size (k∞ = 0, ki ≤ 1 for all i ∈ N). It is natural to conjecture that the
corresponding representation is also of type II.

4.2. Example: representations induced from a hook with infinite hand
and infinite leg. Let us consider in more detail the induced representation of
type (∞, 1∞) associated with a partition Π having one infinite block and infinitely
many singletons. Note that there is a continuum of nonequivalent representations
of this type.

In this case, the homogeneous space X is the space of “infinite-dimensional
tensors of infinite rank,” i.e., infinite sequences (i1, i2, . . .) of positive integers.
It can be also described as follows. Let N0 be the subset of N consisting of
all singletons of Π. Then the space l2(X) can be identified with the space of
summable injections f : N0 → N. The representation I = IΠ is generated by
the left action of SN by Igf(n) = g−1f(n). Denote by A the von Neumann
algebra generated by this representation. It is easy to see that the commutant
A′ of this algebra, i.e., the set of intertwining operators, is generated by the right
action of the group S(N0) of finite permutations of N0 by substitutions: Tσf(n) =
f(σ−1n). In particular, A′ is algebraically isomorphic to the von Neumann algebra
generated by the regular representation of the infinite symmetric group, i.e., is a
factor of type II1. As to the factor A itself, it is easy to see that it decomposes
into the infinite direct sum of factors of type II1. Indeed, for each infinite subset
B ⊂ N, let HB be the subspace of l2(X) consisting of functions f such that
f−1(N0) = B. This subspace is obviously invariant with respect to A′, so that
l2(X) = ⊕BHB is the desired decomposition of A into the infinite direct sum of
factors of type II1. Thus we obtain the following proposition.
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Proposition 4. The induced representation of type (∞, 1∞) of the infinite sym-
metric group SN is a factor representation. The von Neumann algebra A gen-
erated by the representation operators is a factor of type II∞, a direct sum of
isomorphic factors of type II1. Its commutant A′ is a factor of type II1 alge-
braically isomorphic to the factor generated by the regular representation of SN.

Note that the distinguished cyclic vector ξ, which in this realization is just
the identical function ξ(n) ≡ n, is a cyclic vector for A, but not for A′. Thus it
defines a finite trace on the commutant by the formula tr(A) = (Aξ, ξ), A ∈ A′
(which is just the trace corresponding to the regular representation of the group
S(N0), i.e., coincides on the elements of S(N0) with the delta function at the
identity element), but there is no finite trace on A.

Remark. The described construction is a particular case of the following one.
We have the standard left action of a group G on the discrete homogeneous
space X = G/H, where H is a subgroup of G, and the corresponding unitary
representation of G in l2(X). The commutant of the corresponding algebra is
generated by the automorphisms of the G-space X, i.e., by the right action of the
group N(H)/H, where N(H) is the normalizer of H in G. The specific property
of this situation is that both left and right representations are generated by
substitutional actions of G and N(H)/H, respectively (cf. [15]).

5. Examples of the spectral analysis of induced representations

In this section, we will consider two nontrivial examples of classes of induced
representations for which we can explicitly find the spectral measure of the dis-
tinguished cyclic vector and, consequently, obtain a spectral realization.

To this end, the following simple lemma is useful. Consider the restriction In of
IΠ to a finite symmetric group Sn in the cyclic hull Snξ of the distinguished cyclic
vector ξ (which is the representation induced from the identity representation
of the Young subgroup H = SΠn of Sn associated with the partition Πn =
Π ∩ {1, . . ., n}). Let λ be a Young diagram with n cells, and denote by Pλ the
projection from In to the primary component Vλ that is a multiple of πλ.

Lemma 2. The squared norm ‖Pλξ‖2 is equal to the relative dimension of Vλ in
In, i.e.,

(7) ‖Pλξ‖2 =
dimVλ

dim In
.

Proof. It is well known (see, e.g., [13]) that the projection Pλ is given by the
formula

Pλ =
dimλ

n!

∑

g∈Sn

χλ(g)In(g),
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where χλ is the character of πλ. Then

(Pλξ, Pλξ) = (Pλξ, ξ) =
dimλ

n!

∑

g∈Sn

χλ(g)(In(g)ξ, ξ) =
dimλ

n!

∑

h∈H

χλ(h),

because (In(g)ξ, ξ) is equal to 1 if g ∈ H and 0 otherwise. But the latter sum is
equal to (χλ|H , 1H) · |H|, which is in turn equal to (χλ, In) · |H| by the Frobenius
reciprocity, so that we obtain

‖Pλξ‖2 =
(χλ, In) dim λ · |H|

n!
=

dimVλ

dim In
,

because (χλ, In) is the multiplicity of πλ in In and dim In = n!
|H| . ¤

5.1. Markov representations of the infinite symmetric group. In this sec-
tion, we recall necessary notions from the representation theory of the symmetric
groups and the notions of simple and Markov representations.

Denote by Tλ the set (consisting of dim λ elements) of Young tableaux of shape
λ ∈ Yn, or, which is the same, the set of paths in the Young graph from the empty
diagram ∅ to λ. Let Tn = ∪λ∈YnTλ be the set of Young tableaux with n cells.
According to the branching rule for irreducible representations of the symmetric
groups, the space Vλ of the irreducible representation πλ decomposes into the
sum of one-dimensional subspaces indexed by the tableaux u ∈ Tλ. The basis
{hu}u∈Tλ

consisting of vectors of these subspaces is called the Gelfand–Tsetlin
basis. It is an eigenbasis for the Gelfand–Tsetlin algebra GZn, the subalgebra in
the group algebra C[Sn] generated by the centers Z[S1], Z[S2], . . ., Z[Sn] (see
[20]).

Denote by T = lim←−Tn the space of infinite Young tableaux (the projective limit
of Tn with respect to the natural projections forgetting the tail of a path). With
the topology of coordinatewise convergence T is a totally disconnected metrizable
compact space. The tail equivalence relation ∼ on T is defined as follows: paths
s = (s1, s2, . . .) and t = (t1, t2, . . .) are equivalent if and only if sk = tk for all
sufficiently large k. Denote by [t]n ∈ Tn the initial segment of length n of a
tableau t ∈ T . Given a finite tableau u ∈ Tn, denote by Cu = {t : [t]n = u} the
corresponding cylinder set; for λ ∈ Yn, let Cλ = {t : tn = λ} = ∪u∈Tλ

Cu be the
set of all paths passing through λ.

Definition 4. A measure M on the space T is called Markov if for every n ∈ N
the following condition holds: for any diagrams λ ∈ Yn and Λ ∈ Yn+1 such that
Λ ⊂ λ and for any path u ∈ Tλ, the events Cu (“the past”) and CΛ (“the future”)
are independent given Cλ (“the present”).

In other words, a random tableau t = (t1, t2, . . .), regarded as a sequence of
random variables tn, where tn takes values in the set Yn of Young diagrams with n
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cells, is a Markov chain in the ordinary sense. In terms of transition probabilities,
this means that the transition probability M(CΛ∩Cu)

M(Cu) depends only on the form
λ of a tableau u, but not on the tableau itself. Note that the “forward” and
“backward” Markov properties are equivalent, so that the definition of a Markov
measure can be formulated in a similar way in terms of cotransition probabilities.

One of the most important examples of Markov measures on T is the Plancherel
measure P , which is the spectral measure of the regular representation of SN.

Definition 5. The Plancherel measure on the space T of infinite Young tableaux
is the Markov measure with transition probabilities Prob(λ, Λ) = dimΛ

(n+1) dim λ , where
λ ∈ Yn, Λ ∈ Yn+1, λ ⊂ Λ.

The cylinder distributions Pn of the Plancherel measure are given by the for-
mula Pn(Cλ) = dim2 λ

n! , λ ∈ Yn. This distribution on the set of Young diagrams
with n cells is called the Plancherel measure on Young diagrams (see [17]).

Now assume that we have a cyclic representation π of the group Sn in a space
V that has a simple spectrum (i.e., decomposes into the sum of pairwise nonequiv-
alent irreducible representations) and a unit cyclic vector ξ in this representation.

Definition 6. We say that ξ is a Markov vector if its spectral measure with
respect to the Gelfand–Tsetlin algebra is Markov.

Lemma 3. Let π be a unitary representation of the group Sn with simple spec-
trum. A cyclic vector ξ of the representation π is Markov if and only if for every
k < n, the representation of the group Sk in the cyclic hull Skξ of ξ with respect
to Sk has a simple spectrum.

Proof. Clearly, a cyclic vector is Markov if for every k < n and every diagram
λ ∈ Yk, the probability of any tableau with this diagram does not depend on the
continuation of this tableau to the level n. In terms of representations and cyclic
vectors, this means that the norm of the projection of the cyclic vector to the
subspace of the representation of the group Sk equivalent to πλ does not depend
on the way in which we have arrived at this subspace.

Now we use the following simple lemma.

Lemma 4. Assume that in a finite-dimensional Hilbert space H there is a unitary
representation of a group G that is primary, i.e., decomposes into the direct (not
necessarily orthogonal) sum H = H1 ⊕ H2 ⊕ . . . ⊕ Hn of equivalent irreducible
representations, and in each of them there is a cyclic vector vi ∈ Hi, i = 1, . . ., n.
Then the following two assertions are equivalent:

1. For any i, j, there exists an isometry Ti,j : Hi → Hj intertwining the
corresponding representations such that Ti,jvi = vj.

2. In the cyclic hull of the vector v =
∑

vi, the representation is irreducible.
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Proof. Without loss of generality assume that n = 2. Then the representation
in the cyclic hull of v is irreducible if and only if this vector is of rank 1, i.e., v,
regarded as an element of the tensor product, has the form x⊗ x. ¤

Now let ξµ be the projection of ξ to the irreducible component πµ of π. Fix
k < n and an irreducible representation πλ of Sk. Consider the restriction of
π to Sk, and let H = H1 ⊕ H2 ⊕ . . . ⊕ Hn, where Hi ' πλ, be the primary
component of this restriction corresponding to πλ. The Markov property means
that the norms of the projections of ξµ to Hi coincide, which is equivalent, in
view of Lemma 4, to the fact that πλ has multiplicity 1 in the decomposition of
the representation of Sk in the cyclic hull Skξ of ξ. ¤

Now let us consider representations of the infinite symmetric group SN.

If we are given a quasi-invariant measure µ on the space of Young tableaux T
and a 1-cocycle c on pairs of tail-equivalent paths taking values in the group of
complex numbers of modulus 1, then we can construct a unitary representation
of the group SN in the space L2(T, µ) as follows (see, e.g., [18]). Recall that the
Fourier transform allows one to realize the group algebra C[SN] of the infinite
symmetric group as the cross product constructed from the commutative algebra
of functions on the space of tableaux T (Gelfand–Tsetlin algebra) and the tail
equivalence relation. The desired representation is given by

(8) Lgh(s) =
∑
t∼s

√
dµ(s)
dµ(t)

ĝ(s, t)c(s, t)h(t), h ∈ L2(T, µ),

where ĝ is the function on pairs of tail-equivalent paths corresponding to an
element g ∈ SN (the Fourier transform of g). Note that the cocycle is trivial on
the space of finite tableaux.

Definition 7. A representation of the infinite symmetric group SN is called
simple if it is the inductive limit of representations of the finite symmetric groups
Sn with simple spectrum.

Definition 8. A representation π of the group SN with simple spectrum is called
Markov if the space of π contains a cyclic vector whose spectral measure (with
respect to the Gelfand–Tsetlin algebra) is Markov.

Note that a representation with simple spectrum is Markov if and only if the
measure µ in its realization (8) is Markov.

The following theorem is an easy consequence of Lemma 3.

Theorem 4 ([22]). A representation of the infinite symmetric group is Markov
if and only if it is simple.
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5.2. The spectral analysis of two-block induced representations. In this
section, we present the complete spectral analysis of induced representations of
type ∞2. By Theorem 1, these representations are irreducible. It turns out that
in this case the spectral measure of the distinguished cyclic vector is a Markov
measure on the space of infinite Young tableaux T . The material of this section
is mostly borrowed from the authors’ paper [22]. Theorem 5 is proved there
using the so-called tensor model of two-row representations of the symmetric
groups (i.e., representations induced from two-block Young subgroups). See [22]
for a detailed description of this model (in particular, explicit formulas for the
Gelfand–Tsetlin basis).

A partition N = A ∪ B of type ∞2 is uniquely determined by an infinite
sequence ξ = ξ1ξ2. . . of 0’s and 1’s (an “infinite tensor”), where ξi = 1 if i ∈ A,
and ξi = 0 if i ∈ B. Then the induced representation in question is equivalent to
the natural substitutional representation of SN on infinite sequences in the cyclic
hull of the sequence ξ, which we will denote by πξ. Note that the orbit of ξ is
the discrete set Oξ of infinite sequences of 0’s and 1’s eventually coinciding with
ξ, and πξ is a unitary representation of SN in the space l2(Oξ).

For simplicity, it is convenient to assume that the number of 1’s among the first
n elements of ξ does not exceed n/2. It is not difficult to see that an arbitrary
case can be reduced to this one, but we omit the corresponding technical details.

Denote by λn,k = (n− k, k) the diagram with two rows of lengths n− k and k.

Theorem 5. The spectral measure µξ of the cyclic vector ξ in the representation
πξ with respect to the Gelfand–Tsetlin algebra is a Markov measure on the space
of infinite Young tableaux T , and its transition probabilities are given by the
following formula. Denote by m(n) the number of 1’s among the first n elements
of ξ.

If ξn+1 = 0, then
(9)

Prob(λn,k, λn+1,k) =
n−m(n)− k + 1

n− 2k + 1
, Prob(λn,k, λn+1,k+1) =

m(n)− k

n− 2k + 1
.

If ξn+1 = 1, then
(10)

Prob(λn,k, λn+1,k) =
m(n)− k + 1
n− 2k + 1

, Prob(λn,k, λn+1,k+1) =
n−m(n)− k

n− 2k + 1
.

Note that all spectral measures of induced representations considered in The-
orem 5 are not central (except for the trivial case when one of the sets in the
partition is empty).

Example. Let ξ = 0101. . .. Then m(n) = [n/2], and the formulas for transition
probabilities take the following form:



Induced Representations of the Infinite Symmetric Group 1023

• if n is odd,
(11)

Prob(λn,k, λn+1,k) =
n− 2k + 2

2(n− 2k + 1)
, Prob(λn,k, λn+1,k+1) =

n− 2k

2(n− 2k + 1)
;

• if n is even,

(12) Prob(λn,k, λn+1,k) = Prob(λn,k, λn+1,k+1) =
1
2
.

It is convenient to rewrite formulas (11), (12) introducing the change of in-
dices j = n − 2k. In these terms, a Young tableau is determined by a sequence
(j1, j2, . . .), where jn takes the values 0, 1, . . ., n, and the transition probabilities
of the measure µξ are equal to

Prob(j, j + 1) =
j + 2

2(j + 1)
, Prob(j, j − 1) =

j

2(j + 1)

at an odd moment of time; and

Prob(j, j + 1) = Prob(j, j − 1) =
1
2

at an even moment of time. We see that a random Young tableau governed by
the measure µξ is a trajectory of a nonhomogeneous (neither in time nor in space)
random walk on Z+. Thus the induced representations of the infinite symmetric
group considered in this paper act in spaces of functions over trajectories of
natural random walks. Explicit formulas for this action are given by Young’s
orthogonal form.

5.3. Spectral measure of representations of type (1∞, ν). Consider the
representations IΠ induced from partitions Π of type (1∞, ν) with no infinite
blocks, infinitely many singletons, and finitely many finite blocks of length greater
than one. Here, as above, we denote by ν the finite Young diagram formed by
the lengths of finite blocks of finite multiplicities, and let |ν| = n.

According to Theorem 3, IΠ decomposes into a finite sum of factor represen-
tations ρµ indexed by Young diagrams µ with n cells such that µDν. Let us find
the spectral measure M = M ξ of the distinguished cyclic vector ξ with respect
to the Gelfand–Tsetlin algebra.

Given N ≥ n, denote by νN the diagram obtained from ν by adding N − n
rows of length 1. Let λ be a Young diagram with N cells. By formula (1), the
definition of the spectral measure, and Lemma 2, the cylinder distribution MN

of M is given by

MN (Cλ) = ‖Pλξ‖2 =
∏

νi!
N !

Kλ,νN
dimλ.
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It is not difficult to see from the definition of the Kostka numbers that

Kλ,νN
=

∑

µDν

dim(µ, λ)Kν,µ,

where dim(µ, λ) is the number of paths in the Young graph from µ to λ. There-
fore, we obtain

MN (Cλ)=
∑

µDν

dim(µ, λ)Kν,µ dimλ
∏

νi!
N !

=
∑

µDν

Kν,µ dimµ
∏

νi!
n!

·n! dim(µ, λ) dim λ

dimµ ·N !
.

But it is not difficult to check that the second quotient in the right-hand side
of the latter formula is exactly the conditional distribution P (· | tn = µ) of the
Plancherel measure P on the space T of infinite Young tableaux t = (t1, t2, . . .)
(paths in the Young graph) given that at the nth level t passes through µ. Note
also that the first quotient is the relative dimension of the primary representation
corresponding to the diagram µ in IndSn

Sν
, i.e., Mfin(µ), where Mfin is the spectral

measure of the distinguished cyclic vector in the representation IndSn
Sν

of the finite
symmetric group Sn. Thus we obtain the following result.

Proposition 5. The spectral measure M = M ξ of the distinguished cyclic vec-
tor ξ in the representation IΠ is a convex combination of conditional Plancherel
measures:

M =
∑

µDν

Mfin(µ) · P (· | tn = µ),

where Mfin(µ) = Kν,µ dim µ
∏

νi!
n! is the spectral measure of the distinguished cyclic

vector in the representation IndSn
Sν

of the finite symmetric group Sn. In partic-
ular, it is absolutely continuous with respect to the Plancherel measure P with
piecewise constant (cylinder) density

dM

dP
(t) =

Kν,µ(t)

∏
νi!

dimµ(t)
if t ∈ T passes through the diagram µ(t) at level n.

The Plancherel measure is a central Markov measure on the space of infinite
Young diagrams. However, the spectral measure M is not central and is not
Markov. However, it is multi-Markov, in the sense that if we “glue” the first n
levels in one block, i.e., consider a random Young tableau as a sequence of Young
diagrams (¤, λn, λn+1, . . .), then it will be a Markov chain.

The following example is the simplest case of a representation of type (1∞, ν),
in which the representation is a factor.

Example. A hook with finite hand and infinite leg. If ν = (n), i.e.,
the partition consists of one finite block of size n and infinitely many single-
tons (“a hook with finite hand and infinite leg”), then by Theorem 3(b) the
induced representation is a factor, and by Proposition 5 the spectral measure of
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the distinguished cyclic vector is the conditional distribution P (· | tn = (n)) of
the Plancherel measure given that at the nth level t passes through the one-row
diagram (n).
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