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Free Subgroups of Linear Groups

G.A. Soifer

To Gregory Margulis in his birthday

In the celebrated paper [T] J. Tits proved the following fundamental dichotomy
for a finitely generated linear group :

Let G be a finitely generated linear group over an arbitrary field. Then either
G is virtually solvable or G contains a free non-abelian subgroup.

His proof of this alternative based on geometrical ideas came form Schottky
groups. Recall that a Schottky group G is a group of fractional linear transfor-
mations of the hyperbolic plane H2 generated by a set of hyperbolic elements S =
{gi, i ∈ I} and has the following property : there exist disjoint subsets D±

i , i ∈ I
and D0 of H2 such that for every i ∈ I :

1. gn
i (∪j∈I,j 6=iD

±
j ∪D0) ⊆ D+

i for n > 0
2. gn

i (∪j∈I,j 6=iD
±
j ∪D0) ⊆ D−

i for n < 0.

Note that from the definition immediately follows that the group G is a free group
with free generators gi, i ∈ I. Indeed, let g = gm1

i1
. . . gmk

ik
be any reduced word.

Take p ∈ D0, then gp ∈ D±
i1
⊆ H2 \D0. Therefore g 6= 1.

One of the main purposes of the present work is to show how the beautiful ideas
of Tits were developed in our joint works with G. Margulis [MS1], [MS2], [MS3].
Our interest to free subgroups of linear groups was initiated by the following
Problem 1 (V. Platonov) Does there exist a maximal subgroup of infinite index

in SLn(Z) for n ≥ 3 ?

We proved in [MS1] that the answer is positive. Actually we proved that
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Let G be a finitely generated linear group over an arbitrary field. Then either
G is polycyclic or G contains a maximal subgroup of infinite index.
We proved this as a corollary of the following theorem:

Let G be a finitely generated linear group over an arbitrary field. If G is not
virtually solvable then G contains a pro-finitely dense free subgroup.
We remark that questions about existence of a dense free subgroup in topolog-
ical groups are very important and leads to a many deep consequences (see for
example [BG2]).
Conjecture ( [DPSS], [P]). Let G be a finitely generated linear group and let Ĝ be

a pro-finite completion of the group G. Assume that G contains a free subgroup.
Then does Ĝ contain a finitely generated pro-finitely dense free subgroup?

E. Breuillard and T. Gelander proved this conjecture in [BG2]

A. Shalev asked me a slightly different question. Namely
Problem 2 (A. Shalev). Let G be a finitely generated linear group and let Ĝ be

the pro-finite completion of the group G. Assume that G contains a free subgroup.
Does G contain a finitely generated free subgroup which is pro-finitely dense in Ĝ
?

In general an answer to this question is negative. For example it is not true if
G is a lattice in a semisimple Lie group of real rank 1. But for lattices in higher
rank semisimple groups the answer is positive [SV].

Several resent very interesting results [BG1],[BG2],[GGl] were proved under
the influence of [MS3]. Therefore we decided to use this opportunity to explain
some modifications of the concept, ideas and proofs from this paper together with
further development done in our works [AMS1], [AMS2]. Based on this, we will
give a short proof of Platonov’s problem, construct a new counterexample to a
Prasad-Tits conjecture and state some new and recall some old problems.

In the last section we will complete a proof of the following:
Conjecture (G. Margulis) Let S be a crystallographic semigroup, then S is a

group.

Our proof of the above conjecture is based on existence of a free subgroup in the
Zariski closure of S with some additional geometric properties. This step was
done in [S].

We will use standard definitions of algebraic group theory, Lie group theory and
group theory (see [B], [H], [R ]). The letters Z,Q,R,C,Qp denotes respectively
the set of integers, rational, real, complex and p–adic numbers. The index of a
subgroup H of a group G will be denoted by |G/H|. If G is a group and S ⊆ G,
then by NS(G) ( resp. CS(G)) we denote the normalizer (resp. centralizer) of S
in G. By 〈S〉 we denote the subgroup of G generated by S. We denote as usual
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by GLn and SLn the group of invertible and unimodular n by n matrices. An
algebraic subgroup of GLn defined over a field k is called an algebraic k–group or
a k–group. The set of all k–points of an algebraic variety W will be denoted by
W (k). If ϕ : G −→ H is a k–rational homomorphism of k-groups G and H and
the field l is an extension of k then the natural homomorphism ϕ(l) : G(l) −→
H(l) will be denote by ϕ as well. Let V be a finite dimensional vector space.
A subgroup G of GL(V ) is called irreducible if there is no proper G invariant
subspace of V . Accordingly, we call a representation ρ : G −→ GL(V ) irreducible
if the image ρ(G) is a irreducible subgroup of GL(V ). A representation ρ : G −→
GL(V ) is called strongly irreducible if for every subgroup H of finite index of G
the group ρ(H) is irreducible. If k is a local field and W is an algebraic k–variety
then W (k) has two natural topologies, namely induced by the topology of k and
by the Zariski topology of W . In case it will be necessary to avoid confusion the
second topology will be distinguished by the prefix ”k” i.e., k–open, k–dense etc.

G. Margulis became my official adviser in the mid 70’s At that time in the
former USSR such a step was really non-trivial and might have had many reper-
cussions. I want to express here my deep gratitude to Grisha Margulis for all he
gave me as a teacher and as a friend.
Acknowlegment: The author would like to thank several institutions and founda-
tions for their support during the preparation of this paper: SFB 701 in Bielefeld
University, ENI in Bar-Ilan University, Yale University, NSF under grant DMS
0244406, USA- Israel Binational Science foundation under BSF grant 2004010,

1. Ping -Pong and free subgroups.

We will start from the following proposition which actually comes from Schot-
tky groups and the proof based on the same arguments.
Lemma 1.1. Let G be a group acting on a set X. Let S = {Hi, i ∈ I} be a

collection of subgroups of G and let {Xi}i∈I be a set of disjoint subsets of X and
let x0 be a point , x0 ∈ X. Assume that

1. x0 ∈ X \ ∪i∈IXi

2. hi (∪j∈I,j 6=iXj) ⊆ Xi for all hi ∈ Hi and i ∈ I,
3. hix0 ∈ Xi for all hi ∈ Hi and i ∈ I.

Then the group 〈S〉 is a free product of groups Hi, i ∈ I.

Corollary 1.2 (Ping-Pong Lemma) . Let G, X, S = {Hi, i ∈ I}, {Xi}i∈I and x0
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be as in Lemma 1.1. Assume that for every i ∈ I , Hi is an infinite cyclic group
generated by some element hi. Then 〈S〉 is a free group and hi, i ∈ I are free
generators.

It is easy to see that the following statement is true.
Lemma 1.3. Let G be a group and ρ : G −→ H be a homomorphism of a group.

Let S = {hi, i ∈ I} be free generators of a free group 〈S〉. Assume that for every
i ∈ I we choose gi ∈ G such that ρ(gi) = hi. Then the group generated by {gi, i ∈
I} is free and {gi, i ∈ I} are free generators.

Let V be a finite dimensional vector space over a local field k with absolute
value | · | and let P = P(V ) be the projective space based on V . Let g ∈ GL(V )
and let χg(λ) =

∏n
i=1(λ − λi) ∈ k[λ] be the characteristic polynomial of the

linear transformation g. Set Ω(g) = {λi : |λi| = max1≤j≤n |λj |}. Put χ1(λ) =∏
λi∈Ω(g)(λ − λi) and χ2(λ) =

∏
λi /∈Ω(g)(λ − λi). Since the absolute value of an

element is invariant under Galois automorphism then χ1 and χ2 belong to k[λ].
Therefore χ1(g) ∈ GL(V ) and χ2(g) ∈ GL(V ). Let us define by A(g) (resp. B(g))
the subspace of P corresponding to ker(χ1(g)) (resp. ker(χ2(g))). Put Cr(g) =
B(g) ∪ B(g−1). Recall that g ∈ GL(V ) is called proximal if A(g) is a point.
A proximal element g has a unique eigenvalue of maximal absolute value hence
this eigenvalue has algebraic and geometric multiplicity one. For S ⊆ GL(V )
set Ω0(S) = {g ∈ S : g and g−1 are proximal}. We will often use for an element
g ∈ Ω0(GL(V )) the following notation A(g) = A+(g), B(g) = B+(g), A(g−1) =
A−(g) and B(g−1) = B−(g).

For an element g ∈ Ω0(GL(V )) the dynamics of the group 〈g〉 are very trans-
parent. Let us formulate their properties in terms of the projective map ĝ induced
by g on the projective space P . Namely, the sequence of maps ĝn where n is pos-
itive integer converges to a map sending all points in P \B(g) to the point A(g)
and the sequence (ĝ−1)n where n is positive integer converges to a map sending
all points in P \B(g−1) to the point A(g−1). This easily follows from the next
Lemma 1.4. Let g ∈ Ω0(GL(V )) and let K be a compact subset of P \B(g). Let

d be the distance between the two compact subsets K and B(g). Assume that U
is an open subset in P such that A(g) ∈ U . Then there exits a positive integer
N = N(U, d) such that ĝnK ⊆ U for all n ≥ N .

To illustrate the dynamics of a subgroup let us conceder the following
Example 1 . Let G = SL3(R). Let g1 and g2 be two diagonal matrixes where

g1 = diag(α, α−1, 1), α > 1 and g2 = diag(1, α, α−1), α > 1. Let A be the abelian
group generated by {g1, g2}. Clearly A is a free abelian group of a rank 2 . Let
AN = {gn

1 gm
2 , |n| ≥ N, |m| ≥ N}. Put e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).
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Consider the set Σ = {t1e1 + t2e2 + t3e3,
∑3

1 ti = 1, ti ≥ 0, i = 1, 2, 3}. Let
P (Σ) be the projectivization of Σ and let ∂P (Σ) be the boundary of P (Σ). Let
q (correspondingly, êi i = 1, 2, 3 ) be the point of P (Σ) which corresponds to the
line span by the vector 1/3e1+1/3e2+1/3e3 (correspondingly, ei i = 1, 2, 3) . The
boundary ∂L of the orbit L = Âq = {âq, a ∈ A} is a subset in ∂P (Σ). Let us give
some explanation how to understand what will be the set of a limit points. Let
{g}i∈N be a sequence of elements from A, then gi = gni

1 gmi
2 . Since we are looking

for a limit points of the set {ĝiq}i∈N in the projective space we can assume that
g = diag{αni+mi , α−ni+2mi , 1}. Assume that ni > 0,mi > 0. Let k be an integer
such that mi = 2ni +ki. There are three possibilities : ki →∞ (1), ki → −∞ (2)
and ki → κ, (3) when i → ∞. Then the sequence of projective transformations
ĝi converge to the quasi projective transformation (see the definition in H.Abels
in this volume) g̃1 = diag{1, 0, 0} in the case (1), g̃2 = diag{0, 1, 0} in the case
(2) and g̃3 = diag{αk, 1, 0} in the case (3). Conceder this maps as a projections
πi, i = 1, 2, 3 of the space R3. Then the sequence {ĝiq}i∈N can converge to the
points πiq, i = 1, 2, 3. It is not difficult to see that for every ε there exists N =
N(ε) such that if a ∈ AN then d(âq, ∂L) ≤ ε and if U1 (respectively U2, U3 be
a neighborhood of the point ê1, (respectively ê2, ê3) then the set ∂L\(U1 ∪ U2 ∪
U3) is finite.

We will say that two elements g ∈ Ω0(GL(V )) and h ∈ Ω0(GL(V )) are
transversal if A(g) ∪ A(g−1) ⊆ P \ Cr(h) and A(h) ∪ A(h−1) ⊆ P \ Cr(g). The
simple consequence of Lemma 1.4 is the following
Lemma 1.5. Let S = {g1, . . . , gm} be a subset of Ω0(GL(V )) such that gi and gj

are transversal for every i, j 1 ≤ i, j ≤ m. Then there exists a positive integer N
such that for every sequence of positive integers k1, . . . , km, such that kt ≥ N for
all t with
1 ≤ t ≤ m the set S(k) = {gk1

1 , . . . gkm
m } is freely generates of the free group

〈S(k)〉.
Definition 1.6. Let G be a subgroup of GL(V ) and g0 ∈ Ω0(G). We say that

the set F = {gi ∈ G, i ∈ I} is a g0–free system for G (or simply g0–free system if
it is clear which group is considered) if gi ∈ Ω0(G) for all i ∈ I and there exists
a set of open subsets O = {Oi = Oi(F ), Oi ⊆ P, i ∈ I}, a set of disjoint compact
sets K = {Ki = Ki(F ),Ki ⊆ P, i ∈ I}, an open U0 = U(g0) and a compact subset
K0 of P such that

1. A(gi) ∪A(g−1
i ) ⊆ Oi ⊆ Ki for all i ∈ I,

2. A(g0) ∪A(g−1
0 ) ⊆ U0 ⊆ K

3. infi∈I d(Ki, Cr(g0)) > 0,
4, K ⊆ P \ ∪i∈IKi

5. ĝn
i Kj ⊆ Oi for every i, j ∈ I, i 6= j and non-zero z ∈ Z.

6. ĝn
i K ⊆ Oi for every i ∈ I and non-zero z ∈ Z.



992 G.A. Soifer

From this definition immediately follows that the group generated by a g0–free
system F is free and elements of F are free generators.
Lemma 1.7. Let a finite subset F of G be a g0–free system. Let g be an

element from Ω transversal to g0 and to every element from F . Then there are
two positive integers N such that for every n > N there exists a positive integer
M = M(n) such that if ĝ = gn

0 gmg−n
0 , then F̃ = F ∪ g̃ is a g0–free system for all

m > M .

Proof. Let d1 = d(A+(g) ∪ A−(g), Cr(g0)) and let d2 = infi∈I d(Ki, Cr(g0)).
Put d0 = 1/4min(d1, d2) and let B(A−(g0, d0)) be a ball of radius d0 with
center in A−(g0). It follows from Lemma 1.4 that there exists a positive in-
teger N1 = N1(d0, B(A−(g0), d0)) such that ĝ0

−nKi ⊆ B(A−(g0), d0) for all
positive n > N1. Since A+(xgx−1) = x̂A+(g), A−(xgx−1) = x̂A+(g) and
Cr(xgx−1) = x̂Cr(g), then ∪i∈IKi ⊆ P \Cr(gn

0 gg−n
0 ) for all n > N1. Set d(n) =

d(∪i∈IKi, Cr(gn
0 gg−n

0 )). By Lemma 1.4 there exists a positive integer N2 =
N2(d0, U0) such that ĝ0

n(A+(g)∪A−(g)) ⊆ U0 for all n > N2. Two elements g and
g0 are transversal, therefore two elements gn

0 gg−n
0 and g0 are transversal for all

n ≥ max{N1, N2}. For n ≥ N set h = gn
0 gg−n

0 and dh = d(n). There exists a com-
pact subset Kh, an open subset Oh in P such that A+(h)∩A−(h) ⊆ Oh ⊆ Kh ⊂
U0 and
Kh ⊆ P \Cr(g0). From Kh ⊆ U0 follows that ĝn

i Kh ⊆ Oi for all i ∈ I. It follows
from Lemma 1.4 that there exists M1 = M1(dh) such that ĥmKi ⊆ Oh for all
m, |m| ≥ M1. Since Kh ⊆ P \Cr(g0) there exists a compact set K∗ ⊂ U0 such that
A+(g)∪A−(g) ⊆ K∗. By Lemma 1.4 there exists a positive integer M2 such that
ĥmK∗ ⊆ Oh for all all integers m, |m| ≥ M2. Put M = max{M1,M2}. Set g̃ =
hm then F̃ = F ∪ {g̃} is a g0–free system for m ≥ M .

Then from Definition 1.6 no.5 follows that for every open subset U ,
ĝ0

n(A+(g) ∪ A−(g)) ⊆ U ⊆ U0 and n > N2 for every i ∈ I and positive in-
teger m we have ĝm

i U ⊆ Oi. Lemma 1.4 now shows that there exists M =
M(d(n), U) such that ĝm(Ki) ⊆ U for all i ∈ I and m > M . Since elements g
and g0 are transversal elements g0 and gm

0 gng−m
0 are transversal for all integers

m and n. Combining the above arguments, we conclude that F̃ = F ∪ g̃ is a
g0–free system. ¤

Therefore we have the following important
Corollary 1.8. Let F , g0, g be as in Lemma 1.7. Let H be a subgroup of finite

index in G. Assume that x ∈ G and g ∈ xH. Then there are two infinite sets of
positive integers N and M such that g̃ = gn

0 gmg−n
0 ∈ xH and the set F̃ = F ∪ g̃

is a g0–free system for all n ∈ N , m ∈ M .

The proof is straightforward.
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Assume now that :

1. There exists a proximal element in G.
2. The Zariski closure G of G is a semisimple group.
3. G0 ∩G is an absolutely irreducible subgroup of GL(V ).

Then
Proposition 1.9. Let H be a subgroup of G. Assume that H contains a

proximal element and G0 ∩H is Zariski dense in G0. Then for every g ∈ G the
set gH ∩ Ω0(G) is nonempty.

Remark 1.10. This important proposition first was proved in [MS 3]. A

different proof of this proposition can be deduced from the main theorem in
[AMS].

The principal significance of the next theorem is in reduction to linear groups
over local fields which allows us to use all above arguments. First this reduction
was done in [T] for a finitely generated linear group where the Zariski closure is
connected. A reduction to linear groups over local field in the general case when
the Zariski closure is not necessarily connected is considerably more complicated.
Theorem 1.10. Let G be a finitely generated non virtually solvable linear group,

than there exist a local field k vector space W over k and irreducible representation
ρ : G −→ GL(W ) such that

1. There exists a proximal element in ρ(G).
2. The Zariski closure G of ρ(G) is a semisimple group.
3. G0 ∩ ρ(G) is an absolutely irreducible subgroup of GL(W ).

Since G is not virtually solvable, we can assume that the Zariski closure of G
is semisimple. The proof splits naturally into a few steps.

Since we can reduce our group by taking a factor-group by non-trivial con-
nected normal subgroup, it is easy to see that
Step 1. It is enough to prove our statement under the following assumption:

the Zariski closure of G is the wreath product F oG∗ where G∗ is a simple (non-
connected) algebraic group of an adjoint type and F is a finite group. The descrip-
tion of F o G∗ follows
F oG∗ = GF∗ o F where F acts on GF∗ by shift.

Step 2. Observe that it is enough to prove the statement of Theorem 1.10 for a

group G such that the Zariski closure of G is a simple algebraic (not necessarily
connected) group of adjoint type

Indeed by step 1 we can assume that our group is a wreath product F oG∗ where
G∗ is a simple (non-connected) algebraic group of an adjoint type and F is a
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finite group. In [AMS1, Theorem 5.17] we proved that if G is a direct product
G = Πm

1 Gi of semisimple groups such for every 1 ≤ i ≤ m there exists g(i) ∈ G

such the projection πi(g(i)) of g(i) is a proximal element in Gi then there exists an
element g ∈ G such that πi(g) is a proximal element for every 1 ≤ i ≤ m. Hence
if there exists a representation we need for G∗ taking the m-th tensor product
of this representation we have an irreducible representation of GF which we can
and will extend it to F oG∗. This representation has all the necessary properties.

Since the Zariski closure G is a simple group of adjoint type we will assume that
G ≤ Aut G0

Step 3. This step splits naturally into two cases:

Case1. The factor group G/G0 is cyclic.

Case 2. The factor group G/G0 is the symmetric group of degree 3

Since the proof of the statement in the case 2 may be handle in much the same
way as in case 1, for the sake of exposition we restrict ourselves to the case G/G0

is a cyclic group. By using standard arguments, we conclude that there exists a
non torsion element g ∈ G such that G is generated by G0∪{g}. Since G is finitely
generated, it follows from [T, Lemma 4.1] that there exists a local field k with
absolute value |· | vector space W over k and absolutely irreducible representation
ρ : G −→ GL(W ) such that ρ(g) is proximal. We claim that the group ρ(G0 ∩
G) = G1 is absolutely irreducible. Suppose the contrary. Let W̃ = W ⊗k k̃ and
W0 be a minimal G1 invariant proper subspace of W . Put x = ρ(g). Then there
exist integers i1, . . . , it such that W̃ = W0 ⊕Wi1 ⊕ · · · ⊕Wit where Wis = xisW0.
Since xn is a proximal element for all positive integer n ∈ Z, the eigenvector v cor-
responding to the maximal eigenvalue belongs to some Wi. Suppose for instance
v ∈ W0. Then xi1v ∈ Wi1 . Therefore xi1v and v are two different eigenvectors for
a proximal element x and correspond to the maximal eigenvalue, a contradiction.
Remark 1.12. In the reduction done in [T], Tits used an easy but crucial lemma

saying that for a finitely generated infinite group G there exists a local field k
with a absolute value | · | such that for some element g ∈ G at least one eigenvalue
has an absolute value 6= 1. This fact can be deduced from a natural and useful
generalization proved in [BG2, Lemma 2.1].

2. Dense free subgroups.
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For a start let us prove the Platonov problem.
Proof Observe that there exists a proximal element in SLn(Z). Indeed, let g be

a diagonal matrix g = diag (a1, . . . , an), ai > 0 ai ∈ R, a1 > a2 ≥ · · · ≥ an. Since
the action of the group generated by g on SLn(R)/SLn(Z) is ergodic, then by
well-known arguments [R] for every neighborhood of identity U ∈ SLn(R) there
exists an infinite set of positive integers M such that the intersection UgmU ∩
SLn(Z) 6= ∅,m ∈ M . From g ∈ Ω0 (SLn(R)) follows that there are a positive
integer M and a neighborhood of identity U,U ⊆ SLn(R) such that UgmU ⊆
Ω0 (SLn(R)) for m ≥ M . Let g0 ∈ Ω0(SLn(R))

⋂
SLn(Z). The group SLn(Z)

is absolutely irreducible; therefore there exists x ∈ SLn(Z) such that two ele-
ments h = xg0x

−1 and g0 are transversal. Consequently, there exists a positive
integer k such that {hk} is a g0 free system. Therefore we will assume that {h}
is a g0–free system. It is not difficult to show that there exists a g0–free sys-
tem F = {h1, . . . , hs} such that the group generated by F is Zariski dense in
SLn(R). Then [W] for n ≥ 3 the pro- finite closure F ∗ of F is subgroup of finite
index in SLn(Z). Let xiF

∗, i = 1, . . . , t be all different classes SLn(Z)/F ∗. By
Corollary 1.8, there exist elements hs+1, hs+t such that hs+i ∈ xiF

∗, i = 1, . . . , t
and F0 = {h1, . . . , hs, hs+1, . . . , hs+t} is a g0 –free system. It is clear that the
group generated by F0 is pro-finitely dense in SLn(Z) for n ≥ 3. Since the group
SLn(Z) is finitely generated there exists a maximal proper subgroup H which
contains F0. Obviously H is a maximal subgroup of SLn(Z). Assume that the
index SLn(Z)/H is finite. Then H is a proper pro-finitely dense open subgroup
of SLn(Z) which is impossible and the proof is completed.

Since a subgroup of a finite index of a finitely generated group is a finitely
generated group we reformulated [MS1] Platonov’s problem as following:
Conjecture (G. Margulis, G. Soifer) Let G = SLn(Z) and H be a maximal

subgroup of G. Assume that H is a finitely generated group, then the index G/H
is finite.

This conjecture is true for n = 2. Furthermore it is true if G is a lattice in SL2(R)
(see [SV]). Y. Glasner pointed out that SLn(Z) is a maximal subgroup of infinite
index of a lattice SLn(Z[1/p]). Nevertheless the above conjecture is still open for
n ≥ 3.

When our results were announced [MS 1] we received a letter from G.Prasad
with the following conjecture
Conjecture (G. Prasad, J. Tits) Every maximal subgroup of SLn(Z), n ≥ 3 of

infinite index is virtually free.

We show in [MS2] that there exists a not virtually free maximal subgroup of
an infinite index in SLn(Z) for n ≥ 4. Now we will show that for n = 3 this
conjecture is also not true. Recall that the group SL2(Z) is virtually free.
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Theorem 2.1. There exists a maximal subgroup of infinite index in SL3(Z) which

is not virtually free.

Proof. Let G = SL3(R) and Γ = SL3(Z). Let g1, g2 be two commuting elements
from Ω(Γ) which generate a free abelian group of rank 2 . Let e1, e2, e3 be their
eigenvectors corresponding to a three different eigenvalues. Consider the set Σ =
{t1e1 +t2e2 +t3e3,

∑3
1 ti = 1, ti ≥ 0, i = 1, 2, 3}. Let P (Σ) be the projectivization

of Σ and let ∂P (Σ) be the boundary of P (Σ). Let q (correspondingly, êi i =
1, 2, 3 ) be the point of P (Σ) which corresponds to the line span by the vector
1/3e1 + 1/3e2 + 1/3e3 (correspondingly, ei i = 1, 2, 3). Analysis similar to that
in Example 1 with a bit more routine calculations shows that elements g1 and g2

will fulfil following properties:

1. The boundary ∂L of the orbit L = Âq = {âq, a ∈ A} is a subset of ∂P (Σ)
2. Let Ui be a neighborhood of the point êi, i = 1, 2, 3. Then the set ∂L\(U1∪

U2 ∪ U3) is finite.

Hence there are two lines L1 and L2 in the projective space P such that ∂L ∩
Li = ∅ for i = 1, 2 and q = L1 ∩ L2. It is easy to see that there exists a positive
integer N and neighborhood W of the point q and a compact K0,W ⊆ K0 such
that ânK0 ∩ (L1 ∪ L2) = ∅ for all a ∈ A and |n| ≥ N . Let g0 be a hyperbolic
element of G such that B+(g0) = L1, B−(g0) = L2 and A+(g0) ∪ A−(g0) ⊆ W .
Put A0 =< gN

1 , gN
2 >. Then there exists a positive d such that the distance

mina∈A0 d( âK0, L1 ), d( âK0, L2 ) > d. Since the action of the subgroup group
generated by g0 on SL3(R)/SL3(Z) is ergodic, for every neighborhood U of the
identity in the group G there exists an infinite set of positive integers M such
that Ugr

0U ∩ Γ 6= ∅. Hence because for m ∈ M A+(gm) = A+(g), A−(gm) =
A−(g), B+(gm) = B+(g) and B−(gm) = B−(g) for every positive ε there exist
neighborhood U of the identity in the group G and positive integer M0 such that
if m ≥ M0 for every g ∈ Ugr

0U we have

1. g ∈ Ω0(G),
2. A+(g) ∪A−(g) ⊆ W ,
3. ∪n∈Z ânK0 ⊆ P \ (B+(g) ∪B−(g)).

Therefore we can and will assume that g0 ∈ Γ. Let g be an element from Γ
transversal to g0. It follows from (2) and (3) since A+(g0)∪A−(g0) ⊆ P\(B+(g)∪
B−(g)), that there exists a positive integer N0 such that for n ≥ N0 we have
g−n
0 ∪n∈Z ânK0g

(n)0 ⊆ P\(B+(g)∪B−(g)). Hence there exists a positive integer
N0 such that for n ≥ N0 we have B+(gn

0 gg−n
0 ) ∪ B−(gn

0 gg−n
0 ) ⊆ P\∪n∈Z ânK0.

Repeated application of Corollary 1.8 enables us using an arguments from [SV]
to claim that there exists a finite g0 –free system F = {fi, 1 ≤ i ≤ m} such that
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1. The group generated by F is pro-finitely dense in Γ.
2. A+(fi) ∪A−(fi) ⊆ W for every i, 1 ≤ i ≤ m.
3. d(ânK0, (B+(fi) ∪B−(fi)) > d/2 for every 1 ≤ i ≤ m and a ∈ A0.

Indeed, assume that f ∈ Ω(Γ) is an element transversal to g0. Since for every
neighborhood U of A−(g0) there exists a positive integer N0 such that for all n ≥
N0 we have ĝ−n0(∪n∈Z ânK0) ⊆ U . Therefore if U ∈ P \ (B+(f) ∪ B−(f)) then
ĝ−n0(∪n∈Z ânK0) ⊆ P \ (B+(f) ∪ B−(f)) for n ≥ N0. Hence ∪n∈Z ânK0 ⊆ P \
(B+(gnfg−n) ∪ B−(gnfg−n)) for n ≥ N0. As we proved in [SV] there exists a
finite set of elements f1, . . . , fk such that the Zariski closure of the group < fs > is
connected for every 1 leqs ≤ k and the pro-finite completion of the group F1 =<
f1, . . . , fk > is a subgroup of a finite index in Γ. It follows from Lemma 1.7 that
we can and will assume that f1, . . . , fk is a g0–free system and fulfil property no3.
Let T1, ,̇Tr be all different co-sets Γ/F1. Repeated arguments above enabled us
to show that there are elements fk+1, . . . , fk+r such that the set f1, . . . fk+r is a
g0–free system which fulfil properties no1,2,3.
It follows from no.3 that there exists a compact KN such that ∪n∈ZânK0 ⊆ KN

and d(KN , B+(fi) ∪B−(fi)) > d/4. It follows from Lemma 1.4 that there exists
a positive number N1 such that fn

i KN ⊆ W for all n ≥ N1. Set ni = 2N1 for
i = 1, . . . , k and ni ≥ N1, f

ni
i ∈ Mi for i = k + 1, . . . , k + r. Then the group

F =< fn1
1 , . . . f

nk+r

k+r > is a free subgroup which is pro-finitely dense in Γ such
that f̂KN ⊆ W for every f ∈ F . Hence the group generated by A0 and F is
a free product A0 ∗ F . Therefore a maximal subgroup of Γ which contains the
group generated by A0 and F̃ will be a maximal subgroup of Γ. This subgroup
will be of infinite index since the group generated by F̃ is pro-finitely dense. This
subgroup contains a free abelian group A0 of rank 2. Hence it is not virtually
free. ¤

There are some other results in the spirit of the statement of Theorem 2.1, see
for example [S], [V].

Let G be a subgroup of GLn(k) where k is a local field. The full linear group
GLn(k) and hence any subgroup of it is endowed with the standard topology that
is the topology induced from the local field k. We will denote by ‖ · ‖ a norm on
GLn(k) induced from the local field absolute value | · |. Let S = {s1, . . . , sm, si ∈
GLn(k)} be a finite set. Put S(ε) = {(ŝ1, . . . , ŝm) such that ‖ŝi − si‖ ≤ ε for all
1 ≤ i ≤ m and ε > 0}. Assume that Γ is a finitely generated dense subgroup
of a connected semisimple group G, G ≤ GLn(k). We claim that there exists
ε0 such that for every ε < ε0 the group generated by the set {ŝ1, . . . , ŝm} where
(ŝ1, . . . , ŝm) ∈ S(ε) is dense in G (see [BG2, 5.1]). Indeed, there exist a finite
set S1 = {g1, . . . , gl} where l = dim G and ε1 such that if ‖ĝi − gi‖ ≤ ε1 for i =
1, . . . , l then the group generated by Ŝ1 = {ĝ1, . . . , ĝl} is dense in G. Since Γ is
dense in G then there exist elements γ̂i ∈ Γ such that ‖γ̂i− gi‖ ≤ ε1/2 for all i =
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1, . . . , l. Then γ̂i = wi(s1, . . . , sm). Consider maps wi : G× · · · ×G︸ ︷︷ ︸
m

−→ G where

i = 1, . . . , l. There exists an ε such that if ‖ŝi − si‖ ≤ ε for all i = 1, . . . , l then
‖wi(ŝ1, . . . , ŝm) − wi(s1, . . . , sm)‖ ≤ ε1 and therefore ‖wi(ŝ1, . . . , ŝm) − gi‖ ≤ ε1

for all i = 1, . . . , l. Hence the group generated by the set {ŝ1, . . . , ŝm} will be
dense in G.

E. Breuillard and T. Gelander proved in [BG2] the following topological Tits
alternative.
Theorem 2.2 [BG2]. Let k be a local field and Γ a subgroup of GLn(k). Then Γ

contains either open solvable subgroup or a dense free subgroup.

Note that for a non discrete subgroup Γ the two cases are mutually exclusive.
Hence if Γ a dense subgroup of a semisimple connected Lie group G, then for any
set
S = {γ1, . . . , γm} of generators of Γ there exists an ε0 such that for every ε ≤ ε0

there exists Ŝ = (γ̂1, . . . , γ̂m) ∈ S(ε) ∩ Γ× · · · × Γ︸ ︷︷ ︸
m

such that the group < Ŝ > is

free and dense in G. For a compact connected Lie group one can deduce this fact
for a from [S, Proposition 4.5].

Let G be a connected compact group Lie. Then the set of torsion elements of
G is dense in G. Therefore for every ε and any set of generators S = {γ1, . . . , γm}
of a subgroup Γ there exists (γ̂1, . . . , γ̂m) ∈ S(ε) such that the group generated by
Ŝ = {γ̂1, . . . , γ̂m} is not free because it contains torsion. On the other hand every
finitely generated linear group has a subgroup of a finite index without torsion.
Therefore we state the following
Conjecture. (G. Margulis, G. Soifer.) Let G be a non solvable connected Lie

group. Assume that the subgroup of G generated by a set S = {s1, . . . , sm} is a
free dense subgroup. Then for every ε there exists (s∗1, . . . , s

∗
m) ∈ S(ε) such that

the group generated by the set S∗ = {s∗1, . . . , s∗m} is not virtually free.
This conjecture first was stated for a compact group and it was proved recently

by T.Gelander. His results show that it will interesting to answer to the following
Problem. Let G be a connected Lie group let F be a free dense subgroup of G

generated by a set S = {s1, . . . sn}. Is it true that for every dense subgroup Γ of
G and every ε there exists a set {γ1, . . . , γn} such that {γ1, . . . , γn} ⊆ S(ε) and
< γ1, . . . , γn >= Γ.

3. Euclidean crystallographic semigroups.
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Recall that a semigroup S acts properly discontinuously on a topological space
X if for every compact subset K ⊆ X the set {s ∈ S|sK ∩ K 6= ∅} is finite.
A semigroup S is called crystallographic if it acts properly discontinuously and
there exists a compact subset K0 ⊆ X such that ∪s∈SsK0 = X. In the case when
X = Rn and S ⊆ Isom X, S is called a Euclidean crystallographic semigroup.

In this section we will prove the following conjecture due to G.Margulis.
Conjecture Let S be an Euclidean crystallographic semigroup, then S is a group.

Here is a scenario of our proof of the above conjecture. The main idea of the
proof is to show that the Zariski closure G of a semigroup S does not contain a
free subgroup. We prove this using our ideas and results from [S]. Therefore by
the Tits’ alternative G is a virtually solvable group. Hence the linear part of G is
a compact virtually solvable group. Consequently the linear part of G is virtually
abelian. Combining this with the fact that S acts properly discontinuously, we
show that every element in S is invertible. Thus S is a group.

Let us recall some necessary definitions . Let G = Aff Rn be the group of all
affine transformation of the n–dimensional real affine space Rn. This group is
the semidirect product of GLn(R) and the subgroup of all parallel translations
which can be identified with Rn, i.e,

AffRn = Rn oGLn(R).

We will consider the natural homomorphism

` : AffRn −→ GLn(R),

and because the group AffRn is semidirect product we have for every element g ∈
AffRn the decomposition

g = vg `(g), vg ∈ Rn, `(g) ∈ GLn(Rn).

Let q be a positive definite quadratic form on Rn. Then

IsomRn = {g ∈ AffRn : q(`(g)(x)) = q(x)}.
Hence if g ∈ IsomRn then `(g) ∈ O(q). Let g ∈ IsomRn and let V 0(g) = {v ∈
Rn : `(g)v = v}. Recall that an element g of an algebraic group G, G ⊆ GLn(R)
is called regular if and only if

dimV 0(g) = min
x∈G

V 0(x).

Let g ∈ AffRn then there exists the maximal g –invariant affine space A0(g) of
Rn such that g induces a translation on it. This translation can be zero and in
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that case all points in A0(g) are fixed points. It is easy to see that if we define
the vector v0(g) as follows: consider a point x ∈ A0(g) put

v0(g) =
gx− x

‖gx− x‖
then this vector does not depend on x. We define v0(g) = 0 if there exists
a g–fixed point. For every set of vectors X in Rn there is a smallest convex
cone CX such that X ⊆ CX . Therefore for every semigroup S ⊆ IsomRn there
exists the convex cone C(S) defined as C(S) = CX , where X = {v0(g), g ∈
S, `(g) is a regular element of the group `(S)}. Let V 0(S) be the subspace gen-
erated by the set {V 0(g)}g∈S . Assume that there is no non-trivial S–invariant
affine subspaces of the affine space Rn then
Lemma 3.1. V 0(S) = Rn.

Proof. It immediately follows from [S, Lemma 4.1] that V 0(S) is an `(S)–invariant
subspace of the vector space Rn. This subspace is non-trivial because S acts
properly discontinuously. Since the closure `(S) is a reductive group, there exists
an `(S)–invariant subspace W of Rn such that V 0(S) ⊕W = Rn. Assume that
W 6= {0}. We have the natural projection of the affine space Rn onto to the
affine space A1 = Rn/V 0(S) along V 0(S) and hence an induced homomorphism
ρ : S → Isom A1. Let `(ρ(g)) be the linear part of ρ(g). Since V 0(g) ⊆ V 0(S)
there exists a fixed point for every element ρ(g), g ∈ S. Therefore the closure
of the group generated by ρ(g) is compact for every g ∈ S. Thus the group
ρ(S) is compact. Hence there exists a ρ(S)–fixed point p0 in A1 . Consequently
p0+V 0(S) is non-trivial proper S–invariant affine subspace. Contradiction which
proves the lemma. ¤

Consider the closure C(S) of the cone C(S) in Rn. Our next goal is to prove
Lemma 3.2 Let S be a crystallographic semigroup. Then C(S) = Rn.

Proof. By [S, Lemma 4.1] it is enough to prove that C(S) = Rn. To obtain a
contradiction assume that C(S) 6= Rn. Then there exists a non-zero vector v0 in
Rn such that the scalar product (v, v0) ≤ 0 for all v ∈ C(S) and there is a vector
ṽ ∈ C(S) such that (ṽ, v0) < 0. It follows from our assumption and Lemma 3.1
that there exists an element s0 ∈ S such that V 0(s0)  C(S). Let v∗ be a vector
from V 0(s0) such that (v∗, v0) > 0.
Let K be a compact subset in Rn such that ∪s∈S sK = Rn. Fix a point p0 in K.
It is clear that if pm is a point of Rn, where pm = p0 + mv0 and m is a positive
number, then there exists sm ∈ S such pm ∈ smK. Therefore for every point p ∈
K

lim
m→∞

smp− p

‖smp− p‖ = v∗. (3.1)
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Consider the subset {`(sm)}m∈N of the compact group O(q). We can and will
assume that this sequence is converge to some element g0 of the closure `(S)
in O(q). Put g1 = `(s0)g−1

0 . Since g1 ∈ `(S) there is a sequence {sm}m∈N of
elements from S such that the sequence {`(sm)}m∈N converges to g1. We can
assume that for every point p ∈ K we have

lim
m→∞

‖sm(p)− p‖
‖smp− p‖ = 0. (3.2)

Define tm = smsm for all positive integers m. Let us show, that

lim
m→∞(v0(tm), v0) > 0. (3.3).

Indeed, let qm = s−1
m p0 and let vm be a vector vm = tmqm − qm/‖tmqm − qm‖.

Since tmqm− qm = tmp0− p0 + smqm− qm and ‖smqm− qm‖ = ‖smp0− p0‖ from
(3.2) follows that

lim
m→∞ vm = v∗. (3.4).

The sequence {`(sm)}m∈N converges to g1. Therefore the sequence {`(tm)}m∈N
converges to `(s0). Thus the sequence {V 0(tm)}m∈N converges to the subspace
V 0(t). Now we use the following idea. Let g be an euclidian transformation and
let πg : Rn −→ A0(g) be the orthogonal projection onto A0(g). Then for every
point x of Rn we have πg(gx−x) = αv0(g) where α = ‖πg(gx−x)‖. Consequently
because the sequence {V 0(tm)}m∈N converges to the subspace V 0(t) from (3.4)
follows that limm→∞ v0

m = v∗. Hence limm→∞(v0(tm), v0) > 0.. On the other
hand, v0(tm) ∈ C(S). Therefore (v0(tm), v0) ≤ 0. Contradiction which proves
the lemma. ¤

We will use the following fact proved in [S, Proposition 4.5].
Proposition 3.3. Let S be a subsemigroup of Isom Rn. Assume that `(S) is a

connected non-solvable group. Then for every finite set g1, . . . , gm ⊆ S such that
v0(gi) non-zero for all i, 1 ≤ i ≤ m, and every positive ε, ε < 1, ε ∈ R, there are
elements g∗1, . . . , g

∗
m ⊆ S such that

(1) Semigroup generated by g∗1, . . . , g
∗
m is free and g∗1, . . . , g

∗
m are free genera-

tors,
(2) (v0(g∗i ), v

0(gi)) > 1− ε for all i, 1 ≤ i ≤ m.

Proposition 3.4. Let S be a crystallographic semigroup, then the Zariski closure
G of S is a virtually solvable group.

Proof. On the contrary assume that the group G is not virtually solvable. With-
out loss of generality we can assume that the group G is connected. It follows
from Lemma 3.1 and Lemma 3.2 that there exists a finite subset {s1, . . . , sm} of
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S such that convex hole of the set {v0(s1), . . . , v0(sm)} is Rn. Hence there exists
a positive real number ε, ε < 1 such that if vectors w1, . . . , wm are taken such
that (wi, v

0(si)) ≥ 1− ε then the convex hole of the set {w1, . . . , wm} is Rn. Let
s0 be any element of S such that v0(s0) 6= 0. It follows from Proposition 3.3 that
there exists a subset s∗0, s

∗
1 . . . , s∗m such that

(1) subgroup generated by the subset {s∗0, s∗1 . . . , s∗m} is free and s∗0, s
∗
1 . . . , s∗m

are free generators,
(2) convex hole of the set {v0(s∗1), . . . , v

0(s∗m)} is Rn.

Since the convex hole of the set {v0(s∗1), . . . , v
0(s∗m)} is Rn, there exists a positive

real number δ = δ(s∗1 . . . , s∗m) such that for arbitrary unite vector v ∈ Rn and
some vector vi0 , 1 ≤ i0 ≤ m we have cos ](v, vi0) ≤ −δ. Let xi ∈ A0(s∗i ) be
a point i, 1 ≤ i ≤ m. Put li = ‖s∗i xi − xi‖ for each i, 1 ≤ i ≤ m . Set l =
max1≤i≤m li. Fix a point p0 ∈ Rn. Let p be a point of Rn. It is easy to see
that there exist positive integers j, 1 ≤ j ≤ m and kj such that d((s∗j )

kjp, p0) ≤√
1− δ2d(p, p0) + 1

2 l. Assume that the euclidian distance d(p, p0) > 2l
δ2 . Then

there is a positive number θ = θ(δ) ≤ 1 such that if d(p, p0) ≥ 2l
δ2 we have

d((s∗j )
mjp, p0) ≤ θd(p, p0). (3.5)

Let us now define the following infinite set of disjoint subsets Sj of S. Let S∗

be a subsemigroup generated by the set {s∗1 . . . , s∗m}. Put Sj = S∗sj
0. Let dj =

mins∈Sj d(sp0, p0). By (3.5) we have that dj ≤ l. Since subsets Sj are disjoint the
intersection B(p0, 2l/δ2)∩Sj is non-empty for every positive integer j. Therefore
the semigroup S does not acts properly discontinuously on Rn. Contradiction. ¤

Now we will prove the Margulis conjecture.
Proof. Let G be the Zariski closure of the semigroup S. Let us show that G ∩
Rn is a finite index subgroup in G. It is enough to show that if the group G
is connected then G ⊆ Rn. From Proposition 3.4 follows that the group `(S) is
solvable. This group is compact and connected, therefore it is an abelian group. It
is well known that a finitely generated linear group contains torsion free subgroup
of a finite index. Therefore by above arguments we can and will assume that S
is torsion free. Thus for two different regular elements s1 and s2 from S we have
V 0(s1) = V 0(s2). Then by lemma 3.1 V 0(s) = Rn for every regular element of S.
Consequently for every element s ∈ S we have `(s) = 1. Therefore the connected
component G0 ⊆ Rn.

Let S0 = G0 ∩ S. It follows from Lemma 3.2 since G0 is a subgroup of finite
index in G that C(S0) = Rn. On the other hand the semigroup S0 contains
only translations and acts properly discontinuously. Therefore S0 is a group. It
is clear that if a subsemigroup of finite index in semigroup is a group then the
semigroup is a group which proves the statement.
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