Pure and Applied Mathematics Quarterly Volume 3, Number 4 (Special Issue: In honor of Grisha Margulis, Part 1 of 2) 987—1003, 2007

Free Subgroups of Linear Groups

G.A. Soifer

To Gregory Margulis in his birthday

In the celebrated paper [T] J. Tits proved the following fundamental dichotomy for a finitely generated linear group :

Let G be a finitely generated linear group over an arbitrary field. Then either G is virtually solvable or G contains a free non-abelian subgroup.

His proof of this alternative based on geometrical ideas came form Schottky groups. Recall that a Schottky group G is a group of fractional linear transformations of the hyperbolic plane \mathbb{H}^2 generated by a set of hyperbolic elements $S = \{g_i, i \in I\}$ and has the following property : there exist disjoint subsets $D_i^{\pm}, i \in I$ and D^0 of \mathbb{H}^2 such that for every $i \in I$:

1.
$$g_i^n(\bigcup_{j \in I, j \neq i} D_j^{\pm} \cup D^0) \subseteq D_i^+$$
 for $n > 0$
2. $g_i^n(\bigcup_{j \in I, j \neq i} D_j^{\pm} \cup D^0) \subseteq D_i^-$ for $n < 0$.

Note that from the definition immediately follows that the group G is a free group with free generators $g_i, i \in I$. Indeed, let $g = g_{i_1}^{m_1} \dots g_{i_k}^{m_k}$ be any reduced word. Take $p \in D^0$, then $gp \in D_{i_1}^{\pm} \subseteq \mathbb{H}^2 \setminus D^0$. Therefore $g \neq 1$.

One of the main purposes of the present work is to show how the beautiful ideas of Tits were developed in our joint works with G. Margulis [MS1], [MS2], [MS3]. Our interest to free subgroups of linear groups was initiated by the following *Problem 1* (V. Platonov) Does there exist a maximal subgroup of infinite index

in $SL_n(\mathbb{Z})$ for $n \geq 3$?

We proved in [MS1] that the answer is positive. Actually we proved that

Received April 11, 2006.

Let G be a finitely generated linear group over an arbitrary field. Then either G is polycyclic or G contains a maximal subgroup of infinite index. We proved this as a corollary of the following theorem:

Let G be a finitely generated linear group over an arbitrary field. If G is not virtually solvable then G contains a pro-finitely dense free subgroup.

We remark that questions about existence of a dense free subgroup in topological groups are very important and leads to a many deep consequences (see for example [BG2]).

Conjecture ([DPSS], [P]). Let G be a finitely generated linear group and let \widehat{G} be

a pro-finite completion of the group G. Assume that G contains a free subgroup. Then does \widehat{G} contain a finitely generated pro-finitely dense free subgroup?

E. Breuillard and T. Gelander proved this conjecture in [BG2]

A. Shalev asked me a slightly different question. Namely Problem 2 (A. Shalev). Let G be a finitely generated linear group and let \hat{G} be

the pro-finite completion of the group G. Assume that G contains a free subgroup. Does G contain a finitely generated free subgroup which is pro-finitely dense in \widehat{G} ?

In general an answer to this question is negative. For example it is not true if G is a lattice in a semisimple Lie group of real rank 1. But for lattices in higher rank semisimple groups the answer is positive [SV].

Several resent very interesting results [BG1],[BG2],[GGI] were proved under the influence of [MS3]. Therefore we decided to use this opportunity to explain some modifications of the concept, ideas and proofs from this paper together with further development done in our works [AMS1], [AMS2]. Based on this, we will give a short proof of Platonov's problem, construct a new counterexample to a Prasad-Tits conjecture and state some new and recall some old problems.

In the last section we will complete a proof of the following:

Conjecture (G. Margulis) Let S be a crystallographic semigroup, then S is a group.

Our proof of the above conjecture is based on existence of a free subgroup in the Zariski closure of S with some additional geometric properties. This step was done in [S].

We will use standard definitions of algebraic group theory, Lie group theory and group theory (see [B], [H], [R]). The letters $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}_p$ denotes respectively the set of integers, rational, real, complex and *p*-adic numbers. The index of a subgroup *H* of a group *G* will be denoted by |G/H|. If *G* is a group and $S \subseteq G$, then by $N_S(G)$ (resp. $C_S(G)$) we denote the normalizer (resp. centralizer) of *S* in *G*. By $\langle S \rangle$ we denote the subgroup of *G* generated by *S*. We denote as usual

988

by GL_n and SL_n the group of invertible and unimodular n by n matrices. An algebraic subgroup of GL_n defined over a field k is called an algebraic k-group or a k-group. The set of all k-points of an algebraic variety W will be denoted by W(k). If $\varphi: G \longrightarrow H$ is a k-rational homomorphism of k-groups G and H and the field l is an extension of k then the natural homomorphism $\varphi(l): G(l) \longrightarrow H(l)$ will be denote by φ as well. Let V be a finite dimensional vector space. A subgroup G of GL(V) is called irreducible if there is no proper G invariant subspace of V. Accordingly, we call a representation $\rho: G \longrightarrow GL(V)$ irreducible if the image $\rho(G)$ is a irreducible subgroup of GL(V). A representation $\rho: G \longrightarrow GL(V)$ is called strongly irreducible if for every subgroup H of finite index of G the group $\rho(H)$ is irreducible. If k is a local field and W is an algebraic k-variety then W(k) has two natural topologies, namely induced by the topology of k and by the Zariski topology of W. In case it will be necessary to avoid confusion the second topology will be distinguished by the prefix "k" i.e., k-open, k-dense etc.

G. Margulis became my official adviser in the mid 70's At that time in the former USSR such a step was really non-trivial and might have had many repercussions. I want to express here my deep gratitude to Grisha Margulis for all he gave me as a teacher and as a friend.

Acknowlegment: The author would like to thank several institutions and foundations for their support during the preparation of this paper: SFB 701 in Bielefeld University, ENI in Bar-Ilan University, Yale University, NSF under grant DMS 0244406, USA- Israel Binational Science foundation under BSF grant 2004010,

1. Ping -Pong and free subgroups.

We will start from the following proposition which actually comes from Schottky groups and the proof based on the same arguments.

Lemma 1.1. Let G be a group acting on a set X. Let $S = \{H_i, i \in I\}$ be a collection of subgroups of G and let $\{X_i\}_{i \in I}$ be a set of disjoint subsets of X and let x_0 be a point, $x_0 \in X$. Assume that

- 1. $x_0 \in X \setminus \bigcup_{i \in I} X_i$
- 2. $h_i(\bigcup_{j \in I, j \neq i} X_j) \subseteq X_i$ for all $h_i \in H_i$ and $i \in I$,
- 3. $h_i x_0 \in X_i$ for all $h_i \in H_i$ and $i \in I$.

Then the group $\langle S \rangle$ is a free product of groups $H_i, i \in I$.

Corollary 1.2 (Ping-Pong Lemma). Let G, X, $S = \{H_i, i \in I\}, \{X_i\}_{i \in I}$ and x_0

be as in Lemma 1.1. Assume that for every $i \in I$, H_i is an infinite cyclic group generated by some element h_i . Then $\langle S \rangle$ is a free group and $h_i, i \in I$ are free generators.

It is easy to see that the following statement is true. Lemma 1.3. Let G be a group and $\rho: G \longrightarrow H$ be a homomorphism of a group. Let $S = \{h_i, i \in I\}$ be free generators of a free group $\langle S \rangle$. Assume that for every $i \in I$ we choose $g_i \in G$ such that $\rho(g_i) = h_i$. Then the group generated by $\{g_i, i \in I\}$ is free and $\{g_i, i \in I\}$ are free generators.

Let V be a finite dimensional vector space over a local field k with absolute value $|\cdot|$ and let $P = \mathbb{P}(V)$ be the projective space based on V. Let $g \in GL(V)$ and let $\chi_g(\lambda) = \prod_{i=1}^n (\lambda - \lambda_i) \in k[\lambda]$ be the characteristic polynomial of the linear transformation g. Set $\Omega(g) = \{\lambda_i : |\lambda_i| = \max_{1 \le j \le n} |\lambda_j|\}$. Put $\chi_1(\lambda) = \prod_{\lambda_i \in \Omega(g)} (\lambda - \lambda_i)$ and $\chi_2(\lambda) = \prod_{\lambda_i \notin \Omega(g)} (\lambda - \lambda_i)$. Since the absolute value of an element is invariant under Galois automorphism then χ_1 and χ_2 belong to $k[\lambda]$. Therefore $\chi_1(g) \in GL(V)$ and $\chi_2(g) \in GL(V)$. Let us define by A(g) (resp. B(g)) the subspace of P corresponding to ker($\chi_1(g)$) (resp. ker($\chi_2(g)$)). Put $Cr(g) = B(g) \cup B(g^{-1})$. Recall that $g \in GL(V)$ is called proximal if A(g) is a point. A proximal element g has a unique eigenvalue of maximal absolute value hence this eigenvalue has algebraic and geometric multiplicity one. For $S \subseteq GL(V)$ set $\Omega_0(S) = \{g \in S : g \text{ and } g^{-1} \text{ are proximal}\}$. We will often use for an element $g \in \Omega_0(GL(V))$ the following notation $A(g) = A^+(g)$, $B(g) = B^+(g)$, $A(g^{-1}) = A^-(g)$ and $B(g^{-1}) = B^-(g)$.

For an element $g \in \Omega_0(GL(V))$ the dynamics of the group $\langle g \rangle$ are very transparent. Let us formulate their properties in terms of the projective map \hat{g} induced by g on the projective space P. Namely, the sequence of maps \hat{g}^n where n is positive integer converges to a map sending all points in $P \setminus B(g)$ to the point A(g)and the sequence $(\hat{g}^{-1})^n$ where n is positive integer converges to a map sending all points in $P \setminus B(g^{-1})$ to the point $A(g^{-1})$. This easily follows from the next Lemma 1.4. Let $g \in \Omega_0(GL(V))$ and let K be a compact subset of $P \setminus B(g)$. Let d be the distance between the two compact subsets K and B(g). Assume that Uis an open subset in P such that $A(g) \in U$. Then there exits a positive integer

To illustrate the dynamics of a subgroup let us conceder the following *Example 1*. Let $G = SL_3(\mathbb{R})$. Let g_1 and g_2 be two diagonal matrixes where

N = N(U, d) such that $\widehat{g}^n K \subseteq U$ for all $n \geq N$.

 $g_1 = diag(\alpha, \alpha^{-1}, 1), \alpha > 1$ and $g_2 = diag(1, \alpha, \alpha^{-1}), \alpha > 1$. Let A be the abelian group generated by $\{g_1, g_2\}$. Clearly A is a free abelian group of a rank 2. Let $A_N = \{g_1^n g_2^m, |n| \ge N, |m| \ge N\}$. Put $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$.

Consider the set $\Sigma = \{t_1e_1 + t_2e_2 + t_3e_3, \sum_{i=1}^{3} t_i = 1, t_i \geq 0, i = 1, 2, 3\}$. Let $P(\Sigma)$ be the projectivization of Σ and let $\partial P(\Sigma)$ be the boundary of $P(\Sigma)$. Let q (correspondingly, $\hat{e}_i i = 1, 2, 3$) be the point of $P(\Sigma)$ which corresponds to the line span by the vector $1/3e_1+1/3e_2+1/3e_3$ (correspondingly, e_i i = 1, 2, 3). The boundary ∂L of the orbit $L = \widehat{A}q = \{\widehat{a}q, a \in A\}$ is a subset in $\partial P(\Sigma)$. Let us give some explanation how to understand what will be the set of a limit points. Let $\{g\}_{i\in\mathbb{N}}$ be a sequence of elements from A, then $g_i = g_1^{n_i} g_2^{m_i}$. Since we are looking for a limit points of the set $\{\widehat{g}_iq\}_{i\in\mathbb{N}}$ in the projective space we can assume that $q = diag\{\alpha^{n_i+m_i}, \alpha^{-n_i+2m_i}, 1\}$. Assume that $n_i > 0, m_i > 0$. Let k be an integer such that $m_i = 2n_i + k_i$. There are three possibilities : $k_i \to \infty$ (1), $k_i \to -\infty$ (2) and $k_i \to \kappa$, (3) when $i \to \infty$. Then the sequence of projective transformations \hat{g}_i converge to the quasi projective transformation (see the definition in H.Abels in this volume) $\tilde{g}_1 = diag\{1, 0, 0\}$ in the case (1), $\tilde{g}_2 = diag\{0, 1, 0\}$ in the case (2) and $\tilde{g}_3 = diag\{\alpha^k, 1, 0\}$ in the case (3). Conceder this maps as a projections $\pi_i, i = 1, 2, 3$ of the space \mathbb{R}^3 . Then the sequence $\{\widehat{g}_iq\}_{i\in\mathbb{N}}$ can converge to the points $\pi_i q, i = 1, 2, 3$. It is not difficult to see that for every ε there exists N = $N(\varepsilon)$ such that if $a \in A_N$ then $d(\widehat{a}q, \partial L) \leq \varepsilon$ and if U_1 (respectively U_2, U_3 be a neighborhood of the point \hat{e}_1 , (respectively \hat{e}_2 , \hat{e}_3) then the set $\partial L \setminus (U_1 \cup U_2 \cup U_3)$ U_3) is finite.

We will say that two elements $g \in \Omega_0(GL(V))$ and $h \in \Omega_0(GL(V))$ are transversal if $A(g) \cup A(g^{-1}) \subseteq P \setminus Cr(h)$ and $A(h) \cup A(h^{-1}) \subseteq P \setminus Cr(g)$. The simple consequence of Lemma 1.4 is the following

Lemma 1.5. Let $S = \{g_1, \ldots, g_m\}$ be a subset of $\Omega_0(GL(V))$ such that g_i and g_j

are transversal for every $i, j \in n$. Then there exists a positive integer N such that for every sequence of positive integers k_1, \ldots, k_m , such that $k_t \geq N$ for allall t with $1 \leq t \leq m$ the set $S(k) = \{g_1^{k_1}, \dots, g_m^{k_m}\}$ is freely generates of the free group with

 $\langle S(k) \rangle$.

Definition 1.6. Let G be a subgroup of GL(V) and $g_0 \in \Omega_0(G)$. We say that

the set $F = \{g_i \in G, i \in I\}$ is a g_0 -free system for G (or simply g_0 -free system if it is clear which group is considered) if $g_i \in \Omega_0(G)$ for all $i \in I$ and there exists a set of open subsets $O = \{O_i = O_i(F), O_i \subseteq P, i \in I\}$, a set of disjoint compact sets $K = \{K_i = K_i(F), K_i \subseteq P, i \in I\}$, an open $U_0 = U(g_0)$ and a compact subset K_0 of P such that

- $$\begin{split} &1. \ A(g_i) \cup A(g_i^{-1}) \subseteq O_i \subseteq K_i \ \text{for all} \ i \in I, \\ &2. \ A(g_0) \cup A(g_0^{-1}) \subseteq U_0 \subseteq K \\ &3. \ \inf_{i \in I} d(\underline{K_i, Cr(g_0)}) > 0, \end{split}$$

- 4, $K \subseteq P \setminus \overline{\bigcup_{i \in I} K_i}$
- 5. $\widehat{g}_i^n K_j \subseteq O_i$ for every $i, j \in I, i \neq j$ and non-zero $z \in \mathbb{Z}$.
- 6. $\widehat{g}_i^n K \subseteq O_i$ for every $i \in I$ and non-zero $z \in \mathbb{Z}$.

From this definition immediately follows that the group generated by a g_0 -free system F is free and elements of F are free generators.

Lemma 1.7. Let a finite subset F of G be a g_0 -free system. Let g be an element from Ω transversal to g_0 and to every element from F. Then there are two positive integers N such that for every n > N there exists a positive integer M = M(n) such that if $\widehat{g} = g_0^n g^m g_0^{-n}$, then $\widetilde{F} = F \cup \widetilde{g}$ is a g_0 -free system for all m > M.

Proof. Let $d_1 = d(A^+(g) \cup A^-(g), Cr(g_0))$ and let $d_2 = \inf_{i \in I} d(K_i, Cr(g_0))$. Put $d_0 = 1/4 \min(d_1, d_2)$ and let $B(A^-(g_0, d_0))$ be a ball of radius d_0 with center in $A^-(g_0)$. It follows from Lemma 1.4 that there exists a positive integer $N_1 = N_1(d_0, B(A^-(g_0), d_0))$ such that $\hat{g}_0^{-n}K_i \subseteq B(A^-(g_0), d_0)$ for all positive $n > N_1$. Since $A^+(xgx^{-1}) = \hat{x}A^+(g), A^-(xgx^{-1}) = \hat{x}A^+(g)$ and $Cr(xgx^{-1}) = \hat{x}Cr(g)$, then $\overline{\bigcup_{i \in I} K_i} \subseteq P \setminus Cr(g_0^n gg_0^{-n})$ for all $n > N_1$. Set $d(n) = d(\overline{\bigcup_{i \in I} K_i}, Cr(g_0^n gg_0^{-n}))$. By Lemma 1.4 there exists a positive integer $N_2 = N_2(d_0, U_0)$ such that $\hat{g}_0^{-n}(A^+(g) \cup A^-(g)) \subseteq U_0$ for all $n > N_2$. Two elements g and g_0 are transversal, therefore two elements $g_0^n gg_0^{-n}$ and g_0 are transversal for all $n \ge N$ set $h = g_0^n gg_0^{-n}$ and $d_h = d(n)$. There exists a compact subset K_h , an open subset O_h in P such that $A^+(h) \cap A^-(h) \subseteq O_h \subseteq K_h \subset U_0$

 $K_h \subseteq P \setminus Cr(g_0)$. From $K_h \subseteq U_0$ follows that $\widehat{g}_i^n K_h \subseteq O_i$ for all $i \in I$. It follows from Lemma 1.4 that there exists $M_1 = M_1(d_h)$ such that $\widehat{h}^m K_i \subseteq O_h$ for all $m, |m| \ge M_1$. Since $K_h \subseteq P \setminus Cr(g_0)$ there exists a compact set $K^* \subset U_0$ such that $A^+(g) \cup A^-(g) \subseteq K^*$. By Lemma 1.4 there exists a positive integer M_2 such that $\widehat{h}^m K^* \subseteq O_h$ for all all integers $m, |m| \ge M_2$. Put $M = \max\{M_1, M_2\}$. Set $\widetilde{g} = h^m$ then $\widetilde{F} = F \cup \{\widetilde{g}\}$ is a g_0 -free system for $m \ge M$.

Then from Definition 1.6 no.5 follows that for every open subset U, $\widehat{g_0}^n(A^+(g) \cup A^-(g)) \subseteq U \subseteq U_0$ and $n > N_2$ for every $i \in I$ and positive integer m we have $\widehat{g}_i^m U \subseteq O_i$. Lemma 1.4 now shows that there exists M = M(d(n), U) such that $\widehat{g}^m(K_i) \subseteq U$ for all $i \in I$ and m > M. Since elements g and g_0 are transversal elements g_0 and $g_0^m g_0^{-m}$ are transversal for all integers m and n. Combining the above arguments, we conclude that $\widetilde{F} = F \cup \widetilde{g}$ is a g_0 -free system.

Therefore we have the following important

Corollary 1.8. Let F, g_0 , g be as in Lemma 1.7. Let H be a subgroup of finite index in G. Assume that $x \in G$ and $g \in xH$. Then there are two infinite sets of positive integers N and M such that $\tilde{g} = g_0^n g^m g_0^{-n} \in xH$ and the set $\tilde{F} = F \cup \tilde{g}$ is a g_0 -free system for all $n \in N$, $m \in M$.

The proof is straightforward.

Assume now that :

- 1. There exists a proximal element in G.
- 2. The Zariski closure \mathbb{G} of G is a semisimple group.
- 3. $\mathbb{G}^0 \cap G$ is an absolutely irreducible subgroup of GL(V).

Then

Proposition 1.9. Let H be a subgroup of G. Assume that H contains a proximal element and $\mathbb{G}^0 \cap H$ is Zariski dense in \mathbb{G}^0 . Then for every $g \in G$ the set $gH \cap \Omega_0(G)$ is nonempty.

Remark 1.10. This important proposition first was proved in [MS 3]. A

different proof of this proposition can be deduced from the main theorem in [AMS].

The principal significance of the next theorem is in reduction to linear groups over local fields which allows us to use all above arguments. First this reduction was done in [T] for a finitely generated linear group where the Zariski closure is connected. A reduction to linear groups over local field in the general case when the Zariski closure is not necessarily connected is considerably more complicated. **Theorem 1.10.** Let G be a finitely generated non virtually solvable linear group,

than there exist a local field k vector space W over k and irreducible representation $\rho: G \longrightarrow GL(W)$ such that

- 1. There exists a proximal element in $\rho(G)$.
- 2. The Zariski closure \mathbb{G} of $\rho(G)$ is a semisimple group.
- 3. $\mathbb{G}^0 \cap \rho(G)$ is an absolutely irreducible subgroup of GL(W).

Since G is not virtually solvable, we can assume that the Zariski closure of G is semisimple. The proof splits naturally into a few steps.

Since we can reduce our group by taking a factor-group by non-trivial connected normal subgroup, it is easy to see that

Step 1. It is enough to prove our statement under the following assumption: the Zariski closure of G is the wreath product $F \wr G_*$ where G_* is a simple (nonconnected) algebraic group of an adjoint type and F is a finite group. The description of $F \wr G_* = G_*^F \rtimes F$ where F acts on G_*^F by shift.

Step 2. Observe that it is enough to prove the statement of Theorem 1.10 for a group G such that the Zariski closure of G is a simple algebraic (not necessarily connected) group of adjoint type

Indeed by step 1 we can assume that our group is a wreath product $F \wr G_*$ where G_* is a simple (non-connected) algebraic group of an adjoint type and F is a

finite group. In [AMS1, Theorem 5.17] we proved that if G is a direct product $G = \prod_1^m G_i$ of semisimple groups such for every $1 \leq i \leq m$ there exists $g^{(i)} \in G$ such the projection $\pi_i(g^{(i)})$ of $g^{(i)}$ is a proximal element in G_i then there exists an element $g \in G$ such that $\pi_i(g)$ is a proximal element for every $1 \leq i \leq m$. Hence if there exists a representation we need for G_* taking the *m*-th tensor product of this representation we have an irreducible representation of G^F which we can and will extend it to $F \wr G_*$. This representation has all the necessary properties.

Since the Zariski closure $\mathbb G$ is a simple group of adjoint type we will assume that $\mathbb G\leq {\rm Aut}\ \mathbb G^0$

Step 3. This step splits naturally into two cases:

Case1. The factor group \mathbb{G}/\mathbb{G}^0 is cyclic.

Case 2. The factor group \mathbb{G}/\mathbb{G}^0 is the symmetric group of degree 3

Since the proof of the statement in the case 2 may be handle in much the same way as in case 1, for the sake of exposition we restrict ourselves to the case \mathbb{G}/\mathbb{G}^0 is a cyclic group. By using standard arguments, we conclude that there exists a non torsion element $g \in G$ such that \mathbb{G} is generated by $\mathbb{G}^0 \cup \{g\}$. Since G is finitely generated, it follows from [T, Lemma 4.1] that there exists a local field k with absolute value $|\cdot|$ vector space W over k and absolutely irreducible representation $\rho: G \longrightarrow GL(W)$ such that $\rho(g)$ is proximal. We claim that the group $\rho(\mathbb{G}^0 \cap G) = G_1$ is absolutely irreducible. Suppose the contrary. Let $\widetilde{W} = W \otimes_k \widetilde{k}$ and W_0 be a minimal G_1 invariant proper subspace of W. Put $x = \rho(g)$. Then there exist integers i_1, \ldots, i_t such that $\widetilde{W} = W_0 \oplus W_{i_1} \oplus \cdots \oplus W_{i_t}$ where $W_{i_s} = x^{i_s} W_0$. Since x^n is a proximal element for all positive integer $n \in \mathbb{Z}$, the eigenvector v corresponding to the maximal eigenvalue belongs to some W_i . Suppose for instance $v \in W_0$. Then $x^{i_1}v \in W_{i_1}$. Therefore $x^{i_1}v$ and v are two different eigenvectors for a proximal element x and correspond to the maximal eigenvalue, a contradiction. *Remark 1.12.* In the reduction done in [T], Tits used an easy but crucial lemma

saying that for a finitely generated infinite group G there exists a local field k with a absolute value $|\cdot|$ such that for some element $g \in G$ at least one eigenvalue has an absolute value $\neq 1$. This fact can be deduced from a natural and useful generalization proved in [BG2, Lemma 2.1].

2. Dense free subgroups.

For a start let us prove the Platonov problem.

Proof Observe that there exists a proximal element in $SL_n(\mathbb{Z})$. Indeed, let g be

a diagonal matrix $g = \text{diag}(a_1, \ldots, a_n), a_i > 0 \ a_i \in \mathbb{R}, a_1 > a_2 \ge \cdots \ge a_n$. Since the action of the group generated by q on $SL_n(\mathbb{R})/SL_n(\mathbb{Z})$ is ergodic, then by well-known arguments [R] for every neighborhood of identity $U \in SL_n(\mathbb{R})$ there exists an infinite set of positive integers M such that the intersection $Uq^mU \cap$ $SL_n(\mathbb{Z}) \neq \emptyset, m \in M$. From $g \in \Omega_0$ $(SL_n(\mathbb{R}))$ follows that there are a positive integer M and a neighborhood of identity $U, U \subseteq SL_n(\mathbb{R})$ such that $Ug^m U \subseteq$ Ω_0 $(SL_n(\mathbb{R}))$ for $m \geq M$. Let $g_0 \in \Omega_0(SL_n(\mathbb{R})) \cap SL_n(\mathbb{Z})$. The group $SL_n(\mathbb{Z})$ is absolutely irreducible; therefore there exists $x \in SL_n(\mathbb{Z})$ such that two elements $h = xg_0x^{-1}$ and g_0 are transversal. Consequently, there exists a positive integer k such that $\{h^k\}$ is a g_0 free system. Therefore we will assume that $\{h\}$ is a g_0 -free system. It is not difficult to show that there exists a g_0 -free system $F = \{h_1, \ldots, h_s\}$ such that the group generated by F is Zariski dense in $SL_n(\mathbb{R})$. Then [W] for $n \geq 3$ the pro- finite closure F^* of F is subgroup of finite index in $SL_n(\mathbb{Z})$. Let $x_i F^*, i = 1, \ldots, t$ be all different classes $SL_n(\mathbb{Z})/F^*$. By Corollary 1.8, there exist elements h_{s+1}, h_{s+t} such that $h_{s+i} \in x_i F^*, i = 1, \ldots, t$ and $F_0 = \{h_1, \ldots, h_s, h_{s+1}, \ldots, h_{s+t}\}$ is a g_0 -free system. It is clear that the group generated by F_0 is pro-finitely dense in $SL_n(\mathbb{Z})$ for $n \geq 3$. Since the group $SL_n(\mathbb{Z})$ is finitely generated there exists a maximal proper subgroup H which contains F_0 . Obviously H is a maximal subgroup of $SL_n(\mathbb{Z})$. Assume that the index $SL_n(\mathbb{Z})/H$ is finite. Then H is a proper pro-finitely dense open subgroup of $SL_n(\mathbb{Z})$ which is impossible and the proof is completed.

Since a subgroup of a finite index of a finitely generated group is a finitely generated group we reformulated [MS1] Platonov's problem as following:

Conjecture (G. Margulis, G. Soifer) Let $G = SL_n(\mathbb{Z})$ and H be a maximal

subgroup of G. Assume that H is a finitely generated group, then the index G/H is finite.

This conjecture is true for n = 2. Furthermore it is true if G is a lattice in $SL_2(\mathbb{R})$ (see [SV]). Y. Glasner pointed out that $SL_n(\mathbb{Z})$ is a maximal subgroup of infinite index of a lattice $SL_n(\mathbb{Z}[1/p])$. Nevertheless the above conjecture is still open for $n \geq 3$.

When our results were announced [MS 1] we received a letter from G.Prasad with the following conjecture

Conjecture (G. Prasad, J. Tits) Every maximal subgroup of $SL_n(\mathbb{Z})$, $n \geq 3$ of

infinite index is virtually free.

We show in [MS2] that there exists a not virtually free maximal subgroup of an infinite index in $SL_n(\mathbb{Z})$ for $n \geq 4$. Now we will show that for n = 3 this conjecture is also not true. Recall that the group $SL_2(\mathbb{Z})$ is virtually free. Theorem 2.1. There exists a maximal subgroup of infinite index in $SL_3(\mathbb{Z})$ which

is not virtually free.

Proof. Let $G = SL_3(\mathbb{R})$ and $\Gamma = SL_3(\mathbb{Z})$. Let g_1, g_2 be two commuting elements from $\Omega(\Gamma)$ which generate a free abelian group of rank 2. Let e_1, e_2, e_3 be their eigenvectors corresponding to a three different eigenvalues. Consider the set $\Sigma = \{t_1e_1 + t_2e_2 + t_3e_3, \sum_{i=1}^{3} t_i = 1, t_i \geq 0, i = 1, 2, 3\}$. Let $P(\Sigma)$ be the projectivization of Σ and let $\partial P(\Sigma)$ be the boundary of $P(\Sigma)$. Let q (correspondingly, \hat{e}_i i = 1, 2, 3) be the point of $P(\Sigma)$ which corresponds to the line span by the vector $1/3e_1 + 1/3e_2 + 1/3e_3$ (correspondingly, e_i i = 1, 2, 3). Analysis similar to that in Example 1 with a bit more routine calculations shows that elements g_1 and g_2 will fulfil following properties:

- 1. The boundary ∂L of the orbit $L = \widehat{A}q = \{\widehat{a}q, a \in A\}$ is a subset of $\partial P(\Sigma)$
- 2. Let U_i be a neighborhood of the point \hat{e}_i , i = 1, 2, 3. Then the set $\partial L \setminus (U_1 \cup U_2 \cup U_3)$ is finite.

Hence there are two lines L_1 and L_2 in the projective space P such that $\partial L \cap L_i = \emptyset$ for i = 1, 2 and $q = L_1 \cap L_2$. It is easy to see that there exists a positive integer N and neighborhood W of the point q and a compact $K_0, W \subseteq K_0$ such that $\hat{a}^n K_0 \cap (L_1 \cup L_2) = \emptyset$ for all $a \in A$ and $|n| \geq N$. Let g_0 be a hyperbolic element of G such that $B^+(g_0) = L_1, B^-(g_0) = L_2$ and $A^+(g_0) \cup A^-(g_0) \subseteq W$. Put $A_0 = \langle g_1^N, g_2^N \rangle$. Then there exists a positive d such that the distance $\min_{a \in A_0} d(\hat{a}K_0, L_1), d(\hat{a}K_0, L_2) > d$. Since the action of the subgroup group generated by g_0 on $SL_3(\mathbb{R})/SL_3(\mathbb{Z})$ is ergodic, for every neighborhood U of the identity in the group G there exists an infinite set of positive integers M such that $Ug_0^r U \cap \Gamma \neq \emptyset$. Hence because for $m \in M A^+(g^m) = A^+(g), A^-(g^m) = A^-(g), B^+(g^m) = B^+(g)$ and $B^-(g^m) = B^-(g)$ for every positive ε there exist neighborhood U of the identity in the group G and positive integer M_0 such that if $m \geq M_0$ for every $g \in Ug_0^r U$ we have

1.
$$g \in \Omega_0(G),$$

2. $\underline{A^+(g) \cup A^-}(g) \subseteq W,$
3. $\overline{\bigcup_{n \in \mathbb{Z}} \widehat{a}^n K_0} \subseteq P \setminus (B^+(g) \cup B^-(g)).$

Therefore we can and will assume that $g_0 \in \Gamma$. Let g be an element from Γ transversal to g_0 . It follows from (2) and (3) since $A^+(g_0) \cup A^-(g_0) \subseteq P \setminus (B^+(g) \cup B^-(g))$, that there exists a positive integer N_0 such that for $n \geq N_0$ we have $g_0^{-n} \cup_{n \in \mathbb{Z}} \widehat{a}^n K_0 g(n)_0 \subseteq P \setminus (B^+(g) \cup B^-(g))$. Hence there exists a positive integer N_0 such that for $n \geq N_0$ we have $B^+(g_0^n gg_0^{-n}) \cup B^-(g_0^n gg_0^{-n}) \subseteq P \setminus \overline{\bigcup_{n \in \mathbb{Z}} \widehat{a}^n K_0}$. Repeated application of Corollary 1.8 enables us using an arguments from [SV] to claim that there exists a finite g_0 –free system $F = \{f_i, 1 \leq i \leq m\}$ such that

- 1. The group generated by F is pro-finitely dense in Γ .
- 2. $A^+(f_i) \cup A^-(f_i) \subseteq W$ for every $i, 1 \leq i \leq m$.
- 3. $d(\hat{a}^n K_0, (B^+(f_i) \cup B^-(f_i)) > d/2 \text{ for every } 1 \le i \le m \text{ and } a \in A_0.$

Indeed, assume that $f \in \Omega(\Gamma)$ is an element transversal to g_0 . Since for every neighborhood U of $A^-(g_0)$ there exists a positive integer N_0 such that for all $n \ge N_0$ we have $\widehat{g}^{-n_0}(\overline{\bigcup_{n\in\mathbb{Z}} \widehat{a}^n K_0}) \subseteq U$. Therefore if $U \in P \setminus (B^+(f) \cup B^-(f))$ then $\widehat{g}^{-n_0}(\overline{\bigcup_{n\in\mathbb{Z}} \widehat{a}^n K_0}) \subseteq P \setminus (B^+(f) \cup B^-(f))$ for $n \ge N_0$. Hence $\overline{\bigcup_{n\in\mathbb{Z}} \widehat{a}^n K_0} \subseteq P \setminus (B^+(g^n fg^{-n}) \cup B^-(g^n fg^{-n}))$ for $n \ge N_0$. As we proved in [SV] there exists a finite set of elements f_1, \ldots, f_k such that the Zariski closure of the group $< f_s >$ is connected for every 1 $leqs \le k$ and the pro-finite completion of the group $F_1 = < f_1, \ldots, f_k >$ is a subgroup of a finite index in Γ . It follows from Lemma 1.7 that we can and will assume that f_1, \ldots, f_k is a g_0 -free system and fulfil property no3. Let T_1, T_r be all different co-sets Γ/F_1 . Repeated arguments above enabled us to show that there are elements f_{k+1}, \ldots, f_{k+r} such that the set f_1, \ldots, f_{k+r} is a g_0 -free system which fulfil properties no1,2,3.

It follows from no.3 that there exists a compact K_N such that $\bigcup_{n\in\mathbb{Z}}\widehat{a}^n K_0 \subseteq K_N$ and $d(K_N, B^+(f_i) \cup B^-(f_i)) > d/4$. It follows from Lemma 1.4 that there exists a positive number N_1 such that $f_i^n K_N \subseteq W$ for all $n \ge N_1$. Set $n_i = 2N_1$ for $i = 1, \ldots, k$ and $n_i \ge N_1, f_i^{n_i} \in M_i$ for $i = k + 1, \ldots, k + r$. Then the group $F = \langle f_1^{n_1}, \ldots, f_{k+r}^{n_{k+r}} \rangle$ is a free subgroup which is pro-finitely dense in Γ such that $\widehat{f}K_N \subseteq W$ for every $f \in F$. Hence the group generated by A_0 and F is a free product $A_0 * F$. Therefore a maximal subgroup of Γ which contains the group generated by A_0 and \widetilde{F} will be a maximal subgroup of Γ . This subgroup will be of infinite index since the group generated by \widetilde{F} is pro-finitely dense. This subgroup contains a free abelian group A_0 of rank 2. Hence it is not virtually free. \Box

There are some other results in the spirit of the statement of Theorem 2.1, see for example [S], [V].

Let G be a subgroup of $GL_n(k)$ where k is a local field. The full linear group $GL_n(k)$ and hence any subgroup of it is endowed with the standard topology that is the topology induced from the local field k. We will denote by $\|\cdot\|$ a norm on $GL_n(k)$ induced from the local field absolute value $|\cdot|$. Let $S = \{s_1, \ldots, s_m, s_i \in GL_n(k)\}$ be a finite set. Put $S(\varepsilon) = \{(\hat{s}_1, \ldots, \hat{s}_m) \text{ such that } \|\hat{s}_i - s_i\| \leq \varepsilon$ for all $1 \leq i \leq m$ and $\varepsilon > 0\}$. Assume that Γ is a finitely generated dense subgroup of a connected semisimple group $G, G \leq GL_n(k)$. We claim that there exists ε_0 such that for every $\varepsilon < \varepsilon_0$ the group generated by the set $\{\hat{s}_1, \ldots, \hat{s}_m\}$ where $(\hat{s}_1, \ldots, \hat{s}_m) \in S(\varepsilon)$ is dense in G (see [BG2, 5.1]). Indeed, there exist a finite set $S_1 = \{g_1, \ldots, g_l\}$ where $l = \dim G$ and ε_1 such that if $\|\hat{g}_i - g_i\| \leq \varepsilon_1$ for i = $1, \ldots, l$ then the group generated by $\hat{S}_1 = \{\hat{g}_1, \ldots, \hat{g}_l\}$ is dense in G. Since Γ is dense in G then there exist elements $\hat{\gamma}_i \in \Gamma$ such that $\|\hat{\gamma}_i - g_i\| \leq \varepsilon_1/2$ for all i =

G.A. Soifer

1,..., *l*. Then $\widehat{\gamma}_i = w_i(s_1, \ldots, s_m)$. Consider maps $w_i : \underbrace{G \times \cdots \times G}_m \longrightarrow G$ where $i = 1, \ldots, l$. There exists an ε such that if $\|\widehat{s}_i - s_i\| \leq \varepsilon$ for all $i = 1, \ldots, l$ then

i = 1, ..., l. There exists an ε such that if $\|\widehat{s}_i - s_i\| \leq \varepsilon$ for all i = 1, ..., l then $\|w_i(\widehat{s}_1, ..., \widehat{s}_m) - w_i(s_1, ..., s_m)\| \leq \varepsilon_1$ and therefore $\|w_i(\widehat{s}_1, ..., \widehat{s}_m) - g_i\| \leq \varepsilon_1$ for all i = 1, ..., l. Hence the group generated by the set $\{\widehat{s}_1, ..., \widehat{s}_m\}$ will be dense in G.

E. Breuillard and T. Gelander proved in [BG2] the following topological Tits alternative.

Theorem 2.2 [BG2]. Let k be a local field and Γ a subgroup of $GL_n(k)$. Then Γ contains either open solvable subgroup or a dense free subgroup.

Note that for a non discrete subgroup Γ the two cases are mutually exclusive. Hence if Γ a dense subgroup of a semisimple connected Lie group G, then for any set

 $S = \{\gamma_1, \ldots, \gamma_m\}$ of generators of Γ there exists an ε_0 such that for every $\varepsilon \leq \varepsilon_0$ there exists $\widehat{S} = (\widehat{\gamma}_1, \ldots, \widehat{\gamma}_m) \in S(\varepsilon) \cap \underbrace{\Gamma \times \cdots \times \Gamma}_m$ such that the group $\langle \widehat{S} \rangle$ is

free and dense in G. For a compact connected Lie group one can deduce this fact for a from [S, Proposition 4.5].

Let G be a connected compact group Lie. Then the set of torsion elements of G is dense in G. Therefore for every ε and any set of generators $S = \{\gamma_1, \ldots, \gamma_m\}$ of a subgroup Γ there exists $(\hat{\gamma}_1, \ldots, \hat{\gamma}_m) \in S(\varepsilon)$ such that the group generated by $\hat{S} = \{\hat{\gamma}_1, \ldots, \hat{\gamma}_m\}$ is not free because it contains torsion. On the other hand every finitely generated linear group has a subgroup of a finite index without torsion. Therefore we state the following

Conjecture. (G. Margulis, G. Soifer.) Let G be a non solvable connected Lie

group. Assume that the subgroup of G generated by a set $S = \{s_1, \ldots, s_m\}$ is a free dense subgroup. Then for every ε there exists $(s_1^*, \ldots, s_m^*) \in S(\varepsilon)$ such that the group generated by the set $S^* = \{s_1^*, \ldots, s_m^*\}$ is not virtually free.

This conjecture first was stated for a compact group and it was proved recently by T.Gelander. His results show that it will interesting to answer to the following *Problem.* Let G be a connected Lie group let F be a free dense subgroup of G

generated by a set $S = \{s_1, \ldots, s_n\}$. Is it true that for every dense subgroup Γ of G and every ε there exists a set $\{\gamma_1, \ldots, \gamma_n\}$ such that $\{\gamma_1, \ldots, \gamma_n\} \subseteq S(\varepsilon)$ and $\langle \gamma_1, \ldots, \gamma_n \rangle = \Gamma$.

3. Euclidean crystallographic semigroups.

Recall that a semigroup S acts properly discontinuously on a topological space X if for every compact subset $K \subseteq X$ the set $\{s \in S | sK \cap K \neq \emptyset\}$ is finite. A semigroup S is called crystallographic if it acts properly discontinuously and there exists a compact subset $K_0 \subseteq X$ such that $\bigcup_{s \in S} sK_0 = X$. In the case when $X = \mathbb{R}^n$ and $S \subseteq$ Isom X, S is called a Euclidean crystallographic semigroup.

In this section we will prove the following conjecture due to G.Margulis. Conjecture Let S be an Euclidean crystallographic semigroup, then S is a group.

Here is a scenario of our proof of the above conjecture. The main idea of the proof is to show that the Zariski closure G of a semigroup S does not contain a free subgroup. We prove this using our ideas and results from [S]. Therefore by the Tits' alternative G is a virtually solvable group. Hence the linear part of G is a compact virtually solvable group. Consequently the linear part of G is virtually abelian. Combining this with the fact that S acts properly discontinuously, we show that every element in S is invertible. Thus S is a group.

Let us recall some necessary definitions. Let $G = \text{Aff } \mathbb{R}^n$ be the group of all affine transformation of the *n*-dimensional real affine space \mathbb{R}^n . This group is the semidirect product of $GL_n(\mathbb{R})$ and the subgroup of all parallel translations which can be identified with \mathbb{R}^n , i.e,

$$\operatorname{Aff}\mathbb{R}^n = \mathbb{R}^n \rtimes \operatorname{GL}_n(\mathbb{R}).$$

We will consider the natural homomorphism

$$\ell : \operatorname{Aff} \mathbb{R}^n \longrightarrow \operatorname{GL}_n(\mathbb{R}),$$

and because the group $Aff \mathbb{R}^n$ is semidirect product we have for every element $g \in Aff \mathbb{R}^n$ the decomposition

$$g = v_g \ \ell(g), \ v_g \in \mathbb{R}^n, \ \ell(g) \in GL_n(\mathbb{R}^n).$$

Let q be a positive definite quadratic form on \mathbb{R}^n . Then

$$\mathrm{Isom}\mathbb{R}^n = \{g \in \mathrm{Aff}\mathbb{R}^n : q(\ell(g)(x)) = q(x)\}.$$

Hence if $g \in \text{Isom}\mathbb{R}^n$ then $\ell(g) \in O(q)$. Let $g \in \text{Isom}\mathbb{R}^n$ and let $V^0(g) = \{v \in \mathbb{R}^n : \ell(g)v = v\}$. Recall that an element g of an algebraic group $G, G \subseteq GL_n(\mathbb{R})$ is called regular if and only if

$$\dim V^0(g) = \min_{x \in G} V^0(x).$$

Let $g \in Aff \mathbb{R}^n$ then there exists the maximal g –invariant affine space $A^0(g)$ of \mathbb{R}^n such that g induces a translation on it. This translation can be zero and in

G.A. Soifer

that case all points in $A^0(g)$ are fixed points. It is easy to see that if we define the vector $v^0(g)$ as follows: consider a point $x \in A^0(g)$ put

$$v^0(g) = \frac{gx - x}{\|gx - x\|}$$

then this vector does not depend on x. We define $v^0(g) = 0$ if there exists a g-fixed point. For every set of vectors X in \mathbb{R}^n there is a smallest convex cone C_X such that $X \subseteq C_X$. Therefore for every semigroup $S \subseteq \text{Isom}\mathbb{R}^n$ there exists the convex cone C(S) defined as $C(S) = C_X$, where $X = \{v^0(g), g \in$ $S, \ell(g)$ is a regular element of the group $\overline{\ell(S)}\}$. Let $V^0(S)$ be the subspace generated by the set $\{V^0(g)\}_{g\in S}$. Assume that there is no non-trivial S-invariant affine subspaces of the affine space \mathbb{R}^n then Lemma 3.1. $V^0(S) = \mathbb{R}^n$.

Proof. It immediately follows from [S, Lemma 4.1] that $V^0(S)$ is an $\ell(S)$ -invariant subspace of the vector space \mathbb{R}^n . This subspace is non-trivial because S acts properly discontinuously. Since the closure $\overline{\ell(S)}$ is a reductive group, there exists an $\ell(S)$ -invariant subspace W of \mathbb{R}^n such that $V^0(S) \oplus W = \mathbb{R}^n$. Assume that $W \neq \{0\}$. We have the natural projection of the affine space \mathbb{R}^n onto to the affine space $A_1 = \mathbb{R}^n / V^0(S)$ along $V^0(S)$ and hence an induced homomorphism $\rho: S \to \text{Isom } A_1$. Let $\ell(\rho(g))$ be the linear part of $\rho(g)$. Since $V^0(g) \subseteq V^0(S)$ there exists a fixed point for every element $\rho(g), g \in S$. Therefore the closure of the group generated by $\rho(g)$ is compact for every $g \in S$. Thus the group $\overline{\rho(S)}$ is compact. Hence there exists a $\overline{\rho(S)}$ -fixed point p_0 in A_1 . Consequently $p_0+V^0(S)$ is non-trivial proper S-invariant affine subspace. Contradiction which proves the lemma. \Box

Consider the closure C(S) of the cone C(S) in \mathbb{R}^n . Our next goal is to prove Lemma 3.2 Let S be a crystallographic semigroup. Then $C(S) = \mathbb{R}^n$.

Proof. By [S, Lemma 4.1] it is enough to prove that $\overline{C(S)} = \mathbb{R}^n$. To obtain a contradiction assume that $\overline{C(S)} \neq \mathbb{R}^n$. Then there exists a non-zero vector v_0 in \mathbb{R}^n such that the scalar product $(v, v_0) \leq 0$ for all $v \in C(S)$ and there is a vector $\tilde{v} \in C(S)$ such that $(\tilde{v}, v_0) < 0$. It follows from our assumption and Lemma 3.1 that there exists an element $s_0 \in S$ such that $V^0(s_0) \subsetneq C(S)$. Let v^* be a vector from $V^0(s_0)$ such that $(v^*, v_0) > 0$.

Let K be a compact subset in \mathbb{R}^n such that $\bigcup_{s \in S} sK = \mathbb{R}^n$. Fix a point p_0 in K. It is clear that if p_m is a point of \mathbb{R}^n , where $p_m = p_0 + mv_0$ and m is a positive number, then there exists $s_m \in S$ such $p_m \in s_m K$. Therefore for every point $p \in K$

$$\lim_{m \to \infty} \frac{s_m p - p}{\|s_m p - p\|} = v^*.$$
(3.1)

Consider the subset $\{\ell(s_m)\}_{m\in\mathbb{N}}$ of the compact group O(q). We can and will assume that this sequence is converge to some element g_0 of the closure $\overline{\ell(S)}$ in O(q). Put $g_1 = \ell(s_0)g_0^{-1}$. Since $g_1 \in \overline{\ell(S)}$ there is a sequence $\{\overline{s}_m\}_{m\in\mathbb{N}}$ of elements from S such that the sequence $\{\ell(\overline{s}_m)\}_{m\in\mathbb{N}}$ converges to g_1 . We can assume that for every point $p \in K$ we have

$$\lim_{m \to \infty} \frac{\|\bar{s}_m(p) - p\|}{\|s_m p - p\|} = 0.$$
(3.2)

Define $t_m = \overline{s}_m s_m$ for all positive integers m. Let us show, that

$$\lim_{m \to \infty} (v^0(t_m), v_0) > 0.$$
(3.3).

Indeed, let $q_m = \overline{s}_m^{-1} p_0$ and let v_m be a vector $v_m = t_m q_m - q_m / ||t_m q_m - q_m||$. Since $t_m q_m - q_m = t_m p_0 - p_0 + \overline{s}_m q_m - q_m$ and $||\overline{s}_m q_m - q_m|| = ||\overline{s}_m p_0 - p_0||$ from (3.2) follows that

$$\lim_{m \to \infty} v_m = v^*. \tag{3.4}$$

The sequence $\{\ell(\bar{s}_m)\}_{m\in\mathbb{N}}$ converges to g_1 . Therefore the sequence $\{\ell(t_m)\}_{m\in\mathbb{N}}$ converges to $\ell(s_0)$. Thus the sequence $\{V^0(t_m)\}_{m\in\mathbb{N}}$ converges to the subspace $V^0(t)$. Now we use the following idea. Let g be an euclidian transformation and let $\pi_g : \mathbb{R}^n \longrightarrow A^0(g)$ be the orthogonal projection onto $A^0(g)$. Then for every point x of \mathbb{R}^n we have $\pi_g(gx-x) = \alpha v^0(g)$ where $\alpha = \|\pi_g(gx-x)\|$. Consequently because the sequence $\{V^0(t_m)\}_{m\in\mathbb{N}}$ converges to the subspace $V^0(t)$ from (3.4) follows that $\lim_{m\to\infty} v_m^0 = v^*$. Hence $\lim_{m\to\infty} (v^0(t_m), v_0) > 0$. On the other hand, $v^0(t_m) \in \overline{C(S)}$. Therefore $(v^0(t_m), v_0) \leq 0$. Contradiction which proves the lemma.

We will use the following fact proved in [S, Proposition 4.5]. Proposition 3.3. Let S be a subsemigroup of Isom \mathbb{R}^n . Assume that $\overline{\ell(S)}$ is a connected non-solvable group. Then for every finite set $g_1, \ldots, g_m \subseteq S$ such that $v^0(g_i)$ non-zero for all $i, 1 \leq i \leq m$, and every positive $\varepsilon, \varepsilon < 1, \varepsilon \in \mathbb{R}$, there are elements $g_1^*, \ldots, g_m^* \subseteq S$ such that

- (1) Semigroup generated by g_1^*, \ldots, g_m^* is free and g_1^*, \ldots, g_m^* are free generators,
- (2) $(v^0(g_i^*), v^0(g_i)) > 1 \varepsilon \text{ for all } i, 1 \le i \le m.$

Proposition 3.4. Let S be a crystallographic semigroup, then the Zariski closure G of S is a virtually solvable group.

Proof. On the contrary assume that the group G is not virtually solvable. Without loss of generality we can assume that the group G is connected. It follows from Lemma 3.1 and Lemma 3.2 that there exists a finite subset $\{s_1, \ldots, s_m\}$ of

S such that convex hole of the set $\{v^0(s_1), \ldots, v^0(s_m)\}$ is \mathbb{R}^n . Hence there exists a positive real number ε , $\varepsilon < 1$ such that if vectors w_1, \ldots, w_m are taken such that $(w_i, v^0(s_i)) \ge 1 - \varepsilon$ then the convex hole of the set $\{w_1, \ldots, w_m\}$ is \mathbb{R}^n . Let s_0 be any element of S such that $v^0(s_0) \ne 0$. It follows from Proposition 3.3 that there exists a subset $s_0^*, s_1^* \ldots, s_m^*$ such that

- (1) subgroup generated by the subset $\{s_0^*, s_1^* \dots, s_m^*\}$ is free and $s_0^*, s_1^* \dots, s_m^*$ are free generators,
- (2) convex hole of the set $\{v^0(s_1^*), \ldots, v^0(s_m^*)\}$ is \mathbb{R}^n .

Since the convex hole of the set $\{v^0(s_1^*), \ldots, v^0(s_m^*)\}$ is \mathbb{R}^n , there exists a positive real number $\delta = \delta(s_1^*, \ldots, s_m^*)$ such that for arbitrary unite vector $v \in \mathbb{R}^n$ and some vector $v_{i_0}, 1 \leq i_0 \leq m$ we have $\cos \measuredangle(v, v_{i_0}) \leq -\delta$. Let $x_i \in A^0(s_i^*)$ be a point $i, 1 \leq i \leq m$. Put $l_i = ||s_i^*x_i - x_i||$ for each $i, 1 \leq i \leq m$. Set $l = \max_{1 \leq i \leq m} l_i$. Fix a point $p_0 \in \mathbb{R}^n$. Let p be a point of \mathbb{R}^n . It is easy to see that there exist positive integers $j, 1 \leq j \leq m$ and k_j such that $d((s_j^*)^{k_j}p, p_0) \leq \sqrt{1 - \delta^2}d(p, p_0) + \frac{1}{2}l$. Assume that the euclidian distance $d(p, p_0) > \frac{2l}{\delta^2}$. Then there is a positive number $\theta = \theta(\delta) \leq 1$ such that if $d(p, p_0) \geq \frac{2l}{\delta^2}$ we have

$$d((s_j^*)^{m_j} p, p_0) \le \theta d(p, p_0).$$
(3.5)

Let us now define the following infinite set of disjoint subsets S_j of S. Let S^* be a subsemigroup generated by the set $\{s_1^* \ldots, s_m^*\}$. Put $S_j = S^* s_0^j$. Let $d_j = \min_{s \in S_j} d(sp_0, p_0)$. By (3.5) we have that $d_j \leq l$. Since subsets S_j are disjoint the intersection $B(p_0, 2l/\delta^2) \cap S_j$ is non-empty for every positive integer j. Therefore the semigroup S does not acts properly discontinuously on \mathbb{R}^n . Contradiction. \Box

Now we will prove the Margulis conjecture.

Proof. Let G be the Zariski closure of the semigroup S. Let us show that $G \cap \mathbb{R}^n$ is a finite index subgroup in G. It is enough to show that if the group G is connected then $G \subseteq \mathbb{R}^n$. From Proposition 3.4 follows that the group $\overline{\ell(S)}$ is solvable. This group is compact and connected, therefore it is an abelian group. It is well known that a finitely generated linear group contains torsion free subgroup of a finite index. Therefore by above arguments we can and will assume that S is torsion free. Thus for two different regular elements s_1 and s_2 from S we have $V^0(s_1) = V^0(s_2)$. Then by lemma 3.1 $V^0(s) = \mathbb{R}^n$ for every regular element of S. Consequently for every element $s \in S$ we have $\ell(s) = 1$. Therefore the connected component $G^0 \subseteq \mathbb{R}^n$.

Let $S_0 = G^0 \cap S$. It follows from Lemma 3.2 since G^0 is a subgroup of finite index in G that $C(S^0) = \mathbb{R}^n$. On the other hand the semigroup S^0 contains only translations and acts properly discontinuously. Therefore S^0 is a group. It is clear that if a subsemigroup of finite index in semigroup is a group then the semigroup is a group which proves the statement.

References

- [A] H. Abels, *Proximal Linear Maps*, (in this volume)
- [AMS 1] H. Abels, G.A. Margulis and G.A. Soifer, Semigroups containing proximal linear maps, Israel J. of Math. 91 (1995) 1–30
- [AMS 2] —, On the Zariski closure of the linear part of a properly discontinuous group of affine transformations, J. Diff. Geom. 60, (2003),2, 314-335
- [B] A. Borel, *Linear Algebraic Groups*, Springer Verlag.
- [BG 1] E. Breuillard, T. Gelander, On dense free subgroups of Lie groups, J. Algebra 261 (2003), no. 2, 448-467.
- [BG 2] E. Breuillard, T. Gelander, *Topological Tits alternative*, Ann of Math (to appear).
- [GGI] T. Gelander, Y. Glasner, *Infinite Primitive Groups*, GAFA.
- [DPSS] J.D. Dixon, L. Pyber, A. Seress, A. Shalev, Residual properties of free groups and probabilistic methods, J. Reine Angew. Math. 556 (2003), 159-172.
- [MS 1] G.A. Margulis, G.A. Soifer, The criterion of the existence of maximal subgroups of infinite index in a finitely generated linear group, Soviet Math. Dokl. 18, N3 (1977), 847-851
- [MS 2] G.A. Margulis, G.A. Soifer, Nonfree maximal subgroups of infinite index in the group $SL_n(\mathbb{Z})$, Uspekhi Math. Nauk, 34,4(208) (1979) 203-204
- [MS 3] G.A. Margulis, G.A. Soifer, Maximal subgroups of infinite index in finitely generated linear group, J. Algebra 69, No 1., (1981), 1-23
- [P] L. Pyber, Groups enumeration and where it leads us, Prog. Math. Birkhauser, 169 (1996), 187-199
- [R] M.S. Raghunathan, Discrete subgroups of a Lie groups, Springer -Verlag, 1972
- [S] G.A. Soifer, The linear part of a discontinuously acting euclidean semigroup, J. Algebra, 250 (2002), 647- 663.
- [SV] G. Soifer, T. Venkataramana, Finitely generated pro-finitely dense free groups in higher rang semisimple groups, Transform. Groups 5 (2000), no. 1, 93-100
- [T] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972)
- [V] T.N. Venkataramana, J. of Algebra 108, (1987), 325-339
- [W] B. Weisffeiler, Strong approximation for Zariski dense subgroups of semisimple algebraic groups, Ann. of Math. 120 (1984), 271-315.

G.A. Soifer Dept. of Mathematics Bar–Ilan University 52900 Ramat–Gan Israel E-mail: soifer@macs.biu.ac.il