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Abstract: Let G be a semisimple algebraic group defined over a number
field K and let S be a finite set of non-equivalent valuations of K containing
the archimedean ones. Set G =

∏
v∈S G(Kv) and Γ = G(O) where O is

the ring of S-integers of K. Fix v ∈ S and a Kv-split algebraic torus Tv of
G(Kv). In this paper, in complement to results from [To], we prove results
about the divergent orbits for the action of Tv on G/Γ by left translation.

1. Introduction

In this paper G denotes a semisimple algebraic group defined over a number
field K and S denotes a finite set of non-equivalent valuations of K containing
all archimedean ones. For every v ∈ S we let Gv = G(Kv), where Kv is the
completion of K with respect to v. Let O be the ring of S-integers of K. Set
G =

∏
v∈S Gv and Γ = G(O). The group Γ is identified with its diagonal

imbedding in G. It is well known that Γ is a lattice in G, i.e., Γ is a discrete
subgroup of finite co-volume in G. We are interested of the action of algebraic
tori T on G/Γ by left translations:

tπ(g) = π(tg),

where π : G → G/Γ is the quotient map. The study of this action is espe-
cially important for the Diophantine approximations of numbers. For instance,
the notable Littlewood conjecture would follow from a conjecture of G.Margulis
which states that if D is the group of all diagonal matrices in SL3(R) then every
relatively compact D-orbit on SL3(R)/ SL3(Z) is compact. (Actually, in [Ma1]
Margulis formulated his conjecture in the context of all real Lie groups.) Re-
cently, M.Einsiedler, A.Katok and E.Lindenstrauss proved, using the dynamical
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approach, that the Littlewood conjecture fails at most on a set of Hausdorff di-
mension zero [Ei-Ka-Li]. A similar result in p-adic setting has been subsequently
proved by M.Einsiedler and D.Kleinbock [Ei-Kl].

Another recent application of the tori actions on G/Γ is related to the char-
acterization of the rational decomposable homogeneous forms in terms of their
values at the integer points. The present paper completes some of the results in
[To] where this application has been obtained. For reader’s convenience we will
give the formulations of the main results from [To]. Denote by KS the direct prod-
uct of the topological fields Kv, v ∈ S. Then KS is a topological ring and the ring
of S-integers O is discrete in KS . For every v ∈ S, let fv = l

(v)
1 . . . l

(v)
m ∈ Kv[ ~x ],

where l
(v)
1 , . . . , l

(v)
m are linearly independent over Kv linear forms in n variables

~x = (x1, . . . , xn). We have

Theorem 1.1. ([To, Theorem 1.7]) With the above notation, assume that
{(fv(~z))v∈S ∈ KS |~z ∈ On} is a discrete subset of KS . Then there exist a homo-
geneous form g with coefficients from O and an element (αv)v∈S ∈ K∗

S such that
fv = αvg for all v ∈ S.

In the classical cases K = Q and K = Q( i ) (= the field of Gaussian numbers)
Theorem 1.4 immediately implies the following result which, to the best of our
knowledge, is new:

Corollary 1.2. Let f(~x) = l1(~x) . . . lm(~x), where l1(~x), . . . , lm(~x) are linear forms
with real (respectively, with complex) coefficients. Suppose that l1(~x), . . . , lm(~x)
are linearly independent over R (respectively, over C) and that the set f(Zn)
(respectively, the set f(Z[ i ]n)) is discrete in R (respectively, in C). Then there
exists α ∈ R∗ (respectively, α ∈ C∗) such that αf(~x) ∈ Z[ ~x ] (respectively,
αf(~x) ∈ Z[ i ][ ~x ]).

Theorem 1.1 is deduced from Theorem 1.3(a) below which classifies the closed
orbits under the action of maximal split tori. Recall that if F is a field containing
K then the F -rank of G, denoted by rankFG, is the dimension of any maximal
F -split torus of G. (It is well known that the maximal F -split tori are conjugated
under G(F ) [Bo, Theorem 15.14].) Further on we fix a maximal K-split torus S
of G and for every v ∈ S we fix a maximal Kv-split torus Tv of G containing
S. We denote Tv = Tv(Kv) and for every non-empty R ⊂ S, we set TR =∏

v∈R Tv. An orbit TRπ(g) in G/Γ is called divergent if {tiπ(g)} leaves compacts
of G/Γ whenever {ti} leaves compacts of TR. (The group TR is identified with
its projection in G.) With the above notation we have the following:

Theorem 1.3. (cf.[To, Theorems 1.1 and 1.4]) Let
∑

v∈R rankKvG > 0. Then
the following assertions hold:
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(a) An orbit TRπ(g) is closed if and only if R = {v} and Tvπ(g) is divergent,
or R = S and there exists a K-torus L of G such that

g−1TSg = LS ,

where LS =
∏

v∈S L(Kv). Moreover, if #S > 1 then TSπ(g) is never
divergent;

(b) An orbit Tvπ(g), v ∈ S, is divergent if and only if rankKvG = rankKG
and

g ∈ ZG(Tv)G(K),
where ZG(Tv) is the centralizer of Tv in G;

(c) An orbit TSπ(g) is closed and Tvπ(g) is divergent for every v ∈ S if and
only if rankKvG = rankKG for every v ∈ S and

g ∈ NG(TS)G(K),

where NG(TS) is the normalizer of TS in G.

The theorem has been proved for G = SLn(R) and Γ = SLn(Z) by Margulis
(unpublished) and it generalizes and strengthens results for the real Q-algebraic
groups proved by Barak Weiss and the author in [To-We].

The part (a) of Theorem 1.3 follows from its parts (b) and (c) about the
divergent orbits. Apart from the number-theoretical applications, our interest
in the divergent orbits of split tori is also motivated by the classical result of
Margulis [Ma3] (see also [Da1]) which implies that no subgroup which contains a
nontrivial unipotent element can have divergent orbits. Further on our discussion
concerns only the divergent orbits for split algebraic tori.

According to Theorem 1.3(b) the divergent orbits for the action of any maximal
Kv-split torus Tv of Gv are always ”standard” if rankKvG = rankKG. On the
other hand, if rankKvG > rankKG there are no divergent orbits for the action of
Tv. In fact, the following more general result holds:

Theorem 1.4. Let G and Γ be as in the formulation of Theorem 1.3, x ∈ G/Γ,
v ∈ S and Dv be a Kv-split algebraic torus in Gv. Assume that dimDv >
rankKG. Then there are no divergent orbits for the action of Dv on G/Γ.

Theorem 1.4 is due to Pralay Chatterjee and Dave Morris for the Q-rank
two real semisimple Q-algebraic groups [Ch-Mo] and to Barak Weiss for all real
semisimple Q-algebraic groups [We1]. Our proof in §4 of the general case uses
ideas from [We1], [To-We] and [To]. Note that if v is a non-archimedean valuation
then the connected component of Dv is trivial. This is a reason for additional
difficulties in proving Theorem 1.4 in the general case.

Theorem 1.4 is an existence theorem: by contrast with Theorem 1.3, it says
nothing about the set of all g ∈ G for which Dvπ(g) is a divergent orbit. Note
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that if dimDv < rankKG a simple description of the divergent orbits seems not
plausible. Strong evidence in this sense is provided by the paper [Da2], where the
study of atypical trajectories is related to properties of singular systems of linear
forms, and by the paper [We2], where divergent trajectories on real homogeneous
spaces are systematically studied.

In view of the above discussion, it is important to describe the set of all g ∈ G
for which Dvπ(g) is a divergent orbit when dimDv = rankKG < rankKvG. Using
Theorem 1.3 this problem can be solved for certain classes of real algebraic groups
which can not be tackled with the results of [To-We] where the R-split tori are
always supposed to be maximal. Indeed, let K be a totally real number field and
H be a semisimple K-split algebraic group. Set G = RK/Q(H), where RK/Q is
the restriction of scalars functor. Let G = G(R) and H = H(R). The group G
is a real Q-algebraic group and, in view of the standard properties of RK/Q (cf.
[Weil]), G is naturally identified with the direct product of m = [K : Q] copies
of H, G(Z) is identified with H(O) and rankRG = m.rankQG. Theorem 1.3(b)
immediately implies:

Theorem 1.5. With the above notation and assumptions, if D is a maximal
R-split torus in some of the factors H then Dπ(g) is divergent if and only if
g ∈ ZG(D)G(Q).

In general, the determination of all g for which Dπ(g) is divergent might be
quite complicated. In §5 we describe this set for the so-called Hilbert modular
forms, that is, when G = RK/Q(SL2). (We refer to [Fe] and [To, Corollary 1.7]
for more results in this case.)

The following conjecture of B.Weiss characterizes the divergent orbits in terms
of Q-representations, cf. [To-We, §8]:

Conjecture 1. ([We2, Conjecture 4.10 B] ) Let G be a real semisimple Q-
algebraic group and D be a split torus of dimension rankQG. The orbit Dπ(g)
is divergent if and only if for any unbounded sequence {di} ⊂ D there exist a
subsequence {d′i}, a Q-representation ρ : G → GL(V ) and a nonzero v ∈ V (Q)
such that limi→∞ ρ(d′ig) = 0.

In [We2] the divergent orbits for which there exist representations ρ as in
the formulation of the conjecture are called obvious. In this terminology the
conjecture says that if dim D = rankQG then all divergent orbits are obvious. On
the other hand, it is also conjectured [We2, Conjecture 4.10 C] that if dimD <
rankQG then there are non-obvious divergent orbits.

For the real semisimple Q-algebraic groups of Q-rank 1 Conjecture 1 follows
from [Da2, Theorem 6.1] which also deals with non-arithmetic lattices. The
method of the proof of Theorem 1.4 allows to prove an S-adic version of this
result which we are going to formulate now. With the notation of Theorem 1.3,
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we also denote g = Lie(G) and g = g(KS). Let d be the dimension of the
maximal unipotent K-subgroups of G. For every x ∈ ∧dg we denote by c(x) the
content of x, i.e., c(x) is the product of the norms of the v-components, v ∈ S,
of x (see §2.2).

Theorem 1.6. Let G be a semisimple K-algebraic group of K-rank 1, v ∈ S,
Dv be a 1-dimensional Kv-split torus of Gv and | . |v be the norm on Dv induced
by the v-adic norm on Kv via an isomorphism Dv

∼= K∗
v . An orbit Dvπ(g) is

divergent if and only if the following holds: there exist maximal opposite to each
other unipotent K-subalgebras u+ and u− of g such that if x+ and x− are K-
rational vectors in ∧dg which span the 1-dimensional subspaces corresponding to
u+ and u−, respectively, then

(1) lim
|t|v→0

c(∧dAd(tg)x+) = 0

and

(2) lim
|t|v→∞

c(∧dAd(tg)x−) = 0.

The paper is organized as follows. The notation and the terminology are
introduced in a systematical way in §2. In §3 we recall some preliminary results
from [To], [To-We] and [We1]. The proofs of Theorems 1.4 and 1.6 are given
in §4. The description of the divergent orbits for the Hilbert modular forms is
presented in §5.

2. Notation and terminology

2.1. Algebraic numbers. As usual R, Q and Z denote the real, rational and
integer numbers, respectively.

In this paper K denotes a number field, that is, a finite extension of Q. All
valuations of K which we consider are supposed to be normalized (see [Ca-F,
ch.2, §7]) and, therefore, pairwise non-equivalent. If v is a valuation of K then
Kv is the completion of K with respect to v and | . |v is the corresponding norm
on Kv. If v is non-archimedean then Ov = {x ∈ Kv : | x |v ≤ 1} is the ring of
integers of Kv.

As in the introduction, S will denote a finite set of valuations of K containing
all archimedean ones and KS =

∏
v∈S Kv.

The ring of S-integers of K is defined by O = K
⋂

(
⋂

v/∈S Ov).

As usual, given a ring A, we denote by A∗ the multiplicative group of all
invertible elements in A.
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2.2. Norms and content. Let V be a m-dimensional vector space defined over
K. Let V = V(KS) and Vv = V(Kv) for every v ∈ S. There exists a natural
isomorphism V ∼= ∏

v∈S Vv. Elements x ∈ V will be denoted as x = (xv), where
xv ∈ Vv. We denote by ‖ ·‖v a norm on the Kv-vector space Vv, v ∈ S, and define
a norm ‖ · ‖ on V by

‖x‖ = max
v∈S

‖xv‖v.

The product

c(x) =
∏

v∈S
‖xv‖v

is called content of x. Since
∏

v∈S |ξ|v = 1 for every ξ ∈ O∗ [Ca-F, ch.2, Theorem
12.1] and ‖axv‖v = |a|v‖xv‖v for every a ∈ Kv, we have that

(3) c(x) = c(ξx),∀ξ ∈ O∗.

By a pseudo-ball in V of radius r > 0 centered at 0 we mean the set B(r) =
{x ∈ V |c(x) < r}. In view of (3), B(r) is invariant under multiplication by the
elements from O∗. We preserve the notation B(r) to denote the usual ball in V
of radius r centered at 0 with respect to ‖ · ‖.

2.3. K-algebraic groups and their Lie algebras. We use boldface upper case
letters to denote the algebraic groups and boldface lower case Gothic letters to
denote their Lie algebras.

In this paper G is a semisimple algebraic group defined over K (or shortly,
K-group). The Lie algebra g is equipped with a K-structure compatible with
the K-structure of G [Bo, Theorem 3.4].

Given a K-subgroup H of G we denote H
def
= H(KS) and h

def
= h(KS).

The group H (respectively, its Lie algebra h) is identified with the direct prod-

uct
∏

v∈S Hv (respectively,
∏

v∈S hv), where Hv
def
= H(Kv) (respectively, hv

def
=

h(Kv)). We let Ru(H) be the unipotent radical of H. The unipotent radical of
h is by definition Lie(Ru(H)).

When K = Q and S contains only the archimedean valuation of Q, the group
G = G(R) is called real Q-algebraic group and we write G(Z) and G(Q) instead
of G(Z) and G(Q), respectively.

On every Gv we have a Zariski topology induced by the Zariski topology on G
and a Hausdorff topology induced by the locally compact topology on Kv. The
formal product of the Zariski (respectively, Hausdorff) topologies on Gv, v ∈ S, is
the Zariski (respectively, Hausdorff) topology on G. (Recall that G =

∏
v∈S Gv.)

In order to distinguish the two topologies, all topological notions connected with
the first one will be used with the prefix ”Zariski”.
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By a Kv-split torus of Gv we mean a Zariski closed Zariski connected subgroup
of Gv which is diagonalizable over Kv. If Tv is a Kv-split torus of Gv we denote
by X(Tv) the multiplicative group of all rational characters of Tv.

A subalgebra u of g is unipotent if it corresponds to a Zariski closed unipotent
subgroup U of G, i.e., if there exists a subgroup U ⊂ G such that U =

∏
v∈S Uv,

each Uv is Zariski closed in Gv, and u =
∏

v∈S uv where uv = Lie(Uv).

The adjoint representation Ad : G → GL(g) is the direct product of the adjoint
representations Adv : Gv → GL(gv), v ∈ S.

2.4. S-arithmetic subgroups. We fix some imbedding of G in SLn such that
G(O) = SLn(O) ∩G and g(O) = sln(O) ∩ g. So, g(O) is invariant under the
adjoint action of G(O).

Let Γ = G(O) and π : G → G/Γ be the natural projection. For every x =
π(g), g ∈ G, we introduce the notation:

gx
def
= Ad(g)(g(O)).

Since g(O) is Ad(Γ)-invariant, gx does not depend on the choice of the element
g.

Let Γ′ be an S-arithmetic subgroup of G, that is, Γ ∩ Γ′ has finite index in
both Γ and Γ′. Let π′ : G → G/Γ′, φ : G/Γ → G/Γ∩Γ′ and ψ : G/Γ′ → G/Γ∩Γ′
be the natural maps. Note that φ and ψ are proper maps. Therefore if H is
an arbitrary closed subgroup of G and g ∈ G then the orbit Hπ(g) is closed
(respectively, divergent) if and only if Hπ′(g) is closed (respectively, divergent).
Using this remark one can easily see that the results of this paper remain valid
for an arbitrary S-arithmetic subgroup Γ instead of Γ = G(O).

3. Preliminary results

3.1. S-adic Mahler’s criterion. The group SLn(KS) is acting naturally on Kn
S

and SLn(O) is the stabilizer of On in SLn(KS). If r > 0 then B(r) (resp., B(r))
is the ball (resp. pseudoball) in Kn

S centered in 0 and with radius r (see §2.3).

Let π : SLn(KS) → SLn(KS)/SLn(O) be the natural projection. We have the
following analog of Mahler’s criterion (cf.[To, Theorem 3.1]):

Theorem 3.1. Given a subset M ⊂ SLn(KS) the following conditions are equiv-
alent:

(i) π(M) is relatively compact in SLn(KS)/SLn(O);
(ii) There exists r > 0 such that gOn ∩ B(r) = {0} for all g ∈ M ;
(iii) There exists r > 0 such that gOn ∩B(r) = {0} for all g ∈ M .
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The following lemma will be also needed:

Lemma 3.2. (cf.[To, Lemma 3.2]) There exists a constant κ > 1 with the follow-
ing property. Let x = (xv)v∈S ∈ Kn

S be such that xv 6= 0 for all v ∈ S. For each
v ∈ S we choose a positive real number av in such a way that cS(x) =

∏
v∈S av.

Then there exists ξ ∈ O∗ such that
av

κ
≤ ‖ξxv‖v ≤ κav

for all v ∈ S. In particular, for every x as above there exists ξ ∈ O∗ such that

(4)
cS(x)1/m

κ
≤ ‖ξx‖S ≤ κcS(x)1/m,

where m = #S.

3.2. Horospherical subsets. Let G be an arbitrary semisimple K-algebraic
group. Fix a minimal parabolic K-subgroup P of G and denote by P1, . . . ,Pl

the maximal parabolic K-subgroups of G containing P. Recall that l = rankKG,
cf.[Bo, ch.7]. Put ui = Lie(Ru(Pi)), i = 1, . . . , l.

The following definition differs slightly from [To-We, Definition 3.4] and [To,
Definition 3.3].

Definition 3.3. A subset (finite or infinite)M of g is called horospherical of type
i (or i-type horospherical) if for some g ∈ G and ui as above, Ad(g)M ⊂ u(O)
and Ad(γ)M spans linearly ui. When the specification of ui is not needed, we
say simply that M is a horospherical subset.

The next proposition follows immediately from [Bo, Propositions 14.22 and
21.13]:

Proposition 3.4. Let M1 and M2 be horospherical subsets of the same type.
Assume additionally that the set M1∪M2 is contained in a unipotent subalgebra
of g. Then 〈M1〉 = 〈M2〉. (Here and further on 〈M〉, where M ⊂ g, denotes
the linear span over KS of M in g.)

The next proposition provides a compactness criterion in terms of horospher-
ical subsets of gx, x ∈ G/Γ (see 2.4 for the notation). It generalizes [To-We,
Propositions 3.3 and 3.5] and [To, Proposition 3.4].

Proposition 3.5. We have:

(a) There exists r > 0 (respectively, t > 0) such that for any x = π(g) the
subalgebra of g spanned by B(r)∩gx (respectively, BS(t)∩gx) is unipotent;

(b) (Compactness Criterion) A subset M of G/Γ is relatively compact if
and only if there exists r > 0 (respectively, t > 0) such that B(r) ∩ gx

(respectively, B(t) ∩ gx) does not contain a horospherical subset for any
x ∈ M .
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Proposition 3.5(b) easily implies:

Corollary 3.6. Let Dv ⊂ Gv be a Kv-split torus. Assume that Dvx, x ∈ G/Γ,
is a divergent orbit. Let ‖ · ‖ be a norm on Dv. For every pseudo-ball B(r) there
exists a constant τ > 0 such that if t ∈ Dv and ‖t‖ ≥ τ then Ad(t)gx ∩ B(r)
contains a horospherical subset.

Proof. According to Proposition 3.5(b) M = {y ∈ G/Γ|B(r) ∩ gy does not
contain a horospherical subset} is relatively compact. Since Dvx is divergent,
there exists τ > 0 such that tx /∈ M if ‖t‖ ≥ τ . Therefore, if ‖t‖ ≥ τ then
Ad(t)gx ∩ B(r) contains a horospherical subset. ¤

The following proposition plays an important role in the proof of Theorem 1.4:

Proposition 3.7. [We2, Proposition 7] Let Sn−1 be an n−1-dimensional sphere
centered at 0 in Rn. Suppose V is a cover of Sn−1 by open sets such that for any
V ∈ V there is a linear functional χ : Rn → R such that χ(s) < 0 for any s ∈ V.
Then there is s ∈ S such that

#{V ∈ V : s ∈ V } ≥ n,

i.e., the multiplicity of the cover V is at least n.

4. Proofs of Theorems 1.4 and 1.6

4.1. We keep the notation from the formulation of Theorem 1.4. First we prove
the following proposition:

Proposition 4.1. Let v ∈ S, Dv be a Kv-split torus in Gv and g ∈ G. There exist
a real r > 0 and finitely many characters χ1, . . . , χm in X(Dv) with the following
property: For every u = Lie(Ru(P)), where P is a maximal parabolic K-subgroup
of G, there exists 1 ≤ i ≤ m such that if t ∈ Dv and Ad(tg)(u(O))∩B(r) contains
a horospherical subset then |χi(t)|v < 1.

Proof. The algebra u in the formulation of the proposition is conjugated
under G(K) to one of the algebras ui introduced in §3.2. For every i we denote
di = dim ui. We let χ1, . . . , χm ∈ X(Dv) be the set of weight-characters for the
actions of ∧diAd(Dv) on ∧digv for all i.

For every i we fix a basis e(i)
1 , . . . , e(i)

m of ∧digv consisting of weight vectors for
the adjoint action of Dv on ∧digv. We denote by ‖·‖(i)

v the norm sup on ∧digv with
respect to e(i)

1 , . . . , e(i)
m . If w ∈ S, w 6= v, we denote by ‖ · ‖(i)

w any norm on ∧digw

compatible with the topology on ∧digw. We let c(i)( · ) be the content on ∧dig

(as defined in §2.2) and for every a > 0 we put B(i)(a) = {x ∈ ∧dig|c(i)(x) < a},
a > 0. The notation ‖ · ‖w, w ∈ S, and c( · ) are preserved for the norms and the
content on gw, w ∈ S, and g, respectively.
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Let x = π(g). Since ∧digx is discrete in ∧dig, it follows from the formula (4)
of Lemma 3.2 that there exists r0 > 0 such that

(5) B(i)(r0) ∩ ∧dgx = {0}
for all i. It is easy to see that there exists r with 0 < r < r0 such that if
a1, . . . ,adi

∈ B(r) then

(6) a1 ∧ . . . ∧ adi
∈ B(i)(r0)

for all i = 1, . . . , l.

Assume that u ⊂ g is conjugated to ui. Fix a vector
∑

j

αje
(i)
j ∈ ∧digv, αj ∈ Kv,

which spans the 1-dimensional subspace corresponding to Ad(gv)(uv), where gv is
the v-component of g. Let χ be the weight character associated to some e(i)

j0
with

|αjo |v ≥ |αj |v for all j. Let M be a horospherical subset of Ad(tg)(u(O))∩B(r).
Choose a linearly independent (over KS) subset m1, . . . ,mdi

of Ad(t−1)(M). It
follows from (5) that

c(i)(m1 ∧ . . . ∧mdi
) ≥ ro.

Let m(v)
j ∈ gv be the v-component of mj , j = 1, . . . , di. Using (6) we get

c(i)(∧diAd(t)(m1 ∧ . . . ∧mdi
)) =

‖ ∧di Ad(t)(m(v)
1 ∧ . . . ∧m(v)

di
)‖(i)

v

‖m(v)
1 ∧ . . . ∧m(v)

di
)‖(i)

v

c(i)(m1 ∧ . . . ∧mdi
) < r0,

where m(v)
1 ∧ . . . ∧m(v)

di
is the v-component of m1 ∧ . . . ∧mdi

. Therefore,

‖ ∧di Ad(t)(m(v)
1 ∧ . . . ∧m(v)

di
)‖(i)

v < ‖m(v)
1 ∧ . . . ∧m(v)

di
)‖(i)

v .

Since m(v)
1 ∧ . . . ∧ m(v)

di
and

∑
j αje

(i)
j are colinear vectors, it follows from the

choice of ‖ · ‖(i)
v and χ that |χ(t)|v < 1. ¤

4.2. Proof of Theorem 1.4. We will identify Dv with K∗
v

n, n = dim Dv and
we denote by log the real logarithmic function with base a > 1. Define

ϕ : Dv → Rn, ϕ((t1, . . . , tn)) = (log |t1|v, . . . , log |tn|v).
If v is non-archimedean we choose a in such a way that Im(ϕ) = Zn. Introduce
a norm ‖ · ‖∼ on Dv as follows:

‖ t ‖∼ = ‖ϕ(t)‖∞,∀t ∈ Dv,

where ‖ · ‖∞ is the Euclidian norm on Rn.
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We fix r > 0 such that the conclusions of Proposition 3.5(a) and Proposition
4.1 are satisfied. There exists a positive real r1 < r such that Ad(t)B(r1) ⊂ B(r)
for all t ∈ Dv with ‖ t ‖∼ ≤ 5

√
n. In view of Corollary 3.6, there exists R >

√
n

such that Ad(t)gx∩B(r1) contains a horospherical subset for all ‖ t ‖∼ ≥ R−√n.

Denote by Sn−1 the sphere of radius R centered at 0 in Rn. Fix a finite
covering of Sn−1 by balls B1, . . . , Bq in Rn of radii

√
n and with centers on

Sn−1. For every 1 ≤ i ≤ q there exists ti ∈ Dv such that ϕ(ti) ∈ Bi. Since
‖ ti ‖∼ ≥ R −√n, we can associate with every Bi, i = 1, . . . , q, a horospherical
subset Mi ⊂ Ad(ti)gx ∩ B(r1).

Let i 6= j, Bi ∩Bj ∩ Sn−1 6= ∅ and Mi and Mj be of the same type. Then

‖tit−1
j ‖∼ < 4

√
n.

Therefore,
Ad(tit−1

j )Mj ⊂ B(r).

In view of the choice of r, Ad(tit−1
j )Mj andMi belong to one and the same unipo-

tent subalgebra of g. Using Proposition 3.4 we get that 〈Ad(tit−1
j )Mj〉 = 〈Mi〉.

Therefore there exists a unique maximal parabolic K-subalgebra of g with unipo-
tent radical u such that Mi ⊂ Ad(tig)(u(O))∩B(r) and Mj ⊂ Ad(tjg)(u(O))∩
B(r). It follows from Proposition 4.1 that there exists a character χ ∈ X(Dv)
such that |χ(ti)|v < 1 and |χ(tj)|v < 1. The character χ yields a functional ρχ on
Rn uniquely defined by the relation

ρχ(ϕ(t)) = log |χ(t)|v,∀t ∈ Dv.

In particular, ρχ(ϕ(ti)) < 0 and ρχ(ϕ(tj)) < 0. Moreover, it is easy to see that

(7) ρχ(s) < 0, ∀s ∈ (Bi ∩ Sn−1) ∪ (Bj ∩ Sn−1).

Indeed, in view of the choice of r, r1 and Mi, if ‖tt−1
i ‖∼ < 5

√
n then

Ad(tt−1
i )Mi ⊂ B(r).

Applying again Proposition 4.1 we get that |χ(t)|v < 1. This implies that if B′ is
the open ball in Rn centered at ϕ(ti) and with radius 5

√
n, then the restriction

of ρχ to B′ ∩ Zn takes negative values. But ρχ takes also negative values at
the points of the minimal convex body containing B′ ∩ Zn. The latter contains
(Bi ∩ Sn−1) ∪ (Bj ∩ Sn−1) which complets the proof of (7).

We denote by V the cover of Sn−1 defined by the following properties: each
V ∈ V is connected and coincides with the union of a maximal number of subsets
Bi ∩ Sn−1 such that the horospherical subsets Mi associated with Bi are all of
the same type. In view of the above discussion, for every V ∈ V there exists a
functional ρV on Rn which takes only negative values on V . By Proposition 3.7
the multiplicity of V is ≥ n. On the other hand, since the number of types of
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horospherical subsets is exactly equal to rankKG, we have that the multiplicity
of the cover V is ≤ rankKG. Therefore, rankKG ≥ dimDv. ¤

4.3. Proof of Theorem 1.6. Recall that Dv
∼= K∗

v . We will use the map
ϕ : Dv → R and the norm ‖ · ‖∼ on Dv as defined in the proof of Theorem 1.4.
Fix a constant c > 1 such that for every t ∈ Dv with ‖ t ‖∼ ≤ 2 and every z ∈ gv

(8) ‖Ad(t)z‖v ≤ c‖z‖v.

In view of Proposition 3.5(a) there exists r > 0 such that B(cr) ∩ gy spans a
unipotent algebra for all y ∈ G/Γ.

For every n ∈ Z we fix an element tn ∈ Dv with ϕ(tn) = n. (In particular,
‖tn‖∼ = |n|.) Since Dvπ(g) is a divergent orbit, it follows from Proposition
3.5(b) that there exists a positive integer ρ such that if n ∈ Z and |n| ≥ ρ then
B(r) ∩ gtnπ(g) contains a horospherical subset. For every such n we choose a
horospherical subset Mn ⊂ B(r)∩gtnπ(g) such that the distance dn (with respect
to the norm on g) from Mn \ {0} to {0} is minimal. Using again Proposition
3.5(b) we obtain that

(9) lim
|n|→∞

dn = 0.

Let
In = {t ∈ Dv : ‖tt−1

n ‖∼ < 2}.
In view of (8) and the choice of r

(10) Ad(tt−1
n )Mn ⊂ B(cr)

whenever |n| > ρ and t ∈ In.

Denote by u+ and u− the maximal unipotent K-subalgebras of g such that
〈Mρ〉 = Ad(tρg)u+ and 〈M−ρ〉 = Ad(t−ρg)u−. Let |n| > ρ. It follows from (10)
that

Ad(tn+1t
−1
n )Mn ∪Mn+1 ⊂ B(cr).

Using Proposition 3.4, we get that

〈Ad(tn+1t
−1
n )Mn〉 = 〈Mn+1〉.

A simple inductive argument shows that

〈Mn〉 = Ad(tng)u+

for all n > ρ, and
〈M−n〉 = Ad(t−ng)u−

for all −n > ρ.

Now let t ∈ Dv and ‖ t ‖∼ > ρ. There exists tn, |n| ≥ ρ, such that

‖tt−1
n ‖∼ < 2.
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Put M = B(r) ∩ gtπ(g). (It is clear that M is a horospherical subset.) Then

Ad(tt−1
n )Mn ∪Mn+1 ⊂ B(cr),

and, in view of Proposition 3.4,

〈Ad(tt−1
n )Mn〉 = 〈M〉.

Therefore
〈M〉 = Ad(tg)u+

if n > ρ, and
〈M〉 = Ad(tg)u−

if −n > ρ. Now the formulas (1) and (2) follow immediately from (9).

It remains to show that u+ and u− are opposite to each other. First, it follows
easily from (1) and (2) that u+ and u− are different. Let P+ (respectively, P−)
be the parabolic K-subgroup of G such that u+ = Lie(Ru(P+)) (respectively,
u− = Lie(Ru(P−))). According to [Bo, Proposition 20.7] P+ ∩ P− contains
the centralizer of a maximal K-split torus S. But the Weyl group relative to S
acts simply transitively on the set of minimal parabolic K-subgroups containing
ZG(S) [Bo, Corollary 21.3]. Since dimS = 1 the Weyl group is of order two and
P+ and P− are minimal K-parabolic subgroups. Therefore either P+ = P− or
P+ and P− are opposite. Since u+ 6= u− we get that u+ and u− are opposite
parabolic subalgebras. ¤

5. Hilbert modular lattices

5.1. Formulation of the result. In this section we describe the divergent or-
bits of the split tori on G/Γ, where G = SL2(R)× . . .×SL2(R) is a direct product
of m > 1 copies of SL2(R) and Γ is an irreducible non-cocompact lattice in G.
In view of the arithmeticity theorem up to conjugation by an element from G
the group Γ is commensurable to a Hilbert modular lattice in G obtained in the
following way. Let K be a totally real number field with m = [K : Q]. Then G
is naturally identified with the group of R-points of RK/Q(SL2), where RK/Q is
the restriction of scalars functor. So, if σ1, . . . , σm are the different imbeddings
of K into R then G(Z) is identified with the image of SL2(O) in G via the map
g → (gσ1 , . . . , gσm), where gσi denotes the matrix obtained after applying σi to
the entries of g. The group G(Z) is called Hilbert modular lattice associated to
K. Further on we will assume that Γ = G(Z). (In view of 2.4 no loss of generality
is entailed in this assumption.)

It is clear that rankQG = 1 and rankRG = m. In view of [We1] the divergent
orbits of R-split tori exist only for the action of tori of dimension one, that is,
for 1-parameter R-split tori. So, let D be a 1-parameter R-split algebraic torus
of G. Up to conjugation by an element from G, D = {d(t) = (d1(t), . . . , dm(t)) :
t ∈ R∗}, where
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di(t) =
(

tαi 0
0 t−αi

)

and α1, . . . , αm are non-negative integers not all equal to 0. We will denote by
B+, respectively B−, the group of upper, respectively lower, triangular matrices
in SL2(R).

For every g = (g1, . . . , gm) in G we denote

I+(g) = {i ∈ {1, 2, . . . , m} : gi ∈ B+}
and

I−(g) = {i ∈ {1, 2, . . . , m} : gi ∈ B−}.

The main result in this section is the following:

Theorem 5.1. With the above notation, Dπ(g) is a divergent orbit if and only
if there exists a q ∈ G(Q) such that

∑

i∈I+(gq)

αi >
∑

j /∈I+(gq)

αj

and ∑

i∈I−(gq)

αi >
∑

j /∈I−(gq)

αj .

If αi = 1 and αj = 0 for all i 6= j, Theorem 5.1 follows from Theorem 1.5.

Let D be a group of R-points of a Q-split torus in G. In this case α1 = . . . =
αm = 1. Theorem 5.1 easily implies:

Corollary 5.2. Let D be a group of R-points of a Q-split torus in G. Then
Dπ(g) is divergent if and only if there exists a q ∈ G(Q) such that

#I+(gq) >
m

2
and #I−(gq) >

m

2
.

In particular, if r = 2 then Dπ(g) is divergent if and only if

g ∈ ZG(D)G(Q).

5.2. Proof of Theorem 5.1. We will need the following notation: if v(t) =
(v1(t), . . . , vn(t)) and w(t) = (w1(t), . . . , wn(t)), where vi(t) and wj(t) are real
functions defined on a set A, we will write v(t) ³ w(t) to indicate that there
exists a constant c > 1 such that vi(t)

c ≤ wi(t) ≤ vi(t)c for all i and t ∈ A.

The proof will be deduced from Theorem 1.6. According to Theorem 1.6,
Dπ(g) is divergent if and only if there exist opposite unipotent K-subalgebras
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u+ and u− of the K-algebraic group SL2 such that if x+ and x− are non-zero
K-rational elements of u+ and u−, respectively, then

(11) lim
t→0

c(Ad(d(t)g)x+) = 0

and

(12) lim
t→+∞ c(Ad(d(t)g)x−) = 0.

Since the non-trivial K-split tori of SL2 are conjugate by elements of SL2(K)
and the intersection of any two opposite Borel K-subgroups of SL2 coincides
with a non-trivial K-split torus, there exists an element q ∈ G(Q) such that
Ad(q−1)x+, respectively Ad(q−1)x−, is an upper, respectively lower, triangular
matrix. (Recall that G(Q) is identified with SL2(K) and g(Q) with sl2(K).

With g = (g1, . . . , gm) as in the formulation of the theorem, for every i we
write the Bruhat decompositions of giq with respect to B+ and B−:

giq = uiwibi and giq = u−i w−i b−i ,

where ui ∈ Ru(B+), u−i ∈ Ru(B−), bi ∈ B+, b−i ∈ B− and wi and w−i are
representatives of elements of the Weyl group.

Note that

(13) lim
t→0

di(t)uidi(t)−1 = e

and

(14) w−1
i di(t)wi = di(ctε),

where c is a constant depending on the choice of wi and ε = 1 or − 1 depending
on whether or not wi represents the trivial element of the Weyl group. Using
(13), (14) and

di(t)giq = (di(t)uidi(t)−1)wi(w−1
i di(t)wi)bi

one easily sees that if 0 < t < 1 then

Ad(di(t)gi)x+ ³
{

t2αiAd(q−1)x+ if giq ∈ B+,
t−2αiAd(q−1)x− if giq /∈ B+.

Therefore if 0 < t < 1 then

c(Ad(d(t)g)x+) ³ t
∑

i∈I+(gq) αi−
∑

j /∈I+(gq) αj .

A similar argument shows that for t > 1 we have

c(Ad(d(t)g)x−) ³ t
∑

i∈I−(gq) αi−
∑

j /∈I−(gq) αj .

Now the theorem follows from (11) and (12). ¤
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5.3. Remark. It is easy to see that Theorem 5.1 remains valid if the assumption
in its formulation that D is an algebraic split torus is replaced by the weaker one
that D is any split torus. (In the latter case α1, . . . , αm are non-negative real
rather than integer numbers.) A similar generalization of Theorem 1.6 when
v ∈ S is an archimedean valuation is also possible. We gave preference to slightly
more particular formulations for the sake of simplicity, because this allows us
to treat both the archimedean and non-archimedean cases in Theorem 1.6 in a
uniform way.

Acknowledgement. The author is grateful to the referee for his useful remarks.
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