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Abstract: Using a theorem of J. Groves we give a ping-pong proof of Osin’s
uniform exponential growth for solvable groups. We discuss slow exponential
growth and show that this phenomenon disappears as one passes to a finite
index subgroup. Finally we make a connection between slow growth and the
Lehmer conjecture.

1. Introduction

The main purpose of the present note is to give an alternative proof as well
as a strengthening of the fact, proved by Alperin [1] (polycyclic case) and Osin
[13, 14] that finitely generated solvable groups of exponential growth have uniform
exponential growth. Our approach is quite different from the one taken up in
those works and relies on a direct ping-pong argument.

Let Γ be a group generated by a finite subset Σ. Assume that Σ is symmetric
(i.e. s ∈ Σ ⇒ s−1 ∈ Σ), contains the identity e, and let G = G(Γ,Σ) be the
associated Cayley graph. The set Σn is the set of all products of at most n
elements from Σ, i.e. the ball of radius n centered at the identity in G for the
word metric. Let C be the set of all such finite generating subsets Σ. We introduce
the following definition:

Definition 1.1. Two elements in a group are said to be positively independent
if they freely generate a free semigroup. The diameter of positive indepen-
dence of a Cayley graph G(Γ,Σ) is the quantity d+(Σ) = inf{n ∈ N, Σn contains
two positively independent elements}. Similarly, the diameter of positive indepen-
dence of the group Γ is defined by d+

Γ = sup{d+(Σ), Σ ∈ C}.
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The next definition is more standard:

Definition 1.2. Assume that Γ is finitely generated. For Σ in C we can define the
algebraic entropy of the pair (Γ,Σ) to be the quantity SΓ(Σ) = lim 1

n log(#Σn).
Similarly, the algebraic entropy of Γ is defined by SΓ = infΣ∈C SΓ(Σ).

It is easy to see that SΓ(Σ) is either positive for all Σ in C or 0 for all Σ
simultaneously. Accordingly, the group Γ is said to have exponential or sub-
exponential growth. If SΓ > 0, then Γ is said to have uniform exponential growth.
If two elements generate a free subsemigroup, there are exactly 2n elements that
can be written as positive words of length n in these two elements, hence the
latter quantities are related by the following inequality:

SΓ ≥ log 2
d+

Γ

In particular, if Γ has a finite positive independence diameter, i.e. d+
Γ < +∞,

then Γ has uniform exponential growth, i.e. SΓ > 0. No converse is valid in
general. As was proved by Osin in [15], the free Burnside groups of large odd
exponent are uniformly non-amenable and in particular have uniform exponential
growth. However, these groups obviously have an infinite diameter of positive
independence.

In their seminal papers [12, 21] J. Milnor and J. Wolf proved that finitely gener-
ated groups that are finite extensions of a nilpotent group (i.e. virtually nilpotent
groups) have polynomial growth (hence SΓ = 0), while finitely generated solv-
able but non virtually nilpotent groups have exponential growth. Refining their
methods, J. Rosenblatt showed subsequently in [19] that any finitely generated
solvable group contains a free semigroup on two generators unless it is virtually
nilpotent, and C. Chou [4] extended this dichotomy to the class of elementary
amenable groups.

In the eighties, M. Gromov asked whether a group with exponential growth
must have uniform exponential growth. Recently, J. Wilson [20] answered the
question negatively by constructing several examples of finitely generated sub-
groups of the automorphism group of a rooted tree such that SΓ = 0 although
they contain a free subgroup and hence have exponential growth.

However, D. Osin [13, 14] (and independently R. Alperin [1] in the polycyclic
case) proved that SΓ > 0 for finitely generated solvable or even elementary ame-
nable groups that are not virtually nilpotent. The class of elementary amenable
groups is the smallest class of groups containing both abelian groups and finite
groups and that is stable under subgroups, quotients, extensions and direct limit
(see Chou [4]). Obviously any solvable group is elementary amenable. Although
it is not explicitely stated in Osin’s paper [14], reading between the lines of his
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proof one can fairly simply derive (see Section 6 for some details) the following
stronger statement.

Theorem 1.3. Let Γ be a finitely generated non virtually nilpotent elementary
amenable group. Then Γ has finite positive independence diameter, i.e. d+

Γ <
+∞.

The idea of proving the finiteness of d+
Γ in order to obtain uniform exponential

growth has been used in many places in the past such as the work of Eskin-
Mozes-Oh on non virtually solvable linear groups of characteristic zero [5], or for
hyperbolic groups in Gromov’s original monography [8]. Note finally that the
existence of groups of intermediate growth shows that the above theorem cannot
be extended to all amenable groups.

In this paper we want to address the following question: how large can d+
Γ

be? The following theorem and corollary give an upper bound on d+
Γ for finitely

generated solvable groups.

Theorem 1.4. Let Γ be a finitely generated solvable group. Then one (and only
one) of the following is true:

(i) Γ is virtually nilpotent (i.e. it contains a nilpotent subgroup of finite index).

(ii) Γ has a finite index subgroup Γ0 such that d+
Γ1
≤ 3 for any finite index

subgroup Γ1 ≤ Γ0.

It is easy to check that a subgroup Γ0 of index n in a finitely generated group
Γ, satisfies d+

Γ ≤ (2n + 1) · d+
Γ0

. Hence we obtain:

Corollary 1.5. Let Γ be a finitely generated solvable group which is not virtually
nilpotent. Then there is a number C(Γ) such that d+

Γ′ ≤ C(Γ) for every finite
index subgroup Γ′ of Γ.

Hence within a given commensurability class of finitely generated non virtually
nilpotent solvable groups, one can always find a group Γ with universally bounded
growth, i.e. SΓ ≥ log 2

3 . In particular, slow exponential growth is a phenomenon
that disappears completely as one passes to a suitable finite index subgroup.

The method used here to prove Theorem 1.4 is based on a direct ping-pong
argument and hence differs radically from those of the above mentioned previous
works [12, 21, 19, 13, 14]. Thanks to the following results that can be derived
from the work of J. Groves, it is enough to prove Theorem 1.4 for metabelian
groups (i.e. extensions of two abelian groups) and even for subgroups of affine
transformations of a K-line. This on the other hand is fairly simple as explained
in Section 3.

Theorem 1.6. ([7]) Let Γ be a non virtually nilpotent finitely generated solvable
group all of whose proper quotients are virtually nilpotent. Then we have:
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(i) Γ is virtually metabelian.

(ii) If Γ is metabelian, then it embeds in the group of affine transformations of
the K-line, for some field K.

For the convenience of the reader, we will provide a complete proof of Theorem
1.6 in Section 4 below. When proving (i), the polycyclic case is rather simple
while the non polycyclic case is more delicate and relies on J. Groves’ paper.

In [3], we show that a similar phenomenon as in Corollary 1.5 occurs for all
finitely generated subgroups of the linear group GLd. It would be interesting to
study this also in the more general case of elementary amenable groups.

However, there is no uniform bound on d+
Γ itself in Theorem 1.4. As Osin

pointed it out in [14], making use of a construction of Grigorchuk and de la Harpe
[6], it is possible to construct, for every ε > 0, an elementary amenable group
Gε (and even solvable virtually metabelian, with polycyclic and non polycyclic
examples, as Bartholdi and Cornulier recently verified in [2]) such that 0 < SGε <
ε.

The sharp contrast between polycyclic and non polycyclic groups is well illus-
trated by the special case of metabelian groups. Indeed we have d+

Γ ≤ 3 for every
non polycyclic metabelian group (this can be derived both from Osin’s method
or ours, see Proposition 7.1) while the following example shows that there is no
upper bound for d+

Γ in the class of polycyclic metabelian groups.

Theorem 1.7. There exists a sequence (Gn)n≥1 of metabelian polycyclic sub-
groups of GL2(Q) such that d+

Gn
≥ n for all n.

However this does not rule out the possibility that SΓ may be bounded away
from 0 by a universal bound for all metabelian groups that are not virtually
nilpotent. Following Osin [14] (remark after Theorem 2.4) let us formulate this
as a question:

Question 1.8. Is it true that there exists an ε0 > 0 such that SΓ ≥ ε0 for all
non virtually nilpotent finitely generated metabelian groups ?

As any such group maps to the 2×2 matrices by Theorem 1.6 (ii), the question
reduces to subgroups of GL2(Q) and even to the 2-generated groups Γ(x) defined
in Section 7 below. It is interesting to observe that a positive answer to this
question would imply the famous Lehmer conjecture from number theory, we
explain this in Section 7.

Outline of the paper: In Section 2, we explain how to build two positively
independent elements via the ping-pong argument. Section 3 is devoted to the
proof of Theorem 1.4 in the particular case of subgroups of the affine group. In



On Uniform Exponential Growth for Solvable Groups 953

Section 4, we provide a complete proof of Theorem 1.6 along the lines of J. Groves’
paper [7]. In Section 5, we complete the proof the Theorem 1.4. Section 6 deals
with elementary amenable groups and we then prove Theorem 1.3. Finally in
Section 7 we give examples of simple metabelian groups with arbitrarily large d+

Γ ,
proving Theorem 1.7, and we explain the connection with the Lehmer conjecture.

2. Ping-pong on the affine line

Let A be the algebraic group of affine transformations of the line {x 7→ ax+b},
that is, if K is any field,

A(K) =
{(

a b
0 1

)
, a ∈ K×, b ∈ K

}

Elements from A(K) are of two types: they can either fix a point and hence be
homotheties around that point (when a 6= 1), or fix none and be pure translations
(when a = 1). We are now going to give a simple sufficient condition for two
elements in A(k) to generate a free semigroup when the field k is a local field
(i.e. R, C, a finite extension of Qp or a field of Laurent series over a finite field).
The construction of a free semigroup often relies on the ping-pong principle.
This principle can take many different guises, one of which is illustrated by the
following lemma:

Lemma 2.1. (Ping-pong) Let k be an archimedean (resp. non-archimedean) local
field. Let x and y be two affine transformations of the k-line such that x fixes
p ∈ k and y fixes q ∈ k. Assume moreover that x acts by multiplication by α
around p while y acts by multiplication by β around q. Suppose that |α| and |β|
are ≤ 1

3 (resp. < 1). Then x and y generate a free semigroup.

Proof. Let d = |p − q| and let B(p) and B(q) be the open balls of radius d/2
(resp. d in the non-archimedean case) centered at p and at q. By definition
they are disjoint and it follows from the assumption on α and β that x maps
both of them into B(p) while y maps both of them into B(q). Now suppose that
w1 = xn1ym1 · ... · xnkymk and w2 = xn′1ym′

1 · ... · xn′lym′
l are two non trivial words

in x and y with non-negative powers. If they give rise to the same element of H,
then they must be equal as abstract words, i.e. k = l, ni = n′i, mi = m′

i for all i’s.
Indeed multiplying by a negative power of x on the right hand side if necessary,
we may assume that n1 = 0 while n′1 > 0, but then when acting on the affine
line, w1 would send q to a point in B(q), while w2 would send q to a point in
B(p), a contradiction. ¤

To play this game of ping-pong, we will need to be able to choose a suitable
embedding of a finitely generated field K into an appropriate local field. This is
done via the following easy and classical fact:
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Lemma 2.2. (see J. Tits [22]) Let K be a finitely generated field and α ∈ K.
If α−1 is not an algebraic integer (i.e. over Z if char(K) = 0 or over Fp if
char(K) = p), then there exists an embedding σ : K ↪→ k into a non-archimedean
local field k with absolute value | · |k such that |σ(α)|k < 1. Moreover there exists
a positive number ε = ε(K) > 0 such that if α ∈ K is an algebraic unit and
satisfies | log |σ(α)|k| < ε for every embedding σ : K ↪→ k into an archimedean
local field k, then α is a root of unity.

Proof. Let β = α−1 and let K0 be the prime field of K (i.e. Q if char(K) = 0
and Fp if char(K) = p). Suppose first that β is transcendental over K0. Tran-
scendental elements are dense in every local field, so if k is a non-archimedean
local field containing K0, then one can indeed find a transcendental element σ(β)
in k with |σ(β)| > 1. This gives rise to an embedding σ : K0(β) → k which can
always be extended to the whole of K up to changing k into a finite extension if
necessary (K is finitely generated). Now if K0(β) is an algebraic extension and
|β| ≤ 1 for every non-archimedean absolute value | · | on K0(β), then β must be
an algebraic integer.

Finally suppose α is an algebraic unit. Then its degree over K0 is bounded
by a constant depending only on K, namely by [K : K0(ζ1, ..., ζr)] < +∞ where
K0(ζ1, ..., ζr) is a purely transcendental extension over which K is algebraic (by
Noether’s normalization theorem). However, there are only finitely many al-
gebraic units of given degree all of whose conjugates are bounded. Moreover,
Kronecker’s theorem implies that if |δ| ≤ 1 for all conjugates δ of α, then α must
be a root of unity. Hence the result. ¤

3. Proofs for subgroups of the affine group A = {x 7→ ax + b}

First consider a general finitely generated metabelian group Γ with the exact
sequence

1 → M → Γ π→ Q → 1

where M and Q are abelian groups. The group Q acts on M by conjugation.
If we denote by A the subring of End(M) generated by Q, then M becomes an
A-module. The following is classical:

Claim 1: M is finitely generated as an A-module.

Indeed let {x1, ..., xn} be generators of Γ. Since Q is a finitely generated abelian
group, it is finitely presented Q = 〈y1, ..., yn|r1, ..., rm〉 where yi = π(xi). We then
verify that M is generated as an A-module by the ri(x1, ..., xn)’s and the xi’s
that already belong to M . This proves the claim.

We are now going to prove Theorem 1.4 and Proposition 7.1 with the additional
assumption that the group Γ is a subgroup of A(K) for some field K. In the next
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section, we will prove the general case by reducing to this one. We can take K
to be the field generated by the matrix coefficients of the generators of Γ so that
K will then be finitely generated. Let T be the subgroup of A(K) consisting of
pure translations. We take M = Γ∩T and let π be the canonical projection map
from A(K) to K× so that Q is viewed as a multiplicative subgroup of K×.

3.1. Proof of Theorem 1.4 for subgroups of the affine line. Suppose now
that Γ is not virtually nilpotent. Then clearly Q does not lie within the group
of roots of unity of K, because otherwise Q, being finitely generated, would
be finite, and Γ would be virtually abelian. Now suppose that Q lies in the
subgroup of K× consisting of algebraic units. Then K must have characteristic
zero and according to Lemma 2.2, there exists a positive ε depending only on
the field K, hence only on the group Γ, such that, if α ∈ Q is not a root of
unity then there exists an embedding of K into an archimedean local field k
such that | log |α|k| > ε. Let n0 be an integer (depending only on Γ) such that
e−n0ε < 1

3 . Then let Γ0 = π−1(Qn0). It is a subgroup of finite index in Γ, because
Qn0 = {bn0 , b ∈ Q} is a subgroup of finite index in the finitely generated abelian
group Q. Let Γ1 be a subgroup of finite index in Γ0. We want to show that
d+

Γ1
≤ 3. Let {z1, ..., zn} be generators of Γ1. There must be at least one zi, say

z, such that π(z) is not a root of unity. By definition of Γ0, z is of the form zn0
0 a

where z0 ∈ Γ and a ∈ M. Hence π(z) = π(z0)n0 and π(z0) is not a root of unity
either. By Lemma 2.2, there must exist an embedding of K into an archimedean
local field k such that | log |π(z0)|k| > ε. Up to changing z into z−1 if necessary,
we may assume that |π(z)|k < 1

3 . The element z is a non trivial homothety on the
affine line of the local field k. It fixes a point p ∈ k. If all other zi’s fix the same
point p then Γ1 lies in the stabilizer of p, an abelian subgroup. Hence at least
one of the zi’s, call it w, satisfies wp 6= p. Then the two affine transformations
x := z and y := wzw−1 satisfy the hypothesis of Lemma 2.1 and hence generate
a free semigroup. We are done.

Suppose now that Q does not lie inside the group of algebraic units of K. Then
we show that in fact d+

Γ1
≤ 3 for every finite index subgroup Γ1 in Γ. Indeed, let

{x1, ..., xn} be generators of Γ1. Then at least one of the xi’s, say x, is such that
π(x) is not an algebraic unit. Indeed π(Γ1) is of finite index in Q and if it were
contained in the group of algebraic units of K× then so would Q, because if αn

is a unit then α is a unit too. Up to changing x into x−1, we may assume that
π(x)−1 is not an algebraic integer. Then, according to Lemma 2.2, there exists
an embedding of K into a non-archimedean local field k such that |π(x)|k < 1.
The element x must be a non trivial homothety on the affine line of k. It fixes a
point p ∈ k. Again, all other xi’s cannot fix the same point p. Hence at least one
of the xi’s, call it w, satisfies wp 6= p. Then the two affine transformations x and
y := wxw−1 satisfy the hypothesis of Lemma 2.1. We are done.
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This finishes the proof of Theorem 1.4 in the special case considered in the
present section.

3.2. Polycyclic versus non polycyclic in A(K). Here we prove the following
result that will be useful in the proof of Proposition 7.1.

Lemma 3.1. Let K be a field and Γ be a finitely generated subgroup of A(K).
Let Q = π(Γ) be the image of Γ under the canonical projection homomorphism
π from A(K) to K×. Then Γ is polycyclic (resp. virtually nilpotent) if and only
if Q is contained in the subgroup of algebraic units of K× (resp. the subgroup of
roots of unity).

Proof. Note that the Q action on M comes from the action of Γ by conjugation
on the normal subgroup M , and when Q is viewed as a subgroup of K× and
M as an additive subgroup of K, then this action coincides with the action by
multiplication. Also we may assume that K is finitely generated, since Γ is so.
As observed in Lemma 2.2, the subfield of K consisting of algebraic elements over
the prime field K0 is a finite extension of K0.

Suppose Γ is polycyclic and let α ∈ π(Γ). Since α is arbitrary, it is enough to
show that α is an algebraic integer. Up to conjugating Γ inside A(K), we may

assume that Γ contains the element γ =
(

α 0
0 1

)
. Conjugation by γ acts on M by

multiplication by α. Since Γ is polycyclic, M must be a finitely generated abelian
group. By the Cayley-Hamilton theorem, α must satisfy a polynomial equation
with coefficients in Z. Hence α is an algebraic integer.

Conversely, from claim 1 above, there is a finite set a1, ..., an in M such that
M = Qa1 + ... + Qan. Let OK be the ring of integers (over Z) of K. Then we
get that M lies inside OKa1 + ... + OKan. However OK is a finitely generated
Z-module, hence a finitely generated additive group. It follows that M itself is
finitely generated and that Γ must be polycyclic contrary to the hypothesis made
on Γ. We are done. The corresponding statement for virtually nilpotent groups
is also straightforward and we omit the proof. ¤

4. Just non virtually nilpotent groups

In this section, we prove Theorem 1.6. A finitely generated solvable group is
called just non virtually nilpotent (JNVN) if it is not virtually nilpotent but all
of its proper quotients are virtually nilpotent. In [7], making use of ideas of P.
Hall, J. Groves studied the structure of metanilpotent just non polycyclic groups
(see also [18]). As it turns out, his methods apply with only minor changes to
JNVN groups.
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4.1. JNVN groups are virtually metabelian. We first make a few observa-
tions; we refer the reader to the textbook [17] for more details. Note that any
subgroup and any quotient of a virtually nilpotent group is again virtually nilpo-
tent. Also a finite index subgroup of a JNVN group is again JNVN. Further note
that if N1 and N2 are two non trivial normal subgroup of a JNVN group G, then
N1∩N2 6= {1} because G/N1∩N2 embeds in the product G/N1×G/N2 which is
virtually nilpotent. Since finitely generated virtually nilpotent groups are max-n,
i.e. have the maximal property on normal subgroups (any increasing sequence of
normal subgroups stabilizes), so are the JNVN groups. Given a solvable group
G, we denote by Fit(G) the Fitting subgroup of G, i.e. the subgroup generated
by all nilpotent normal subgroups of G. It is a basic fact that the subgroup gen-
erated by two normal nilpotent subgroups is again a normal nilpotent subgroup.
Hence if G is max-n then Fit(G) is itself nilpotent. When G is JNVN, we have
more:

Lemma 4.1. Let G be a JNVN group. Then Fit(G) is abelian.

Proof. Let N be a normal nilpotent subgroup of G. If N ′ 6= {1} then N/N ′ is
finitely generated (like any subgroup of a finitely generated virtually nilpotent
group). Hence N itself is finitely generated (see [17] 5.2.17.). Therefore G, being
an extension of two polycyclic groups is itself polycyclic. We now show that G
must be virtually nilpotent, leading the desired contradiction. We can find a
subgroup H containing N ′, with finite index in G, such that H/N ′ is nilpotent.
Then H must act unipotently by conjugation on N/N ′, i.e.

(1) (h1 − 1) · ... · (hn − 1)N/N ′ = {1}
for some n any any hi’s in H. As N acts trivially on N/N ′, (1) also holds for
all hi’s in HN. Hence HN/N ′ is nilpotent. We can apply Hall’s criterion for
nilpotence (see [17] 5.2.10.) which says that HN too must be nilpotent. But
HN has finite index in G so we are done. ¤

Furthermore:

Lemma 4.2. Fit(G) is either torsion free or is a torsion group of prime exponent
p.

Proof. Since G has max-n, the torsion subgroup of Fit(G) has finite exponent,
hence is a finite direct product of the p-torsion factors. But as we have mentioned
above no two non trivial normal subgroups of G intersect trivially. Hence there
must be at most one p-torsion factor, say Tp. Again pF it(G) and Tp intersect
trivially, hence either Tp is trivial and Fit(G) is torsion free, or pF it(G) is trivial
and Fit(G) = Tp. ¤
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It is a basic property of polycyclic groups due to Malcev that they contain
a finite index subgroup whose derived group is nilpotent (see [17] Proposition
15.1.6.). Thus if G is JNVN and polycyclic, then it contains a finite index
subgroup H with H ′ ≤ Fit(H), which means by Lemma 4.1 above that H is
metabelian. So part (i) of Theorem 1.6 is proved in this case.

We now assume that G is JNVN and non polycyclic. Up to passing to a normal
subgroup of finite index containing Fit(G), we may assume that G/Fit(G) is
nilpotent (since the Fitting subgroup is a characteristic nilpotent subgroup, the
two Fitting subgroups actually coincide). In this setting we are going to show
that G is metabelian.

Let us denote by A the commutative ring equal to Z when Fit(G) is torsion free
and equal to Fp[T ] when Fit(G) is of exponent p. Let K be its field of fractions,
i.e. Q or Fp(T ) respectively. We make Fit(G) into an A-module by letting T
act via conjugation by some non trivial element z ∈ G whose projection modulo
Fit(G) is of infinite order in the center of G/Fit(G) (there always is such an
element because G/Fit(G) is an infinite finitely generated nilpotent group). The
following lemma is crucial:

Lemma 4.3. Fit(G) is a torsion free A-module and FK := Fit(G)⊗A K is finite
dimensional over K.

Proof. We follow [7, Lemma 2]. We first show that Fit(G) is torsion free as an A-
module. This is clear if A = Z. When A = Fp[T ], the torsion elements in Fit(G)
form a subgroup that can be written as an increasing union of the (normal)
subgroups killed by the the polynomial Tn! − 1 (any polynomial in Fp[T ] divides
Tn!−1 for n large enough). As G has max-n, it follows that Fit(G) is annihilated
by some Tn!−1. This means that zn! commutes with Fit(G). Hence the subgroup
generated by Fit(G) and zn! is normal in G and abelian thus contradicting the
definition of Fit(G).

We now turn to the second half of the statement. It is a consequence of a result
of P. Hall (see [17] 15.4.3.) saying that Fit(G) contains a free A-module F0 such
that Fit(G)/F0 is a torsion A-module with non trivial anihilator. Let r ∈ A\{0}
in the anihilator of Fit(G)/F0 and let q ∈ A be relatively prime to r. Then clearly
qF it(G) ∩ F0 = qF0. Hence F0/qF0 embeds in Fit(G)/qF it(G) hence is finitely
generated (because qF it(G) is a non trivial normal subgroup of G). Since F0 is a
free A-module, F0 too must be finitely generated. Hence F0⊗AK = Fit(G)⊗AK
is finite dimensional over K. ¤

We are now ready to complete the proof of Theorem 1.6 (i). The group G acts
by conjugation via its quotient G/Fit(G) on Fit(G) and this action extends to
a K-linear action on FK := Fit(G)⊗A K. On the other hand, for any nilpotent
subgroup N of GLn(K), its derived group N ′ acts unipotently on Kn, i.e. (gn −
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1) · ... · (g1 − 1) = 0 for any g1, ..., gn in N ′. Therefore G′ acts unipotently on
FK (here it is crucial that dimK FK < +∞). Hence (gn − 1) · ... · (g1 − 1)f = 0
in FK for every gi’s in G′ and every f ∈ Fit(G). As Fit(G) is a torsion free
A-module, it embeds naturally in FK and the previous equality actually holds in
Fit(G). Hence [gn, [gn−1, [...[g1, f ]...]]] is trivial in Fit(G). We conclude that G′ is
nilpotent and that G′ ≤ Fit(G), that is G/Fit(G) is abelian, so G is metabelian.

4.2. Embeddings of metabelian groups into the affine group. In this para-
graph, we prove the second part of Theorem 1.6. More precisely, we show the
following:

Proposition 4.1. Let H be a finitely generated metabelian group. Then there is
a field K and a homomorphism ρ : H → A(K) with the following property. If
H is not virtually nilpotent (resp. not polycyclic), then ρ(H) too is not virtually
nilpotent (resp. not polycyclic).

Note that it is easy to see that every finitely generated metabelian group can be
embedded in some A(R) where R is some commutative ring (Magnus embedding,
see also [16]). The point here is to find a suitable quotient of R which is a field and
preserves non virtually nilpotence. For the proof, we could again refer to further
results in J. Groves’ paper [7] after passing to a JNVN quotient. However, for
the reader’s convenience, we provide another, more constructive proof.

Proof. The finitely generated metabelian group H comes with the exact sequence

1 → M → H → Q → 1

where M and Q are abelian groups. The group Q acts on M by conjugation. If
we denote by A the (commutative) subring of End(M) generated by Q, then M
becomes an A-module and we have the natural map α : H → Aut(M) sending h
to the conjugation by h on M. In Claim 1 above we showed that M is a finitely
generated A-module. Next we make the following observation:

Lemma 4.4. Let {hi}1≤i≤m be a finite generating set for H, and let zi = α(hi) ∈
A. Suppose that there are positive integers ni and ki such that (zni

i − 1)ki = 0 in
A for all i = 1, ..., m. Then H is virtually nilpotent.

Proof. Indeed, if this were true, there would be n ≥ 1 and k ≥ 1 such that
(zn

i − 1)k = 0 for all i = 1, ..., m. Now let Q0 be the subgroup of Q generated by
the π(hn

i ) for i = 1, ..., m. It has finite index in Q and its pull-back H0 := π−1(Q0)
has finite index in H. Clearly H0 is the subgroup of H generated by M and the
hn

i ’s. Let yi = zn
i . Then [H0,H0] ⊂ M while

[H0,M ] = 〈(P1 − 1)a|P1 ∈ P, a ∈ M〉
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where P is the set of all monomials in y1, ..., ym, i.e. P1 = yk1
1 · ... · ykm

m for some
ki ≥ 0. Similarly with d commutators,

[H0, [H0...[H0,M ]...] = 〈(Pd − 1) · ... · (P1 − 1)a|P1, ..., Pd ∈ P, a ∈ M〉
Moreover for every P ∈ P there are elements ri ∈ A such that P−1 =

∑
ri(yi−1).

Hence if d > (k − 1)m every product of the form (Pd − 1) · ... · (P1 − 1) can be
written as a sum

∑
r′i(yi − 1)k for some r′i ∈ A, hence is always zero by the

hypothesis on the yi’s. It follows that H0 is nilpotent of order d + 1 at most.
Hence H is virtually nilpotent. ¤

Similarly, it is (even more) straightforward to see that:

Lemma 4.5. Keeping the notation of the previous lemma, suppose that there are
polynomials qi ∈ Z[X] with leading coefficient equal to 1 such that qi(zi) = 0 in
A for all i = 1, ..., m. Then H is polycyclic.

Let us go back to the proof of Proposition 4.1. According to the lemmas above,
we can choose one of the zi’s, call it z, such that (zn−1)k 6= 0 in A for all positive
integers n and k. And if H is not polycyclic we may even assume that q(z) 6= 0
in A for all monic polynomials q ∈ Z[X].

Let S be the subset of A consisting of all products of factors of the form φ(z),
where φ ∈ Z[X] runs through the collection of all cyclotomic polynomials, i.e.
{1, X−1, X+1, X2+X+1, ...}. When H is not polycyclic we change the definition
of S and consider instead the set of all q(z) where q ∈ Z[X] is an arbitrary monic
polynomial. Clearly S is a multiplicative subset of A and, according to the choice
of z, S does not contain 0.

We can thus consider the localized ring S−1A. Then S−1M is a non trivial
finitely generated S−1A-module. Let I be the annihilator of S−1M, i.e. I =
{r ∈ S−1A, rS−1M = 0}. Then I is a proper ideal if S−1A. It is therefore
contained in a maximal ideal P of S−1A. We can now set K = S−1A/P and
M0 = S−1M/PS−1M .

K is a field and M0 a finite dimensional K-vector space. Moreover, M0 is non
trivial. Indeed, suppose that S−1M = PS−1M. Then (S−1M)P = P (S−1M)P as
(S−1A)P -modules, where (S−1A)P is the local ring associated to the prime ideal
P ⊂ S−1A. Moreover (S−1M)P is a finitely generated (S−1A)P -module. Hence
Nakayama’s lemma applies and shows that (S−1N)P = 0. But this means that
there must exists r ∈ S−1A with r /∈ P such that rS−1M = 0 and contradicts
the choice of P .

We are now in a position to define the desired linear representation. Let π be
either one of the canonical maps A → K or M → M0. Let h0 be an element of
H such that α(h0) = z, and define the map c : H → M0 by

c(h) = π([h0, h])
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It is straightforward to check that for all h1 and h2 in H

c(h1h2) = β(h1)c(h2) + c(h1)

where β = π ◦ α.

As z − 1 is invertible in S−1A, we see that c(M) = M0. Let z0 := π(z). Then,
according to the choice to z, z0 ∈ K× is not a root of unity, and in the case when
H is not polycyclic z0 is even not an algebraic integer in K.

Let F0 be a hyperplane in M0 and let π0 : M0 → M0/F0 ' K. Setting c = c◦π0,
we obtain the desired representation of H into the affine group A(K) defined by

ρ : H → A(K)

h 7→
(

β(h) c(h)
0 1

)

And this homomorphism sends h0 to
(

z0 0
0 1

)
where z0 ∈ K× is not a root of

unity (resp. not an algebraic integer when H is non polycyclic), and ρ(M) equals(
1 K
0 1

)
. By Lemma 3.1, any such subgroup of A(K) is not virtually nilpotent

(resp. non polycyclic). We are done. ¤

5. Proof of Theorem 1.4

To prove Theorem 1.4, it is enough to show that some quotient of Γ has the
same property. Combining the proof of these results we gave in Section 3 for
subgroups of A(K) with Theorem 1.6, we see that we are done if we make use of
the following easy and standard fact:

Claim 2: Every finitely generated non virtually nilpotent group has a just
non virtually nilpotent quotient.

Indeed, let G be such a group and let N be the set of all normal subgroups N
of G, such that G/N is not virtually nilpotent. Suppose N1 ⊂ N2 ⊂ ... ⊂ Ni ⊂ ...
is an increasing chain of subgroups from N . And let N be the union of all Ni’s.
Then N is indeed a normal subgroup of G. Now if G/N were virtually nilpotent,
there would exist a subgroup of finite index G0 in G, containing N, such that
G0/N is nilpotent. Like any finitely generated nilpotent group, G0/N has a
finite presentation 〈x1, ..., xn|r1, ..., rm〉 . The finitely many relations ri’s belong
to one of the Ni’s, say Ni0 . Hence G0/Ni0 appears as a quotient of G0/N, hence
is nilpotent, contradicting the assumption that G/Ni0 is not virtually nilpotent.
It follows that we can apply Zorn’s lemma and obtain a maximal element N in
N . Then clearly G/N is not virtually nilpotent, while any proper quotient of it
is. qed.
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6. Elementary amenable groups

In this section, we explain why Osin’s work actually implies Theorem 1.3 and
also Proposition 6.2 below.

We first discuss the following lemma:

Lemma 6.1. Let Γ be a group generated by two elements x and y such that
the normal subgroup M = 〈xnyx−n, n ∈ Z〉 is not finitely generated. Then the
elements x and yxy−1 generate a free semigroup.

It is easy to prove this lemma directly by showing that equality between two
different positive words in x and yxy−1 would force M to be generated by finitely
many xnyx−n, we leave this exercise to the reader. A. Navas pointed out to me
that this lemma/exercise is also stated (with its solution) in [11]. Also, as the
referee pointed out to me, a careful analysis of Milnor’s argument in [12] shows
that it is in a way already contained there. However it is also possible to give a
different (and more complicated!) proof using yet another ping-pong argument!
And we now explain this idea.

Proof. Let Mn =
〈
xkyx−k, n ≤ k

〉
and M−

n :=
〈
xkyx−k, n ≥ k

〉
. Suppose y ∈

M1 ∩M−
−1. Then M would be finitely generated. Indeed there exists N ∈ N such

that y ∈ 〈
xkyx−k, 1 ≤ k ≤ N

〉
. Hence all xkyx−k for negative k also belong

to
〈
xiyx−i, 1 ≤ i ≤ N

〉
. Similarly all the xkyx−k for positive k would belong to〈

xiyx−i,−N ′ ≤ i ≤ −1
〉

for some N1 ∈ N. Therefore up to changing x into x−1

we may assume that y /∈ M∞ = ∩n∈ZMn. Now Γ acts on M/M∞ via the action
γ · aM∞ = xnbax−nM∞ where γ = xnb for some n ∈ Z and b ∈ M.

We define a valuation v on M by v(a) = sup{n, a ∈ Mn} – clearly v(ab) ≥
min{v(a), v(b)} – and an ultrametric distance d(x, y) = e−v(a−1b). This is a
well defined distance on the quotient space M/M∞. Let X be the completion
of M/M∞ for the distance d. Then the Γ-action extends to an action on X.
Moreover M acts by isometries while x contracts distances by a factor e−1 and
x−1 is e-Lipschitz. It is easy to check that the elements of Γ may be of three
possible kinds: if γ /∈ M then γ has a unique fixed point on X and acts by
contraction/dilatation by a facteur e−1 around it (the sequence xn+1 = γ · xn is
a Cauchy sequence), if γ ∈ M then either γ has no fixed point and acts like a
translation or it fixes a point and belongs to a conjugate of M∞. Clearly x is of
the first kind, fixes the coset M∞, while y doesn’t.

Just like in the non-archimedean case of Lemma 2.1, we see that x and yxy−1

are two contractions with different fixed points and play ping-pong on X. ¤
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In [14] Osin also shows a strong uniformity statement about the growth of
infinitely–generated–by–nilpotent groups. His argument actually gives the fol-
lowing bound for d+

Γ .

Proposition 6.2. Let Γ be a finitely generated group given by an extension

1 → M → Γ → N → 1

where N is r-step nilpotent and M is not finitely generated. Then d+
Γ ≤ 32r+1.

Proof. In [14], Osin proves using commutator calculus and an intricate induction
the remarkable fact that if S is a symmetric generating set for Γ and all subgroups
of the form 〈xnyx−n, n ∈ Z〉 where x ∈ S(r) and y ∈ S(2r) are finitely generated
(S(n) denotes the finite set of all commutators of length at most n in the elements
of S) then M too is finitely generated. See [14, Section 5 and Lemma 6.4.] The
set S(r) lies in the ball of radius 3r (rough estimate) for the word metric induced
by S. Hence we can apply Lemma 6.1 to some choice of x and y. Then x and
yxy−1 will lie in the ball of radius 32r+1. ¤

We now complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Again as Osin observes in [14, Proposition 3.1.], if Γ is a
finitely generated elementary amenable group which is just non virtually nilpo-
tent, then either Γ is virtually polycyclic or Γ has a non trivial normal subgroup
M which is not finitely generated. We can pass to a subgroup of finite index
Γ0, since d+

Γ ≤ (2[Γ : Γ0] + 1) · d+
Γ0

. The polycyclic case was already treated in
Theorem 1.4 and the other case follows directly from Proposition 6.2 above. ¤

7. Metabelian groups, a counter-example, and the Lehmer
conjecture

As mentionned in the introduction we have the following:

Proposition 7.1. Let Γ be a finitely generated metabelian group which is not
polycyclic. Then d+

Γ ≤ 3.

Proof. By Claim 2 in Section 5 and Theorem 1.6 (ii) we can assume that Γ is a
subgroup of A(K) for some field K. By Lemma 3.1, the quotient group Q does
not lie in the group of algebraic units of K. Hence we are in the situation of 3.1
at the end of the proof of Theorem 1.4 for subgroups of A(K), hence d+

Γ ≤ 3. ¤

Next we prove Theorem 1.7 from the introduction, namely:

Theorem 7.2. For every integer n ≥ 1, there exists a 2-generated polycyclic
subgroup Gn of the affine group A(Q) such that d+

Gn
≥ n and Gn is not virtually

nilpotent.
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Proof. For x ∈ C, let Γ(x) be the subgroup of A(C) generated by the matrices(
x 0
0 1

)
and

(
1 1
0 1

)
that is the set of matrices of the form

(
xn P (x)
0 1

)
where

n ∈ Z and P ∈ Z[X, 1
X ]. Note that Γ(x) is also generated by A(x) =

(
x 0
0 1

)

and B(x) =
(

x 1
0 1

)
. We are going to exhibit a sequence of points xn ∈ C such

that Gn := Γ(xn) satisfies the requirement of the theorem, that is more precisely
d+(Σn) ≥ n where Σn = {A(xn), B(xn)}.

First, we make the following observation. Let a, b, a′, b′ be non trivial homoth-
eties in A(C) with respective dilation ratio x, y, x′, y′ ∈ C×. Assume that a and
b have distinct fixed points and that so do a′ and b′. Assume further that x = x′
and y = y′. Then the pair {a, b} generates a free semigroup if and only if the pair
{a′, b′} generates a free semigroup. Indeed we check easily that the two pairs are
conjugate by a single element γ ∈ A(C), i.e. a′ = γaγ−1 and b′ = γbγ−1.

Second, we note that if a is a homothety with dilation ratio x ∈ C× and b is a
translation then the pair {a, b} never generates a free semigroup unless x is tran-
scendental. Indeed, suppose x is algebraic over Q, i.e. it is a root of a polynomial
π(X) of degree d with coefficients in Z, then it is straightforward to check that
the following non trivial relation is satisfied bb0abb1a...bbd = ba0aba1a...bad , where
P (X) = a0 + ... + adX

d and Q(X) = b0 + ... + bdX
d are polynomials of degree d

with non-negative integer coefficients such that π = P −Q.

From this it follows that whether or not two elements from Γ(x) generate a
free semigroup is a property that depends only on the respective dilation ratios
of the two elements. And since in Γ(x) all elements have a dilation ratio of the
form xn for some integer n ∈ Z, we may define the subset NF(x) of Z2 to be the
set of all couples (n,m) ∈ Z2 such that pairs of elements of Γ(x) of ratio xn and
xm respectively do not generate a free semigroup. The goal is now to find xn ∈ C
such that NF(xn) contains all couples (p, q) with |p|, |q| ≤ n.

Note that the matrices A(x) and B(x) satisfy A(x)4 = B(x)2A(x)B(x) if and
only if x3 + x + 1 = 0. Now let xn be a root of the equation X3n! + Xn! + 1 = 0.
We can assume that |xn| < 1. Hence A(xn!

n )4 = B(xn!
n )2A(xn!

n )B(xn!
n ). Note that

for every p ∈ Z, the element B(xn)p does not fix 0 because xn is not a root of
unity. It follows that B(xp

n) is conjugate to B(xn)p by a element of A(C) that
fixes 0 (i.e. commutes with A(xn)). Hence for all integers p and q with |p|, |q| ≤ n

we have A(xq
n)

4n!
q = B(xp

n)
2n!
p A(xq

n)
n!
q B(xp

n)
n!
p . If follows that A(xq

n) and B(xp
n)

do not generate a free semigroup (although they do not commute), therefore
(p, q) ∈ NF(xn). We are done. ¤
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Let us now come back to Question 1.8 from the introduction. Let us show that a
positive answer to the question would imply the Lehmer conjecture from Number
Theory. Recall that if π ∈ Z[X] is a monic polynomial, and π =

∏
1≤i≤d(X − λi)

its factorization over C, the Mahler measure of π is the number

m(π) =
∏

1≤i≤d

max{1, |λi|}

A classical theorem of Kronecker says that m(π) = 1 if and only if all roots λi’s
are roots of unity. The Lehmer conjecture states that there exists a universal
ε0 > 0 such that if m(π) > 1 then m(π) > 1 + ε0. Clearly, the conjecture reduces
to the case when π is irreducible over Q and π(0) = ±1. Let x be a root of such a
π and let us consider the group Γ(x). The following claim is what we are aiming
for:

Claim: log(m(π)) ≥ SΓ(x)

Let Σ = {1, A(x)±1, B(x)±1}. Any element w of Σn is of the form
(

xk P (x)
0 1

)

where |k| ≤ n, d◦P ≤ n, and ‖P‖ ≤ n, where we have set ‖P‖ =
∑ |ai| if

P =
∑

aiX
i. Therefore #Σn ≤ (2n + 1) ·#{P (x), d◦P ≤ n, and ‖P‖ ≤ n}. Let

P = πQ + RP the Euclidean division of P by π. Let us give an upper bound on
the number of possible remainders RP for P ∈ Z[X] with d◦P ≤ n, and ‖P‖ ≤ n.
For k ≥ 0, let Yk = RXk . Then it is clear that the coefficients of Yk in the basis
1, X, ...,Xd−1 satisfy a linear recurrence relation, i.e. Yk = MkY0 where M is
the companion matrix of π. Let (v1, ..., vd) be a basis Cd−1[X] diagonalizing M
(M has distinct eigenvalues, since π is irreducible). If Y0 = Σ1≤i≤dαivi is the
expression of Y0 in this basis, then Yk = Σ1≤i≤dαiλ

k
i vi for every k ≥ 1. Let

|α| = max1≤i≤d{|αi|} and |λ| = max1≤i≤d{|λi|d−1}.
Let Bn =

{∑
1≤i≤d xivi, |xi| ≤ n|α| ·max{1, |λi|}n for each i

}
and an(i) =

n|α|·max{1, |λi|}n+d
2 |α|·|λ| and B′

n =
{∑

1≤i≤d xivi ∈ C[X], |xi| ≤ an(i) for each i
}

.

For each P ∈ Z[X] with d◦P ≤ n, and ‖P‖ ≤ n we have RP ∈ Bn ∩ Z[X], and if
x ∈ Bn∩Z[X], then x+ε ∈ B′

n for every ε =
∑

1≤i≤d εiX
i−1 with |εi| ≤ 1

2 . There-
fore #{RP , P ∈ Z[X], d◦P ≤ n, ‖P‖ ≤ n} ≤ vol(B′

n ∩ V ), where vol is the stan-
dard Lebesgue measure in V = Rd−1[X] in the basis Y0 = 1, Y1 = X, ..., Yd−1 =
Xd−1. But if An is the endomorphism of Cd−1[X] such that An(vi) = vi · an(i)
then vol(B′

n∩V ) = vol(An(B′∩OnV )) = det(Y0,...,Yd−1)(An)vol(B′∩OnV ), where

B′ =
{∑

1≤i≤d xivi ∈ C[X], |xi| ≤ 1
}

and On is an orthogonal transformation

such that OnV = A−1
n V . Hence

vol(B′
n ∩ V ) =


 ∏

1≤i≤d

an(i)


 · det

(v1,...,vd)
(Y0, ..., Yd−1) · vol(B′ ∩OnV )
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But vol(B′ ∩OnV ) converges to a non zero limit, as OnV converges in the grass-
mannian. Hence

lim
n→+∞

(
vol(B′

n ∩ V )
) 1

n = lim
n→+∞


 ∏

1≤i≤d

an(i)




1
n

= m(π)

Finally limn→+∞ (#Σn)
1
n ≤ m(π), which is what we wanted.
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Mathématiques de l’Université de Rennes (1968), Année 1967–1968, Exp. No. 1, 17pp.

[10] P. de la Harpe, Topics in Geometric Group Theory, Chicago University Press, (2001).
[11] P. Lomgobardi, M. Maj, A.H. Rhemtulla, Groups with no Free Subsemigroups, Trans. Amer.

Math. Soc., Vol 347, No 4, (1995) p. 1419–1427.
[12] J. Milnor, Growth of finitely generated solvable groups, J. Diff. Geometry 2 (1968) p. 447-

449.
[13] D. Osin, The entropy of solvable groups, Erg. Theory. Dyn. Sys. 23, no. 3, (2003) p. 907–918.
[14] D. Osin, Algebraic entropy of elementary amenable groups, Geometriae Dedicata 107, (2004)

p. 133–151.
[15] D. Osin, Uniform non-amenability of free Burnside groups, preprint arXiv

math.GR/0404073.
[16] V. N. Remeslennikov, Representation of finitely generated metabelian groups by matrices,

Algebra i Logika 8 (1969) p. 72–75.
[17] D. Robinson, A course in the theory of groups, Springer Verlag, GTM.
[18] D. Robinson, J. Wilson, Soluble groups with many polycyclic quotients, Proc. London Math.

Soc. (3) 48 (1984), no. 2, p. 193–229.
[19] J. Rosenblatt, Invariant measures and growth conditions, Trans. Amer. Math. Soc. 193

(1974), p. 33–53.



On Uniform Exponential Growth for Solvable Groups 967

[20] J. Wilson, On exponential growth and uniformly exponential growth for groups, Invent.
Math. 155 (2004), no. 2, p. 287–303.

[21] J. Wolf, Growth of finitely generated solvable groups and curvature of Riemanniann mani-
folds, J. Differential Geometry, 2 (1968) p. 421–446.

[22] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972) p. 250-270.

Emmanuel Breuillard
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