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Abstract: In this note, we announce the first results on quasi-isometric
rigidity of non-nilpotent polycyclic groups. In particular, we prove that any
group quasi-isometric to the three dimenionsional solvable Lie group Sol
is virtually a lattice in Sol. We prove analogous results for groups quasi-
isometric to RnRn where the semidirect product is defined by a diagonaliz-
able matrix of determinant one with no eigenvalues on the unit circle. Our
approach to these problems is to first classify all self quasi-isometries of
the solvable Lie group. Our classification of self quasi-isometries for RnRn

proves a conjecture made by Farb and Mosher in [FM3].
Our techniques for studying quasi-isometries extend to some other classes
of groups and spaces. In particular, we characterize groups quasi-isometric
to any lamplighter group, answering a question of de la Harpe [dlH]. Also,
we prove that certain Diestel-Leader graphs are not quasi-isometric to any
finitely generated group, verifying a conjecture of Diestel and Leader from
[DL] and answering a question of Woess from [SW, Wo1]. We also prove that
certain non-unimodular, non-hyperbolic solvable Lie groups are not quasi-
isometric to finitely generated groups.
The results in this paper are contributions to Gromov’s program for clas-
sifying finitely generated groups up to quasi-isometry [Gr2]. We introduce
a new technique for studying quasi-isometries, which we refer to as coarse
differentiation.
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1. Introduction and statements of rigidity results

For any group Γ generated by a subset S one has the associated Cayley graph,
CΓ(S). This is the graph with vertex set Γ and edges connecting any pair of
elements which differ by right multiplication by a generator. There is a natural Γ
action on CΓ(S) by left translation. By giving every edge length one, the Cayley
graph can be made into a (geodesic) metric space. The distance on Γ viewed as
the vertices of the Cayley graph is the word metric, defined via the norm:

‖γ‖ = inf{length of a word in the generators S representing γ in Γ.}
Different sets of generators give rise to different metrics and Cayley graphs for

a group but one wants these to be equivalent. The natural notion of equivalence
in this category is quasi-isometry:

Definition 1.1. Let (X, dX) and (Y, dY ) be metric spaces. Given real numbers
K≥1 and C≥0,a map f : X→Y is called a (K,C)-quasi-isometry if

(1) 1
K dX(x1, x2) − C≤dY (f(x1), f(x2))≤KdX(x1, x2) + C for all x1 and x2

in X, and,
(2) the C neighborhood of f(X) is all of Y .

If Γ is a finitely generated group, Γ is canonically quasi-isometric to any finite
index subgroup Γ′ in Γ and to any quotient Γ′′ = Γ/F for any finite normal sub-
group F . The equivalence relation generated by these (trivial) quasi-isometries
is called weak commensurability. A group is said to virtually have a property if
some weakly commensurable group does.

In his ICM address in 1983, Gromov proposed a broad program for studying
finitely generated groups as geometric objects, [Gr2]. Though there are many
aspects to this program (see [Gr3] for a discussion), the principal question is
the classification of finitely generated groups up to quasi-isometry. By construc-
tion, any finitely generated group Γ is quasi-isometric to any space on which
Γ acts properly discontinuously and cocompactly by isometries. For example,
the fundamental group of a compact manifold is quasi-isometric to the univer-
sal cover of the manifold (this is called the Milnor-Svarc lemma). In particular,
any two cocompact lattices in the same Lie group G are quasi-isometric. One
important aspect of Gromov’s program is that it allows one to generalize many
invariants, techniques, and questions from the study of lattices to all finitely
generated groups.

Given the motivations coming from the study of lattices, one of the first ques-
tions in the field is whether a group quasi-isometric to a lattice is itself a lattice,
at least virtually. This question has been studied extensively. For lattices in



Quasi-isometries of Solvable Groups 929

semisimple groups this has been proven, see particularly [P1, S1, FS, S2, KL,
EF, E] and also the survey [F] for further references. For lattices in other Lie
groups the situation is less clear. It follows from Gromov’s polynomial growth
theorem [Gr1] that any group quasi-isometric to a nilpotent group is virtually
nilpotent, and hence essentially a lattice in some nilpotent Lie group. However,
the quasi-isometry classification of lattices in nilpotent Lie groups remains an
open problem.

In the case of solvable groups, even less is known. The main motivating ques-
tion is the following:

Conjecture 1.2. Let G be a solvable Lie group, and let Γ be a lattice in G. Any
finitely generated group Γ′ quasi-isometric to Γ is virtually a lattice in a (possibly
different) solvable Lie group G′.

Remarks:

(1) As solvable Lie groups have only cocompact lattices, studying groups
quasi-isometric to lattices in G is equivalent to studying groups quasi-
isometric to G.

(2) Examples where G and G′ need to be different are known. See [FM3] and
Theorem 1.4 below.

(3) Conjecture 1.2 can be rephrased to make no reference to connected Lie
groups. In particular, by a theorem of Mostow, any polycyclic group
is virtually a lattice in a solvable Lie group, and conversely any lattice
in a solvable Lie group is virtually polycyclic [Mo2]. The conjecture is
equivalent to saying that any finitely generated group quasi-isometric to a
polycyclic group is virtually polycyclic. This means that being polycyclic
is a geometric property.

(4) Erschler has shown that a group quasi-isometric to a solvable group is
not necessarily virtually solvable [D]. Thus, the class of virtually solvable
groups is not closed under the equivalence relation of quasi-isometry. In
other words, solvability is not a geometric property.

(5) Some classes of solvable groups which are not polycyclic are known to be
quasi-isometrically rigid. See particularly the work of Farb and Mosher
on the solvable Baumslag-Solitar groups [FM1, FM2] as well as later work
of Farb-Mosher, Mosher-Sageev-Whyte and Wortman [FM3, MSW, W].
The methods used in all of these works depend essentially on topological
arguments based on the explicit structure of singularities of the spaces
studied and cannot apply to polycyclic groups.

(6) Shalom has obtained some evidence for the conjecture by cohomological
methods [Sh]. For example, Shalom shows that any group quasi-isometric
to a polycyclic group has a finite index subgroup with infinite abelianiza-
tion. Some of his results have been further refined by Sauer [Sa].
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Our main results establish Conjecture 1.2 in many cases. We believe our
techniques provide a method to attack the conjecture. This is work in progress,
some of it joint with Irine Peng.

From an algebraic point of view, solvable groups are generally easier to study
than semisimple ones, as the algebraic structure is more easily manipulated. In
the present context it is extremely difficult to see that any algebraic structure
is preserved and so we are forced to work geometrically. For nilpotent groups
the only geometric fact needed is polynomial volume growth. For semisimple
groups, the key fact for all approaches is nonpositive curvature. The geometry of
solvable groups is quite difficult to manage, since it involves a mixture of positive
and negative curvature as well as exponential volume growth.

The simplest non-trivial example for Conjecture 1.2 is the 3-dimensional solv-
able Lie group Sol. This example has received a great deal of attention. The
group Sol ∼= RnR2 with R acting on R2 via the diagonal matrix with entries ez/2

and e−z/2. As matrices, Sol can be written as :

Sol =








ez/2 x 0
0 1 0
0 y e−z/2




∣∣∣∣∣∣
(x, y, z) ∈ R3





The metric e−zdx2 + ezdy2 + dz2 is a left invariant metric on Sol. Any group of
the form ZnTZ2 for T ∈ SL(2,Z) with |tr(T )| > 2 is a cocompact lattice in Sol.

The following theorem proves a conjecture of Farb and Mosher and is one of
our main results:

Theorem 1.3. Let Γ be a finitely generated group quasi-isometric to Sol. Then
Γ is virtually a lattice in Sol.

More generally, we can describe the quasi-isometry types of lattices in many
solvable groups. Here we restrict our attention to groups of the form RnRn where
the action of R on Rn is given by powers of an n by n matrix M . The following
theorem proves another conjecture of Farb and Mosher.

Theorem 1.4. Suppose M is a positive definite symmetric matrix with no eigen-
values equal to one, and G = R nM Rn. If Γ is a finitely generated group quasi-
isometric to G, then Γ is virtually a lattice in RnMα Rn for some α ∈ R.

Remarks:

(1) This theorem is deduced from Theorem 2.2 below and a theorem from
the Ph.d. thesis of T. Dymarz.

(2) This result is best possible. All the Lie groups RnMα Rn for α 6= 0 in R
are quasi-isometric.

The following is a basic question:
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Question 1.5. Given a Lie group G, is there a finitely generated group quasi-
isometric to G?

It is clear that the answer is yes whenever G has a cocompact lattice. How-
ever, many solvable locally compact groups, and in particular, many solvable Lie
groups do not have any lattices. The simplest examples are groups which are
not unimodular. However, it is possible for Question 1.5 to have an affirmative
answer even if G is not unimodular. For instance, the non-unimodular group

solvable group
{(

a b
0 a−1

)∣∣∣∣ a > 0, b ∈ R
}

acts simply transitively by isometries

on the hyperbolic plane, and thus is quasi-isometric to the fundamental group of
any closed surface of genus at least 2. Thus the answer to Question 1.5 can be
subtle. Our methods give:

Theorem 1.6. Let G = RnR2 be a solvable Lie group where the R action on R2

is defined by z·(x, y) = (eazx, e−bzy) for a, b > 0, a 6= b. Then there is no finitely
generated group Γ quasi-isometric to G.

If a > 0 and b < 0, then G admits a left invariant metric of negative curvature.
The fact that there is no finitely generated group quasi-isometric to G in this
case is a result of Kleiner [K], see also [P2]. Both our methods and Kleiner’s
prove similar results for groups of the form RnRn. Nilpotent Lie groups not
quasi-isometric to any finitely generated group were constructed in [ET].

In addition our methods yield quasi-isometric rigidity results for a variety of
solvable groups which are not polycyclic, in particular the so-called lamplighter
groups. These are the wreath products ZoF where F is a finite group. The name
lamplighter comes from the description ZoF = FZ o Z where the Z action is by
a shift. The subgroup FZ is thought of as the states of a line of lamps, each of
which has |F | states. The ”lamplighter” moves along this line of lamps (the Z
action) and can change the state of the lamp at her current position. The Cayley
graphs for the generating sets F ∪ {±1} depend only on |F |, not the structure
of F . Furthermore, ZoF1 and ZoF2 are quasi-isometric whenever there is a d so
that |F1| = ds and |F2| = dt for some s, t in Z. The problem of classifying these
groups up to quasi-isometry, and in particular, the question of whether the 2 and
3 state lamplighter groups are quasi-isometric, were well known open problems
in the field, see [dlH].

Theorem 1.7. The lamplighter groups ZoF and ZoF ′ are quasi-isometric if and
only if there exist positive integers d, s, r such that |F | = ds and |F ′| = dr.

For a rigidity theorem for lamplighter groups, see Theorem 1.8 below.

To state Theorem 1.8 as well as an analogue of Theorem 1.6 for groups which
are not Lie groups, we need to describe a class of graphs. These are the Diestel-
Leader graphs, DL(m,n), which can be defined as follows: let T1 and T2 be
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regular trees of valence m + 1 and n + 1. Choose orientations on the edges of
T1 and T2 so each vertex has n (resp. m) edges pointing away from it. This is
equivalent to choosing ends on these trees. We can view these orientations at
defining height functions f1 and f2 on the trees (the Busemann functions for the
chosen ends). If one places the point at infinity determining f1 at the top of the
page and the point at infinity determining f2 at the bottom of the page, then the
trees can be drawn as:

a’

z

b’

c

b

au’

t

u

v

w

Figure 1. The trees for DL(3, 2). Figure borrowed from [PPS].

The graph DL(m,n) is the subset of the product T1× T2 defined by f1 + f2 = 0.
The analogy with the geometry of Sol is made clear in section 3. For n = m the
Diestel-Leader graphs arise as Cayley graphs of lamplighter groups ZoF for |F | =
n. This observation was apparently first made by R.Moeller and P.Neumann
[MN] and is described explicitly, from two slightly different points of view, in
[Wo2] and [W]. We prove the following:

Theorem 1.8. Let Γ be a finitely generated group quasi-isometric to the lamp-
lighter group ZoF . Then there exists positive integers d, s, r such that ds = |F |r
and an isometric, proper, cocompact action of a finite index subgroup of Γ on the
Diestel-Leader graph DL(d, d).

Remark: The theorem can be reinterpreted as saying that any group quasi-
isometric to DL(|F |, |F |) is virtually a cocompact lattice in the isometry group
of DL(d, d) where d is as above.

In [SW, Wo1], Soardi and Woess ask whether every homogeneous graph is
quasi-isometric to a finitely generated group. The graph DL(m,n) is easily seen
to be homogeneous (i.e. it has a transitive isometry group). For m 6= n its
isometry group is not unimodular, and hence has no lattices. Thus there are no
obvious groups quasi-isometric to DL(m,n) in this case. In fact, we have:

Theorem 1.9. There is no finitely generated group quasi-isometric to the graph
DL(m,n) for m 6= n.

This theorem was conjectured by Diestel and Leader in [DL], where the Diestel-
Leader graphs were introduced for this purpose. Note that Theorem 1.9 can be
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reinterpreted as the statement that for m 6= n, there is no finitely generated group
quasi-isometric to the isometry group of DL(m,n).

All our theorems stated above are proved using a new technique, which we
call coarse differentiation. Even though quasi-isometries have no local struc-
ture and conventional derivatives do not make sense, we essentially construct a
“coarse derivative” that models the large scale behavior of the quasi-isometry.
This construction is quite different from the conventional method of passing to
the asymptotic cone, see §4.4 for more discussion.

We now state a theorem that is a well-known consequence of Theorem 1.3,
Thurston’s Geometrization Conjecture and results in [CC, Gr1, KaL1, KaL2,
PW, S1, Ri]. We state it assuming that the Geometrization Conjecture is known.

Theorem 1.10. Let M be a compact three manifold without boundary and Γ a
finitely generated group. If Γ is quasi-isometric to the universal cover of M , then
Γ is virtually the fundamental group of M ′, also a compact three manifold without
boundary.

2. Quasi-isometries are height respecting

A typical step in the study of quasi-isometric rigidity of groups is the identifi-
cation of all quasi-isometries of some space X quasi-isometric to the group, see
§4.6 for a brief explanation. For us, the space X is either a solvable Lie group
or DL(m,n). In all of these examples there is a special function h : X→R which
we call the height function and a foliation of X by level sets of the height func-
tion. We will call a quasi-isometry of any of these spaces height respecting if it
permutes the height level sets to within bounded distance (In [FM4], the term
used is horizontal respecting).

For Sol, the height function is h(x, y, z) = z.

Theorem 2.1. Any (K, C)-quasi-isometry ϕ of Sol is within bounded distance
of a height respecting quasi-isometry ϕ̂. Furthermore, this distance can be taken
uniform in (K,C) and therefore, in particular, ϕ̂ is a (K ′, C ′)-quasi-isometry
where K ′, C ′ depend only on K and C.

Remark: In fact, Theorem 2.1 can be used to identify the quasi-isometries of
Sol completely. Possibly after composing with the map (x, y, z)→(y, x,−z), any
height respecting quasi-isometry (and in particular, any isometry) is at bounded
distance from a quasi-isometry of the form (x, y, z)→(f(x), g(y), z) where f and
g are bilipschitz functions. Given a metric space X, one defines QI(X) to be
the group of quasi-isometries of X modulo the subgroup of those at finite dis-
tance from the identity. The previous statement can then be taken to mean that
QI(Sol) = Bilip(R)2nZ/2Z. This explicit description was conjectured by Farb
and Mosher.
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If we take a group of the form RnRn as in Theorem 1.4, we can write coordi-
nates (z, ~x) where z is the coordinate in R and ~x is the coordinate in Rn. Here
h(z, ~x) = z and level sets of h are Rn cosets.

Theorem 2.2. Let X = RnRn be as in Theorem 1.4. Then any (K, C)-quasi-
isometry ϕ of RnRn is within a bounded distance of a height respecting quasi-
isometry ϕ̂. Furthermore, the bound is uniform in K and C.

Remark: There is an explicit description of QI(RnRn) in this context as well,
but it is somewhat involved so we omit it.

Recall that DL(m,n) is defined as the subset of Tm+1×Tn+1 where fm(x) +
fn(y) = 0 where fm and fn are Busemann functions on Tm and Tn respectively.
Here we simply set h((x, y)) = fm(x) = −fn(y) which makes sense exactly on
DL(m,n)⊂Tm+1×Tn+1. The reader can verify that the level sets of the height
function are orbits for a subgroup of Isom(DL(m,n)).

Theorem 2.3. Any (K,C)-quasi-isometry ϕ of DL(m,n) is within bounded dis-
tance from a height respecting quasi-isometry ϕ̂. Furthermore, the bound is uni-
form in K and C.

Remark: We can reformulate Theorem 2.3 in terms similar to those of Theorem
2.1. Here the group Bilip(R)×Bilip(R) will be replaced by Bilip(Xm)×Bilip(Xn)
for Xm (resp. Xn) the complement of a point in the (visual) boundary of Tm+1

(resp. Tn+1). These can easily be seen to be the m-adic and n-adic rationals,
respectively.

Note that when m = n, this theorem is used to prove Theorem 1.8 and when
m6=n it is used to prove Theorem 1.9. The proofs in these two cases are somewhat
different, the proof in the case m = n being almost identical to the proof of
Theorem 2.1. In the other case, the argument is complicated by the absence of
metric Fölner sets, but simplifications also occur since there is no element in the
isometry group that “flips” height, see the remarks in §4.5.

There is an analogue of the above results for the case of the solvable groups
which appear in Theorem 1.6.

3. Geometry of Sol

In this subsection we describe the geometry of Sol and related spaces in more
detail, with emphasis on the geometric facts used in our proofs.

The upper half plane model of the hyperbolic plane H2 is the set {(x, ξ) | ξ > 0}
with the length element ds2 = 1

ξ2 (dx2 + dξ2). If we make the change of variable
z = log ξ, we get R2 with the length element ds2 = dz2 + e−zdx2. This is the log
model of the hyperbolic plane H2.
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The length element of Sol is:

ds2 = dz2 + e−zdx2 + ezdy2.

Thus planes parallel to the xz plane are hyperbolic planes in the log model. Planes
parallel to the yz plane are upside-down hyperbolic planes in the log model. All
of these copies of H2 are isometrically embedded and totally geodesic .

We will refer to lines parallel to the x-axis as x-horocycles, and to lines parallel
to the y-axis as y-horocycles. This terminology is justified by the fact that each
(x or y)-horocycle is indeed a horocycle in the hyperbolic plane which contains
it.

We now turn to a discussion of geodesics and quasi-geodesics in Sol. Any
geodesic in an H2 leaf in Sol is a geodesic. There is a special class of geodesics,
which we call vertical geodesics. These are the geodesics which are of the form
γ(t) = (x0, y0, t) or γ(t) = (x0, y0,−t). We call the vertical geodesic upward
oriented in the first case, and downward oriented in the second case. In both
cases, this is a unit speed parametrization. Each vertical geodesic is a geodesic
in two hyperbolic planes, the plane y = y0 and the plane x = x0.

Certain quasi-geodesics in Sol are easy to describe. Given two points (x0, y0, t0)
and (x1, y1, t1), there is a geodesic γ1 in the hyperbolic plane y = y0 that joins
(x0, y0, t0) to (x1, y0, t1) and a geodesic γ2 in the plane x = x1 that joins (x1, y0, t1)
to a (x1, y1, t1). It is easy to check that the concatenation of γ1 and γ2 is a
quasi-geodesic. In first matching the x coordinates and then matching the y
coordinates, we made a choice. It is possible to construct a quasi-geodesic by first
matching the y coordinates and then the x coordinates. This immediately shows
that any pair of points not contained in a hyperbolic plane in Sol can be joined
by two distinct quasi-geodesics which are not close together. This is an aspect
of positive curvature. One way to prove that the objects just constructed are
quasi-geodesics is to note the following: The pair of projections π1, π2 : Sol→H2

onto the xt and yt coordinate planes can be combined into a quasi-isometric
embedding π1×π2 : Sol→H2×H2.

We state here the simplest version of a key geometric fact used at various steps
in the proof.

Lemma 3.1 (Quadrilaterals). Suppose p1, p2, q1, q2 ∈ Sol and γij : [0, `ij ] → Sol
are vertical geodesic segments parametrized by arclength. Suppose C > 0. Assume
that for i = 1, 2, j = 1, 2,

d(pi, γij(0)) ≤ C and d(qi, γij(`ij)) ≤ C,

so that γij connects the C-neighborhood of pi to the C-neighborhood of qj. Further
assume that for i = 1, 2 and all t, d(γi1(t), γi2(t))≥(1/10)t−C (so that for each i,
the two segments leaving the neighborhood of pi diverge right away). Then there
exists C1 depending only on C such that exactly one of the following holds:
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(a) All four γij are upward oriented, p2 is within C1 of the y-horocycle passing
through p1 and q2 is within C1 of the x-horocycle passing through φ(q1).

(b) All four γij are downward oriented, p2 is within C1 of the x-horocycle
passing through p1 and q2 is within C1 of the y-horocycle passing through
q1.

We think of p1, p2, q1 and q2 as defining a quadrilateral. The content of the lemma
is that any quadrilateral has its four ”corners” in pairs that lie essentially along
horocycles. In particular, if we take a quadrilateral with geodesic segments γij

and with h(p1) = h(p2) and h(q1) = h(q2) and map it forward under a (K, C)-
quasi-isometry φ, and if we would somehow know that φ sends each of the four
γij close to a vertical geodesic, then Lemma 3.1 would imply that φ sends the pi

(resp. qi) to a pair of points at roughly the same height.

We now define certain useful subsets of Sol. Let B(L,~0) = [−eL, eL]×[−eL, eL]×
[−L,L]. Then |B(L,~0)| ≈ Le2L and Area(∂B(L,~0)) ≈ e2L, so B(L) is a Fölner
set. We call B(L,~0) a box of size L centered at the identity. We define the box of
size L centered at a point p by B(L, p) = TpB(L,~0) where Tp is left translation by
p. Since left translation is an isometry, B(L, p) is also a Fölner set. We frequently
omit the center of a box in our notation and write B(L).

Notice that the top of B(L), meaning the set [−eL, eL] × [−eL, eL] × {L}, is
not at all square - the sides of this rectangle are horocyclic segments of lengths
2e2L and 2 - in other words it is just a small metric neighborhood of a horocycle.
Similarly, the bottom is also essentially a horocycle but in the transverse direction.
Further, we can connect the 1-neighborhood of any point of the top horocycle to
the 1-neighborhood of any point of the bottom horocycle by a vertical geodesic
segment, and these segments essentially sweep out the box B(L). Thus a box
contains an extremely large number of quadrilaterals. This picture is even easier
to understand in the Diestel-Leader graphs DL(n, n), where the boundary of the
box is simply the union of the top and bottom ”horocycles”, and the vertical
geodesics in the box form a complete bipartite graph between the two.

We remark that for the group in Theorem 1.6, and for the graphs DL(n,m)
for n 6= m, one has boxes with essentially the same definition, but these will not
be a (metric) Fölner set. A solvable Lie group admits metric Fölner sets if and
only if it is unimodular. The same is true of DL graphs. While the isometry
group of a DL graph is always amenable, the DL graph only has metric Fölner
sets if the isometry group is unimodular.

4. On proofs

In this section, we give some of the key ideas in the proofs. In the first two
subsections we indicate the key new ideas behind our proof of Theorem 2.1.



Quasi-isometries of Solvable Groups 937

The first contains quantative estimates on the behavior of quasi-geodesics. The
second subsection averages this behavior over families of quasi-geodesics. In §4.3
we sketch the proof of Theorem 2.1. Before continuing with discussion of proofs,
we include a discussion of how to axiomatize the methods of §4.1 and §4.2 into a
general method of coarse differentiation in §4.4. Subsection 4.5 briefly discusses
the ideas needed to adapt the proof of Theorem 2.1 to prove the other results in
Section 2. In subsection §4.6, we discuss deducing results in §1 from results in
§2.

4.1. Behavior of quasi-geodesics. We begin by discussing some quantative
estimates on the behavior of quasi-geodesic segments in Sol. Throughout the
discussion we assume α : [0, r] → Sol is a (K, C)-quasi-geodesic segment for a
fixed choice of (K, C), i.e. α is a quasi-isometric embedding of [0, r] into Sol. A
quasi-isometric embedding is a map that satisfies point (1) in Definition 1.1 but
not point (2).

Definition 4.1 (ε-monotone). A quasigeodesic segment α : [0, r] → Sol is ε-
monotone if for all t1, t2 ∈ [0, r] with h(α(t1)) = h(α(t2)) we have |t1 − t2| < εr.

Figure 2. A quasigeodesic segment which is not ε-monotone.

The following fact about ε-monotone geodesics is an easy exercise in hyperbolic
geometry:

Lemma 4.2 (ε-monotone is close to vertical). If α : [0, r] → Sol is ε-monotone,
then there exists a vertical geodesic segment λ such that d(α, λ) = O(εr).

Remark: The distance d(α, λ) is the Hausdorff distance between the sets and
does not depend on parametrizations.

Lemma 4.3 (Subdivision). Suppose α : [0, r] → Sol is a quasi-geodesic segment
which is not ε-monotone. Suppose n À 1 (depending on ε, K, C). Then

n−1∑

j=0

∣∣∣h(α( (j+1)r
n ))− h(α( jr

n ))
∣∣∣ ≥ |h(α(0))− h(α(r))|+ εr

8K2
.
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Outline of Proof. If n is sufficiently large, the total variation of the height in-
creases after the subdivision by a term proportional to ε. See Figure 3. ¤

Figure 3. Proof of Lemma 4.3

Choosing Scales: Choose 1 ¿ r0 ¿ r1 ¿ · · · ¿ rM . In particular, C ¿ r0 and
rm+1/rm > n.

Lemma 4.4. Suppose L À rM , and suppose α : [0, L] → Sol is a quasi-geodesic
segment. For each m ∈ [1,M ], subdivide [0, L] into L/rm segments of length rm.
Let δm(α) denote the fraction of these segments whose images are not ε-monotone.
Then,

M∑

m=1

δm(α) ≤ 16K3

ε
.

Proof. By applying Lemma 4.3 to each non-ε-monotone segment on the scale rM ,
we get

L/rM−1∑

j=1

|h(α(jrM−1))− h(α((j − 1)rM−1))| ≥

≥
L/rM∑

j=1

|h(α(jrM ))− h(α((j − 1)rM ))|+ δM (α)
εL

8K2
.

Doing this again, we get after M iterations,

L/r0∑

j=1

|h(α(jr0))− h(α((j − 1)r0))| ≥

≥
L/rM∑

j=1

|h(α(jrM ))− h(α((j − 1)rM ))|+ εL

8K2

M∑

m=1

δm(α).

But the left-hand-side is bounded from above by the length and so bounded above
by 2KL. ¤
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Figure 4. The box B(L).

4.2. Averaging. In this subsection we apply the estimates from above to images
of geodesics under a quasi-isometry of Sol. The idea is to average the previous
estimates over families of quasi-geodesics. This results in a coarse analogue of
Rademacher’s theorem, which says that a bilipschitz map of Rn is differentiable
almost everywhere, see below for discussion.

Setup and Notation.

• Suppose φ : Sol → Sol is a (K, C) quasi-isometry. Without loss of gener-
ality, we may assume that φ is continuous.

• Let γ : [−L,L] → Sol be a vertical geodesic segment parametrized by
arclength where L À C.

• Let γ = φ ◦ γ. Then γ : [−L,L] → Sol is a quasi-geodesic segment.

It follows from Lemma 4.4, that for every θ > 0 and every geodesic segment γ,
assuming that M is sufficiently large, there exists m ∈ [1,M ] such that δm(γ) < θ.
The difficulty is that m may depend on γ. For Sol, this is overcome as follows:

Recall that B(L) = [−eL, eL] × [−eL, eL] × [−L,L]. Then |B(L)| ≈ Le2L and
Area(∂B(L)) ≈ e2L, so B(L) is a Fölner set. Average the result of Lemma 4.4
over YL, the set of vertical geodesics in B(L) and let |YL| denote the mea-
sure/cardinality of YL. Changing order, we get:

M∑

m=1


 1
|YL|

∑

γ∈YL

δm(γ)


 ≤ 32K3

ε
.

Thus, given any θ > 0, (by choosing M sufficiently large) we can make sure that
there exists 1 ≤ m ≤ M such that

(1)
1
|YL|

∑

γ∈YL

δm(γ) < θ.

Conclusion. On the scale R ≡ rm, at least 1 − θ fraction of all vertical
geodesic segments in B(L) have nearly vertical images under φ. See Figure 4.
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The difficulty is that, at this point, it may be possible that some of the (upward
oriented) vertical segments in B(L) may have images which are going up, and
some may have images which are going down.

We think of the process we have just described as a form of “coarse differenti-
ation”. For further discussion of this process and a more general variant on the
discussion in the last two subsections, see subsection 4.4.

4.3. The scheme of the proof of Theorem 2.1. Roughly speaking, the proof
proceeds in the following steps:

Step 1. For all θ > 0 there exists L0 such that for any box B(L) where L ≥ L0,
there exists 0 ¿ r ¿ R ¿ L0 such that for the tiling:

B(L) =
N⊔

i=1

Bi(R)

there exists I ⊂ {1, . . . , N} with |I| ≥ (1 − θ)N and for each i ∈ I there exists
a height-respecting map φ̂i : Bi(R) → Sol and a subset Ui ⊂ Bi(R) with |Ui| ≥
(1− θ)|Bi(R)| such that

d(φ|Ui , φ̂i) = O(r).

Roughly, Step 1 asserts that every sufficiently large box can be tiled into small
boxes, in such a way that for most of the small boxes Bi(R), the restriction of
φ to Bi(R) agrees, on most of the measure of Bi(R), with a height-respecting
map φ̂i : Bi(R) → Sol. There is no assertion in Step 1 that the height-respecting
maps φ̂i on different small boxes match up to define a height-respecting map on
most of the measure on B(L); the main difficulty is that some of the φ̂i may send
the “up” direction to the “down” direction, while other φ̂i may preserve the up
direction.

Step 1 follows from a version of (1) and some geometric arguments using
Lemma 3.1. The point is that any ε-monotone quasi-geodesic is close to a vertical
geodesic by Lemma 4.2. By the averaging argument in subsection 4.2, we find a
scale R at which most segments have ε-monotone image under φ. More averaging
implies that on most boxes Bi(R) most geodesic segments joining the top of the
box to the bottom of the box have ε-monotone images. We then apply Lemma
3.1 to the images of these geodesics and use this to show that the map is roughly
height preserving on each Bi(R). This step also uses the geometric description
of Bi(R) given in the next to last paragraph of §3, i.e. the fact that a box is
coarsely a complete bipartite graphs on nets in the “top” and “bottom” of the
box.

Step 2. For all θ > 0 there exists L0 such that for any box B(L) where L ≥ L0,
∃ subset U ⊂ B(L) with |U | ≥ (1 − θ)|B(L)| and a height-respecting map φ̂ :
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B(L) → Sol such that
d(φ|U , φ̂) = O(l),

where l ¿ L0.

This is the essentially the assertion that the different maps φ̂i from Step 1
are all oriented in the same way, and can thus be replaced by one standard map
φ̂ : B(L) → Sol.

Step 2 is the most technical part of the proof. The problem here derives from
exponential volume growth. In Euclidean space, given a set of almost full measure
U in a box, every point in the box is close to a point in U . This is not true in Sol
because of exponential volume growth. Another manifestation of this difficulty
is that Sol does not have a Besicovitch covering lemma. The proof involves using
refinements of Lemma 3.1 and further averaging on the image of φ.

Step 3. The map φ is O(L0) from a standard map φ̂.

This follows from Step 2 and some geometric arguments using variants of
Lemma 3.1. The large constant, O(L0), arises because we pass to very large
scales to ignore the sets of small measure that arise in Steps 1 and 2.

4.4. Remarks on coarse differentiation: If a map is differentiable, then it is
locally at sub-linear error from a map which takes lines to lines. This is roughly
the conclusion of the argument above for the vertical geodesics in Sol, at least
on an appropriately chosen large scale and off of a set of small measure. The
ideas employed here can be extended to general metric spaces, by replacing the
notion of ε-monotone with a more general notion of ε-efficient which we will
describe below. The ideas in our proof are not so different from the proof(s)
of Rademacher’s theorem that a bilipschitz map of Rn is differentiable almost
everywhere. In fact, our method applied to quasi-isometries of Rn gives roughly
the same information as the application of Rademacher’s theorem to the induced
bilipschitz map on the asymptotic cone of Rn (which is again Rn). In this context
the presence of sets of small measure can be eliminated by a covering lemma
argument. In the context of solvable groups, passage to the asymptotic cone is
complicated by the exponential volume growth. The asymptotic cone for these
groups is not locally compact, which makes it difficult to find useful notions of
sets of zero or small measure there.

We now formulate somewhat loosely a more general form of the “differentiation
theorem” given in subsections 4.1 and 4.2. Throughout this subsection Y will be
a general metric space, though it may be most useful to think of Y as a complete,
geodesic metric space. First we generalize the notion of ε-monotone.
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Definition 4.5. A quasigeodesic segment α : [0, L] → Y is ε-efficient on the scale
r if

L/r∑

j=1

d(α(jr), α((j − 1)r)) ≤ (1 + ε)d(α(L), α(0)).

The fact is that a quasi-geodesic, unless it is a (1 + ε) quasi-geodesic, fails to
be ε-efficient at some scale some fraction of the time. The observation embedded
in subsection 4.1 is that this cannot happen everywhere on all scales and in fact
cannot happen too often on too many scales.

Figure 5. The definition of ε-efficient.

With this definition, the following variant on Lemma 4.3 becomes a tautology.

Lemma 4.6 (Subdivision II). Given ε > 0, there exist r À C and n À 1 (depend-
ing on K, C and ε) such that any (K,C)-quasi-geodesic segment α : [0, r] → X
which is not ε-efficient on scale r

n we have:
n−1∑

j=0

d(α( (j+1)r
n ), α( jr

n )) ≥ d(α(0), α(r)) +
εr

2K
.

We now state a variant of Lemma 4.4 whose proof is verbatim the proof of
that lemma.

Choosing Scales: Choose 1 ¿ r0 ¿ r1 ¿ · · · ¿ rM . In particular, C ¿ r0 and
rm+1/rm > n.

Lemma 4.7. Suppose L À rM , and suppose α : [0, L] → X is a quasi-geodesic
segment. For each m ∈ [1,M ], subdivide [0, L] into L/rm segments of length rm.
Let δm(α) denote the fraction of these segments whose images are not ε-efficient
on scale rm−1. Then,

M∑

m=1

δm(α) ≤ 4K2

ε
.

Let X be a geodesic metric space. Coarse differentiation amounts to the fol-
lowing easy lemma.
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Lemma 4.8 (Coarse Differentiation). Let φ : X→Y be a (K, C)-quasi-isometry.
For all θ > 0 there exists L0 À 1 such that for any L > L0 and any family F of
geodesics of length L in X, there exist scales r,R with C ¿ r ¿ R ¿ L0 such
that if we divide each geodesic in F into subsegments of length R, then at least
(1− θ) fraction of these subsegments have images which are ε-efficient at scale r.

This lemma and its variants seem likely to be useful in other settings. In fact,
the lemma holds only assuming that φ is coarsely lipschitz. A map φ : X→Y is a
(K, C) coarsely lipschitz if dY (φ(x1), φ(x2))≤KdX(x1, x2) + C. We now describe
the relation to taking derivatives and also to the process of taking a “derivative
at infinity” of a quasi-isometry by passing to asymptotic cones.

We first discuss the case of maps Rn→Rn. Suppose φ : Rn→Rn is a quasi-
isometry. Suppose one chooses a net N on the unit circle and takes F to be the set
of all lines of length L in a large box, whose direction vector is in N . Lemma 4.8
applied to F then states that most of these lines, on the appropriate scale, map
under φ close to straight lines, which implies that the map φ (in a suitable box)
can be approximated by an affine map. Thus, in this context, Lemma 4.8 is
indeed analogous to differentiation (or producing points of differentiability).

An alternative approach for analyzing quasi-isometries φ : Rn→Rn is to pass
to the asymptotic cone to obtain a bilipschitz map φ̃ : Rn→Rn and then apply
Rademacher’s theorem to φ̃. If one attempts to pull the information this yields
back to φ one gets statements that are similar to those one would obtain di-
rectly using Lemma 4.8. This is not surprising, since averaging arguments like
those used in the proof of Lemma 4.8 are implicit in the proofs of Rademacher’s
theorem.

Passing to the asymptotic cone has obvious advantages because it allows one to
replace a (K, C) quasi-isometry from X to Y with a (K, 0)-quasi-isometry (i.e. a
bilipschitz map) from the asymptotic cone of X to the asymptotic cone of Y . One
can then try to use analytic techniques to study the bilipshitz maps. However,
a major difficulty which occurs is that the asymptotic cones are typically not
locally compact and notions of measure and averaging on such spaces are not
clear. This difficulty arises as soon as one has exponential volume growth. In
particular it is not clear if there is a useful version of Rademacher’s theorem for
the asymptotic cones of the spaces which we consider in this paper.

The main advantage of Lemma 4.8 compared to the asymptotic cone approach
is that the averaging is done on the (typically locally compact) space X, i.e.
the domain of the quasi-isometry φ. In other words, we construct a “coarse
derivative” without first passing to a limit to get rid of the additive constant.
In particular, the information we obtain about Sol and other solvable groups by
coarse differentiation is not easily extracted by passage to the asymptotic cone.
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We remark again that Lemma 4.8 applies to any quasi-isometric embedding
(or any uniform embedding) between any two metric spaces X and Y . However
its usefulness clearly depends on the situation.

4.5. Remarks on Theorems 2.2 and 2.3. The proof of Theorem 2.2 is quite
similar to the proof of Theorem 2.1 but becomes much more involved technically
in a few places, particularly at Step 2.

The use of Fölner sets in the proof of Theorem 2.1 might make it surprising
that similar techniques apply to prove Theorems 1.6, 1.9 and 2.3. As remarked
in Section 3, it is well known that there are no (metric) Fölner sets for DL(m,n)
when m6=n or for non-unimodular solvable Lie groups. The key is to use a notion
of weighted amenability and weighted averaging that is similar to the one used in
[BLPS]. In our setting this arises quite naturally. We are averaging over the set
of geodesics in a box. The asymmetry of boxes in this context implies that points
near the “top” of the box are on more geodesics than points near the “bottom”.
This reweighting process introduces a new measure which is not, a priori, quasi-
invariant under quasi-isometries. It is easy to see that the standard volume is
quasi-invariant under quasi-isometries. The new measure is a reweighting of the
standard volume by a factor depending only on the height. Using Lemma 3.1 and
its variants to see that height is coarsely preserved allows us to also conclude that
this new measure is coarsely preserved. The argument at Step 2 then simplifies
dramatically, since we can show that no quasi-isometry can “flip” the orientation
of a box.

4.6. Deduction of rigidity results. In our setting, the deduction of rigidity
results from the classification of quasi-isometries follows a fairly standard outline
that is similar to one used for semisimple groups as well as for certain solvable
groups in [FM2, FM3, MSW]. As this is standard, we will say relatively little
about it. Some of these ideas go back to Mostow’s original proof of Mostow
rigidity [Mo1, Mo3] and have been developed further by many authors.

Given a group Γ any element of γ in Γ acts on Γ by isometries by left multi-
plication Lγ . If X is a metric space and φ : Γ→X is a quasi-isometry, we can
conjugate each Lγ to a self quasi-isometry φ◦Lγ◦φ−1 of X. This induces a homo-
morphism of Φ : Γ → QI(X). Here QI(X) is the group of quasi-isometries of X
modulo the subgroup of quasi-isometries a bounded distance from the identity.
The approach we follow is to use Φ to define an action of Γ on a “boundary at
infinity” of the space X. All theorems are then proven by studying the dynamics
of this “action at infinity.” We are ignoring many important technical points here,
such as why Φ has finite kernel and why QI(X) acts on either X or the boundary
at infinity of X.
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The deduction of Theorem 1.3 from Theorem 2.1 was known to Farb and
Mosher [FM2, FM4]. The action at infinity is studied using a variant of a theorem
of Hinkannen due to Farb and Mosher [H, FM2, FM4]. In the context of Theorem
1.4, we deduce the result from Theorem 2.2 using results from the dissertation of
Tullia Dymarz [Dy]. These are variants and extensions of the results of Tukia in
[Tu].

In the context of Diestel-Leader graphs the argument is somewhat different
than in the previous cases. In this context we use [MSW, Theorem 7] to under-
stand the dynamics at infinity. While this result was motivated by analogy with
the results discussed above, its proof is quite different, and uses topology in place
of analysis. The use of [MSW, Theorem 7] is precisely the step in the proof of
Theorem 1.8 where we might need to replace DL(|F |, |F |) with DL(d, d) where
d and F are powers of a common integer. A similar argument occurs in the proof
of Theorem 1.9.
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