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Abstract : A closed simply connected manifold Nn, an integer p and an
element z ∈ (πp(Nn) ⊗ Q)∗ being given, we define the algebraic and the
analytic Sobolev critical exponent νz and µz of z. The algebraic Sobolev
critical exponent νz of z is related to the minimal number of branchs needed
in trees representing z using the minimal model construction of Sullivan .
The analytic Sobolev critical exponent µz of z is related to the logarithmic
increase of the minimal W 1,p norm ‖u‖W 1,p among the maps u from the
p−sphere Sp into Nn as z(u) goes to +∞. We study the relation between
νz and µz and we describe the crucial role played by these exponents in the
problem of approximating Sobolev maps between manifolds by smooth maps.
These exponents and their connection with the approximation problem in
Sobolev Spaces were originally introduced by Robert Hardt and the author
in [HR3].

I. The strong approximation problem by smooth maps in Sobolev
spaces between manifolds.

let Nn be a submanifold of an euclidian space Rk and denote Bm the unit ball
in Rm centered at 0. For p ≥ 1 we define the Sobolev space

W 1,p(Bm, Nn) :=
{

u ∈ W 1,p(Bm,Rk) s. t. u(x) ∈ Nn for a. e. x ∈ Bm
}

where W 1,p(Bm,Rk) is the usual notation for the measurable maps from Bm into
Rk which are in Lp and whose distributional gradient is also in Lp. The strong
approximation problem has to do with the following question :
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Question : Are smooth maps from Bm into Nn dense in W 1,p(Bm, Nn) for the
W 1,p norm ?

A quite complete answer to this question is given by the following result.

Theorem I.1. [Wh], [ScU], [BeZ],[Bet1] C∞(Bm, Nn) is dense in W 1,p(Bm, Nn)
if and only if

p ≥ m

or
π[p](N

n) = 0
where [p] denotes the largest integer less or equal to p.

For instance, the map which assign to x in the unit ball B3 it’s orthogonal
nearest projection x/|x| on the boundary ∂B3 ' S2 is in the Sobolev space
W 1,2(B3, S2) but, as we will explain below, it cannot be approximated by smooth
maps in C∞(B3, S2) with respect to the W 1,2 norm.

Remark I.1. If Bm is replaced by a more general riemannian manifold (Mm, h)
theorem I.1 happens not to be true anymore and the necessary and sufficient
conditions for having the density of smooth maps is more complex. It is described
in [HaL1], [HaL2] and [HaL3] by F.Hang and F.H.Lin (see also the discussion
and the notion of local and global obstructions to the strong approximation in
[HR2]).

The obstruction to the strong density of C∞(Bm, N) in W 1,p(Bm, N).

Let p be an integer. The following theorem by B.White permits to extend the
notion of homotopy classes to arbitrary maps in W 1,p(Sp, N).

Theorem I.2. [Wh] (Existence of homotopy classes in W 1,p(Sp, Nn)) Let p ∈ N
and g ∈ W 1,p(Sp, Nn), then there exists ε > 0 such that the following holds : Let
h and k be two arbitrary maps in C∞(Sp, N)

(I.1)
‖h− g‖W 1,p < ε

‖k − g‖W 1,p < ε

}
=⇒ h is homotopic to k

Since C∞(Sp, N) is dense in W 1,p(Sp, N) (from theorem I.1) we can then
define, without ambiguity, the homotopy class in πp(N) of an arbitrary map
g in W 1,p(Sp, N) as being the homotopy class of any smooth map in C∞(Sp, N)
close enough to g. Such a class will be denoted [g]

Remark I.2. What was used in [Wh] is the fact that any map in W 1,p(Sp, N)
belongs to the space VMO - maps of Vanishing Mean Oscillations - this is a direct
consequence of the Poincaré inequality. The VMO property is really the one which
permits to extend the notion of homotopy class. This fact was later rediscovered
in [BrN1] and [BrN2].
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Granting this result of White, and taking now p ∈ R and a map u in W 1,p(B[p]+1,

N), using Fubini theorem, the restriction u|∂B
[p]+1
r (a) of u to the boundary

∂B
[p]+1
r (a) of the ball of center a and radius r is in W 1,p for any a ∈ B[p]+1 and

almost every r between 0 and 1− |a|. Therefore the class
[
u|

∂B
[p]+1
r (a)

]
∈ π[p](N)

is well defined for every a in B[p]+1 and almost every r in (0, 1 − |a|). We
then have the following characterisation of the approximability of a map u in
W 1,p(B[p]+1, N) by smooth maps

Theorem I.3. [Bet1] Let p ∈ R, p ≥ 1. Let u ∈ W 1,p(B[p]+1, N) there exists a
sequence of smooth maps in C∞(B[p]+1, N) converging to u in W 1,p if and only
if the following holds

∀a ∈ B[p]+1(0) , for a.e. r ∈ (0, 1− |a|)
[
u|

∂B
[p]+1
r (a)

]
= 0

More generally, for m > [p] + 1, the same result holds for ∂B
[p]+1
r (a) being

replaced by generic [p]-spheres in Bm. Heuristically, what this result says, is that
the lack of approximability of maps in W 1,p(Bm, N) comes from realization on a
”full measure” of [p]−sphere of non trivial homotopy class in π[p](N).

Going back now to our previous example, the map u from B3 into S2 assigning
to x the projection x/|x|, we observe that the restriction of u to the boundary
of every ball containing 0 has a topological degree equal to +1 and is therefore
non homotopic to 0. Comparing this observation with theorem I.3 we obtain the
fact that u cannot be approximated by smooth maps in C∞(B3, S2) with respect
to the W 1,2 norm. This can be explained more directly in the following way
: assuming there would exists a sequence ui in C∞(B3, S2) converging to u in
W 1,2, then, using a standard argument based on the use of Fubini theorem and
the mean value formula, for almost every r ∈ (0, 1), there exists a subsequence
ui′ converging strongly to u in W 1,2(∂Br(0), S2). Using now theorem I.3 with g
being the restriction of u to ∂Br(0), h being the restriction of ui′ to ∂Br(0) and
k being also the restriction of u to ∂Br(0), we would get that, for i′ large enough,
u is homotopic to ui′ on ∂Br(0). But the restriction of ui′ to ∂Br(0) admits
a smooth extension in C∞(Br(0), S2) which is ui′ itself, thus the restriction of
ui′ to ∂Br(0) is null-homotopic. This would then imply that the restriction of
u to ∂Br(0) which is equal to r−1x should also be null homotopic which is a
contradiction.

This last example illustrates perfectly the mechanism behind the impossibil-
ity of approximating some maps in W 1,p(Bm, N) by maps in C∞(Bm, N) when
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π[p](N) is not trivial. We could then say the the strong approximation issues in
W 1,p-Sobolev spaces into manifolds is quite well understood at this stage.

II. The weak approximation problem by smooth maps in Sobolev
spaces between manifolds.

We consider now a closed submanifold Nn of some euclidian space Rk and an
exponent p ≥ 1 such that π[p](Nn) 6= 0 and a dimension m > [p]. Let u be a map
in W 1,p(Bm, Nn) which is not in the closure of C∞(Bm, Nn) for the W 1,p strong
topology (existence of such a u is given by theorem I.1), the weak approximation
problem has to do with the following question

Question : Does there exist a sequence ui in C∞(Bm, N) which weakly
converge to u in W 1,p ?

It is not too difficult to see that a positive answer to that question for every u in
W 1,p(Bm, Nn) would require at least that p is an integer (i.e. p = [p]). This comes
from the fact that on generic [p]-sphere on which the restriction of the map u, that
we are trying to weakly approximate, is non null homotopic. Thus a sequence
of smooth maps un converging weakly to u would have to ”jump” in homotopy
classes at the limit in order to converge to u. This would happen only by point
concentrations on the sphere due to the concentration compactness theory (see
[SaU]). Point concentration is tolerated by the W 1,p energy (does not make this
energy blow-up) for p ≥ [p] only if p equals to the dimension of the sphere [p]
(the homogeneous W 1,p-pseudo-norm is then conformal invariant). Thus, from
now on untill the end of the paper, we will make the following assumption :

i)
p = [p] ∈ N ,

ii)
m > p ,

iii)
πp(N) 6= 0 .

Known answers to the weak approximation problem by smooth maps
in Sobolev spaces

In fact there are very few answers to the above question which seems to be
quite challenging. At this stage of developpement of our knowledge not a single
map is known, in any of the W 1,p(Bm, N), for any choice of p ∈ N, m > p and Nn,
which cannot be approximated weakly in W 1,p by smooth maps in C∞(Bm, N).
Here are the known answers :
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Theorem II.1. [BBC], [ABL] Let p ∈ N, m ∈ N and let u in W 1,p(Bm, Sp) then
there exists a sequence ui in C∞(Bm, Sp) such that ui converges weakly to u in
W 1,p.

Theorem II.2. [Haj] Let Nn be a p − 1-connected closed submanifold of some
euclidian space Rk (πl(Nn) = 0 for 1 ≤ l ≤ p − 1), let m ∈ N and let u in
W 1,p(Bm, Nn) then there exists a sequence ui in C∞(Bm, Nn) such that ui con-
verges weakly to u in W 1,p.

This result can be seen as an extension of the previous one in the sence that
the p− 1-connectedness assumption of Nn implies that the cell decomposition of
Nn starts at most with a bouquet of p−spheres and the difficulties reduce more
or less to the ones already tackled while proving theorem II.1.

The case of the exponent p = 2 is completely answered in the following result

Theorem II.3. [PaR] Let Nn be a closed submanifold of some euclidian space
Rk, let m ∈ N and let u in W 1,2(Bm, Nn) then there exists a sequence ui in
C∞(Bm, Nn) such that ui converges weakly to u in W 1,2.

In the case where Nn is simply connected the previous result is already con-
tained in theorem II.2. The new difficulty while proving theorem II.3 is to handle
non trivial π1(N). Since the π2 of the one dimensional skeleton of Nn is zero,
this case has also some relevance to the two previous results theorem II.1 and
theorem II.2

Finally we have the following result

Theorem II.4. [HR4] Let p > 2, let m ∈ N and let u in W 1,p+1(Bm, Sp) then
there exists a sequence ui in C∞(Bm, Sp) such that ui converges weakly to u in
W 1,p+1.

Here the obstruction to the strong approximation comes from the πp+1(Sp)
(and not the πp(Sp) anymore) which is stable and equal to Z2 for p > 2. In this
sense this result is very different in nature form the previous theorems II.1...II.3.
The proof is using an innovative technic based on Tom-Pontryagin characteri-
zation of stable homotopy groups and seems to give good hope to handle other
cases where the obstruction to the strong approximation comes from finite stable
homotopy groups.

There are some other results quite related to the one we just mentioned above
: see [Ri2], [Han], [Pak], [GiM].

We illustrate now the question of the weak approximability by smooth maps by
presenting one of the simplest situation, generic however, solved by theorem II.1
: the case W 1,2(B3, S2). So we present an answer to the following question
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Question : Why is C∞(B3, S2) weakly sequentially dense in W 1,2(B3, S2) ?

Let u be an element in W 1,2(B3, S2) which is not approximable by smooth
maps in C∞(B3, S2). We assume to simplify the presentation that the trace of
the map u on ∂B3 is constant. The obstruction to the strong approximability
comes in the present situation from the homotopy group π2(S2) = Z. It was
observed in [Bet1] that, even if u cannot be approximated by smooth maps, u
can be however approximated by maps which are smooth away from finitely many
points. Precisely we introduce the space

R∞1,2(B
3, S2) =

{
v ∈ C∞(B3 \K, S2) ∩W 1,2 where K is a finite set in B3

}

(observe that K depends a-priori on v). Then there exists vi in R∞1,2 which
strongly converge to u in W 1,2. It is also possible to make R∞1,2 a bit smaller
by requiring that the homotopy class of u on each sphere, with small enough
radius, centered on each point in K is not trivial. Denote Ki = {aj1 · · · ajQi

}
the set of points where vi is not smooth and denote dj1 · · · djQi

the homotopy
group (the topological degree in Z ) of the restriction of u to any sphere (having
a small enough radius) centered respectively at aj1 · · · ajQi

. The idea is to remove
these points by doing some surgery on the map vi which do not modify vi on
the “main part” of B3 and which hopefully would not increase “too much” the
energy. Precisely, we first connect the ajl

according to their multiplicity djl
in an

optimal way : we are using a 1-dimensional de Rham current Li corresponding
to the integration of 1 form along a union of oriented straight segments Li with
integer multiplicity θ and Li is chosen in such a way that it minimizes the mass
M(Li) under the constraint

∂L =
Qi∑

l=1

djl
δajl

.

Then, a small positive number ε being given, we modify vi in the ε-neighborhood
Uε of the support of Li given by Uε = {x ; dist(x, suppL) < ε}. We remove vi

in Uε and we insert instead of vi, all along the support of L, a covering of S2,
according to the multiplicity of Li, in order to anihilate the degree of vi at each
ajl

(see [Bet2] and figure II).
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Figure 1. The surgery realized on the map vi in order to remove
the topological singularities ajl

.

The new map that we obtain after this surgery will be denoted vε
i . It is possible

to do so without modifying vi outside Uε and with an energy control of the form

(II.1)
∫

B3

|∇vε
i |2 ≤

∫

B3

|∇vi|2 + 8π M(Li) + δi(ε)

where δi(ε) goes to zero as ε converges to 0. Since vε
i and vi are bounded in L∞,

since they coincide on the whole ball B3 except on Uε, a set of measure of order
O(εM(Li)) and since vi converges strongly to u in W 1,2, it is now clear that,
taking ε small enough for each i, the sequence vε

i converges to u in every Lp for
p < +∞. In order then to ensure that this convergence is a weak convergence in
W 1,2 it remains to bound the W 1,2 energy of vε

i . In view of (II.1), it suffices then
to bound M(Li) uniformly in i. The following result provide a control to M(Li)
and is the key point in the proof. Precisely we have

Theorem II.5. [BCL] Let v be a map in R∞1,2(B
3, S2), constant on ∂B3, then

there exists a union of oriented segments L and an ”integer valued multiplicity
map” theta on L (i.e. a measurable map θ : L → Z ) such that

∂L =
Qi∑

l=1

djl
δajl

where ajl
are the point singularities of v, djl

is the topological degree of the re-
striction of v to small spheres surrounding ajl

and L is the following current

∀ψ ∈ C∞
0 (B3,∧1R3) 〈L;ψ〉 =

∫

L
θ ψ .
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There exists such a L for which the following bound holds

(II.2) M(L) =
∫

L
|θ| dH1 ≤ 1

8π

∫

B3

|∇v|2

Combining then this result and estimate (II.1), choosing ε = εi small enough
for each i, we have obtained a sequence ui := vεi

i converging weakly to u in W 1,2.

Connecting topological singular sets : the π2(S2) case

As we just saw the main issue in proving the weak sequential density of smooth
maps in W 1,2(B3, S2) was the control of the mass of the current L ”connecting”
the point singularities aj according to their multiplicity dj of an arbitrary map
v in R∞1,2(B

3, S2) by the mean of it’s W 1,2 energy. The current
∑

j dj δaj is the
obstruction to strongly approximate v by smooth maps in C∞(B3, S2) and is
what we call the topological singular set of v as we saw in theorem I.3(see the
definition of the topological singular sets in general situations in [HR2]). This
current can be obtained in the present situation by the mean of the following
computation : let ω be a 2-form on S2 whose integral on S2 equals to 1, denote
v∗ω the pull-back on B3 of ω by v, then the following holds

(II.3) d(v∗ω) =
Q∑

l=1

dl δal
.

Taking now an arbitrary map u in W 1,2(B3, S2) the distribution d(u∗ω) still make
sense and characterizes the possibility for u to be in the strong closure of smooth
maps for the W 1,2 norm. Precisely it is proved in [BCDH] that there exists ui in
C∞(B3, S2) converging strongly to u in W 1,2 if and only if

d(u∗ω) = 0 .

For that reason and the fact that for every a ∈ B3 and for almost every r > 0∫

B3
r (a)

d(u∗ω) :=
∫

∂B3
r (a)

u∗ω =
[
u|

∂B3
r (a)

]
∈ π2(S2) ' Z

the distribution d(u∗ω) is also called the topological singular set of u. It was
proved in [GMS] that is possible to extend theorem II.5 to general maps in
W 1,2(B3, S2). Denoting H1 the 1-dimensional Hausdorf measure, we have the
following result.

Theorem II.6. [GMS] Let u be in W 1,2(B3, S2) constant on the boundary, then
there exist a countable union L = ∪jLj of disjoint H1-measurable subsets of C1

oriented curves and an H1 measurable ”integer valued multiplicity map” θ from
L into Z satisfying

(II.4)
∫

L
|θ| dH1 ≤ 1

8π

∫

B3

|∇u|2
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and for every a in B3 and almost every r ∈ (0, 1− |a|)
(II.5)

[
u|∂Br(a)

]
=

∑

x0∈∂Br(a)∩L
θ(x0) sgn{~l(x0) · (x0 − a)}

where ~l is the tangent direction to the C1 curve containing x0 and the correspond-
ing Lj in L.

Using the language of Geometric Measure Theory (see [Fe]), this theorem gives
the existence of a 1-dimensional integer rectifiable current L (which is the inte-
gration on L according to the multiplicity θ) satisfying

(II.6) ∂L = d(u∗ω) ,

(observe that (II.6) is equivalent to (II.5)) and such that the mass of L is bounded
by (8π)−1

∫ |∇u|2.

Connecting topological singular sets : the π3(S2) case

We are now looking at the situation where the obstruction to the strong ap-
proximation comes from the homotopy group π3(S2), which is equal also to Z.
Thus we take the target to be again N = S2, but the exponent is now p = 3
and the smallest m such that ii) above is satisfied : m = 4. This means that
we are looking at the space W 1,3(B4, S2). Although it looks quite similar to the
previous situation -replacing formally the topological degree (class in π2(S2) )
by the Hopf topological degree (class in π3(S2))- this case is unsolved yet : the
following question is still open.

Open Problem : Let u be in W 1,3(B4, S2), does there exist ui in C∞(B4, S2)
converging weakly to u in W 1,3 ?

In trying to adapt the approach which was succesful to tackle the π2(S2) case
we introduce the space

R∞1,3(B
4, S2) =

{
v ∈ C∞(B4 \K, S2) ∩W 1,3 where K is a finite set in B4

}

Like in the previous case this space is dense for the strong topology in W 1,3(B4, S2).
Similarly as above we can even consider a smaller space by requiring that the ho-
motopy class in π3(S2) of the restriction of v to small spheres centered at each
singularity in K is non trivial : it’s Hopf degree is non zero.

Given then an arbitrary u in W 1,3(B4, S2) and a sequence vi in R∞1,3(B
4, S2)

converging strongly to u, the same surgery work will produce, for every ε small
enough, a familly of maps vε

i in C∞(B4, S2) coinciding with vi outside an ε-
neighborhood Uε of a union of segments connecting the point singularities ajl

of
vi, taking into account the multiplicity djl

given by the class in π3(S2) realized by
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the restriction of vj to ∂Br(ajl
). This is again possible with the following control

of the W 1,3 energy

(II.7)
∫

B4

|∇vε
i |3 ≤

∫

B4

|∇vi|3 + C0 M(Li) + δi(ε) ,

where δi(ε) tends to zero as ε goes to zero and M(Li) is the mass of the current
realized by the integration along these segments connecting the point singularities
ajl

according to their multiplicities : ∂Li =
∑

l djl
δajl

. In order to be now able
to conclude the proof of the existence of a sequence of smooth maps converging
weakly to u we would need to find a control of the mass of the minimal connection
Li by the mean of the 3-energy of vi which strongly converge to v. In contrast
with the previous case such a control does not exists and there is no corresponding
phenomenon to the one observed in the B3 − S2 case in theorem II.5. Precisely
we have.

Theorem II.7. [HR1] There exists u in W 1,3(B4, S2) such that for sequence
every vi in R∞1,3(B

4, S2) converging strongly to u in W 1,3 the following holds

(II.8) min

{
M(Li) ; ∂Li =

Qi∑

l=1

djl
δajl

}
−→ +∞ ,

where ajl
are the point singularities of vi and djl

the topological Hopf degree of vi

about these points (i.e. the class of [vi|∂Br(ajl
)] in π3(S2) for small r).

In fact the u constructed in theorem II.7 satisfies the following

Theorem II.8. [HR1] There exists u in W 1,3(B4, S2) constant on the boundary
such that for every countable union L = ∪jLj of disjoint H1-measurable subsets
of C1 oriented curves and an H1 measurable ”integer valued multiplicity map” θ
from L into Z satisfying for every a in B4(0) and almost every r ∈ (0, 1− |a|)
(II.9)

[
u|∂Br(a)

]
=

∑

x0∈∂Br(a)∩L
θ(x0) sgn{~l(x0) · (x0 − a)}

where ~l is the tangent direction to the C1 curve containing x0 and the correspond-
ing Lj in L, then

(II.10)
∫

L
|θ| dH1 = +∞ .

Roughly speaking, countrary to the B3−S2 case, there exist maps in W 1,3(B4, S2)
whose topological singular set cannot be “connected” by a finite mass rectifiable
current. However the following holds

Theorem II.9. [HR1] Let u be a map in W 1,3(B4, S2) constant on the boundary.
u can be approximated weakly in W 1,3 by smooth maps in C∞(B4, S2) if and only
if there exists a countable union L = ∪jLj of disjoint H1-measurable subsets of
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C1 oriented curves and an H1 measurable ”integer valued multiplicity map” θ
from L into Z satisfying for every a in B4 and almost every r ∈ (0, 1− |a|)
(II.11)

[
u|∂Br(a)

]
=

∑

x0∈∂Br(a)∩L
θ(x0) sgn{~l(x0) · (x0 − a)}

where ~l(x0) is the tangent direction to the C1 curve containing x0 and the corre-
sponding Lj in L, and such that

(II.12)
∫

L
|θ| 34 dH1 < +∞ .

This characterization of the sequentially weak closure of smooth map in W 1,3

and the appearance of this intriguing exponent 3/4 has stimulated the introduc-
tion the Sobolev critical exponents of rational homotopy groups .

III. Existence of rectifiable Poincaré Duals of topological
singularities of maps in Sobolev spaces between manifolds.

Let Nn be an arbitrary closed simply connected manifold. Let p ∈ N and let
z be an element of (πp(Nn)⊗ R)∗, (i.e. homomorphism from πp(Nn) into R). z
simply extends to general p and N the topological degree for N = Sp or the Hopf
degree for p = 4q − 1 and N = S2q.

For u in W 1,p(Bp+1, Nn) we introduce the measurable map

(III.1)

Φz,u : Bp+1 × R+−→R

(a, r)−→ z

([
u|

∂B
p+1
r (a)

])

We introduce the following definition

Definition III.1. We say that a map u in W 1,p(Bp+1, Nn) has no z−type sin-
gularties if

(III.2) Φz,u ≡ 0 .

The following result generalizes theorem II.6 for π2(S2) and theorem II.9 for
π3(S2) to general πp(N) :

Theorem III.1. [HR3] Let Nn be an arbitrary closed simply connected manifold.
Let p ∈ N and let z be an element of (πp(Nn)⊗R)∗. Let now u in W 1,p(Bp+1, N).
Assume that u is weakly approximable by maps without z−type singularities, then
Φz,u admits a rectifiable Poincaré dual in the following sense : there exists a
countable union L = ∪jLj of disjoint H1-measurable subsets of C1 oriented curves
and an H1 measurable ”multiplicity map” θ from L into z(πp(Nn)) ⊂ R satisfying
for every a in Bp+1 and almost every r ∈ (0, 1− |a|)
(III.3) Φz,u(a, r) = z

([
u|∂Br(a)

])
=

∑

x0∈∂Br(a)∩L
θ(x0) sgn{~l(x0) · (x0 − a)}
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where ~l(x0) is the tangent direction to the C1 curve containing x0 and the corre-
sponding Lj in L, and such that

(III.4)
∫

L
|θ| p

p+νz dH1 < +∞ ,

where νz is an integer depending only on z, the algebraic Sobolev critical exponents
of z defined below. If νz equals the analytic Sobolev critical exponents µz of z
defined below, then the existence of L and θ satisfying (III.3) and (III.4) is a
necessary and sufficient condition for the weak approximability of a map u in
W 1,p(Bp+1, N) by maps having no z−type singularities.

IV. The algebraic and analytic Sobolev critical exponents of a
class z in (πp(Nn)⊗ R)∗.

Starting from the minimal model construction of Sullivan [Sul], Novikov in
[Nov1], [Nov2], [Nov3] established integral formulations of the action of every
element z in (πp(Nn)⊗R)∗ on maps u from Sn into Nn. This integral formulations
are represented in [HR3] by formal linear combination of finite connected, simply
connected oriented graphs of closed forms

Kz =
∑

l

λl Kl ,

where λl ∈ R and each Kl is a simply connected graph such that a closed differen-
tial form ωi in ∧∗N and a variable xi in Sp are assigned to each node. Moreover,
to each segment connecting two nodes i and j, with variables xi and xj and closed
forms ωi and ωj , the segment being oriented from i to j, we assign a fixed ”prop-
agator form” α in ∧∗xi

Sp∧xj Sp corresponding to the operation d−1 (i.e. Precisely
we take for α the Kernel corresponding to the non-local operation d∗∆−1) : For
every Ω in ∧lSp satisfying dΩ = 0, the l − 1-form given by

η(xi) :=
∫

Sp

αl(xi, xj) ∧ Ω(xj)

satisfies
dη = Ω .

In order to simplify the notation we will omit the subscript l for α. Finally
the following dimension condition is satisfied for each graph Kl arising in the
representation of z

(IV.5) p =
∑

node inKl

order of ωi − number of branches in Kl.

Observe that because of the simply connectedness of each Kl the number of nodes
equals the number of branches + 1.
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Figure 2. A formal linear combination of finite simply con-
nected graphs of closed form of ∧∗N .

Let now u in C1(Sp, N) and denote nKl
the number of nodes in the graph

Kl. Denote also u⊗nKl the following map from Sp × · · · × Sp (nKl
times) into

N × · · · ×N (nKl
times) given by

u⊗nKl (x1, · · · , xnKl
) :=

(
u(x1), · · ·u(xnKl

)
)

Using now this notation we introduce the following p−form on Sp

(IV.6) uKl(x1) =
∫

Sp

· · ·
∫

Sp

(
u⊗nKl

)∗
ω1 ∧ · · ·ωnKl

∧
∏

{(i,j)∈I}
α(xi, xj)

where the dots denote nKl
− 1 integrations on Sp, where x1 denotes the variable

at the summit of the graph Kl and I is the set of couples of nodes connected by
an oriented segment in the graph Kl. With these notation the Novikov integral
expression of z([u]) is

(IV.7) z([u]) =
∫

Sp

∑

l

λl uKl .

We introduced in [HR3] the following definition

Definition IV.2. Let z be an Homomorphism from πp(Nn) into R where Nn

is a closed simply connected manifold. We define the algebraic Sobolev critical
exponent νz of z as being the minimal integer among all formal linear combination
of simply connected graphs Kz =

∑
l λl Kl representing z that one obtains by

taking the maximal number of segments in Kl

(IV.8) νz := inf
K rep. z

max
l
{nKl

} − 1 .
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The following proposition holds true

Proposition IV.1. Let z be an element in (πp(Nn) ⊗ R)∗ then there exists a
constant Cz, depending only on z, such that

(IV.9) z(u) ≤ Cz

[∫

Sp

|∇u|p
] p+νz

p

.

the previous proposition motivates the following definition

Definition IV.3. Let z be an Homomorphism from πp(Nn) into R where Nn

is a closed simply connected manifold. We define the analytic Sobolev critical
exponent µz of z as being the following limit

(IV.10) µz := p lim inf
z(u)→+∞

log z(u)
log

∫
Sp |∇u|p − p

Observe that proposition IV.1 simply says that µz ≤ νz.

Open problem : For which z do we have µz = νz ?

A similar question was adressed by M.Gromov in [Gr1], [Gr2] where Sobolev
norms are replaced by Lipschitz norms. In fact no example is known where
µz < νz. A form z being given the computation of νz follows Novikov’s construc-
tion of the integral representation of forms on rational homotopy groups and is
hence algorithmic. µz however seems much more intricate to obtain and only few
exemples are known where µz has been computed explicitely. In particular the
case of the spheres is completely solved in [Ri1]

Theorem IV.2. [Ri1] For every p > 1 integer and for every z ∈ (πp(Sp)⊗R)∗ '
R, νz = µz = 0. For every positive integer q and for every z ∈ (π4q−1(S2q)⊗R)∗ '
R, νz = µz = 1.

Finally we proved the following result.

Theorem IV.3. [HR3] For every closed simply connected 4-manifold N4, for
every integer p > 1 and for every z in (πp(N)⊗ R)∗,

µz = νz .
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Sémin. équ. Dériv. Partielles, Ecole Polytech., Palaiseau, 2001.

[HR3] R.Hardt and T.Rivière Connecting rational homotopy type singularities. to appear in
Acta Math. (2007).

[HR4] R.Hardt and T.Rivière Weak density of smooth maps in W 1,p(Bn, Sp−1), the stable case
p > 4. in preparation.



630 Tristan Rivière

[Nov1] S.P.Novikov The analytic generalized Hopf invariant. Many-valued functionals. Russian
Math. Surveys, 39 (1984), 113-124.

[Nov2] S.P.Novikov Analytic Homotopy Theory. Rigidity of Homotopy Integrals Soviet Math.
Dokl., 32 (1985), 285-288.

[Nov3] S.P.Novikov Analytical theory of homotopy groups, Lect. Notes in Math. 1346, Springer,
99-112.

[Pak] Pakzad, Mohammad Reza Weak density of smooth maps in W 1,1(M, N) for non-abelian
π1(N). Ann. Global Anal. Geom. 23 (2003), no. 1, 1–12

[PaR] Pakzad, M. R.; Rivière, T. Weak density of smooth maps for the Dirichlet energy between
manifolds. Geom. Funct. Anal. 13 (2003), no. 1, 223–257.

[Ri1] T.Rivière Minimizing fibrations and p-harmonic maps in homotopy classes from S3 into
S2 Comm. Anal. Geom., 6 (1998), 427-483.

[Ri2] Rivière, Tristan Dense subsets of H1/2(S2, S1). Ann. Global Anal. Geom. 18 (2000), no.
5, 517–528.

[SaU] Sacks, J.; Uhlenbeck, K. The existence of minimal immersions of 2-spheres. Ann. of Math.
(2) 113 (1981), no. 1, 1–24.

[ScU] R.Schoen and K.Uhlenbeck, Approximation theorems for Sobolev mappings preprint
(1984).

[St] E.M.Stein Singular integrals and differentiability properties of functions Princeton Univer-
sity Press, 1970.

[Sul] D.Sullivan Infinitesimal computations in topology Inst. Hautes Études Sci. Publ. Math.,
47 (1977), 269-331.

[Wh] B.White Homotopy classes in Sobolev spaces and the existence of energy minimizing maps
Acta. Math., 160 (1988), 1-17.

Tristan Rivière
Department of Mathematics
ETH Zentrum, CH-8093 Zürich, Switzerland.
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