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Heat Flow of Biharmonic Maps in Dimensions
Four and Its Application

Changyou Wang

Abstract. Let (M, g) be a four dimensional compact Riemannian mani-
fold without boundary, (N, h) ⊂ Rk be a compact Riemannian submanifold
without boundary. We establish the existence of a global weak solution to
the heat flow of extrinsic biharmonic maps from M to N , which is smooth
away from finitely many singular times. As a consequence, we prove that if
Π4(N) = {0}, then any free homotopy class α ∈ [M, N ] contains at least one
minimizing biharmonic map.

§1. Introduction

Let (M, g), (N, h) be smooth compact Riemannian manifolds without bound-
aries. Assume that (N, h) is isometrically embedded into an Euclidean space Rk.
For a non-negative integer l, and 1 ≤ p < +∞, the Sobolev space W l,p(M, N) is
defined by

W l,p(M, N) = {u ∈ W l,p(M,Rk) | u(x) ∈ N for a.e. x ∈ M}.
On W 2,2(M, N), there are two natural, second order energy functionals:

H(u) =
∫

M
|∆u|2 dvg, T (u) =

∫

M
|τ(u)|2 dvg,

where ∆ is the Laplace-Beltrami operator of (M, g), dvg is the volume element
of (M, g), τ(u) = (∆u)T := ∆u + A(u)(∇u,∇u) is the tension field of u, and
A(·)(·, ·) is the second fundamental form of (N, h) in Rk.

Recall that a map u ∈ W 2,2(M, N) is called an extrinsic (or intrinsic, resp.)
biharmonic map if u is a critical point of H(·) (or T (·), resp.). For a sufficiently
small δ > 0, let Π : Nδ → N be the smooth nearest point projection map,
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P (y) = ∇Π(y) : Rk → TyN be the orthogonal projection to the tangent space at
y ∈ N . Note that

A(y)(X, Y ) = ∇XP (y)(Y ), ∀y ∈ N, X, Y ∈ TyN.

It is readily seen (cf. Wang [W1, 2]) that the Euler-Lagrange equation for extrinsic
biharmonic maps is

∆2u = ∆(A(u)(∇u,∇u)) + 〈∆u, ∆(P (u))〉+ 2〈∇∆u,∇(P (u))〉. (1.1)

(1.1) is equivalent to the geometric form:

∆2u ⊥ TuN, (1.2)

in the sense of distributions.

Regularity issues for biharmonic maps have first been studied by Chang-Wang-
Yang [CWY] for spheres N = Sk−1, and later by Wang [W1,2] for general mani-
folds N (see also [W3] and Strzelecki [P]).

Motivated by the heat flow of harmonic maps from surfaces (see Struwe [S]
and Sacks-Uhlenbeck [SaU]), and the problem by Eells-Lemaire [EL] that is to
find extrinsic (or intrinsic) biharmonic maps among any free homotopy class
α ∈ [M, N ] for dim(M) = 4, people are interested in the study of the heat flow
of biharmonic maps u : M ×R+ → N :

ut + ∆2u = ∆(A(u)(∇u,∇u)) + 〈∆u, ∆(P (u))〉)
+ 2〈∇∆u,∇(P (u))〉, M ×R+, (1.3)

u(x, 0) = φ(x), x ∈ M, (1.4)

where φ ∈ W 2,2(M, N) is a given map.

For a smooth map φ ∈ C∞(M, N), the short time existence of smooth solutions
to (1.3)-(1.4) is well-known, since (1.3) is a fourth order strongly parabolic system
(see Lamm [L1] for more details). Moreover, if dim M ≤ 3, then such a short
time smooth solution can be extended to be a globally smooth solution. For dim
M ≥ 4, the short time smooth solution may develop a singularity at finite time.
For dim M = 4, Lamm [L2] proved that (1.3)-(1.4) has a globally smooth solution
u ∈ C∞(M × R+, N), provided that φ ∈ C∞(M, N) has small Hessian energy
H(φ). Without the smallness assumption, we establish a partially smooth, weak
solution to (1.3)-(1.4). More precisely, we have

Theorem A. For dim M = 4 and any map φ ∈ W 2,2(M, N), there exists a global
weak solution u : M ×R+ → N of (1.3)-(1.4) satisfying:

(1) For any 0 < T < +∞,
∫ T

0

∫

M
|ut|2 dvg dt +

∫

M
|∆u|2(·, T ) dvg ≤

∫

M
|∆φ|2 dvg, (1.5)

and H(u(·, t)) is monotonically nonincreasing with respect to t ≥ 0.
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(2) There exist an ε0 > 0, a positive integer L depending only on φ,M,N , and
0 < t1 < · · · < tL < +∞ such that u ∈ C∞(M × (R+ \ ∪{t1, · · · , tL}), N), and

E(u, ti) := lim
r↓0

lim sup
t↑ti

sup
x∈M

∫

Br(x)
|∆u|2 dvg ≥ ε20, 1 ≤ i ≤ L. (1.6)

(3) The quantity ε0 can be characterized by

ε20 = inf{
∫

R4

|∆ω|2 dx | ω ∈ C∞ ∩W 2,2(R4, N) nonconstant biharmonic maps}.
(1.7)

(4) For 1 ≤ i ≤ L, there exist a nonconstant biharmonic map ωi ∈ C∞ ∩
W 2,2(R4, N), tji ↑ ti, {xji} ⊂ M with xji → xi, rji → 0, such that

uji(·) = u(xji + rji ·, tji) → ωi, in Ck
loc(R

4) ∀k ≥ 1. (1.8)

Remark 1.1. After the submission of the paper, we have learned that Theorem
A has also been independently proved by Gastel [G] recently.

Remark 1.2. It is an open question whether the weak solution as in theorem A
has at most finitely many singularities (i.e. at most finitely many singular points
in each singular time).

Remark 1.3. Motivated by the existence theory of the heat flow of harmonic
maps in high dimensions by Chen-Struwe [CS], it is a very interesting problem
to study the heat flow of biharmonic maps in dimensions at least five. The
main difficulty is the lack of suitable monotonicity formulars of parabolic types.
However, in a forthcoming article [W4], we are able to establish the existence of
smooth solutions to (1.3)-(1.4), under the assumption that dim M ≤ 8 and H(φ)
is sufficiently small.

Remark 1.4. It is also a very natural question to study the heat flow of intrinsic
biharmonic maps. In [L3], Lamm proved the existence of smooth solutions to
the heat flow of intrinsic biharmonic maps provided that dim M = 4 and N has
non-positive sectional curvature. However, without this condition on curvature
it seems difficult to obtain a global, weak solution due to the lack of coercivity
property of T (·).
Remark 1.5. The fourth order heat flow has been recently employed by Kuwert-
Schätzle [KS1,2] in the study of Willmore functionals. Some earlier existence re-
sults on Willmore surfaces were established by Simon [Sl]. The interested readers
may find that there are similar analytic techniques between the Willmore flow
and the heat flow of biharmonic maps studied here. In particular, the integral
estimate and interpolation inequalities are common themes.
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As a consequence of theorem A, we prove

Theorem B. If dim M = 4 and Π4(N) = {0}, then any free homotopy class
α ∈ [M, N ] contains at least one biharmonic map u ∈ C∞(M, N) that minimizes
the Hessian energy, i.e. H(u) = min{H(v) | v ∈ C∞(M, N), [v] = α}.

The paper is written as follows. In §2, we recall density of C∞(M, N) in
W 2,2(M, N) (see, Brezis-Nirenberg [BN]) and prove the quantization effect (1.7).
In §3, we review some integral estimates for smooth solutions of (1.3) by Lamm
[L2], the characterization of the first singular time, and prove Theorem A. In §4,
we give a proof of Theorem B.

Acknowledgement. The author thanks the referee for his careful readings and
many helpful suggestions. This work is partially supported by NSF grant 0400718.

§2. Density of smooth maps and quantization effect (1.7)

In this section, we establish a Bochner type inequality and an ε-gradient esti-
mate for smooth biharmonic maps and prove the quantization fact (1.7). We also
recall a well-known fact (see, [BN]) on the density of smooth maps in W 2,2(M, N)
whenever dim M = 4. First we have

Proposition 2.1. There are C1, C2 > 0 depending only on N such that if
u ∈ C∞(Rn, N) is an (extrinsic) biharmonic map, then e(u) ≡ |∆u|2 + C1|∇u|4
satisfies

∆e(u) + C2e(u)(1 + e(u)) ≥ 0, in Rn. (2.1)

Proof. Note (∆u)T = P (u)(∆u) and ∆u = (∆u)T + A(u)(∇u,∇u). It follows
from (1.2) that we have 〈∆2u, (∆u)T 〉 = 0. Hence

∆(|∆u|2) = 2〈∆2u, ∆u〉+ 2|∇∆u|2 = 2〈∆2u,A(u)(∇u,∇u)〉+ 2|∇∆u|2. (2.2)

This and (1.1) imply

∆(|∆u|2) = 2|∇∆u|2 + 2〈∆(A(u)(∇u,∇u)), A(u)(∇u,∇u)〉
+ 2〈〈∇∆u,∇(P (u))〉, A(u)(∇u,∇u)〉
+ 〈〈∆(P (u)),∆u〉, A(u)(∇u,∇u)〉
= 2|∇∆u|2 + II + III + IV. (2.3)

It is easy to see that there exist C3, C4 depending only on N such that

|III| ≤ 2‖∇P‖L∞(N)‖A‖L∞(N)|∇∆u||∇u|3 ≤ 1
2
|∇∆u|2 + C3(|∇u|4 + |∇u|8),

(2.4)



Heat Flow of Biharmonic Maps in Dimensions Four ... 599

and

|IV | ≤ ‖A‖L∞(N)|∆(P (u))||∆u||∇u|2
≤‖A‖L∞(N)|∆u||∇u|2(‖∇P‖L∞(N)|∆u|+ ‖∇2P‖L∞(N)|∇u|2)
≤C4(|∆u|2|∇u|2 + |∆u||∇u|4)
≤C4(|∆u|2 + |∆u|4 + |∇u|4 + |∇u|8). (2.5)

To estimate II, we first calculate ∆(A(u)(∇u,∇u)) as follows.

∆(A(u)(∇u,∇u)) =∇2A(u)(∇u,∇u)(∇u,∇u) +∇A(u)(∇u,∇u)(∆u)
+ 4∇A(u)(∇2u,∇u)(∇u) + 2A(u)(∇2u,∇2u)
+ 2A(u)(∇∆u,∇u).

This implies that there exists a C5 depending only on N such that

|∆(A(u)(∇u,∇u))| ≤ C5(|∇u|4 + |∇2u|2 + |∇∆u||∇u|+ |∇2u||∇u|2). (2.6)

Therefore we have

|II| ≤ |A(u)(∇u,∇u)||∆(A(u)(∇u,∇u))|
≤C5‖A‖L∞(N)(|∇∆u||∇u|3 + |∇2u||∇u|4
+ |∇u|6 + |∇2u|2|∇u|2).

By the Hölder inequality, we have, for some C6 depending only on N ,

|∇u|6 ≤ |∇u|4 + |∇u|8,
‖A‖L∞(N)|∇∆u||∇u|3 ≤ 1

2C5
|∇∆u|2 + C6(|∇u|4 + |∇u|8),

and

|∇2u||∇u|4 ≤ |∇2u|2|∇u|2 + |∇u|6 ≤ |∇2u|2|∇u|2 + |∇u|4 + |∇u|8.
Putting these inequalities together, we obtain

|II| ≤ 1
2
|∇∆u|2 + C6[(|∇u|4 + |∇u|8) + |∇2u|2|∇u|2]. (2.7)

Putting (2.4)-(2.7) into (2.3), we have, for some C7 depending only on N ,

∆(|∆u|2) ≥ |∇∆u|2 − C7(|∆u|2 + |∇u|4)(1 + (|∆u|2 + |∇u|4))− C7|∇2u|2|∇u|2.
(2.8)

On the other hand, direct calculations imply

∆(|∇u|4) = 8|〈∇u,∇2u〉|2 + 4|∇u|2|∇2u|2 + 4|∇u|2〈∇u,∇∆u〉
≥ 4|∇2u|2|∇u|2 − C−1

7 |∇∆u|2 − C7(|∇u|4 + |∇u|8). (2.9)

Therefore, if we choose C1 = C7, then there exists C2 > 0 depending only on N
such that

∆(|∆u|2 + C1|∇u|4) ≥ −C2(|∆u|2 + C1|∇u|4)[1 + (|∆u|2 + C1|∇u|4)].
This yields (2.1).



600 Changyou Wang

Now we prove an ε0-gradient estimate for biharmonic maps.

Theorem 2.2. For n ≥ 4, there exists an ε0 > 0 depending only on N such
that if u ∈ C∞(Rn, N) is an extrinsic biharmonic map and satisfies, for some
BR ⊂ Rn,

R4−n

∫

BR

(|∇2u|2 + |∇u|4) ≤ ε20 (2.10)

then, for any k ≥ 1,

rk max
y∈Br(x)

|∇ku|(y) ≤ C(k, ε0), ∀x ∈ BR
4
, r ≤ R

4
. (2.11)

Proof. We remark that the argument to prove partial regularity for stationary
biharmonic maps by [CWY] and [W2] also yields a proof of theorem 2.2. Here
we give a direct proof that is based on Proposition 2.1, that is similar to that by
Schoen [Sr] on smooth harmonic maps.

For simplicity, we assume x = 0. Since u is a C∞-biharmonic map, it is a
stationary biharmonic map (see [CWY] and [W1,2] for the definition). Hence it
follows [W2] Lemma 5.2 and Lemma 5.3 that there exists a θ0 ∈ (0, 1) such that

s4−n

∫

Bs(x)
(|∇2u|2 + |∇u|4) ≤ Cε20, ∀Bs(x) ⊂ B2θ0R. (2.12)

Denote R0 = θ0R and e(u) = |∆u|2 + C1|∇u|4 with C1 the same constant as in
Proposition 2.1. Then there exists r0 ∈ [0, R0) such that

(R0 − r0)4 max
Br0

e(u) = max
0≤s≤R0

(R0 − s)4 max
Bs

e(u). (2.13)

Moreover, there exists a x0 ∈ Br0 such that

e0 = e(u)(x0) = max
Br0

e(u). (2.14)

Set ρ0 = 1
2(R0 − r0). Then we have

max
Bρ0 (x0)

e(u) ≤ max
Br0+ρ0

e(u) ≤ (R0 − r0)4e0

(R0 − (r0 + ρ0))4
= 16e0. (2.15)

Set δ0 = e
1
4
0 ρ0. We need to show δ0 ≤ 1. For otherwise, we have δ0 > 0 or

e
− 1

4
0 < ρ0. Let v ∈ C∞(Bδ0 , N) be defined by

v(y) = u(x0 +
y

e
1
4
0

), y ∈ Bδ0 .

Then v is an extrinsic biharmonic map, and (2.15) implies

max
Bδ0

e(v) ≤ 16, e(v)(0) = 1. (2.16)
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Therefore Proposition 2.1 implies

∆e(v) + Ce(v) ≥ 0, in Bδ0 . (2.17)

Hence, by the Harnack inequality (see [GT] Theorem 8.17, page 184), we conclude

1 = e(v)(0) ≤ C

∫

B1

e(v)(y) dy. (2.18)

On the other hand, by rescalings, we have∫

B1

e(v)(y) dy = (e
− 1

4
0 )4−n

∫

B
e
− 1

4
0

(x0)
e(u)(x) dx ≤ Cε20, (2.19)

where it used that
e
− 1

4
0 ≤ ρ0 = 1

2(R0− r0) ≤ R0 and (2.12). (2.19) contradicts with (2.18), provided

that ε0 is chosen to be sufficiently small. Hence δ0 = e
1
4
0 ρ0 ≤ 1 and (2.13) implies

(
θ0R

2
)4 max

B θ0R
2

e(u) ≤ 16.

This, combined with simple covering arguments, yields (2.11) for k = 2. (2.11)
for k ≥ 3 can be deduced by the standard theory of 4th order linear elliptic
equations.

As a direct consequence, we can prove the following quantization result, which
was previously proved in [L2] (Theorem 1.1) by a different method.

Corollary 2.3. There exists ε0 > 0 depending only on N such that

ε20 := inf{
∫

R4

|∆ω|2, ω ∈ C∞∩W 2,2(R4, N) nonconstant biharmonic maps } > 0.

(2.20)
Proof. Suppose (2.20) were false. Then there exist a sequence of nonconstant

extrinsic biharmonic maps {ωk} ⊂ C∞ ∩W 2,2(R4, N) such that∫

R4

|∆ωk|2 ≤ k−1. (2.21)

Since ωk ∈ W 2,2(R4, N), we have, by integration of parts,∫

R4

|∇2ωk|2 =
∫

R4

|∆ωk|2 ≤ k−1.

This, combined with the Sobolev embedding inequality, implies∫

R4

|∇ωk|4 ≤ C(
∫

R4

|∇2ωk|2)2 ≤ Ck−2.

Therefore we have ∫

R4

|∆ωk|2 + |∇ωk|4 ≤ Ck−1. (2.22)
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Hence, Theorem 2.2 implies that for k sufficiently large, we have

R4 max
BR

(|∆ωk|2 + |∇ωk|4) ≤ Ck−1,∀R > 0. (2.23)

Letting R tend to infinity, we have that ωk is constant, for k sufficiently large.
This contradicts with the choice of ωk. Therefore (2.20) is true.

Related to the lower bound estimate of ε0, we have the following conjecture.

Conjecture 2.4.For N ⊂ Rk of dimension 4, we have

ε20 = inf{∫R4 |∆ω|2 : ω ∈ C∞ ∩W 2,2(R4, N) nonconstant biharmonic }
≥ 4S(4)2

√
|S4|, (2.24)

where S(4) is the best Sobolev constant of W 1,2(R4) ⊂ L4(R4).

Our motivation for (2.24) is follows. Since ω ∈ C∞ ∩ W 2,2(R4, N) is bihar-
monic map, it follows from removability of isolated singularities (see [W1,2]) that
lim|x|→∞ ω(x) exists and ω : R4 → N has a well-defined topological degree.
Moreover, by the Sobolev embedding inequality, the geometry-mean inequality,
and the integral representation formula of degree, we have

∫

R4

|∆ω|2 =
∫

R4

|∇2ω|2 ≥ S(4)2(
∫

R4

|∇ω|4) 1
2

≥ 4S(4)2
√
|
∫

R4

det(∇ω)|

= 4S(4)2
√
|deg(ω)||S4|

where |S4| denotes the volume of the unit sphere S4. Hence, if we can prove that
any nonconstant extrinsic biharmonic map ω ∈ C∞ ∩W 2,2(R4, N) has nonzero
degree, then (2.24) holds. However, this is unknown.

We end this section with a well-known result on the density theorem (see, for
example, Brezis-Nirenberg [BN]).

Theorem 2.5. If the dimension of M is 4, then C∞(M, N) is dense in W 2,2(M, N)
with respect to W 2,2-norm.

§3. Lamm’s integral estimates and proof of Theorem A

In this section, we first recall some integral estimates for smooth solutions of
(1.3)-(1.4), which are essentially due to Lamm [L2]. Then, by combining Theorem
2.2 and 2.4, we give a proof of Theorem A.

Throughout this section, we asssume dim M = 4 and denote by inj(M) the
injectivity radius of M . For 0 < r < inj(M), denote by Br(x) ⊂ M the geodesic
ball of radius r and center x. We start with
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Theorem 3.1. There exists a ε1 > 0, depending only on M, N , such that for
0 < T < ∞, if u ∈ C∞(M × (0, T ), N) is a solution of (1.3)-(1.4) satisfying

sup
0<t<T

sup
x∈M

∫

Br0 (x)
|∇u|4 ≤ ε21, (3.1)

for some 0 < r0 < inj(M), then we have

max
T
2
≤t≤T

‖u‖Ck(M) ≤ C(k, ε1, r
−1
0 , T, ‖∇2φ‖L2(M)), ∀k ≥ 1. (3.2)

For the convenience of the readers, we outline some key Lemmas needed in the
proof of Theorem 3.1. The reader can consult [L2] for more details.

Lemma 3.2. For T > 0, if u ∈ C∞(M × (0, T ), N) solves (1.3)-(1.4), then we
have ∫ T

0

∫

M
|ut|2 +

∫

M
|∆u|2(·, T ) ≤

∫

M
|∆φ|2. (3.3)

Moreover, for any η ∈ C∞
0 (M),

∫ T
0

∫
M η4|ut|2 +

∫
M η4|∆u|2(x, T ) ≤ C

∫ T
0

∫
M (|∆η|2 + |∇η|4)|∆u|2 (3.4)

+
∫
M η4|∆φ|2 + C

∫ T
0

∫
M |∇η|2|∇∆u|2.

Proof. Multiplying (1.3) by ut, integrating the resulting equation over M , using
ut + ∆2u ⊥ TuN , and then integrating it over [0, T ], one can obtain (3.3). For
(3.4), multiplying (1.3) by η4ut, integrating over M , using integration by parts
and the Hölder inequality, one has

∫
M η4|ut|2 +1

2
d
dt

∫
M η4|∆u|2 =

∫
M ∆η4〈∆u, ut〉+ 2

∫
M 〈∇∆u, ut〉 · ∇η4

= 4
∫
M η2(η∆η + 3|∇η|2)〈∆u, ut〉+ 8

∫
M η3〈∇∆u, ut〉 · ∇η

≤ 1
4

∫
M η4|ut|2 + C

∫
M (|∆η|2 + |∇η|4)|∆u|2 + |∇η|2|∇∆u|2.

Integrating this over t ∈ (0, T ), we get (3.4).

Now we need to establish W 4,2-estimate for u. More precisely,

Lemma 3.3. There exists an ε1 > 0 depending only on M, N , such that for
T > 0, if u ∈ C∞(M × (0, T ), N) is a solution of (1.3)-(1.4) satisfying

sup
0<t<T

sup
x∈M

∫

Br0 (x)
|∇u|4 ≤ ε21

for some 0 < r0 < inj(M), then we have
∫

M
|∇4u|2 ≤ C(

∫

M
|ut|2 + r−4

0

∫

M
|∇2φ|2). (3.5)



604 Changyou Wang

Proof. For any Br0(x) ⊂ M , let η ∈ C∞
0 (Br0(x)) be such that 0 ≤ η ≤ 1,

η = 1 on B r0
2

(x), |∇η| ≤ 4r−1
0 , and |∇2η| ≤ Cr−2

0 . Multiplying (1.3) by η4∆2u,
integrating over M , and applying Hölder inequality, we have
∫

M
η4|∆2u|2 ≤ C[

∫

M
η4|ut|2 +

∫

M
η4(|∆u|4 + |∆u|2|∇u|4

+ |∇∆u|2|∇u|2 + |∇u|8)]. (3.6)

Applying the interpolation inequalities (see [L2] Lemma 2.4), we have
∫

M
η4|∆u|4≤C(

∫

Br0 (x)
|∇u|4) 1

2 (
∫

M
η4|∇4u|2 + |∇2η|2|∇2u|2)

≤Cε1(
∫

M
η4|∇4u|2 + |∇2η|2|∇2u|2). (3.7)

Similarly, one has
∫

M
η4|∇u|2|∇u|4 ≤ Cε1(

∫

M
η4|∇4u|2 + |∇2η|2|∇2u|2), (3.8)

∫

M
η4|∇∆u|2|∇u|2 ≤ Cε1(

∫

M
η4|∇4u|2 + |∇2η|2|∇2u|2), (3.9)

∫

M
η4|∇u|8 ≤ Cε1(

∫

M
η4|∇4u|2 + |∇2η|2|∇2u|2). (3.10)

Putting (3.7)-(3.10) into (3.6) and choosing ε1 to be sufficiently small, we have
∫

M
η4|∇4u|2 ≤ C(

∫

M
η4|ut|2 + (|∇η|4 + |∇2η|2)|∇2u|2). (3.11)

This implies
∫

B r0
2

(x)
|∇4u|2 ≤ C(

∫

Br0 (x)
|ut|2 + r−4

0

∫

Br0 (x)
|∇2u|2). (3.12)

Now we can apply the Vitali’s covering Lemma to get
∫

M
|∇u|4 ≤ C(

∫

M
|ut|2 + r−4

0

∫

M
|∇2u|2). (3.13)

This, combined with (3.3), implies (3.5).

Now we need to have the uniform control of
∫
M |ut|2. For this, we recall the

following Lemma, whose proof can be found in [L2] Lemma 3.6.

Lemma 3.4. There exists an ε1 > 0 depending only on M, N such that if u ∈
C∞(M × (0, T ), N) solves (1.3)-(1.4) and satisfies

sup
0<t<T

sup
x∈M

∫

Br0 (x)
|∇u|4 ≤ ε21
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for some 0 < r0 < inj(M). Then there exist β ∈ (0, 1
2) and 0 < δ < min{T, βr4

0}
such that for any 0 < s < t < T , with |t− s| ≤ δ, we have

∫

M
|ut|2(·, s) ≤ C(1 +

∫

M
|ut|2(·, t)), (3.14)

where C = C(
∫
M |∇2φ|2,M,N) > 0.

Proof of Theorem 3.1.

It follows from Lemma 3.3 and 3.4 that ∇4u ∈ L∞([T4 , T ], L2(M)). Hence, by
the Sobolev embedding theorem, we conclude that ut +∆2u ∈ Lp(M × [T

4 , T ]) for
any 1 < p < ∞. Therefore, by the parabolic Lp theory and Schauder estimate,
we can achieve the desired estimate (3.2).

To prove Theorem A, we also need the following estimate on the lower bound
of the time interval in which smooth solutions of (1.3)-(1.4) exist.

Lemma 3.5. There exist 0 < ε2 << ε1 and β0 ∈ (0, 1
4) such that if φ ∈

C∞(M, N) satisfies

sup
x∈M

∫

B2r0 (x)
|∇2φ|2 ≤ ε22, (3.15)

for some 0 < r0 <
inj(M)

2 . Then there exist T0 ≥ β0r
4
0 and u ∈ C∞(M×[0, T0], N)

solving (1.3)-(1.4).

Proof. Let T0 > 0 be the maximum such that there exists a smooth solution
u ∈ C∞(M × [0, T0], N) of (1.3)-(1.4). Let 0 ≤ t0 ≤ T0 be the maximum such
that

sup
0<s<t0

sup
x∈M

∫

B 3r0
2

(x)
|∇u|4 ≤ 2ε22. (3.16)

Note that (3.15) implies t0 > 0. It follows from (3.4), Lemma 3.3, Lemma 3.4
that for any x ∈ M ,

2ε22 =
∫

B 3r0
2

(x)
|∆u|2(x, t0) ≤

∫

B2r0 (x)
|∆φ|2 + C

t0
r4
0

∫

M
|∇2φ|2 ≤ ε22 + C

t0
r4
0

.

This implies t0 ≥ ε22
Cr4

0
. This, combined with the Sobolev inequality and (3.16),

implies

sup
0<t<

ε22
Cr4

0

sup
x∈M

∫

Br0 (x)
|∇u|4 ≤ Cε22 ≤ ε21.

Hence Theorem 3.1 implies the conclusion of Lemma 3.5.

Proof of Theorem A.
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Note that (3) of Theorem A follows from Theorem 2.2. For φ ∈ W 2,2(M, N), it
follows from Theorem 2.5 that there exist φn ∈ C∞(M, N) such that limn→∞ ‖φn−
φ‖W 2,2(M) = 0. Hence there exists a r0 ∈ (0,

inj(M)
2 ) such that

sup
n

sup
x∈M

∫

B2r0 (x)
|∆φn|2 ≤ ε22

where ε2 > 0 is the same constant as in Lemma 3.5. Let un ∈ C∞(M ×
[0, Tn], N) be smooth solutions to (1.3) under the initial condition un(x, 0) =
φn(x). Then Lemma 3.5 implies Tn ≥ β0r

4
0. Moreover, Theorem 3.1 implies

that we have uniform Ck-estimates of un in M × [0, β0r
4
0]. Hence, after tak-

ing possible subsequence, we can assume that un → u weakly in W 2,2(M, N),
strongly in W 1,2(M, N), and in Ck(M × [δ, β0r

4
0]) for any δ > 0. It is clear that

u ∈ C∞(M × (0, β0r
4
0), N) is a solution of (1.3) and satisfies u(x, 0) = φ(x) in the

sense of trace. Now we assume that T0 ≥ β0r
4
0 is the maximum time such that

u ∈ C∞(M × (0, T0), N) solves (1.3)-(1.4). It follows from Theorem 3.1 that T0

can be characterized by

lim
r→0

lim sup
t↑T0

sup
x∈M

∫

Br(x)
|∇u|4(·, t) ≥ ε21. (3.17)

Now we claim that there exists an ε̂0 ≥ ε0 such that

lim
r→0

lim sup
t↑T0

sup
x∈M

∫

Br(x)
|∆u|2(·, t) ≥ ε̂20. (3.18)

The proof of (3.18) is given at the end of the proof. For the moment, assume
that (3.18) is true, we want to show that the Hessian energy drops at least ε̂20 at
T0. In fact, it follows from (3.3) that there is a well-defined trace u(x, T0) =
limt↑T u(x, T ) weakly in W 2,2(M, N). In particular, u(·, T0) ∈ W 2,2(M, N).
Moreover, (3.18) implies that there exists {xi} ⊂ M , with xi → x0 ∈ M , ri ↓ 0,
and ti ↑ T0 such that

lim
i→∞

∫

Bri (xi)
|∆u|2(·, ti) ≥ ε̂20. (3.19)

Now we claim ∫

M
|∆u|2(·, T0) ≤

∫

M
|∆φ|2 − ε̂20. (3.20)

In fact, by the lower semicontinuity and (3.3), we have, for any r > 0,
∫

M\Br(x0)
|∆u|2(·, T0)≤ lim inf

i→∞

∫

M\Br(x0)
|∆u|2(·, ti)

= lim inf
i→∞

(
∫

M
|∆u|2(·, ti)−

∫

Br(x0)
|∆u|2(·, ti))

≤ lim inf
i→∞

∫

M
|∆u|2(·, ti)− lim

i→∞

∫

Bri (xi)
|∆u|2(·, ti)
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≤
∫

M
|∆φ|2 − ε̂20. (3.21)

Taking r into zero, (3.21) yields (3.20).

Now we use u(·, T0) as the initial data to extend the above solution beyond T0

to obtain a weak solution u : M × (0, T1) → N of (1.3)-(1.4) for some T1 > T0.
Since H(u(t)) drops at least ε̂20 at each singular time, we have that after at

most [
∫

M |∆φ|2
ε̂20

]-times, the solution can be extended smoothly to be a global weak
solution that satisfies (1.5) and (1.6) with ε0 replaced by ε̂0.

To prove (4), we proceed as follows (see also [L2] Theorem 1.1). For 1 ≤ i ≤
L− 1, t ∈ (ti, ti+1), and 0 < r < inj(M), define the concentration function

Q(t, r) = sup{
∫

Br(x)
(|∆u|2 + |∇u|4)(z, τ) dz | Br(x) ⊂ M, ti ≤ τ ≤ t}

Then we have (i) Q(t, r) is monotonically nondecreasing and continuous w.r.t.
r > 0, (ii) Q(t, 0) = 0, and (iii) Q(t, r) is monotonically nondecreasing w.r.t.
t < ti+1, and

lim
t↑ti+1

Q(t, r) ≥ ε21,

where ε1 is given by (3.17). Therefore, we can conclude that there exist tn ↑ ti+1,
rn ↓ 0, and xn → x0 ∈ M such that

Q(tn, rn) =
ε21
C0

=
∫

Brn (xn)
(|∆u|2 + |∇u|4)(·, tn) (3.22)

where C0 > 0 is to be determined. (3.22) implies, for some δ0 > 0,
∫

Brn (x)
(|∆u|2 + |∇u|4)(·, tn) ≤ ε21

C0
, ∀Brn(x) ⊂ Bδ0(x0). (3.23)

This and Lemma 3.5 imply
∫

Brn (x)
(|∇2u|2 + |∇u|4)(·, t) ≤ Cε21

C0
≤ ε21, ∀x ∈ B δ0

2

(x0), tn ≤ t ≤ tn + β0r
4
n

(3.24)

provided that C0 is sufficiently large. Define un(x, t) = u(xn + rnx, tn + r4
nt) ∈

C∞(Br−1
n δ0

× [r−4
n (ti − tn), β0], N). Then un are smooth solutions of (1.3). Ap-

plying Theorem 3.1 to un, we conclude that, after taking possible subsequences,
un → ω in Ck

loc(R
4 × (−∞, β0)) for any k ≥ 4. Moreover, ‖∂un

∂t ‖L2 → 0 implies
ω ∈ C∞ ∩W 2,2(R4, N) is a nontrivial biharmonic map. This proves (4).

Now we return to the proof of (3.18). For any ε > 0, let R > 0 such that
∫

BR

|∆ω|2 ≥
∫

R4

|∆ω|2 − ε.
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Then we have, for any r > 0,

ε20 − ε≤
∫

R4

|∆ω|2 − ε ≤
∫

BR

|∆ω|2

= lim
n→∞

∫

BR

|∆un|2(·, 0)

= lim
n→∞

∫

BRrn (xn)
|∆u|2(·, tn)

≤ lim sup
t↑T0

sup
x∈M

∫

Br(x)
|∆u|2(·, t). (3.25)

Since ε is arbitrary, this clearly implies (3.18). Hence the proof of Theorem A is
complete.

§4 Proof of Theorem B

This section is devoted to the proof of Theorem B.

Proof of Theorem B.

The aim is to prove that the global weak solution obtained by Theorem A is
smooth, provided that the initial data is properly chosen. Our idea is similar to
that of Struwe [Sm3] on the heat flow of harmonic maps from surfaces.

Let ε0 > 0 be given by (1.7). For any ε < ε0
2 and α ∈ [M, N ], let u0 ∈

α ∩ C∞(M, N) be such that∫

M
|∆u0|2 − ε2 ≤ Cα ≡ inf

v∈α∩C2(M,N)

∫

M
|∆v|2, (4.1)

and u : M ×R+ → N be the global weak solution of (1.3), with u(x, 0) = u0(x)
for x ∈ M , given by Theorem A. We want to show that u ∈ C∞(M×[0,+∞), N).
For otherwise, let 0 < T0 < +∞ be the first singular time of u. By (4) of Theorem
A, we know that there exist xn → x0 ∈ M , tn ↑ T0, and λn ↓ 0, and a bubble
ω ∈ C∞ ∩W 2,2(R4, N) such that

un(·) ≡ u(xn + λn·, tn) → ω, in C4
loc(R

4, N). (4.2)

For any C0 > 0, let R = R(C0) > 0 be so large that
∫

R4\BR

|∆ω|4 + |∇ω|4 ≤ ε20
C0

. (4.3)

Define ωR : BR → N by ωR(x) = ω( R2

|x|2 x), x ∈ BR. It follows by removability of
isolated singularities (see [W1,2]) that ω̂ = ω ◦ Φ ∈ C∞(S4, N), where Φ : S4 →
R4 is the stereographic projection, and hence ωR ∈ C∞(BR, N).

Let η ∈ C∞
0 (BR) be such that 0 ≤ η ≤ 1, η ≡ 0 in BR

4
, η ≡ 1 on BR \ BR

2
,

|∇η| ≤ 8R−1, and |∇2η| ≤ CR−2. Define vn(x) = (1− η(x))ωR(x) + ηun(x), x ∈
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BR. Then we have

max
BR

dist(vn(x), N)≤ max
BR\B R

4

|(1− η(x))ωR(x) + ηun(x)− ωR(x)|

≤ max
BR\B R

4

|ωR(x)− un(x)|

≤ max
BR\B R

4

(|ωR(x)− ω(x)|+ |un(x)− ω(x)|)

≤ oscB4R\B R
4

ω + o(1) = o(1, R−1)

where limn,R→∞ o(1, R−1) = 0. Therefore for any δ > 0, vn(BR) ⊂ Nδ for
sufficiently large R and n. For δ > 0 sufficiently small, let Π : Nδ → N be the
smooth nearest point projection map, and define wn : BR → N by wn(x) =
Π(vn(x)), x ∈ BR, and wn : M → N by

wn(x) = wn(
x− xn

λn
), x ∈ BλnR(xn)

= u(x, tn), x ∈ M \BλnR(xn).

It is clear that wn ∈ C∞(M, N). Moreover, since Π4(N) = {0}, it follows that
wn ∈ α.Therefore we have

Cα≤
∫

M
|∆wn|2

=
∫

M\BλnR(xn)
|∆u|2(·, tn) +

∫

BλnR(xn)
|∆wn|2

=
∫

M
|∆u|2(·, tn)−

∫

BλnR(xn)
|∆u|2(·, tn) +

∫

BλnR(xn)
|∆wn|2. (4.4)

Note that, by (4.2) and change of variables, we have, for sufficiently large n,R,
∫

BλnR(xn)
|∆u|2(·, tn) =

∫

BR

|∆gnun|2 dvgn ≥
3
4

∫

BR

|∆ω|2 ≥ ε20
2

, (4.5)

where gn(x) = g(xn + λnx), x ∈ BR and ∆gn is the Laplace operator w.r.t. gn.
On the other hand, direct calculations imply

∫
BλnR(xn) |∆wn|2 =

∫
BR
|∆gnwn|2 dvgn

≤ C
∫
BR
|∆gn((1− η)ωR + ηun)|2dvgn

= C
∫
B R

4

|∆gnωR|2 dvgn

+C
∫
BR\B R

4

|∆gn((1− η)ωR + ηun)|2dvgn

≤ C
∫
R4\BR

(|∆ω|2 + |∇ω|4)
+C

∫
BR\B R

4

(|∆ωR|2 + |∆un|2 + R−4|un − ωR|2 + R−2|∇(un − ωR)|2)
≤ Cε20

C0
+ o(1, R−1) ≤ ε20

4 + o(1, R−1) ≤ ε20
2 (4.6)
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provided that C0, n, R are sufficiently large. Therefore, by (1.5) and (4.4)-(4.6),
we have

Cα ≤
∫

M
|∆u|2(·, tn)− ε20

2
≤

∫

M
|∆u0|2 − ε20

2
.

This contradicts with (4.1). Hence u ∈ C∞(M × [0,+∞), N).

Next we want to prove that there exists tn → ∞ and a smooth biharmonic
map u∞ ∈ C∞(M, N) such that u(·, tn) → u∞ in C2(M, N).

To prove this, we first observe that (1.5) implies there exist tn ↑ +∞ such that
‖ut(·, tn)‖L2(M) → 0 and there exists u∞ ∈ W 2,2(M, N) such that u(·, tn) → u∞
weakly in W 2,2(M, N). Moreover, u(·, tn) → u∞ in Ck(M \ Σ, N) for any k ≥ 1,
where Σ ⊂ M is given by

Σ = ∩r>0{x ∈ M | lim inf
n→∞

∫

Br(x)
|∇u|4(·, tn) ≥ ε21}

where ε1 is the same constant as in Theorem 3.1. It is easy to see that a simple
covering argument implies Σ ⊂ M is a finite set. Theorem 3.1 and Lemma
3.5 imply the smooth convergence of u(·, tn) to u∞ away from Σ. This implies
that u∞ ∈ W 2,2(M, N) ∩ C∞(M \ Σ, N) is a biharmonic map. Hence, by the
removability of isolated singularities ([W1,2]), we conclude that u∞ ∈ C∞(M, N)
is a biharmonic map. We may assume that for any given x0 ∈ Σ, there is a r0 > 0
such that u(·, tn) → u∞ in Ck

loc(Br0(x0) \ {x0}, N).

Now we do a surgery of u(·, tn) near x0 as follows. Let η ∈ C∞
0 (Br0(x0)) be

such that 0 ≤ η ≤ 1, η ≡ 0 in B r0
4

(x0), η ≡ 1 in Br0(x0) \B r0
2

(x0), |∇η| ≤ 8r−1
0 ,

and |∇2η| ≤ Cr−2
0 . Define vn : Br0(x0) → N by

vn(x) = (1− η(x))u∞(x) + η(x)u(x, tn), x ∈ Br0(x0).

Then for any δ0 > 0, there exists n0 ≥ 1 such that for n ≥ n0, we have

maxx∈Br0 (x0) dist(vn(x), N)≤ maxx∈Br0 (x0) |vn(x)− u∞(x)|
≤ maxBr0 (x0)\B r0

4
(x0) |u∞(x)− u(x, tn)| ≤ δ0.

Therefore, we can project vn to N to get wn(x) = Π(vn(x)) for x ∈ Br0(x0). This
gives un ∈ C∞(M, N) by

un(x) = wn(x),∀x ∈ Br0(x0)
= u(x, tn),∀x ∈ M \Br0(x0).

Since Π4(N) = {0}, we also have un ∈ α and hence

Cα≤
∫
M |∆un|2 =

∫
M |∆u|2(·, tn)− ∫

Br0 (x0) |∆u|2(·, tn) +
∫
Br0 (x0) |∆wn|2

≤ ∫
M |∆u|2(·, tn)− ε20 +

∫
Br0 (x0) |∆wn|2
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where we have used the fact that x0 ∈ Σ and∫

Br0 (x0)
|∆u|2(·, tn) ≥ ε20. (4.7)

The proof of (4.7) is same as that of (3.18). On the other hand, we have∫
Br0 (x0) |∆wn|2≤ C

∫
Br0

|∆vn|2 + |∇vn|4
≤ C(r0){

∫
Br0 (x0)\B r0

4
(x0)(|∆u∞|2 + |∇u∞|4)

+
∫
Br0 (x0)\B r0

4
(x0)(|∆(u∞ − u(·, tn))|2

+|u∞ − u(·, tn)|2 + |∇(u∞ − u(·, tn))|2
+|∇(u∞ − u(·, tn)|4)}
≤ ε20

2

for sufficiently large tn. We conclude that Cα ≤ Cα− ε20 + ε20
2 . This is impossible.

Therefore u(·, tn) → u∞ in Ck(M, N). In particular, for any small ε > 0, there is
a biharmonic map uε ∈ C∞(M, N) ∩ α such that∫

M
|∆uε|2 ≤ Cα + ε.

It can be checked that the same argument as above also yields that there exists
εi ↓ 0 uεi → v in Ck(M, N) for any k ≥ 1. Hence v ∈ C∞(M, N) is a biharmonic
map such that v ∈ α and

∫
M |∆v|2 = Cα. Therefore, there exists a minimizing

biharmonic map in α. This completes the proof of Theorem B.
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