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Existence and Regularity of Stable
Branched Minimal Hypersurfaces

Neshan Wickramasekera

This is primarily an expository article focused upon the recent work of the
author on the local structure of stable branched minimal hypersurfaces and the
joint work of L. Simon and the author on the existence of stable branched min-
imal immersions in a Euclidean space of arbitrary dimension ≥ 3. In Section 1,
we discuss the main regularity and compactness theorems, established in [Wic-1]
and [Wic-2], for immersed stable minimal hypersurfaces. Section 2 contains a
description of a method, established in [SW], which shows the existence in Eu-
clidean space of a rich class of stable minimal hypersurfaces with branch point
singularities.

A secondary objective here concerns a rather technical point; that is, we here
observe, in Section 3, an improvement of the asymptotic analysis of the 2-valued
harmonic functions (which arise as “blow-ups” of sequences of stable minimal
hypersurfaces weakly converging to multiplicity 2 hyperplanes) carried out in
[Wic-1]. Note that the graphs of these functions serve as approximations to
stable minimal hypersurfaces whenever the hypersurfaces are weakly close to hy-
perplanes, and a quantitative version of this approximation was needed in the
proof of the main excess improvement lemma of [Wic-1] (Lemma 1.8 below),
which in turn was the key ingredient of the proof of the main regularity result of
[Wic-1] (Theorem 1.3 below). The viewpoint offered here leads directly to a more
complete version of the main a priori regularity estimate for the 2-valued har-
monic functions (Theorem 5.1 of [Wic-1], reproduced as Theorem 1.9 below) and,
consequently, to a simpler version of the excess improvement lemma for stable
minimal hypersurfaces. We here show that these 2-valued harmonic functions in
fact satisfy an a priori estimate which is the direct analogue of the corresponding
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(well-known) estimate for single valued harmonic functions. As a direct conse-
quence, we obtain a simplification of the excess improvement lemma for stable
minimal hypersurfaces which in particular eliminates the need, in order to obtain
excess improvement, to allow “multiple scales”, as was done in the original ver-
sion of the lemma in [Wic-1]. Indeed, in this simpler version, the improvement
of height excess of the minimal submanifold is shown to occur always at a single
fixed smaller scale, much like in the context of all other well known regularity
theorems of the kind established in [Wic-1].

1. regularity and compactness of stable minimal hypersurfaces

In [SS81], R. Schoen and L. Simon developed a partial regularity theory for
n-dimensional stable minimal hyperpsurfaces M of an open ball of a Euclidean
space (or any given Riemannian manifold) assuming that the (regular parts of
the) hypersurfaces are embedded and their singularities have locally finite (n−2)-
dimensional Hausdorff measure. The main result in [SS81] (Theorem 2 there) is
the following compactness theorem.

Theorem 1.1. (Schoen-Simon) Suppose Mk is a sequence of orientable embed-
ded, stable minimal hypersurfaces of Bn+1

2 (0) with 0 ∈ Mk, Hn−2 (sing Mk) < ∞
for k = 1, 2, 3, . . . and

lim sup
k→∞

Hn (Mk) < ∞.

Then there exist a stationary integral varifold V of Bn+1
2 (0) and a closed sub-

set S of spt ‖V ‖ ∩ Bn+1
1 (0) with S = ∅ if 2 ≤ n ≤ 6, S discrete if n = 7 and

Hn−7+γ(S) = 0 for every γ > 0 if n ≥ 8 such that, after passing to a subsequence
of {k} which we again denote {k}, Mk → V as integral varifolds in Bn+1

2 (0)
and (spt ‖V ‖ \ S) ∩ Bn+1

1 (0) is an orientable, embedded, smooth stable minimal
hypersurface of Bn+1

1 (0).

Here and subsequently, Bn+1
ρ (X) denotes the open ball of Rn+1 with radius ρ

and center X and Hm denotes the m-dimensional Hausdorff measure in Rn+1;
‖V ‖ denotes the weight measure associsted with the varifold V, and spt ‖V ‖ the
support of ‖V ‖. We shall identify the hyperplane {xn+1 = 0} of Rn+1 with Rn

and denote by Bρ(X) the open ball of Rn with radius ρ and center X.
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The main ingredient of the proof of the above theorem is the following small
excess regularity theorem (Theorem 1 of [SS81]).

Theorem 1.2. (Schoen-Simon) Let Λ ∈ (1,∞). There exists a number ε =
ε(n, Λ) ∈ (0, 1) such that the following holds: Let M ⊂ Bn+1

2 (0) be an embedded,
stable minimal hypersurface with 0 ∈ M, Hn−2 (sing M) < ∞ and Hn (M)

ωn2n ≤ Λ.

If E2 ≡ ∫
M∩(B1(0)×R) |xn+1|2 ≤ ε, then M ∩ (B1/2(0) × R) = ∪k

i=1graphuk

where ui : B1/2(0) → R are C2 functions satisfying u1 < u2 < . . . < uk and
‖ui‖C2(B1/2(0)) ≤ CE. Here ωn denotes the volume of the unit ball in Rn and
C = C(n) ∈ (0,∞).

Remarks: In the following remarks, M refers to a hypersurface as in Theo-
rem 1.2. Remarks (1), (2) and (3) taken with Mk, k = 1, 2, 3, . . . , in place of M
also apply to Theorem 1.1.

(1) M is assumed to be equal to the regular part of the hypersurface. i.e.
M has no removable singularities. Thus, with B = Bn+1

2 (0), M is
equal to the set of points X ∈ M ∩ B such that for some σ > 0,
M ∩ Bn+1

σ (X) is a connected, compact, embedded n-dimensional sub-
manifold of Bn+1

σ (X) with its boundary contained in ∂ Bn+1
σ (X). The

interior singular set sing M of M is then defined by

sing M = (M \M) ∩B.

(2) Minimality (or stationarity) of M in B means that M has zero first vari-
ation of volume with respect to deformations by C1 vector fields of the
ambient space B with compact support. This is equivalent to the condi-
tion (see e.g. [Sim83], Section 9) that

(S1)
∫

M
div XdHn = 0 for each X ∈ C1

c (B;Rn+1).

(3) Let M be stationary in B. Then M is stable if M has non-negative second
variation of volume with respect to deformations as in (2). Since M has
codimension 1, and Hn−2 (sing M) < ∞, stability of M is equivalent to
([Sim83], Section 9)

(S2)
∫

M
|A|2ζ2 ≤

∫

M
|∇ ζ|2 for each ζ ∈ C1

c (M)
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where A denotes the second fundamental form of M and |A| the length
of A.

(4) In [SS81], Theorem 1.2 was actually proved under the assumption that
Hn−2 (sing M) = 0 (and, consequently, Theorem 1.1 under the assump-
tion that Hn−2 (sing Mk) = 0 for each k = 1, 2, 3, . . .). This hypothesis
can however be weakened to Hn−2 (sing M) < ∞ without changing the
conclusions, so the theorems indeed hold as stated above. (See [Wic-1],
Section 3 for a justification of this claim.) In contrast, if we do not as-
sume embeddedness of M , although a similar theorem holds (at least
with a specific mass bound, see Theorems 1.3 and 1.4 below), the conclu-
sions depend on whether we assume that Hn−2 (sing M) = 0 or merely
Hn−2 (sing M) < ∞. In the former case, we have decomposition into (pos-
sibly intersecting) regular graphs, but in the latter case there may be a
singular (branching) set present giving a 2-valued graph as the best pos-
sible conclusion. See also Theorem 2.3 below.

Schoen-Simon theory is a “multiplicity 1” theory. Indeed, by a result of T.
Ilmanen [Ilm96] (which uses Theorem 1.1), if M is an embedded stable minimal
hypersurface of an open ball B ⊂ Rn+1 satisfying Hn−2 (sing M ∩B) < ∞, then
any tangent cone to M at a point Z ∈ M∩B is a multiplicity 1 cone. i.e. multiple
“sheets” cannot come together when passing to the weak limit of a sequence of
geometric rescalings of M at Z.

Of course stable minimal hypersurfaces need not always be embedded as is
demonstrated by the simple example of the union of a pair of transversely in-
tersecting hyperplanes. In this example, we consider the points where the hy-
perplanes intersect as regular points of the union, as we should. Thus, it makes
sense to generalize the above definition of interior regular point of a hypersurface
and define singular point as follows:

Definitions:

(1) Let B be an open ball in Rn+1 and M ⊂ B an immersed hypersurface.
Thus, for each X ∈ M , there exists σ > 0 such that M ∩ Bn+1

σ (X)
is the union of a finite number of smooth, embedded, compact, con-
nected, n-dimensional submanifolds of Bn+1

σ (X) with boundary contained
in ∂ Bn+1

σ (X).

(2) Let M , B be as in (1). A point X ∈ M ∩B is an interior regular point of
M if there exists σ > 0 such that M ∩Bn+1

σ (X) is equal to the union of a
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finite number of smooth, embedded, compact, connected, n-dimensional
submanifolds of Bn+1

σ (X) each with its boundary contained in ∂ Bn+1
σ (X).

The interior regular part reg M of M is the collection of all of its interior
regular points. Thus M ⊆ reg M. By redefining M if necessary, we shall
assume, as we did in Theorems 1.1 and 1.2 (see Remark 1 above), that
M = reg M. Subject to this assumption, the interior singular set sing M
of M is defined by sing M = (M \M) ∩ B. (Thus M has no removable
singularities.)

With these definitions, we seek a regularity theory for the class of immersed
hypersurfaces M of an open ball B ⊂ Rn+1 satisfying Hn (M) < ∞ which are
stationary and stable points of the volume functional on hypersurfaces of B.
Here stationarity and stability are defined exactly as described in Remarks 2 and
3 above, and amount to the conditions (S1) and (S2). In order to be able to make
good use of the stability assumption, one has to impose a priori some restriction
on the size of the singular sets of the hypersurfaces. A natural hypothesis, which
is weak enough to allow branch point singularities and strong enough to give good
L2-control of the (extrinsic) curvature (via stability) is that

(?) Hn−2 (sing M) < ∞.

One of the main goals of such a theory is to understand the nature of sing M ,
and at the heart of the theory are appropriate small excess regularity theorems
analogous to Theorem 1.2. (See Theorems 1.3 and 1.5 below.)

What is the main additional difficulty arising from dropping the embeddedness
hypothesis? The short answer to this is higher multiplicity. It is possible, in the
absence of the embeddedness assumption, for a tangent cone to M at a singular
point Z to have multiplicity > 1. This possibility indeed does occur. See the
construction described in Section 2 below. From the viewpoint of the complexity
of tangent cones, the simplest such singularities are the ones where the tangent
cones are sums of (varifolds associated with) hyperplanes with multiplicity ≥ 1.
(Recall that by Allard’s regularity theorem ([All72], [Sim83]), if a tangent cone at
a point is a single, multiplicity 1 hyperplane, then that point is a regular point of
the hypersurface.) We shall call a point Z ∈ sing M a branch point of M if some
tangent cone to M at Z is a sum of hyperplanes P with multiplicity mP ≥ 1.
Two basic questions related to the study of branch points (and for any other kind
of singularities for that matter) are: (1) whether the tangent cones at the branch
points are unique and (2) what the asymptotic behavior of the hypersurface is
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near its branch points. These are highly non-trivial questions intimately con-
nected with each other—ones that remain open except in the simplest case when
a tangent cone is a single hyperplane P with mP = 2. This case is addressed
in [Wic-1]; see Theorem 1.3 below. Notice that with B = Bn+1

2 (0), all tangent
cones at branch points of M in a smaller ball will be multiplicity 2 hyperplanes
if we make the assumption (as we do in [Wic-1], [Wic-2] and [Wic04]) that for a
given, fixed δ ∈ (0, 1),

(??)
Hn (M)
ωn2n

≤ 3−δ.

For the remainder of this section, we shall adopt the above definitions of reg-
ular and singular points of a stable minimal hypersurface M , and assume the
conditions (?) and (??) on M .

The main interior regularity theorem of [Wic-1], which in particular explains
rather completely the asymptotic nature of a stable minimal hypersurface satis-
fying (?) near any of its branch points with a multiplicity 2 tangent plane, is the
following:

Theorem 1.3. For each δ ∈ (0, 1), there exists a number ε ∈ (0, 1), depend-
ing only on n and δ, such that the following is true. If M is an immersed
stable minimal hypersurface of Bn+1

2 (0), with 0 ∈ M satisfying (?), (??) and∫
M∩(B1(0)×R) |xn+1|2 ≤ ε, then M1 ∩ (B1/2(0) × R) = graphu where M1 is the

connected component of M ∩ (B1(0)×R) containing the origin and u is either a
single valued or a 2-valued C1,α function on Bn

1/2(0) satisfying

‖u‖C1, α(B1/2(0)) ≤ C

(∫

M∩(B1(0)×R)
|xn+1|2

)1/2

.

Here the constants C ∈ (0,∞) and α ∈ (0, 1) depend only on n and δ.

Notice that in this theorem, regularity is asserted, of necessity (due to branch-
ing), in terms of a multi-valued (2-valued in this case) function u. The C1,α

regularity of this function amounts geometrically to the following. First, u as-
signs to each point in its domain a pair of real numbers so that graphu consists of
two points above each point of its domain. Furthermore, u has a 2-valued gradient
in the sense that graphu above each point of the domain can be approximated
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by a pair of affine hyperplanes. Finally, the gradient of u (i.e. the unordered
pair of gradients of these affine hyperplanes) is uniformly Hölder continuous with
respect to the usual metric on the space of unordered pairs of vectors. (Note
that this space is not a linear space, eventhough we use the norm ‖ · ‖ notation.
See [Wic-1] for the precise definition of the C1,α norm of u when u is a 2-valued
function.) A simple example of such a function whose graph does not decompose
as the union of two intersecting C1,α graphs (as is the case when branch points
are present) is u(z) = Re z3/2 for z = x + iy ∈ B1(0) ⊂ R2. (The graphs of this
function is of course not stationary for area. See Section 2 for a construction of
stationary (and stable) examples.)

Theorem 1.3 rules out, for instance, the possibility of having a sequence of
“necks” connecting two sheets and converging to a branch point of the hyper-
surface. An example which shows that the theorem fails to hold if we drop the
stability assumption (even if we assume embeddedness) is the catenoid. By ho-
mothetically scaling down a standard 2-dimensional catenoid in R3, we may make
it arbitrarily close to a hyperplane. The neck of the catenoid however persists at
all scales.

A description of the proof of Theorem 1.3 will be given at the end of this section.

If we make the stronger hypothesis that Hn−2 (sing M) = 0, and leave all of
the other hypotheses of Theorem 1.3 unchanged, we obtain the stronger conclu-
sion that the 2-valued graph is in fact the union of two separate minimal graphs.
This is immediate from Theorem 1.3 in view of the fact that (i) B1/2 \π (sing M)
is simply connected if Hn−2 (sing M) = 0, where π : Rn+1 → Rn × {0} is the
orthogonal projection, and (ii) if B ⊂ Rn is an open ball, K ⊂ B is a relatively
closed subset with Hn−1 (K) = 0 and if u : B \K → R is a solution of the min-
imal surface equation, then u extends to a solution u : B → R of the minimal
surface equation. The latter fact is a theorem of L. Simon [Sim93]. Thus we have

Theorem 1.4. For each δ ∈ (0, 1), there exists a number ε ∈ (0, 1), depending
only on n and δ, such that the following is true. If M is an immersed stable
minimal hypersurface of Bn+1

2 (0), satisfying (??), 0 ∈ M, Hn−2 (sing M) = 0
and

∫
M∩(B1(0)×R) |xn+1|2 ≤ ε, then M1 ∩ (B1/2(0) × R) = graphu0 or M1 ∩

(B1/2(0) × R) = graphu1 ∪ graphu2 where M1 is the connected component of
M ∩ (B1(0) × R) containing the origin and ui ∈ C1,α (B1/2(0);R), i = 0, 1, 2,
satisfy

‖ui‖C1, α(B1/2(0)) ≤ C

(∫

M∩(B1(0)×R)
|xn+1|2

)1/2

.
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Here the constants C ∈ (0,∞) and α ∈ (0, 1) depend only on n and δ.

In order to estimate, via a dimension reducing argument, the size of the set
of non-branch point singularities of a stable minimal hypersurface (see Theorems
1.6 and 1.7 below), it is necessary to understand the nature of such a hypersur-
face whenever it is weakly close to a union of hyperplanes with multiplicity ≥ 1.
In case the hypersurface satisfies the mass bound (??), this means that we need
to understand the behavior of the near either a multiplicity 2 hyperplane or a
transversely intersecting pair of (multiplicity 1) hyperplanes. The former case
is explained by Theorem 1.3, and the latter by the following theorem ([Wic-2]),
which says that whenever a stable minimal hypersurface M satisfying (?) and (??)
is, in Bn+1

2 (0), weakly close to a transversely intersecting pair of hyperplanes P
(how close depending on P ), the part of M in a smaller ball consists of the union
of two intersecting smooth, minimal graphs over the respective hyperplanes of P .

Theorem 1.5. Let β ∈ (0, π/2] and δ ∈ (0, 1). There exists a number ε1 =
ε1(n, β, δ) ∈ (0, 1) such that the following holds. If P = P1 ∪ P2 is a union of
hyperplanes P1, P2 of Rn+1, β ≤ ∠(P1, P2) ≤ π/2, M is a stable minimal hyper-
surface of Bn+1

2 (0) with 0 ∈ M satisfying (?), (??) and Hausdorff distance (M ∩
Bn+1

2 (0), P ∩Bn+1
2 (0)) ≤ ε, then

M ∩Bn+1
1 (0) = graphu1 ∪ graphu2

where ui : Pi ∩Bn+1
1 (0) → P⊥

i , i = 1, 2, are C1,α functions with

‖ui‖C1,α(Pi∩Bn+1
1 (0)) ≤ C

(∫

M∩Bn+1
2 (0)

dist2(x, P )

)1/2

.

Here C = C(n) ∈ (0,∞), α = α(n) ∈ (0, 1), ∠(P1, P2) denotes the angle between
P1 and P2.

The stability hypothesis in this theorem is used to show that, a priori, the
set S ⊂ Bn+1

1 (0) ∩ L of points y such that π−1
L (y) ∩ Bn+1

1 (0) consists of a pair
of embedded, smooth curves has small (n − 1)-dimensional Hausdorff measure.
Here L denotes the axis of P , and πL : Rn+1 → L is the orthogonal projection of
Rn+1 onto L. Thus there is, a priori, a “large region” near L in which the hyper-
surface self-intersects. This fact enables us to use monotonicity-formula-based a
priori estimates due to L. Simon ([Sim93]) which show that the height excess of
M relative to any nearby pair of hyperplanes does not concentrate near its axis.
i.e. the contribution to the height excess in a ball coming from that part of the



Existence and Regularity of Stable Branched Minimal Hypersurfaces 577

hypersurface which lies in a small tubular neighborhood of the axis is no more
than a small multiple of the total height excess in a larger ball. This is central
to proving excess improvement—decay of the height excess by a fixed factor at a
fixed smaller scale provided the excess at the smaller scale is measured relative
to a suitably chosen new pair of hyperplanes—which leads to regularity. Note
that the theorem does not hold if we remove the stability hypothesis, as is easily
seen by (an appropriately homothetically scaled down version of) Scherk’s second
minimal surface. This is a smooth connected embedded minimal surface in R3,
and by choosing the scaling parameter appropriately, we may make it arbitrarily
close to a pair of planes meeting at a right angle. However, near the axis of the
intersecting planes, it has many “holes”. (See the introduction of [Pit81] for a
detailed description of this surface including schematic pictures.)

Combining Theorems 1.4, 1.5, Allard’s regularity and integer varifold compact-
ness theorems ([All72], [Sim83]) J. Simons’ theorem concerning the non-existence
of non-planar stable minimal hypercones of dimension ≤ 6 ([Sim83]) and the di-
mension reducing principle of Federer ([Sim83]), we obtained the following com-
pactness theorem. (C.f. Theorem 1.1 above.)

Theorem 1.6. Let δ ∈ (0, 1). There exists σ = σ(n, δ) ∈ (0, 1/2) such that the
following is true. Suppose Mk is a sequence of orientable stable minimal hy-
persurfaces immersed in Bn+1

1 (0) with Hn−2(singMk ∩ Bn+1
σ (0)) = 0 for each k

and lim supk→∞
Hn(Mk)

ωn
≤ 3 − δ. Then there exists a stationary varifold V of

Bn+1
1 (0) and a closed subset S of spt ‖V ‖ ∩ Bn+1

σ (0) with S = ∅ if 2 ≤ n ≤ 6,
S discrete if n = 7 and Hn−7+γ(S) = 0 for every γ > 0 if n ≥ 8 such that
after passing to a subsequence, which we again denote {k}, Mk → V as varifolds
and (spt ‖V ‖ \ S) ∩ Bn+1

σ (0) is an orientable immersed, smooth, stable minimal
hypersurface of Bn+1

σ (0).

For the singular set of any weak limit of a sequence of stable minimal hyper-
surfaces satisfying (?) and with mass in the unit ball not much greater than twice
the mass of the n-dimensional Euclidean ball, we have the following decomposi-
tion theorem.

Theorem 1.7. There exist numbers ε = ε(n) ∈ (0, 1) and σ = σ(n) ∈ (0, 1) such
that the following is true. If V is the varifold limit of a sequence {Mk} of ori-
entable stable minimal hypersurfaces of Bn+1

1 (0) satisfying 0 ∈ Mk, Hn−2 (sing Mk∩
Bn+1

σ (0)) < ∞ and Hn (Mk)
ωn

≤ 2 + ε, then

sing V ∩Bn+1
σ (0) = B ∪ S
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where

(a) B is the set of multiplicity 2 branch point singularities of V in Bn+1
σ (0).

Thus, B consists of those points Z of spt ‖V ‖ ∩ Bn+1
σ (0) where V has a

multiplicity 2 tangent plane but spt ‖V ‖ fails to be immersed at Z. Either
B = ∅ or Hn−2 (B) > 0.

(b) S is a relatively closed subset of spt ‖V ‖∩Bn+1
σ (0) with S∩B = ∅. Further-

more, S = ∅ if 2 ≤ n ≤ 6, S is a finite set if n = 7 and Hn−7+γ (S) = 0
for all γ > 0 if n ≥ 8.

Theorems 1.6 and 1.7 in particular confirm the expectation that a branched
stable minimal hypersurface cannot be approximated by a sequence of regular
stable, minimal immersions. See [Wic-1] for other consequences of Theorem 1.3,
which include a pointwise curvature estimate and a Bernstein type theorem in
case 2 ≤ n ≤ 6.

In the remainder of this section, we give the main ideas of the proof of The-
orem 1.3, essentially as in [Wic-1]. (See section 3 for a simplification.) The
main technical ingredient of the proof is a height excess improvement lemma
(Lemma 1.8 below) which we now describe. Let M be a stable minimal hyper-
surface of Bn+1

2 (0) with 0 ∈ M satisfying (?) and (??), P = P1 ∪ P2 an union
of affine hyperplanes P1, P2 of Rn+1, satisfying P ∩ (B1(0)×R) ⊂ {(x′, xn+1) ∈
Rn+1 : |xn+1| ≤ 1/8}. Here we allow the possibility that P1 ≡ P2. Define the
height excess of M relative to P at scale ρ ∈ (0, 1] by

QM (ρ, P ) = ρ−n−2

∫

M∩(Bρ(0)×R)
dist2 (x, P ) + HM (ρ, P )

where HM (ρ, P ) is more or less equal to ρ−n−2
∫
P∩(Bρ(0)×R) dist2 (x,M). The

precise definition of this term is too technical to describe here, and is not impor-
tant for describing the main ideas of the lemma and Theorem 1.3. (See [Wic-1],
Section 6 for the precise expression.) Indeed, for the proof of Theorem 1.3, we
are ultimately only interested in proving decay of the first term of QM (ρ, P ). i.e.
an estimate of the form

(1.1) ρ−n−2

∫

M∩(Bρ(0)×R)
dist2 (x, P ) ≤ Cρν

for some fixed C = C(n, δ) ∈ (0,∞), ν = ν(n, δ) ∈ (0,∞) and all ρ ∈ (0, 1/8],
which we establish by proving decay of QM (ρ, P ). The reason why a second term
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like HM (ρ, P ) needs to be included in the definition of excess is that we need to
make sure that we always pick the “right” to make the excess small relative to. To
illustrate this point, consider the case where M ∩ (B1×R) consists of two sheets
each of which is a graph over B1(0), and suppose that these sheets are lying very
close to each other and close to B1(0). Then the quantity

∫
M∩(B1(0)×R) dist2 (x, P )

will be small if we choose P to be close to the union of the tangent planes to the
individual sheets at the points above the origin. It will also be small (of the same
order, provided the sheets of M are sufficiently close to each other) if instead
we choose one hyperplane of P to be close to a tangent plane, and the other
arbitrarily, e.g. at height 1/8 from the origin parallel to Rn × {0}. However, the
first choice is the “correct” one as far as “finding the tangent planes by iteratively
applying an excess improvement lemma” is concerned.

We may now state the excess improvement lemma.

Lemma 1.8. Let θ ∈ (0, 1/16), β ∈ (0, θ/16) and γ ∈ (0, β/16). There exist
numbers ε = ε(n, δ, θ, β, γ) ∈ (0, 1/2) and λ = λ(n, δ) ∈ (0,∞) such that the
following holds. If M is a stable minimal hypersurface of Bn+1

2 (0) with 0 ∈ M
satisfying (?) and (??), and QM (1, P ) ≤ ε for some pair of affine hyperplanes P
with Hausdorff distance (P ∩ (B1(0)×R), B1(0)) ≤ ε, then there exists a pair of
affine hyperplanes P̃ with Hausdorff distance (P ∩(B1(0)×R), P̃ ∩(B1(0)×R)) ≤
CQM (1, P ) such that one of the following three options holds:

(A) QM (θ, P̃ ) ≤ C1θ
λQM (1, P ).

(B) QM (β, P̃ ) ≤ C2β
λQM (1, P ).

(C) QM (γ, P̃ ) ≤ C3γ
λQM (1, P ).

Here C = C(n, δ, θ, β, γ) ∈ (0,∞), C1 = C1(n, δ) ∈ (0,∞), C2 = C2(n, δ, θ) ∈
(0,∞) and C3 = C3(n, δ, θ, β) ∈ (0,∞).

Theorem 1.3 is proved by iteratively applying Lemma 1.8, after choosing θ =
θ(n, δ) ∈ (0, 1/16), β = β(n, δ) ∈ (0, θ/16) and γ = γ(n, δ) ∈ (0, β/16), in that
order, so that C1θ

λ ≤ 1/4, C2β
λ ≤ 1/4 and C3γ

λ ≤ 1/4. Specifically, iterating
the lemma, with such θ, β and γ, starting at scale 1, we obtain, for j = 1, 2, 3, . . .,
a sequence of scales sj so that sj = θkjβljγmj for some non-negative integers kj ,
lj , mj with kj + lj +mj = j and a sequence of pairs of affine hyperplanes Pj with
dH (Pj ∩ (B1(0)×R), Pj−1 ∩ (B1(0)×R)) ≤ 4−jQ where Q = QM (1,Rn × {0})



580 Neshan Wickramasekera

and QM (sj , Pj) ≤ 4−jQ. Thus {Pj} is a Cauchy sequence and hence converges
to a pair of affine hyperplanes P . It is standard then, in view of the fact that
γj ≤ sj ≤ θj , that the estimate (1.1) follows. By changing the base point and
repeating the argument, we also conclude that for each Y ∈ B1/2(0), there exists
a unique pair of affine hyperplanes PY such that

ρ−n−2

∫

M∩(Bρ(Y )×R)
dist2 (x, PY ) ≤ Cρν

for all ρ ∈ (0, 1/8]. This leads to the conclusions of the theorem. (See [Wic-1],
Section 7 for details.)

We conclude this section by briefly describing the proof of Lemma 1.8. Suppose
the hypotheses of the lemma are satisfied for some ε = ε(n, δ, θ, β, γ) ∈ (0, 1/2) to
be chosen. First choose an affine hyperplane L of Rn+1 with L ∩ (B1(0)×R) ⊂
{|xn+1| ≤ 1/8} so that

Ê ≡
∫

M∩(B1(0)×R)
dist2 (x, L) ≤ 3

2
inf
L′

∫

M∩(B1(0)×R)
dist2 (x, L′)

where the inf is taken over all affine hyperplanes L′ with L′ ∩ (B1(0) × R) ⊂
{|xn+1| ≤ 1/8}. Thus, Ê is a “coarse excess” of M measured relative to a single
affine hyperplane. Note that since Hausdorff distance (P ∩ (B1(0)×R), B1(0)) ≤
ε, provided ε is chosen small, Ê will be small. Let Q = QM (1, P ), the “fine
excess” of M measured relative a pair of affine hyperplanes. The proof of the
lemma is divided into two cases as follows, one of which must hold:

(a) Q ≤ ζÊ

(b) Q > ζÊ

where ζ = ζ(n, δ, θ) ∈ (0, 1/2) is a fixed number to be chosen sufficiently small.
It is convenient to discuss case (b) first.

Case (b): Take ζ = ζ(n, δ, θ) to be fixed by the requirements of the analysis in
case (a). (See below.) Note first that in case (b), it suffices to prove improvement
of Ê at scale β or γ (aiming for options (B) or (C) of the lemma), for this would
then immediately say that Q has improved in view of the defining criterion of
case (b). (Note that the constants C2 and C3 are allowed to depend on θ.)
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To explain the main idea for obtaining excess improvement in this case, first
recall that in multiplicity 1 regularity theorems such as Allard’s theorem ([All72],
[Sim83]) or Schoen-Simon theorem (Theorem 1.2), the excess improvement esti-
mates are obtained by showing that whenever the excess of the minimal sub-
manifold in a cylinder is small, the submanifold in a smaller cylinder can be well
approximated by the graph of a harmonic function (or graphs of several separate
harmonic functions in the case of Schoen-Simon theorem). What makes this pro-
cedure work is the following estimate for harmonic functions: If v is harmonic in
B1(0) ⊂ Rn, then for each ρ ∈ (0, 1/2],

(1.2) ρ−n−2

∫

Bρ(0)
(v − l)2 ≤ Cρ2

∫

B1(0)
v2

where l : Rn → R is the affine function defined by l(x) = v(0) + Dv(0) · x,
and C = C(n) ∈ (0,∞) is a fixed constant. (In fact, the pointwise estimate
supBρ(0) |v − l| ≤ Cρ2‖v‖L2(B1(0)) holds for ρ ∈ (0, 1/2], with C = C(n), in this
case, but we only need the weaker version (1.2) for the purposes of minimal
surface regularity.) Geometrically, this is an excess improvement estimate for
graph v, and if we have a good enough approximation of the minimal submani-
fold by graph v (and we do!), it would yield an excess improvement estimate for
the minimal submanifold. (The main point here is that the error terms in the
approximation need to be controllable by the excess of the submanifold (in the
larger cylinder) itself.)

For the problem at hand, we adopt the same principle and use a type of har-
monic approximation, where we show that whenever Ê is small, M∩(B1/2(0)×R)
is well approximated by the graph of a “2-valued harmonic” function. F. J. Alm-
gren Jr. used multi-valued harmonic functions in his work on area minimizing
currents (of arbitrary dimension and co-dimension), in [Alm83], where harmonic
meant Dirichlet energy minimizing. (However, these energy minimizing functions
are in general only Hölder continuous, so an estimate like (1.2) is not available for
them.) Under our weaker hypothesis of stability, the approximating functions in
fact do not satisfy this energy minimizing property, so our two-valued harmonic
functions are actually a somewhat different class of functions. Nevertheless, the
codimension 1 setting gives them a lot more structure than was shown by Alm-
gren for the energy minimizing functions, and we are able to obtain a sufficiently
detailed, asymptotic description of these functions (see Theorem 1.9 below).

What are these two-valued functions? They arise as bow-ups of sequences
of stable minimal hypersurface satisfying (?) and (??) and converging to hyper-
planes. Specifically, consider a sequence {Mk} of stable minimal hypersurfaces
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satisfying (?) and (??) with Mk in place of M and a fixed δ ∈ (0, 1), such that
Êk =

√∫
Mk∩(B1(0)×R) dist2 (x, Lk) ↘ 0 for some sequence of affine hyperplanes

Lk → Rn×{0}. We generate a (an at most) two-valued function (blow-up) v over
B1/2(0) by rescaling the height of Mk∩(B1(0)×R) relative to Lk by Êk and pass-
ing to the limit (in W 1,2

loc (B1(0);R2)) as k →∞. (An essential step in this process
is to show first that given any σ ∈ (0, 1), whenever Êk is sufficiently small, a large
part of Mk ∩ (Bσ(0)×R) can be expressed as (at most) two graphs over Lk, and
the non-graphical region has n-dimensional measure lower order than Ê2

k . This is
done using essentially the same argument as in the corresponding part of [SS81].
The main difference here is that the graphs are no longer disjoint, since Mk are
not assumed to be embedded.) Notice that v will be single valued unless the mass
of Mk ∩ (B1(0)×R) is sufficiently large. But if v is single valued, then v will be
harmonic, and the analysis is trivial in view of the estimate (1.2). So let us con-
sider from now on only those blow-ups that are two-valued. Notice that we may
order the two values of v(x) and write v(x) = (v+(x), v−(x)) with v+(x) ≥ v−(x).

Let Fδ be the class of 2-valued functions arising as blow-ups, as described in
the preceding paragraph, of sequences of stable minimal hypersurfaces satisfying
(?) and (??) and converging to hyperplanes. The members of Fδ do behave a lot
like single-valued harmonic functions, eventhough they are not in general equal to
pairs of separate harmonic functions. If v = (v+, v−) ∈ Fδ, it is shown in [Wic-1]
that graph v+ ∪ graph v− is, in general, a continuous, branched submanifold of
B1(0)×R and that v satisfies the estimate given in the following theorem. The
subset Sv defined in the statement of the theorem is the branching set of v. (See
Section 3 for an improved version of this theorem.)

Theorem 1.9. Suppose v = (v+, v−) ∈ Fδ. Let Sv be the (possibly empty) set
of points z ∈ B1/2(0) with the property that there exists no σ > 0 such that
graph v+|Bσ(z) ∪ graph v−|Bσ(z) = graph v1 ∪ graph v2 for a pair of harmonic
functions v1, v2 : Bσ(z) → R. Then , for each z ∈ Sv, there exists an affine
function lz : Rn → R such that, for all ρ ∈ (0, 1/16),

ρ−n−2

∫

Bρ(z)
(v+ − lz)2 + (v− − lz)2 ≤ Cρα

∫

B1(0)
|v|2

where C = C(n, δ) ∈ (0,∞) and α = α(n, δ) ∈ (0,∞).

The proof of Theorem 1.9 uses methods and results due to L. Simon [Sim93];
R. Hardt and L. Simon [HS79]; F. J. Almgren Jr. [Alm83] and the author [Wic04].
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The way we use Theorem 1.9 to obtain excess improvement in the present
case (case (b)) is as follows. Let M be as in the lemma. By construction
of Fδ, M can be approximated by graph (l + Ê v+) ∪ graph (l + Ê v−), where
v = (v+, v−) ∈ Fδ and l : Rn → R is the affine function such that graph l = L,

provided the height excess Ê ≡ ÊM (1, L) of M relative to L is sufficiently small.
This can indeed be done in such a way that the error in the approximation
is controlled by Ê. Now, if Sv ∩ Bβ(0) = ∅, then Theorem 1.9 tells us that
graph v+|Bβ(0) ∪ graph v−|Bβ(0) = graph v1 ∪ graph v2 for a pair of harmonic

functions v1, v2 : Bβ(0) → R. In this case, taking P̃ to be the union of the
tangent planes to the graphs of l + Ê v1, l + Ê v2 at the points (0, l(0) + Ê v1(0)),
(0, l(0) + Ê v2(0)) respectively, we see, using the estimate (1.2) for single-valued
harmonic functions and the defining criterion of case (b) that the conclusions of
the lemma hold with option (C). If on the other hand there exists z ∈ Sv∩Bβ(0),
then we take P̃ to be graph (l + Ê lz), where lz is the affine function given by
Theorem 1.9, and use the estimate of Theorem 1.9 and the defining property of
case (b) to conclude that the lemma holds with option (B).

Case (a): This says that, provided ζ is sufficiently small, the fine excess is signif-
icantly smaller than the coarse excess. Write P = P1∪P2, where P1, P2 are affine
hyperplanes. If P1 ∩P2 ∩ (Bθ(0)×R) = ∅, it can be shown under the hypotheses
of case (a) that provided ζ and ε are sufficiently small, M ∩ (Bθ/2(0)×R) must
be embedded. To see this, first note the uniform cone condition for functions
v = (v+, v−) ∈ Fδ given in the following lemma. The proof of this lemma uses
ideas due to R.Hardt and L. Simon [HS79] and F. J. Almgren Jr. [Alm83].

Lemma 1.10. Let v = (v+, v−) ∈ Fδ. Then v is continuous in B1(0). Fur-
thermore, there exists a fixed constant C = C(n, δ) ∈ (0,∞) such that if z ∈
B1/2(0) ∩ {v+(x) = v−(x)} then

|v(x)− v(z)| ≤ C|x− z|
(∫

B1(0)
|v|2

)1/2

for all x ∈ B1/2(0).

Given the lemma, the argument briefly is as follows: If P1∩P2∩(Bθ(0)×R) = ∅,
the defining criterion of case (a) says that provided ζ = ζ(n, δ, θ) is sufficiently
small, we may choose an approximating function v = (v+, v−) ∈ Fδ so that
v+, v− are respectively L2 close to two hyperplanes which are apart by a dis-
tance bounded above and below by fixed constants depending only on n and δ
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and which have empty intersection in Bθ(0) × R. Lemma 1.10 then says that
graph v+|B3θ/4(0) and graph v−|B3θ/4(0) must be disjoint. This in turn implies
that M ∩ (Bθ/2(0)×R) must be embedded.

Hence, in case P1 ∩ P2 ∩ (Bθ(0) × R) = ∅, we have by Theorem 1.2 that
M ∩ (Bθ/4(0) ×R) decomposes as the union of two disjoint graphs U1, U2 over
Bθ/4(0). Using standard elliptic estimates, it is easy to see in this case that the
conclusions of the lemma hold with option (B), provided we take P̃ to be the
union of the two tangent planes to U1 and U2 at the points above the origin.

If on the other hand P1∩P2∩(Bθ(0)×R) 6= ∅, then it can still be shown, based
on Lemma 1.10 again, that that part of M ∩ (B1(0) × R) which lies outside a
small tubular neighborhood of the axis Γ = P1∩P2 must be embedded. Moreover,
using stability, we can show that near Γ, M has “lots” of self-intersections; i.e.
lots of points Z with density ΘM (Z) ≥ 2. This enables us to use modifications
of arguments due to L. Simon ([Sim93]) to show that the fine excess relative to P
does not concentrate near Γ. A blow up argument (blowing up by the fine excess)
then implies that M ∩ (B1/2(0)×R) can be well approximated by the graphs of
two harmonic functions over P1 and P2, which, in view of the standard estimates
for harmonic functions (i.e. the estimate (1.2) above), leads to the conclusions of
the lemma with option (A), provided we take P̃ to be the union of the tangent
planes to the two approximating harmonic graphs.

2. Construction of stable branched minimal hypersurfaces

Let n ≥ 2 be arbitrary. Here we describe a method for constructing a rather
rich class of stable branched minimal hypersurfaces of Rn+1 of the type consid-
ered in the work discussed above. The results described in this section are joint
work with L. Simon ([SW]). This construction (see Theorem 2.3) in particular
shows that the conclusion of Theorem 1.3 is optimal.

Let D be the open unit disk in R2 centered at the origin, and set C = D×Rn−2.
Consider the degenerate functional

A0(u) =
∫

Ω
4r2

√
1 + (4r2)−1|Dx u|2 + |Dy u|2dx dy

where Ω is a bounded, open subset of C, x ∈ R2, y ∈ Rn−2 and r = |x|. Notice
that this functional transforms to the non-parametric area functional under the
map T : (reiθ, y) 7→ (r2e2iθ, y). Thus, given bounded continuous boundary data
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ϕ0 : ∂ D ×Rn−2 → R,

if we can find a solution u0 of the Euler-Lagrange equation of the functional A0

with u0(eiθ, y) = ϕ0(eiθ, y) for (eiθ, y) ∈ ∂ D ×Rn−2, and if u0 is C1 across the
axis r = 0, then the graph G of the 2-valued function

u(reiθ, y) = u0(r1/2eiθ/2, y), 0 < r ≤ 1, 0 ≤ θ ≤ 4π, y ∈ Rn−2,

will be a smooth minimal hypersurface with branch point singularities along the
(n−2)-dimensional C1 submanifold {(0, y, u0(0, y)) : y ∈ Rn−2}. (Of course here
we also have to assume that ϕ0(eiθ, y) 6≡ ϕ0(−eiθ, y) for θ ∈ [0, 2π) or else G would
be a single valued graph taken with multiplicity 2.) So the idea is to establish
first the existence of a C2(C \{(x, y) : x = 0})∩C0(C \{(x, y) : x = 0}) solution
u0 to the Euler-Lagrange equation of A0 with arbitrary prescribed bounded con-
tinuous boundary data ϕ0, and then show that there is a large class of ϕ0 with
ϕ0(eiθ, y) 6≡ ϕ0(−eiθ, y) for which u0 must be C1 across the singular axis r = 0.

We proceed as follows. First we show using quasilinear elliptic PDE techniques
how to find a stationary point u0 of A0 for any given bounded, continuous bound-
ary data. Then we use geometric measure theoretic arguments to analyze, in case
u0 has a discontinuity at some point (0, y0) ∈ {0}×Rn−2, the local nature of the
graph G of the two valued function u above the point (0, y0). This will tell us
how to chose boundary data so as to eliminate the possibility of getting such a
discontinuity. Finally we show that in case u0 is continuous across the axis r = 0,
the closure of the graph G of u in C×R must be a C1,α stable, branched minimal
hypersurface.

We now proceed to give some details of the above steps. Assume first that
ϕ0 : ∂ C → R is smooth and periodic in the y variables. Approximate the
functional A0 by non-degenerate functionals

Aδ(u) =
∫

Ω
4r2

δ

√
1 + (4rδ)−1|Dxu|2 + |Dyu|2dxdy

where δ ∈ (0, 1/2) and rδ is any smooth function of r satisfying δ/2 ≤ rδ ≤ δ for
0 ≤ r < δ and rδ = r for r ≥ δ. Since Aδ(u) has the form

∫
Ω Fδ(X, u, Du)dxdy,

where X = (x, y) ∈ Rn and the integrand Fδ(X, t, p) : Rn ×R×Rn → R is in-
dependent of the t variable, any solution v ∈ C2(C)∩C0(C) of the Euler-Lagrange
equation of Aδ which is periodic in the y variables satisfies an interior gradient
estimate. (See the discussion in [SW], Section 1.) Standard theory of uniformly
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elliptic quasilinear equations then gives interior estimates for the higher deriva-
tives up to order 2, and since uδ(r1/2eiθ/2, y) is a solution of the minimal surface
equation on any domain of the form {(reθ, y) : r ∈ (δ, 1), θ ∈ (α, π + α)}, where
α ∈ [0, 2π) is arbitrary, we also get derivative estimates at the boundary using
barrier constructions for solutions of the minimal surface equation, provided that
v ∈ C2(C) and periodic in the y variables, and that ϕ0 has bounded derivatives.
Thus, by the Leray-Schauder existence theory, we obtain a C2,α(C) solution of the
Euler-Lagrange equation of Aδ, with boundary values ϕ0. By approximation, we
may find such a uδ under the assumption that ϕ0 is Lipschitz with respect to the y
variables (rather than smooth) with Lipschitz constant independent of the x vari-
ables (and ϕ0 still periodic in the y variables). Using the derivative estimates, we
may then pass to the limit of a subsequence of uδi

, where δi ↘ 0 is any sequence,
to conclude that there exist a C∞ (C \{(x, y) : x = 0})∩C0(C \{(x, y) : x = 0})
solution u0 of the Euler-Lagrange equation of A0 with boundary data ϕ0. Finally,
by another approximation argument as described in [SW], Section 1, we may take
ϕ0 to be merely bounded and continuous rather than Lipschitz and periodic.

Let u0 be as above. The following theorem explains the effect on the local
structure of G = graphu of any discontinuity of u0 along the axis {0} ×Rn−2.
It says that the part of G in some ball centered above an appropriately chosen
point close to the discontinuity consists of two smooth, embedded manifolds-with-
boundary whose common boundary in that ball is a vertical segment.

Theorem 2.1. Suppose the function u0 constructed as above has a discontinuity
at some point (0, y0) ∈ {0} × Rn−2 and ρ0 ∈ (0, 1/4]. Then there is a number
ρ1 ∈ (0, ρ0] and a point (0, y1, t1) ∈ Bρ0(0, y0) × R such that Bn+1

ρ1
(0, y1, t1) ∩

((0, y1, t1) + {0} ×Rn−2 ×R) ⊂ G, G (as an n-dimensional integer multiplicity
varifold in Rn+1) has a unique tangent cone C at (0, y1, t1) of the form

C = |H1|+ |H2|,

where H1, H2 are distinct n-dimensional half-spaces meeting at an angle 6= π
along the common boundary {0} ×Rn−2 ×R, |Hj | is the multiplicity 1 varifold
associated with Hj and

G ∩Bn+1
ρ1

(0, y1, t1) = L1 ∪ L2,

where Lj is an embedded C∞ manifold-with-boundary, with boundary ∂ Lj (taken
in the open ball Bn+1

ρ1
(0, y1, t1)) given by ∂ Lj = Bn+1

ρ1
(0, y1, t1) ∩ ((0, y1, t1) +

Rn−2 × R), Lj has the tangent half-space Hj at the point (0, y1, t1) and (L1 \
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∂ L1) ∩ (L2 \ ∂ L2) = ∅.

The proof of this theorem uses Theorem 1.2 , Allard’s boundary regularity the-
orem [All75] and the following removable boundary-discontinuity lemma, whose
proof is based on a standard barrier construction. See [SW] for details.

Lemma 2.2. Let Ω ⊂ Rn be open, x0 ∈ ∂ Ω and suppose that Ω ∩ Bρ0(x0) ⊂ U
for some ρ0 > 0 and open half-space U with x0 ∈ ∂ U. Let ϕ : ∂ Ω∩Bρ0(x0) → R
be continuous, and suppose that u is a bounded C2 solution of the minimal surface
equation in Ω. Suppose also that there exists a compact set K ⊂ ∂ Ω with x0 ∈ K,
Hn−1 (K) = 0 such that, for each y ∈ ∂ Ω∩Bρ0(x0)\K, limx→y, x∈Ω u(x) = ϕ(y).
Then limx→x0, x∈Ω u(x) = ϕ(x0).

Theorem 2.1 immediately tells us that there is a large class of boundary
data ϕ0 for which u0 has to be continuous across {0} × Rn−2; namely, those
ϕ0 which satisfy a Zk rotational symmetry with respect to the x variables for
some odd integer k ≥ 3, i.e. ϕ0 which satisfy, for some odd integer k ≥ 3,
ϕ0(ei(θ+2π/k), y) = ϕ0(eiθ, y) for θ ∈ (0, 2π] and y ∈ Rn−2. For such boundary
data, by the maximum principle (which gives uniqueness of solutions to the Euler-
Lagrange equation of Aδ for given periodic boundary data as considered in the
discussion above, implying that uδ must have the same Zk symmetry that the
boundary data has), we see that u0 inherits this symmetry. This means that G

must satisfy Sk(G) = G, where Sk : (reiθ, y, t) 7→ (rei(θ+2π/k), y, t). Hence, if u0

has a discontinuity at some point (0, y0) ∈ {0} × Rn−2, then the tangent cone
C as in Theorem 2.1 must also satisfy Sk(C) = C. But this is impossible since
sptC consists of two distinct half-spaces meeting along their common boundary,
and k is odd.

On the other hand, continuity of u0 in fact implies that Hn−2 (G∩ ({0}×Ω×
R)) < ∞ for any bounded subset Ω ⊂ Rn−2. Using this and the stationarity
of G, we can modify the standard arguments for single valued solutions of the
minimal surface equation to obtain the following existence result for C1,α stable
branched minimal immersions. We refer the reader to [SW] for details.

Theorem 2.3. If the boundary data ϕ0 : ∂ D ×Rn−2 → R is bounded, contin-
uous and has the Zk symmetry in the x variables for some odd integer k ≥ 3,
and u0 is the solution, constructed as above, of the Euler-Lagrange equation of
A0 with this boundary data, then the image of the 2-valued mapping
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Φ : (reiθ, y) 7→ (reiθ, y, u0(r1/2eiθ/2, y)), r ∈ [0, 1], θ ∈ [0, 4π)

is a C1,α stable branched minimal hypersurface of C ×R with boundary values

Φ(eiθ, y) = (eiθ, y, ϕ0(r1/2eiθ/2, y)), θ ∈ [0, 4π).

Finally, we mention that there is also a version of this theorem which gives “q
sheeted” branched examples for q ≥ 3. See [SW].

3. Asymptotics for the blow-ups of stable minimal hypersurfaces

In this section, we make an observation which leads to improvements of Lem-
mas 1.9 and 1.8. In particular, the discussion here shows that it is not necessary
to allow three scales θ, β and γ in Lemma 1.8; instead, it is shown here that
excess improvement of the hypersurface M under the hypotheses of Lemma 1.8
occurs always at a single fixed smaller scale θ.

We begin by recalling that the class of two-valued harmonic functions con-
sidered in [Wic-1] (the class Fδ discussed in Section 1 above) consists of those
functions arising as blow-ups, off affine hyperplanes, of sequences of stable mini-
mal hypersurfaces satisfying (?) and (??) and weakly converging to a multiplicity
2 affine hyperplane. Here we enlarge this class to the collection of two-valued
functions resulting when sequences of stable minimal hypersurfaces, still satisfy-
ing (?) and (??) and weakly converging to a multiplicity 2 affine hyperplane, are
blown up by their height excess relative to pairs of affine hyperplanes. We wish
to show that the functions in this class satisfy a uniform L2 estimate which is the
direct analog of the estimate (1.2) for single valued harmonic functions.

In order to define this class precisely and prove the required estimate, let
δ ∈ (0, 1) be fixed and consider a sequence {Mk} of immersed stable minimal
hypersurfaces of the ball Bn+1

2 (0) satisfying 0 ∈ Mk, Hn−2 (sing Mk) < ∞,
Hn (Mk∩(Bn+1

2 (0)
ωn2n ≤ 3− δ and

∫

Mk∩(B1(0)×R)
dist2 (X, Pk) ↘ 0

for some sequence of pairs of affine hyperplanes Pk converging to Rn × {0} (in
the sense that dH (Pk ∩ (B1(0)×R), B1(0)) → 0). For each k = 1, 2, 3, . . . , let Lk

be any (single) affine hyperplane of Rn+1 such that
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∫

Mk∩(B1(0)×R)
dist2 (X, Lk) ≤ 3

2
inf
L

∫

Mk∩(B1(0)×R)
dist2 (X, L)

where the inf is taken over all affine hyperplanes L of Rn+1. Note that we then
have dH (Lk ∩ (B1(0)×R), B1(0)) → 0. Let

Êk =

√∫

Mk∩(B1(0)×R)
dist2 (X, Lk).

We consider “blowing up” the hypersurfaces Mk by their height excesses Qk ≡
QMk

(1, Pk, Lk, tk). Here

Q2
M (ρ, P, L, t) ≡

ρ−n−2

∫

M∩(Bρ(0)×R)
dist2 (X, P )+ρ−n−2

∫

P ?∩((Bρ/2(0)\SP (ρ/16))×R)
dist2 (X, G

(L,t)
M (ρ))

where the notation is as in Section 6 of [Wic-1]. In order to carry out this blowing
up process, we need to consider separately the cases:

(a) Qk ≤ ζ0Êk for infinitely many k;
(b) Qk > ζ0Êk for infinitely many k.

Here ζ0 = ζ0(n, δ) ∈ (0, 1/2) is a small constant depending only on n and δ.
If we choose ζ0 sufficiently small, then, if case (a) above holds, we see that in
view of Lemmas 6.1, 6.2, 5.5, 5.6, and Proposition 3.10 of [Wic-1], the blow-up
v± ∈ W 1,2(B1/2(0))∩C0(B1/2(0)) of (an appropriately chosen subsequence of) Mk

by Êk consists of two harmonic functions; i.e. graph v+∪graph v− = graph v(1)∪
graph v(2) for a pair of harmonic functions v(1), v(2) : B1/2(0) → R. Furthermore,
we have that {x ∈ B1/2(0) : v(1)(x) = v(2)(x)} ⊂ {x : dist (x, L) < Cζ0} for
some affine hyperplane L of Rn×{0} with L∩B3/4(0) 6= ∅ and C = C(n) ∈ (0,∞).
This means that we can now blow up the Mk’s by their height excesses Qk (note
that Qk is of the same order of magnitude as Ek ≡

√∫
Mk∩(B1(0)×R) dist2 (X, Pk)

in this case), either as described in the proof of Lemma 4.1 of [Wic-1] or using
Schoen-Simon regularity theorem (Theorem 1.2 above) depending on whether
{x ∈ B1/2(0) : v(1)(x) = v(2)(x)} is non-empty or empty. This (second) blow
up also consists of two harmonic functions ṽ(1), ṽ(2) : B1/4(0) → R, and hence
satisfies the estimate
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(3.3)

ρ−n−2

∫

Bρ(0)
dist2 ((x, ṽ+(x)), P0)+dist2 ((x, ṽ−(x)), P0) ≤ Cρ2

∫

B1/2(0)
(ṽ+)2+(ṽ−)2

for some pair of affine hyperplanes P0 and all ρ ∈ (0, 1/8), where C = C(n) ∈
(0,∞) and we have used the notation ṽ+(x) = max {ṽ(1)(x), ṽ(2)(x)} and ṽ−(x) =
min {ṽ(1)(x), ṽ(2)(x)}.

In order to prove that a similar estimate holds in case (b), we only need to ob-
serve that Theorem 1.9 above (which concerns blow-ups by Êk) can be improved
to the following result giving a uniform estimate for the functions in Fδ :

For each (v+, v−) ∈ Fδ we have the estimate

(3.4)

ρ−n−2

∫

Bρ(0)
dist2 ((x, v+(x)), P )+dist2 ((x, v−(x)), P ) ≤ Cρλ

∫

B1(0)
(v+)2+(v−)2

for all ρ ∈ (0, 1/8) and some pair of affine hyperplanes P , where C = C(n, δ) ∈
(0,∞) and λ = λ(n, δ) ∈ (0,∞).

For if we have 3.4 for (v+, v−) ∈ Fδ, then, it follows directly in view of the defin-
ing condition of case (b) that a blow-up (ṽ+, ṽ−) of (a subsequence of) Mk by
Qk (off the corresponding subsequence of {Lk}) must also satisfy 3.4 with ṽ±

in place of v± (and a different pair of affine hyperplanes P̃ in place of P and a
different constant C̃ = C̃(n, δ) in place of C), as required.

In order to establish (3.4) for (v+, v−) ∈ Fδ, let β ∈ (0, 1/32) be arbitrary
for the moment, and consider a function (v+, v−) ∈ Fδ. If there is a point
z ∈ Sv ∩Bβ(0) (notation as in Theorem 1.9), then by Theorem 1.9, we have that
β−n−2

∫
Bβ(0)(v

+ − lz)2 + (v− − lz)2 ≤ (1 + |z|/β)n+2(β + |z|)−n−2
∫
Bβ+|z|(z)(v

+ −
lz)2 +(v−− lz)2 ≤ C1β

λ
∫
B1(0)(v

+)2 +(v−)2 where C1 = C1(n, δ) and λ = λ(n, δ).
If on the other hand Sv ∩ Bβ(0) = ∅, then graph v+|Bβ(0) ∪ graph v−|Bβ(0) =
graph v1∪graph v2 for a pair of harmonic functions v1, v2 : Bβ(0) → R, so that in
this case, we have that (σβ)−n−2

∫
Bσβ(0) dist2 ((x, v+(x)), P )+dist2 ((x, v−(x)), P )

≤ C2β
−n−2σ2

∫
Bβ(0)(v

+)2 + (v−)2 for some pair of affine hyperplanes P , where

C2 = C2(n). Choosing β = β(n, δ) ∈ (0, 1/32) so that C1β
λ ≤ 1/4 we thus have
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the following:

There exists a constant β = β(n, δ) ∈ (0, 1/32) such that if (v+, v−) ∈ Fδ, then
either

β−n−2

∫

Bβ(0)
(v+ − l)+ + (v− − l)2 ≤ 1

4

∫

B1(0)
(v+)2 + (v−)2

for some affine function l, or

(σβ)−n−2

∫

Bσβ(0)
dist2 ((x, v+(x)), P ) + dist2 ((x, v−(x)), P ) ≤

C2β
−n−2σ2

∫

Bβ(0)
(v+)2 + (v−)2

for some pair of affine hyperplanes P and all σ ∈ (0, 1/2). Here C2 = C2(n).

In view of the fact that for any ρ ∈ (0, 1) and any affine function l,
(v+

ρ −l,v−ρ −l)(
ρ−n−2

∫
Bρ(0)(v

+−l)2+(v−−l)2
)1/2 ∈ Fδ whenever (v+, v−) ∈ Fδ, where v±ρ (x) =

1
ρ/2v±(1

2ρx), we may apply the above result iteratively to conclude that:

(i) either there exists an infinite sequence of affine functions lj , j = 0, 1, 2, . . . ,
with l0 ≡ 0, such that

(βj)−n−2

∫

B
βj (0)

(v+ − lj)2 + (v− − lj)2

≤ 4−1(βj−1)−n−2

∫

B
βj−1 (0)

(v+ − lj−1)2 + (v− − lj−1)2

≤ 4−j

∫

B1(0)
(v+)2 + (v−)2

for each j = 1, 2, 3, . . . or

(ii) there exist an integer j? ≥ 0, affine functions l0, l1, . . . , lj? with l0 ≡ 0 and
a pair of affine hyperplanes P such that
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(σβj?+1)−n−2

∫

B
σβj?+1 (0)

dist2 ((x, v+(x)), P ) + dist2 ((x, v−(x)), P )

≤ C2σ
2(βj?+1)−n−2

∫
B

βj?+1 (0)(v
+ − lj?)2 + (v− − lj?)2

≤ C2β
−n−2σ2(βj?

)−n−2
∫
B

βj? (0)(v
+ − lj?)2 + (v− − lj?)2

≤ C2β
−n−2σ24−j? ∫

B1(0)(v
+)2 + (v−)2(3.5)

for all σ ∈ (0, 1/2) and, in case j? ≥ 1,

(βj)−n−2

∫

B
βj (0)

(v+ − lj)2 + (v− − lj)2

≤ 4−1(βj−1)−n−2

∫

B
βj−1 (0)

(v+ − lj−1)2 + (v− − lj−1)2

≤ 4−j

∫

B1(0)
(v+)2 + (v−)2

for j = 1, 2, . . . , j?.

If (i) holds, it is standard that

ρ−n−2

∫

Bρ(0)
(v+ − l)2 + (v− − l)2 ≤ Cρλ

∫

B1(0)
(v+)2 + (v−)2

for some affine hyperplane l and all ρ ∈ (0, 1/4], where C = C(n, δ) and λ =
λ(n, δ). If on the other hand (ii) holds, it is again not difficult to see first that,
in case j? ≥ 1,

(3.6)

(βj)−n−2

∫

B
βj (0)

dist2 ((x, v+(x)), P )+dist2 ((x, v−(x)), P ) ≤ C4−j

∫

B1(0)
(v+)2+(v−)2

for each j = 1, 2, . . . , j? and hence that

ρ−n−2

∫

Bρ(0)
dist2 ((x, v+(x)), P )+dist2 ((x, v−(x)), P ) ≤ Cρλ

∫

B1(0)
(v+)2+(v−)2

for all ρ ∈ (0, 1/4], where C = C(n, δ) and λ = λ(n, δ). (To see this last inequality,
given ρ ∈ (0, 1/4], consider the cases βj+1 ≤ 2ρ < βj for some j ∈ {0, 1, 2, . . . , j?}
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or 2ρ < βj?+1. If the former holds and j? ≥ 1, use (3.6); else use (3.5) noting
that ρ = σβj?+1 for some σ ∈ (0, 1/2) and β < 1/2.) Thus in either of the cases
(i) and (ii), we have the desired estimate (3.4).

Remark: Note that the estimate (3.4) implies that if v = (v+, v−) ∈ Fδ, then
for each z ∈ B1/4(0) there exitst a pair of affine hyperplanes Pz such that

ρ−n−2

∫

Bρ(z)
dist2 ((x, v+(x)), Pz)+dist2 ((x, v−(x)), Pz) ≤ Cρλ

∫

B1(0)
(v+)2+(v−)2

for all ρ ∈ (0, 1/32), where C = C(n, δ) ∈ (0,∞) and λ = λ(n, δ) ∈ (0,∞). This
in turn implies that v is a 2-valued C1,α function (with α = λ/2) in B1/4(0)
(in the sense defined in [Wic-1], Section 2) with ‖v‖C1,α(B1/4(0)) ≤ C‖v‖L2(B1(0)),

where C = C(n, δ).

As a direct consequence of the preceding discussion, we have the following
height excess improvement lemma, which is a simpler version of Lemma 1.8 above.

Lemma 3.1. Let δ ∈ (0, 1) and θ ∈ (0, 1/16). There exists a number ε =
ε(n, δ, θ) ∈ (0, 1/2) such that the following holds. Let M be a stable minimal
hypersurface of Bn+1

2 (0) with 0 ∈ M satisfying (?), (??) and QM (1, P, L, t) ≤ ε
for some pair of affine hyperplanes P with Hausdorff distance (P ∩ (B1(0) ×
R), B1(0)) ≤ ε, an affine hyperplane L ∈ A(M, 1) and a number t ∈ R(M, L, 1),
where A(M, ρ) and R(M, L, ρ) are as defined in [Wic-1], Section 6. Then there
exists a pair of affine hyperplanes P̃ with Hausdorff distance (P ∩(B1(0)×R), P̃ ∩
(B1(0)×R)) ≤ CQM (1, P, L, t), an affine hyperplane L̃ ∈ A(M, θ) and a number
t̃ ∈ R(M, L̃, θ) such that

QM (θ, P̃ , L̃, t̃) ≤ C1θ
λQM (1, P, L, t).

Here C = C(n, δ, θ) ∈ (0,∞), C1 = C1(n, δ) ∈ (0,∞) and λ = λ(n, δ) ∈ (0,∞).
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