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Perron’s Formula and the Prime Number
Theorem for Automorphic L-Functions
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Abstract: In this paper the classical Perron’s formula is modified so that
it now depends no longer on sizes of individual terms but on a sum over
a short interval. When applied to automorphic L-functions, this new Per-
ron’s formula may allow one to avoid estimation of individual Fourier coef-
ficients, without assuming the Generalized Ramanujan Conjecture (GRC).
As an application, a prime number theorem for Rankin-Selberg L-functions
L(s, π × π̃′) is proved unconditionally without assuming GRC, where π and
π′ are automorphic irreducible cuspidal representations of GLm(QA) and
GLm′(QA), respectively.
2000 Mathematics Subject Classification: 11F70, 11M26, 11M41.

1. Introduction

The classical Perron’s formula gives a formula for a sum of complex numbers
an, 1 ≤ n ≤ x, in terms of their Dirichlet series

f(s) =
∞∑

n=1

an

ns
(1.1)
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and bounds for individual terms an, where here and throughout s = σ + it ∈ C.
Let A(x) > 0 be non-decreasing such that an ¿ A(n), and let

B(σ) =
∞∑

n=1

|an|
nσ

(1.2)

for σ > σa, the abscissa of absolute convergence of (1.1). Then the classical
Perron’s formula (see e.g. Heath-Brown’s notes on Titchmarsh [31], p.70) states
that, for b > σa,

∑

n≤x

an =
1

2πi

∫ b+iT

b−iT
f(s)

xs

s
ds + O

(
A(2x)x log x

T

)

+O

(
xbB(b)

T

)
+ O

{
A(N)min

(
x

T |x−N | , 1
)}

,(1.3)

where N is the integer nearest to x.

When applying (1.3) to the Riemann zeta-function or Dirichlet L-functions,
bounds for an pose no problem. When applying this formula to other auto-
morphic L-functions, however, bounds for an often require an assumption of the
Generalized Ramanujan Conjecture (GRC). Examples include a prime number
theorem for Rankin-Selberg L-functions (Theorem 2.3 below) recently proved by
the authors in [18] under the GRC.

In this paper, we will prove a revised version of Perron’s formula (Theorem
2.1 and Corollary 2.2 below). Different from the classical (1.3), the new Perron’s
formula produces a formula for

∑
n≤x an in terms of a sum of |an| over a short

interval. While bounding individual Fourier coefficients |aπ(n)| of an automor-
phic cuspidal representation is hard and may require GRC, estimation of a sum
of |aπ(n)| can usually be done by the Rankin-Selberg method. The new Per-
ron’s formula thus allows us to prove certain results for automorphic L-functions
without assuming the GRC.

As an application, we are now able to prove a prime number theorem (Theorem
2.3) unconditionally for Rankin-Selberg L-functions L(s, π× π̃′), by removing the
assumption of GRC in [18]. This prime number theorem has a remainder term
of a size which reflects our current knowledge of zero-free regions of L(s, π) as in
(4.3) and (4.4). We will see that the new Perron’s formula allows us to deduce
the prime number theorem for π 6∼= π′ from the diagonal case of π ∼= π′.

Several authors have already addressed the question of prime number theorem
for Rankin-Selberg L-functions in the GL2 context, and they all faced the problem
of bounding Fourier coefficients. Moreno [20] avoided GRC by an averaging
technique, while others restricted themselves to the case of holomorphic cusp
forms where GRC is known (Ichihara [5]), or to the Selberg class where GRC is
assumed (Kaczorowski and Perelli [11]).
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We remark that using these prime number theorems one can count primes
weighted by Fourier coefficients of automorphic cuspidal representations. This
can be regarded as a direct connection between representation theory and prime
distribution.

2. Main theorems

The following is a modification of (1.3).

Theorem 2.1. Let f(s) be as in (1.1) and absolutely convergent for σ > σa.
Let B(σ) be as in (1.2). Then, for b > σa, x ≥ 2, T ≥ 2, and H ≥ 2,

∑

n≤x

an =
1

2πi

∫ b+iT

b−iT
f(s)

xs

s
ds + O

{ ∑

x−x/H<n≤x+x/H

|an|
}

+O

{
xbHB(b)

T

}
.(2.1)

Taking H =
√

T in Theorem 1.1, we deduce the following

Corollary 2.2. With the same notation as in Theorem 2.1,
∑

n≤x

an =
1

2πi

∫ b+iT

b−iT
f(s)

xs

s
ds + O

{ ∑

x−x/
√

T<n≤x+x/
√

T

|an|
}

+O

{
xbB(b)√

T

}
.(2.2)

We remark that Corollary 2.2 can be used to derive the classical prime number
theorem. In fact, taking an = Λ(n), we have

∑

x−x/
√

T<n≤x+x/
√

T

|an| ¿ log x
∑

x−x/
√

T<n≤x+x/
√

T

1 ¿ x log x√
T

.

By (3.10.6) in Titchmarsh [31], for σ > σa = 1,

B(σ) =
∞∑

n=1

Λ(n)
nσ

¿ 1
σ − 1

.

Therefore, Corollary 2.2 with b = 1 + 1/ log x gives
∑

n≤x

Λ(n) =
1

2πi

∫ b+iT

b−iT

{
−ζ ′(s)

ζ(s)

}
xs

s
ds + O

{
x log x√

T

}
.
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We can take T = exp(
√

log x). The prime number theorem
∑

n≤x

Λ(n) = x + O{x exp(−c
√

log x)}

now follows from the zero-free region of the Riemann zeta-function and a standard
contour-integration argument; here and throughout c denotes a positive constant
not necessarily the same at different occurrences.

In order to describe applications of this new Perron’s formula to automorphic
L-functions, let us recall that for an irreducible unitary cuspidal representation
π of GLm(QA), the global L-function attached to π is given by products of local
factors for σ > 1 (Godement and Jacquet [4]):

L(s, π) =
∏
p

Lp(s, πp),

Φ(s, π) = L∞(s, π∞)L(s, π),

where

Lp(s, πp) =
m∏

j=1

(
1− απ(p, j)

ps

)−1

,

and

L∞(s, π∞) =
m∏

j=1

ΓR(s + µπ(j)).

Here ΓR(s) = π−s/2Γ(s/2), and απ(p, j) and µπ(j), j = 1, . . . , m, are complex
numbers associated with πp and π∞, respectively, according to the Langlands
correspondence. Denote by

aπ(pk) =
∑

1≤j≤m

απ(p, j)k

the Fourier coefficients of π. Then for σ > 1, we have

d

ds
log L(s, π) = −

∞∑

n=1

Λ(n)aπ(n)
ns

,

where Λ(n) is the von Mangoldt function. If π′ is an automorphic irreducible
cuspidal representation of GLm′(QA), we define L(s, π′), απ′(p, i), µπ′(i), and
aπ′(pk) likewise, for i = 1, . . . , m′. If π and π′ are equivalent, then m = m′ and
{απ(p, j)} = {απ′(p, i)} for any p. Hence aπ(n) = aπ′(n) for any n = pk, when
π ∼= π′.

The prime number theorem for Rankin-Selberg L-functions has two different
cases.
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Theorem 2.3. Let π and π′ be irreducible unitary cuspidal representations of
GLm(QA) and GLm′(QA), respectively. Assume that at least one of π and π′ is
self-contragredient: π ∼= π̃ or π′ ∼= π̃′. Then∑

n≤x

Λ(n)aπ(n)āπ′(n)

=





x1+iτ0

1 + iτ0
+ O{x exp(−c

√
log x)}

if π′ ∼= π ⊗ |det |iτ0 for some τ0 ∈ R;
O{x exp(−c

√
log x)}

if π′ 6∼= π ⊗ |det |iτ for any τ ∈ R.

(2.3)

Note that Theorem 2.3 is now an unconditional result, improved upon [18].
Previously known unconditional prime number theorems for Rankin-Selberg L-
functions include a weighted version

∑
n≤x(1−n/x)Λ(n)aπ(n)āπ′(n) and a special

case
∑

n≤x Λ(n)|aπ(n)|2, both in Liu, Wang, and Ye [16]. By a standard argument
of partial summation, we can deduce from Theorem 2.3 a Mertens theorem for
Rankin-Selberg L-functions which is a version of Selberg’s orthogonality (Selberg
[26] and Ram Murty [22] [23]).

Corollary 2.4. Let π and π′ be as in Theorem 2.3. We have
∑

n≤x

Λ(n)aπ(n)āπ′(n)
n

=





log x + c1 + O{exp(−c
√

log x)}
if π′ ∼= π;
xiτ0

iτ0(1 + iτ0)
+ c2 + O{exp(−c

√
log x)}

if π′ ∼= π ⊗ |det |iτ0 for some τ0 ∈ R×;
c2 + O{exp(−c

√
log x)}

if π′ 6∼= π ⊗ |det |iτ for any τ ∈ R.

(2.4)

Here c1 and c2 are constants depending on π and π′:

c1 = lim
s→0

(
−L′

L
(s + 1, π × π̃′)− 1

s

)
− 1, c2 = −L′

L
(1, π × π̃′).

3. Proof of Perron’s summation formula

Proof of Theorem 2.1. We begin with the discontinuous integral

1
2πi

∫ b+i∞

b−i∞

ys

s
ds =





0 if 0 < y < 1,
1/2 if y = 1,
1 if y > 1.

(3.1)
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Denote the right-hand side by δ(y); the basic idea is to use δ(y) to pick up terms
with n ≤ x in the Dirichlet series (1.1). A more convenient form of (3.1) is (see
e.g. [1], Lemma in Chapter 17)

1
2πi

∫ b+iT

b−iT

ys

s
ds = δ(y) +

{
O{yb min(1, T−1| log y|−1)} if y 6= 1,
O(bT−1) if y = 1,

where the O-constant is absolute.

Let N be the integer nearest to x. Suppose first that

|x−N | À x

T
,(3.2)

so that x is not an integer. We take y = x/n, multiply both sides in (1.1) by an,
and then sum over n, to get

1
2πi

∫ b+iT

b−iT
f(s)

xs

s
ds =

∑

n≤x

an + O(R),(3.3)

where

R = xb
∞∑

n=1

|an|
nb

min
(

1,
1

T | log(x/n)|
)

.

For H ≥ 2,

R = xb

{ ∑

n≤x−x/H

+
∑

x−x/H<n≤x+x/H

+
∑

n>x+x/H

}
.(3.4)

In the first sum on the right, we have

log
x

n
≥ log

( x

x− x/H

)
À 1

H
.

Therefore, the first sum is

¿ H

T

∑

n≤x−x/H

|an|
nb

¿ H

T
B(b).

The third sum in (3.4) has the same upper bound. The second sum in (3.4) is

¿
∑

x−x/H<n≤x+x/H

|an|
nb

¿ x−b
∑

x−x/H<n≤x+x/H

|an|,

and (3.4) becomes

R ¿
∑

x−x/H<n≤x+x/H

|an|+ xbHB(b)
T

.

This proves the theorem under (3.2).
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Now suppose (3.2) is not true, that is |x−N | ¿ x/T . All goes as before except
for the contribution from the term with n = N , which can be estimated as

∫ b+iT

b−iT
aN

( x

N

)s ds

s
= aN

∫ b+iT

b−iT

{
1 + O

(
1
T

)}s ds

s

= aN

∫ b+iT

b−iT

{
1 + O

( |s|
T

)}
ds

s
¿ |aN |.

This proves the theorem. ¤

4. A weighted diagonal prime number theorem

We will use the Rankin-Selberg L-functions L(s, π×π̃′) as developed by Jacquet,
Piatetski-Shapiro, and Shalika [8], Shahidi [27], and Moeglin and Waldspurger
[19], where π and π′ are automorphic irreducible cuspidal representations of GLm

and GLm′ , respectively, over Q with unitary central characters. This L-function
is given by local factors:

L(s, π × π̃′) =
∏
p

Lp(s, πp × π̃′p)(4.1)

where

Lp(s, πp × π̃′p) =
m∏

j=1

m′∏

k=1

(
1− απ(p, j)ᾱπ′(p, k)

ps

)−1

.

The Archimedean local factor L∞(s, π∞ × π̃′∞) is defined by

L∞(s, π∞ × π̃′∞) =
m∏

j=1

m′∏

k=1

ΓR(s + µπ×π̃′(j, k))

where the complex numbers µπ×π̃′(j, k) satisfy the trivial bound

Re (µπ×π̃′(j, k)) > −1.(4.2)

Denote
Φ(s, π × π̃′) = L∞(s, π∞ × π̃′∞)L(s, π × π̃′).

We will need the following properties of the L-functions L(s, π×π̃′) and Φ(s, π×
π̃′).

RS1. The Euler product for L(s, π×π̃′) in (4.1) converges absolutely for σ > 1
(Jacquet and Shalika [9]).

RS2. The complete L-function Φ(s, π × π̃′) has an analytic continuation to
the entire complex plane and satisfies a functional equation

Φ(s, π × π̃′) = ε(s, π × π̃′)Φ(1− s, π̃ × π′)
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with
ε(s, π × π̃′) = τ(π × π̃′)Q−s

π×π̃′ ,

where Qπ×π̃′ > 0 and τ(π × π̃′) = ±Q
1/2
π×π̃′ (Shahidi [27], [28], [29], and [30]).

RS3. Denote α(g) = |det(g)|. When π′ 6∼= π ⊗ αiτ for any τ ∈ R, Φ(s, π × π̃′)
is holomorphic. When m = m′ and π′ ∼= π⊗ αiτ0 for some τ0 ∈ R, the only poles
of Φ(s, π × π̃′) are simple poles at s = iτ0 and 1 + iτ0 coming from L(s, π × π̃′)
(Jacquet and Shalika [9] and [10], Moeglin and Waldspurger [19]).

RS4. Φ(s, π × π̃′) is meromorphic of order one away from its poles, and
bounded in vertical strips (Gelbart and Shahidi [3]).

RS5. Φ(s, π × π̃′) and L(s, π × π̃′) are non-zero in σ ≥ 1 (Shahidi [27]).
Furthermore, it is zero-free in the region

σ ≥ 1− c3

log
(
Qπ×π̃′(|t|+ c4)

) , |t| ≥ 1,(4.3)

and at most one exceptional zero in the region

σ ≥ 1− c3

log(Qπ×π̃′c4)
, |t| ≤ 1,(4.4)

for some effectively computable positive constants c3 and c4, if at least one of π
and π′ is self-contragredient (Moreno [20] [21], Sarnak [25], and Gelbart, Lapid,
and Sarnak [2]).

Now we prove a weighted prime number theorem in the diagonal case.

Lemma 4.1. Let π be a self-contragredient automorphic irreducible cuspidal
representation of GLm over Q. Then

∑

n≤x

(
1− n

x

)
Λ(n)|aπ(n)|2 =

x

2
+ O{x exp(−c

√
log x)}.

Proof. By RS1, we have for σ > 1,

J(s) := − d

ds
log L(s, π × π̃) =

∞∑

n=1

Λ(n)aπ(n)āπ(n)
ns

.

Note that
1

2πi

∫

(b)

ys

s(s + 1)
ds =

{
1− 1/y if y ≥ 1,
0 if 0 < y < 1,
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where (b) means the line σ = b > 0. Taking b = 1 + 1/ log x, we have
∑

n≤x

(
1− n

x

)
Λ(n)|aπ(n)|2 =

1
2πi

∫

(b)
J(s)

xs

s(s + 1)
ds

=
1

2πi

(∫ b+iT

b−iT
+

∫ b−iT

b−i∞
+

∫ b+i∞

b+iT

)
.

The last two integrals are clearly bounded by

¿
∫ ∞

T

x

t2
dt ¿ x

T
.

Thus,

∑

n≤x

(
1− n

x

)
Λ(n)|aπ(n)|2 =

1
2πi

∫ b+iT

b−iT
J(s)

xs

s(s + 1)
ds + O

( x

T

)
.

By an argument as in [17], we may choose a real number a with −2 < a < −1
and a large T > 0, and consider the contour

C1 : b ≥ σ ≥ a, t = −T ;
C2 : σ = a, −T ≤ t ≤ T ;
C3 : a ≤ σ ≤ b, t = T.

Note that three poles s = 1, 0,−1, some trivial zeros, and certain nontrivial
zeros ρ = β + iγ of L(s, π × π̃) are passed by the shifting of the contour. Also
note that s = 0 is a double pole. The trivial zeros can be determined by RS2 and
(4.2): s = −µπ×π̃(j, k) with a < −Re(µπ×π̃(j, k)) < 1 and s = −2 − µπ×π̃(j, k)
with a + 2 < −Re(µπ×π̃(j, k)) < 1. Here we have used −2 < a < −1. Then we
have

1
2πi

∫ b+iT

b−iT
J(s)

xs

s(s + 1)
ds

=
1

2πi

(∫

C1

+
∫

C2

+
∫

C3

)
+ Res

s=1,0,−1
J(s)

xs

s(s + 1)

+
∑

a<−Re(µπ×π̃(j,k))<1

Res
s=−µπ×π̃(j,k)

J(s)
xs

s(s + 1)

+
∑

a+2<−Re(µπ×π̃(j,k))<1

Res
s=−2−µπ×π̃(j,k)

J(s)
xs

s(s + 1)

+
∑

|γ|≤T

Res
s=ρ

J(s)
xs

s(s + 1)
.(4.5)
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By Lemma 4.1(d) of [17], for any large τ > 0 we can choose T in τ < T < τ +1
such that, when −1 ≤ σ ≤ 2,

J(σ ± iT ) ¿ log2(Qπ×π̃T ),

and hence, ∫

C1

¿
∫ b

a
log2(Qπ×π̃T )

xσ

T 2
dσ ¿ x log2(Qπ×π̃T )

T 2
.

The same upper bound also holds for the integral on C3. By Lemma 4.2 in [17]
we can choose a so that, when |t| ≤ T ,

J(a + it) ¿ 1,

and therefore, ∫

C2

¿
∫ T

−T

xa

(|t|+ 1)2
dt ¿ 1

x
.

On taking T À exp(
√

log x), the three integrals on C1, C2, C3 are

¿ x exp(−c
√

log x).(4.6)

The function

J(s)
xs

s(s + 1)

has simple poles at s = 1,−1, and a double pole at s = 0; the residues are x/2,
O(x−1), and O(log x) respectively. Therefore,

Res
s=1,0,−1

J(s)
xs

s(s + 1)
=

x

2
+ O(log x).(4.7)

Near a trivial zero s = −µπ×π̃(j, k) of order l, we can express J(s) as −l/(s +
µπ×π̃(j, k)) plus an analytic function. The residues at these trivial zeros can
therefore be computed similarly to what we have done in (4.7). By (4.2), we
know that Re (µπ×π̃(j, k)) ≥ 1− δ for some δ > 0. Consequently,

∑

a<−Re(µπ×π̃(j,k))<1

Res
s=−µπ×π̃(j,k)

J(s)
xs

s(s + 1)
¿ x1−δ,(4.8)

∑

a+2<−Re(µπ×π̃(j,k))<1

Res
s=−2−µπ×π̃(j,k)

J(s)
xs

s(s + 1)
¿ x−1−δ.(4.9)

To compute the residues corresponding to nontrivial zeros, we recall RS4 and
RS5, to get

∑
ρ

1
|ρ(ρ + 1)| < ∞.
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Consequently,
∑

|γ|≤T

Res
s=ρ

J(s)
xs

s(s + 1)
= −

∑

|γ|≤T

Res
s=ρ

1
s− ρ

xs

s(s + 1)

¿
∑

|γ|≤T

∣∣∣∣
xρ

ρ(ρ + 1)

∣∣∣∣

=
( ∑
|γ|≤T
ρ∈E

+
∑
|γ|≤T
ρ/∈E

)
xβ

|ρ(ρ + 1)| ,(4.10)

where E is the set of exceptional zeros in (4.4). We have |E| ≤ 1, and hence the
sum over ρ ∈ E is clearly ¿ x1−δ for some δ > 0. By (4.3), the sum over ρ 6∈ E
is

¿ x exp
(
−c3

log x

2 log(Qπ×π̃T )

) ∑
ρ

1
|ρ(ρ + 1)| ¿ x exp(−c

√
log x),(4.11)

by taking T = exp(
√

log x) + d for some d with 0 < d < 1. Hence (4.10) is
bounded by x exp(−c

√
log x).

Lemma 4.1 then follows by applying (4.6)-(4.9) and (4.11) to (4.5). ¤

5. Weight removal

Lemma 5.1. Let π be a self-contragredient automorphic irreducible cuspidal
representation of GLm over Q. Then

∑

n≤x

Λ(n)|aπ(n)|2 = x + O{x exp(−c
√

log x)}.(5.1)

Proof. The weight 1 − n/x can be removed from Lemma 4.1 by a standard
argument of de la Vallée Poussin. To this end, let Ψ(x) denote the quantity on
the left-hand side of (5.1); then Lemma 4.1 states that

∫ x

1
Ψ(t)dt =

x2

2
+ O{x2 exp(−c

√
log x)}.

From this,

1
h

∫ x+h

x
Ψ(t)dt = x +

h

2
+ O

{
x2

h
exp(−c

√
log x)

}

= x + O
{

x exp
(
− c

2

√
log x

)}
,(5.2)

where we have chosen
h = x exp

(
− c

2

√
log x

)
;
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and similarly,

1
h

∫ x

x−h
Ψ(t)dt = x + O

{
x exp

(
− c

2

√
log x

)}
.(5.3)

Now the terms in Ψ(t) are non-negative. Therefore,

1
h

∫ x

x−h
Ψ(t)dt ≤ Ψ(x) ≤ 1

h

∫ x+h

x
Ψ(t)dt.(5.4)

By (5.2)-(5.4),

Ψ(x) = x + O
{

x exp
(
− c

2

√
log x

)}
,

which gives Lemma 5.1. ¤

Without assuming π to be self-contragredient, we can prove a prime number
theorem in Lemma 5.2 by the Tauberian theorems of Landau [15] or Ikehara [6].
Note that the error term in Lemma 5.2 is not as good as that in Lemma 5.1.

Lemma 5.2. For any automorphic irreducible cuspidal unitary representation
π of GLm over Q, not necessarily self-contragredient, we have

∑

n≤x

Λ(n)|aπ(n)|2 ∼ x.

Proof. A Tauberian theorem of Ikehara [6] says that, if f(s) is given
for σ > 1 by a Dirichlet series

f(s) =
∞∑

n=1

an

ns

with an ≥ 0, and if

g(s) = f(s)− 1
s− 1

has analytic continuation to σ ≥ 1, then
∑

n≤x

an ∼ x.

By RS1, RS3, and RS5, we can apply this theorem to

f(s) = −L′

L
(s, π × π̃).

Lemma 5.2 then follows. ¤
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6. Proof of the off-diagonal prime number theorem

Proof of Theorem 2.3. Without loss of generality, we suppose π is self-contragredient.
When π′ ∼= π, the theorem reduces to Lemma 5.1. Therefore, it remains to con-
sider two cases:

(i) π′ ∼= π ⊗ |det |iτ0 for some τ0 ∈ R×;
(ii) π′ 6∼= π ⊗ |det |iτ for any τ ∈ R.

We only treat case (i) in detail; the proof in case (ii) is exactly the same, except
that all arguments below concerning τ0 will disappear.

By Lemma 5.1, we obtain a bound for the short sum
∑

x<n≤x+y

Λ(n)|aπ(n)|2 ¿ y

for y À x exp(−c
√

log x). Remember that π′ is not necessarily self-contragredient;
nevertheless, Lemma 5.2 gives for 0 < y ≤ x that

∑

x<n≤x+y

Λ(n)|aπ′(n)|2 ¿
∑

x<n≤2x

Λ(n)|aπ′(n)|2 ¿ x.

Let an = Λ(n)aπ(n)āπ′(n); then for the above y,

∑

x<n≤x+y

|an|¿
{ ∑

x<n≤x+y

Λ(n)|aπ(n)|2
}1/2{ ∑

x<n≤x+y

Λ(n)|aπ′(n)|2
}1/2

¿√
yx.

Now let T À exp(
√

log x). Then

∑

x−x/
√

T<n≤x+x/
√

T

|an| ¿
√(

x√
T

)
x =

x

T 1/4
.(6.1)

Still we need an upper bound estimate for B(σ). We have

B(σ) =
∞∑

n=1

|an|
nσ

¿
{ ∞∑

n=1

Λ(n)|aπ(n)|2
nσ

}1/2{ ∞∑

n=1

Λ(n)|aπ′(n)|2
nσ

}1/2

.(6.2)

But by Lemma 5.2, for 1 < σ ≤ 2,

1
uσ

∑

n≤u

Λ(n)|aπ(n)|2 ¿ u1−σ
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and tends to 0 when u →∞. Consequently,

∞∑

n=1

Λ(n)|aπ(n)|2
nσ

=
∫ ∞

1

1
uσ

d

{∑

n≤u

Λ(n)|aπ(n)|2
}

¿ 1 + σ

∫ ∞

1

du

uσ
¿ 1

σ − 1
.(6.3)

Note that (6.3) also holds for π′. Applying (6.3) to both sums on the right side
of (6.2), we get for 1 < σ ≤ 2 that

B(σ) ¿ 1
σ − 1

.(6.4)

The upper bound (6.4) holds for π, π′ not necessarily self-contragredient, since it
depends only on Lemma 5.2.

Next we apply Corollary 2.2 with b = 1 + 1/ log x and T À exp(
√

log x) to
an = Λ(n)aπ(n)āπ′(n):

∑

n≤x

an =
1

2πi

∫ b+iT

b−iT

{
−L′

L
(s, π × π̃′)

}
xs

s
ds

+O

{ ∑

x−x/
√

T<n≤x+x/
√

T

|an|
}

+ O

{
xbB(b)√

T

}
.

By (6.1) and (6.4), we get

∑

n≤x

an =
1

2πi

∫ b+iT

b−iT

{
−L′

L
(s, π × π̃′)

}
xs

s
ds + O{x exp(−c

√
log x)}.(6.5)

The integral in (6.5) can be evaluated by shifting the contour to the left as in
§4. Let a with −2 < a < −1 and T > 0 be as in §4, and define the new contour
C1 ∪ C2 ∪ C3 in the same way as in §4. Three poles s = 1 + iτ0, iτ0, 0, some
trivial zeros, and certain nontrivial zeros ρ = β + iγ of L(s, π × π̃′) are passed
by the shifting of the contour. The trivial zeros can also be determined similarly
to what we have done in the proof of Lemma 4.1: s = −µπ×π̃′(j, k) with a <
−Re(µπ×π̃′(j, k)) < 1 and s = −2−µπ×π̃′(j, k) with a+2 < −Re(µπ×π̃′(j, k)) < 1.
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Similarly to (4.5), we have

1
2πi

∫ b+iT

b−iT
J(s)

xs

s
ds

=
1

2πi

(∫

C1

+
∫

C2

+
∫

C3

)
+ Res

s=1+iτ0,iτ0,0
J(s)

xs

s

+
∑

a<−Re(µπ×π̃′ (j,k))<1

Res
s=−µπ×π̃′ (j,k)

J(s)
xs

s

+
∑

a+2<−Re(µπ×π̃′ (j,k))<1

Res
s=−2−µπ×π̃′ (j,k)

J(s)
xs

s

+
∑

|γ|≤T

Res
s=ρ

J(s)
xs

s
.(6.6)

Applying Lemma 4.1(d) of [17], for any large τ > 0 we can choose T in τ <
T < τ + 1 such that

∫

C1

¿
∫ b

a
log2(Qπ×π̃′T )

xσ

T
dσ ¿ x log2(Qπ×π̃′T )

T
.

The same upper bound also holds for the integral on C3. By Lemma 4.2 in [17]
we can choose a so that

∫

C2

¿
∫ T

−T

xa

|t|+ 1
dt ¿ log T

x
.

Thus, on taking T À exp(
√

log x), all the three integrals on C1, C2, C3 are

¿ x exp(−c
√

log x).(6.7)

Computing the residues at s = 1 + iτ0, iτ0, and 0 respectively, we get

Res
s=1+iτ0,iτ0,0

J(s)
xs

s
=

x1+iτ0

1 + iτ0
+ O(1).(6.8)

The residues at the trivial zeros can be computed similarly to what we have done
in (4.8) and (4.9), and the results are again

¿ x1−δ.(6.9)

To compute the residues corresponding to nontrivial zeros, we recall that the
number of zeros ρ = β + iγ of L(s, π × π̃′) with |γ| ≤ t is O(t log t), and hence

∑

|γ|≤T

1
|ρ| ¿ log2 T.
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Consequently,
∑

|γ|≤T

Res
s=ρ

J(s)
xs

s
= −

∑

|γ|≤T

Res
s=ρ

1
s− ρ

xs

s

¿
∑

|γ|≤T

∣∣∣∣
xρ

ρ

∣∣∣∣ =
( ∑
|γ|≤T
ρ∈E

+
∑
|γ|≤T
ρ/∈E

)
xβ

|ρ| ,(6.10)

where E is the set of exceptional zero in (4.4). Since |E| ≤ 1, the sum over ρ ∈ E
is again ¿ x1−δ, which is the same as in §4. By (4.3), the sum over ρ 6∈ E is

¿ x exp
(
−c3

log x

2 log(Qπ×π̃′T )

) ∑

|γ|≤T

1
|ρ| ¿ x exp(−c

√
log x),(6.11)

by taking T = exp(
√

log x) + d for some d with 0 < d < 1. Hence (6.10) is
bounded by x exp(−c

√
log x). Collecting (6.6)-(6.11), we complete the proof of

Theorem 2.3. ¤
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