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Abstract: In this paper the classical Perron’s formula is modified so that
it now depends no longer on sizes of individual terms but on a sum over
a short interval. When applied to automorphic L-functions, this new Per-
ron’s formula may allow one to avoid estimation of individual Fourier coef-
ficients, without assuming the Generalized Ramanujan Conjecture (GRC).
As an application, a prime number theorem for Rankin-Selberg L-functions
L(s,m x @) is proved unconditionally without assuming GRC, where 7 and
7/ are automorphic irreducible cuspidal representations of GL,,(Qa) and
G L, (Qy), respectively.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 11F70, 11M26, 11M41.

1. INTRODUCTION

The classical Perron’s formula gives a formula for a sum of complex numbers
an, 1 <n <z, in terms of their Dirichlet series

> a

(1.1) floy=) —

ns
n=1

Received November 10, 2005.

1Supported in part by China NNSF Grant # 10531060, and by a Ministry of Education
Major Grant Program in Sciences and Technology.

2Supported in part by the USA National Security Agency under Grant Numbers MDA904-03-
1-0066 and H98230-06-1-0075, and by a University of Iowa Mathematical and Physical Sciences
Funding Program Award. The United States Government is authorized to reproduce and dis-
tribute reprints notwithstanding any copyright notation herein.



482 Jianya Liu and Yangbo Ye

and bounds for individual terms a,,, where here and throughout s = o + it € C.
Let A(z) > 0 be non-decreasing such that a, < A(n), and let

(1.2) Blo)=>_ Jan|

for ¢ > o4, the abscissa of absolute convergence of (1.1). Then the classical
Perron’s formula (see e.g. Heath-Brown’s notes on Titchmarsh [31], p.70) states
that, for b > oy,

1T x® A(2z)xlog
Zan—fm. i f(s)?dS—FO <T )

n<x

o) sofumm ()

where N is the integer nearest to x.

When applying (1.3) to the Riemann zeta-function or Dirichlet L-functions,
bounds for a, pose no problem. When applying this formula to other auto-
morphic L-functions, however, bounds for a, often require an assumption of the
Generalized Ramanujan Conjecture (GRC). Examples include a prime number
theorem for Rankin-Selberg L-functions (Theorem 2.3 below) recently proved by
the authors in [18] under the GRC.

In this paper, we will prove a revised version of Perron’s formula (Theorem
2.1 and Corollary 2.2 below). Different from the classical (1.3), the new Perron’s
formula produces a formula for ) . a, in terms of a sum of |a,| over a short
interval. While bounding individual Fourier coefficients |a,(n)| of an automor-
phic cuspidal representation is hard and may require GRC, estimation of a sum
of |az(n)| can usually be done by the Rankin-Selberg method. The new Per-
ron’s formula thus allows us to prove certain results for automorphic L-functions
without assuming the GRC.

As an application, we are now able to prove a prime number theorem (Theorem
2.3) unconditionally for Rankin-Selberg L-functions L(s, 7 x ), by removing the
assumption of GRC in [18]. This prime number theorem has a remainder term
of a size which reflects our current knowledge of zero-free regions of L(s,7) as in
(4.3) and (4.4). We will see that the new Perron’s formula allows us to deduce
the prime number theorem for w 2 «’ from the diagonal case of ™ = 7’.

Several authors have already addressed the question of prime number theorem
for Rankin-Selberg L-functions in the GG Lo context, and they all faced the problem
of bounding Fourier coefficients. Moreno [20] avoided GRC by an averaging
technique, while others restricted themselves to the case of holomorphic cusp
forms where GRC is known (Ichihara [5]), or to the Selberg class where GRC is
assumed (Kaczorowski and Perelli [11]).
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We remark that using these prime number theorems one can count primes
weighted by Fourier coefficients of automorphic cuspidal representations. This
can be regarded as a direct connection between representation theory and prime
distribution.

2. MAIN THEOREMS

The following is a modification of (1.3).
Theorem 2.1. Let f(s) be as in (1.1) and absolutely convergent for o > oy.
Let B(o) be as in (1.2). Then, forb > 04,2 >2, T > 2, and H > 2,
1 pbHT

Samg [ s@Tassof S )

n<z z—z/H<n<z+x/H

(2.1) +o{xbfg3(b)}.

Taking H = /T in Theorem 1.1, we deduce the following

Corollary 2.2. With the same notation as in Theorem 2.1,
1 b+iT 5
> =g - f(s)sds+0{ > |an|}

n<z z—x/VT<nlz+z/VT

(2.2) +O{ xb\%b) }

We remark that Corollary 2.2 can be used to derive the classical prime number
theorem. In fact, taking a,, = A(n), we have

1
> |ay| < logz > 1< x;;x.
z—z/VT<n<z4z/VT z—z/VT<n<z+z/VT
By (3.10.6) in Titchmarsh [31], for ¢ > 0, =1,
— A 1
Blo)=>_ () o

no oc—1"

n=1

Therefore, Corollary 2.2 with b =1+ 1/logx gives

e e Rl e 2

n<zx
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We can take T' = exp(y/log ). The prime number theorem
Z A(n) =z + O{zexp(—cy/logz)}
n<x

now follows from the zero-free region of the Riemann zeta-function and a standard
contour-integration argument; here and throughout ¢ denotes a positive constant
not necessarily the same at different occurrences.

In order to describe applications of this new Perron’s formula to automorphic
L-functions, let us recall that for an irreducible unitary cuspidal representation
m of GL,(Qa), the global L-function attached to 7 is given by products of local
factors for 0 > 1 (Godement and Jacquet [4]):

L(s,m) = H Ly(s,mp),

D(s,m) = Loo(s, Too) L(s, ),

L) =] (1- “(“))

=1 4

where

and
Loo(8,To0) = H Lr(s + px(7))-

Here I'g(s) = 7 %/?T'(s/2), and ax(p,j) and pur(j), j = 1,...,m, are complex
numbers associated with 7, and 7, respectively, according to the Langlands
correspondence. Denote by

a-(P") = Y ax(p.j)*
1<j<m

the Fourier coefficients of w. Then for ¢ > 1, we have

d = A(n)ax(n
dslogL(s,W):—Z( ) (n)

n=1

ns ’
where A(n) is the von Mangoldt function. If 7’ is an automorphic irreducible
cuspidal representation of GL,,(Qa), we define L(s,7’), a(p,i), (i), and
a(p*) likewise, for i = 1,...,m/. If 7 and 7’ are equivalent, then m = m’ and
{a(p,5)} = {aw(p,i)} for any p. Hence a(n) = ay(n) for any n = p¥, when
=

The prime number theorem for Rankin-Selberg L-functions has two different
cases.
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Theorem 2.3. Let m and ©' be irreducible unitary cuspidal representations of
GL,(Qa) and GLyy (Qy), respectively. Assume that at least one of m and 7' is
self-contragredient: m = 7 or ©’ = 7', Then

> Aln)ax(n)an (n)

n<x
1+i71o
fTiTo + O{zexp(—cy/logz)}
(2.3) — if T =2 7@ |det [ for some 9 € R;

O{xexp(—cylogx)}
if " %2 7@ |det | for any T € R.

Note that Theorem 2.3 is now an unconditional result, improved upon [18].
Previously known unconditional prime number theorems for Rankin-Selberg L-
functions include a weighted version . (1—n/z)A(n)ar(n)a, (n) and a special
case Y, <. A(n)|ax(n)|?, both in Liu, Wang, and Ye [16]. By a standard argument
of partial summation, we can deduce from Theorem 2.3 a Mertens theorem for
Rankin-Selberg L-functions which is a version of Selberg’s orthogonality (Selberg
[26] and Ram Murty [22] [23]).

Corollary 2.4. Let m and 7' be as in Theorem 2.3. We have

A(n)ar(n)a(n
3 (n)ax(n)a. (n)

n
n<lz
(logx + ¢1 + O{exp(—cy/logx)}
lf = ;
_z _
(2.4) —{ ol T in) + ¢34+ Ofexp(—cy/logz)}

if ™ 27 @ |det | for some 79 € R*;

¢3 + Ofexp(—cy/Tog z)}

if 7 2 7@ |det | for any T € R.

Here c¢1 and co are constants depending on m and 7':

L 1 L
Clzli_l’)r(l) <—L(S+1,7T><7?/)—S> —1, C2:—f(1,7r><7}/).

3. PROOF OF PERRON’S SUMMATION FORMULA

Proof of Theorem 2.1. We begin with the discontinuous integral
1 btico s 0 ifo<y<l1,
(3.1) — Zds=141/2 if y=1,
b—ioco 1 if y>1.
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Denote the right-hand side by 6(y); the basic idea is to use d(y) to pick up terms
with n < z in the Dirichlet series (1.1). A more convenient form of (3.1) is (see
e.g. [1], Lemma in Chapter 17)

1T s Ofy’min(1, 7~ |logy| ™)} if y #1,

— —ds=9§ .
27t Jo_ir S N (v) + {O(bT‘l) if y=1,
where the O-constant is absolute.

Let N be the integer nearest to x. Suppose first that
z
T?

so that x is not an integer. We take y = z/n, multiply both sides in (1.1) by ay,
and then sum over n, to get

(3.2) |z — N| >

1 b+iT s
3.3 — “ds = n+ O(R),
(3.3) 371 Sy f(S)S s T;a +O(R)
where

> 1
Reo?S i (1, L)
) Z b U T og(/n)]

For H > 2,

(3.4) R:azb{ >+ > + > }

n<z—z/H z—z/H<n<z+z/H n>z+z/H

In the first sum on the right, we have
1

> =

log X > 1o (L)
& =8 x—x/H H

Therefore, the first sum is

H lan| H
< > 5 < B().
n<z—z/H

The third sum in (3.4) has the same upper bound. The second sum in (3.4) is
|an| _
« ¥ Beo oy
z—x/H<n<z+z/H z—x/H<n<z+z/H
and (3.4) becomes
20 H B(b)

z—x/H<n<z+z/H

This proves the theorem under (3.2).
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Now suppose (3.2) is not true, that is [t — N| < z/T. All goes as before except
for the contribution from the term with n = N, which can be estimated as

b+iT \S ds b+iT ds
—) —= 14+0
/b—iT o <N) S aN/b—iT { * <T>} S
b+iT d
:aN/ {1+O<‘;J>}s<<]a |.
b—iT

This proves the theorem. O

4. A WEIGHTED DIAGONAL PRIME NUMBER THEOREM

We will use the Rankin-Selberg L-functions L(s, mx7') as developed by Jacquet,
Piatetski-Shapiro, and Shalika [8], Shahidi [27], and Moeglin and Waldspurger
[19], where m and 7" are automorphic irreducible cuspidal representations of G'L,
and GL,,, respectively, over Q with unitary central characters. This L-function
is given by local factors:

(4.1) L(s,m x 7') HL S, Tp X )

where

Ly(s,mp X 7)) = ﬁ r <1 - a“(p’j)o‘”’(p’k)>l.
j 1

pS
‘]:
The Archimedean local factor Lo (s, oo X 7h,) is defined by

[e.e]

satisfy the trivial bound
g k) > —1.

where the complex numbers pi;x7 (Jj, k

(42) Re (,Uﬂr X T
Denote

D(s,m X T') = Loo(8, Too X T, ) L(s, ™ x 7).

We will need the following properties of the L-functions L(s, 7 x7’) and ®(s, 7 x

7).

RS1. The Euler product for L(s, 7 x7’) in (4.1) converges absolutely for o > 1
(Jacquet and Shalika [9]).

RS2. The complete L-function ®(s,m x 7') has an analytic continuation to
the entire complex plane and satisfies a functional equation

b(s,m x 7)) =¢e(s,m x T)P(l — 5,7 x ')
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with
e(s,mx @) =7(m x 7T)Q 4

1/2

X!

where Qrx7 >0 and 7(7 x ') = +Q (Shahidi [27], [28], [29], and [30]).

RS3. Denote a(g) = |det(g)|. When 7' % 7 ® o for any 7 € R, ®(s, 7 x @)
is holomorphic. When m = m’ and 7/ & 7 ® '™ for some 79 € R, the only poles
of ®(s,m x 7') are simple poles at s = ity and 1 + ity coming from L(s, 7 X 7')
(Jacquet and Shalika [9] and [10], Moeglin and Waldspurger [19]).

RS4. &(s,m x 7’) is meromorphic of order one away from its poles, and
bounded in vertical strips (Gelbart and Shahidi [3]).

RS5. ®(s,m x ') and L(s,m x 7') are non-zero in ¢ > 1 (Shahidi [27]).
Furthermore, it is zero-free in the region

c3
(4.3) c>1-— , [t =1,
log (Qrxa(|t] + c1))
and at most one exceptional zero in the region
(4.4) o>1 S <,

~ log(Quxarca)

for some effectively computable positive constants cs and ¢4, if at least one of w
and 7’ is self-contragredient (Moreno [20] [21], Sarnak [25], and Gelbart, Lapid,
and Sarnak [2]).

Now we prove a weighted prime number theorem in the diagonal case.

Lemma 4.1. Let w be a self-contragredient automorphic irreducible cuspidal
representation of G Ly, over Q. Then

Z <1 — g) A(n)|ar(n)* = g + O{zexp(—cy/logz)}.

n<x

Proof. By RS1, we have for ¢ > 1,

J(s) := _di log L(s,m x ) = Z A(n)aﬂ(n)dﬂ(n)'

S — ns
Note that
i Yy’ ds = 1—1/yify21,
2mi Jpy s(s +1) 10 if0<y<1,
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where (b) means the line 0 = b > 0. Taking b =1+ 1/log z, we have

S

S (1= 1) Alas(n)f? = % /(b) J(s)ﬁ ds

n<x
</b+zT / b+zoo>
2 - b b+iT

The last two integrals are clearly bounded by

<</T 2 <<T
Thus,
n 1 b+iT s T
1—-—)A s S d — ).
ng;( x) Ml =55 | TG S+O(T)

By an argument as in [17], we may choose a real number a with —2 < a < —1
and a large T' > 0, and consider the contour

Ci: b>0c>a, t=-T;
Co: o=a, -T<t<T;
Cs: a<o<b t=T.

Note that three poles s = 1,0, —1, some trivial zeros, and certain nontrivial
zeros p = 3+ iy of L(s,m x 7) are passed by the shifting of the contour. Also
note that s = 0 is a double pole. The trivial zeros can be determined by RS2 and
(4.2): s = —prx#(j, k) with a < —Re(prx#(j,k)) < 1 and s = =2 — prx#(j, k)
with a + 2 < —Re(urx#(j,k)) < 1. Here we have used —2 < a < —1. Then we
have

1 b+iT s

x
iy T s ™
:,US
= omi (/C /C /Cg)iffgs_l Uy,
:,US
Res J(s
=t 7 (Gk) (®) s(s+1)

a<-— Re(#wxw(] k))<1

+ Z Res J(s) i

a42<—Re(pr 7 (j,k)) <1 s=—2—pur 7 (J:k) s(s+1)

(4.5) +|ﬂZ<:T§e§J s) STl
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By Lemma 4.1(d) of [17], for any large 7 > 0 we can choose T'in 7 < T < 7+1
such that, when —1 < o < 2,

J(o +£iT) < 1og*(Qrx#T),

b 2

g 1 axil
/ <</ 10g2(QWXfrT)%dU < v log™(Qnx )
Cq a T

and hence,

T2
The same upper bound also holds for the integral on C3. By Lemma 4.2 in [17]
we can choose a so that, when || < T,

J(a+1it) < 1,

<</ s dt <<
/02 Itl +1)?

On taking T' > exp(y/log z), the three integrals on C7,Cy,C3 are
(4.6) < xexp(—cy/logx).

The function

and therefore,

',L,S

I(s) s(s+1)

has simple poles at s = 1, —1, and a double pole at s = 0; the residues are x/2,
O(z~!), and O(log x) respectively. Therefore,

s

x
(4.7) S:E{,S,S—1 J(s) G 5 + O(log ).

Near a trivial zero s = —purx#(j, k) of order I, we can express J(s) as —1/(s +
trx#(j,k)) plus an analytic function. The residues at these trivial zeros can
therefore be computed similarly to what we have done in (4.7). By (4.2), we
know that Re (pxx#(j,k)) > 1 — for some § > 0. Consequently,

(4.8) Z Res  J(s) *

a<—Re(prx7(j,k))<1 §=—finx 7 (J,k) s(s+1)

(4.9) Z Res J(s) x

a+2<—Re(prx#(4,k))<1 5=—2—prxx (k) s(s+1)

< $1—6’

—1-6

<Lz

To compute the residues corresponding to nontrivial zeros, we recall RS4 and

RS5, to get
1
— <0
Zp: |p(p +1)]
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Consequently,

S

1 T
-2 Be

ZE{Q/?J s(s+ )

[vI<T |y|<T
"L‘p
<y |
Szplelpt 1)
(4.0 (2 + X )
v <T |y <T |pp+
pEE P¢E

where E is the set of exceptional zeros in (4.4). We have |E| < 1, and hence the
sum over p € E is clearly < 2!~ for some § > 0. By (4.3), the sum over p ¢ E
is

1 1
(4.11) < xexp (—63 e > E ErE] < wexp(—cy/log z),
p(p
P

2log(QrxT)

by taking T = exp(y/logz) + d for some d with 0 < d < 1. Hence (4.10) is
bounded by z exp(—cy/log x).
Lemma 4.1 then follows by applying (4.6)-(4.9) and (4.11) to (4.5). O

5. WEIGHT REMOVAL

Lemma 5.1. Let w be a self-contragredient automorphic irreducible cuspidal
representation of GLy, over Q. Then

(5.1) ZA Vax(n)* = 2 4+ O{z exp(—cy/logz)}.

n<x

Proof. The weight 1 — n/x can be removed from Lemma 4.1 by a standard
argument of de la Vallée Poussin. To this end, let ¥(z) denote the quantity on
the left-hand side of (5.1); then Lemma 4.1 states that

T 2
/ U(t)dt = % + O{2? exp(—cy/log z)}.
1
From this,
1 z+h h 72
h/ \Il(t)dt—x+2+0{hexp(—c\/logx)}
c
(5.2) :x—l—O{xexp (—ix/logx>},

where we have chosen

b= sexp (<5 iog)
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and similarly,

(5.3) }11/:): \I/(t)dt:x—i—O{mexp (—g\/@)}

—h

8

—

Now the terms in W(¢) are non-negative. Therefore,

(5.4) / ih W(t)dt < () < % / TR

SES

By (5.2)-(5.4),
U(zx)=2+0 {xexp (—g@)} )

which gives Lemma 5.1. O

Without assuming 7 to be self-contragredient, we can prove a prime number
theorem in Lemma 5.2 by the Tauberian theorems of Landau [15] or Ikehara [6].
Note that the error term in Lemma 5.2 is not as good as that in Lemma 5.1.

Lemma 5.2. For any automorphic irreducible cuspidal unitary representation
7w of GLy, over Q, not necessarily self-contragredient, we have

> A(n)|ax(n)]* ~ x.

n<x

Proof. A Tauberian theorem of Ikehara [6] says that, if f(s) is given
for o > 1 by a Dirichlet series

Ea
fo =3
n=1
with a, > 0, and if
1
o() = f(s) — —

has analytic continuation to ¢ > 1, then
Sy~
n<x

By RS1, RS3, and RS5, we can apply this theorem to
Ll
Fls) =~ (s,m % 7).

Lemma 5.2 then follows. O
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6. PROOF OF THE OFF-DIAGONAL PRIME NUMBER THEOREM

Proof of Theorem 2.3. Without loss of generality, we suppose 7 is self-contragredient.
When 7’ = 7, the theorem reduces to Lemma 5.1. Therefore, it remains to con-
sider two cases:

(i) 7 27 ® |det ]Z:TO for some 79 € R*;
(i) 7 2 7 ® | det [ for any 7 € R.

We only treat case (i) in detail; the proof in case (ii) is exactly the same, except
that all arguments below concerning 7y will disappear.
By Lemma 5.1, we obtain a bound for the short sum

Y Am)ax()]® <y

z<n<z+y

for y > x exp(—cy/log z). Remember that 7’ is not necessarily self-contragredient;
nevertheless, Lemma 5.2 gives for 0 < y < z that

Z A(n)|ar(n)]? < Z A(n)]ay(n)* < =

r<n<z+y r<n<2z

Let a, = A(n)az(n)a, (n); then for the above y,

> | X Awle >|2} { S A()a(n) }1/2

z<n<z+y r<n<z+y r<n<z+y

<\ Yyx.
Now let T > exp(y/log x). Then

X

€T
z—z/VT<n<z4z/VT

Still we need an upper bound estimate for B(o). We have

00 a 00 Mla-(n 2y1/2 ¢ o0 Dlar (n 24 1/2
(6.2) B(a)zz‘nz‘ < {ZW} {ZW} |
n=1 n=1 _

n=1
But by Lemma 5.2, for 1 < o < 2,

1
— A(n)|az(n)]? < ul™?
u n<u
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and tends to 0 when u — oco. Consequently,

iA(")fZ(”)F:/ d{ZA st }

n=1 n<u

% g |
(6.3) <<1+a/ u—ff<<
1

c—1

Note that (6.3) also holds for #’. Applying (6.3) to both sums on the right side
of (6.2), we get for 1 < o < 2 that

1

(6.4) B(o) < 7

The upper bound (6.4) holds for 7, 7" not necessarily self-contragredient, since it
depends only on Lemma 5.2.

Next we apply Corollary 2.2 with b = 1 4+ 1/logx and T > exp(v/logz) to
an = A(n)ax(n)am (n):

+o{ 3 \an}+o{xbff(b)}.

z—z/VT<n<z4z/VT

By (6.1) and (6.4), we get

b+iT

U s
o ;‘277 L {‘L“?”ﬁ')}id”O{xeXp(—cJ@)}.

The integral in (6.5) can be evaluated by shifting the contour to the left as in
§4. Let a with —2 < a < —1 and T > 0 be as in §4, and define the new contour
C1 UCy U (5 in the same way as in §4. Three poles s = 1 + i7g,i79,0, some
trivial zeros, and certain nontrivial zeros p = 8 + iy of L(s,m x 7') are passed
by the shifting of the contour. The trivial zeros can also be determined similarly
to what we have done in the proof of Lemma 4.1: s = —pu,y7 (4, k) with a <
_Re(:uﬂxfr’(jv k)) <lands= _2_M7r><7~r’<j7 k) with a+2 < _Re(uﬂxﬁ’<j7 k)) <L
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Similarly to (4.5), we have

1 b+iT s
— J(s)x—ds
27 Jo—iT s
1 S
=</ +/ —|—/>—|— Res J(s)x—
271 Cy Cs Cs s=141719,i70,0 S
xS
+ Res J(s)—
Z Szfﬂwxﬁ’(jvk) ( ) S

a<—Re(p, 7 (4,k))<1
xS
+ Z Res J(s)—

=—2—p_. 1.k s
a+2<*Re(M7r><,,~r/(j,k'))<1s lu"/\'X’/\'/(«] )

(6.6) + Z 13265 J(s)—.

Applying Lemma 4.1(d) of [17], for any large 7 > 0 we can choose T in 7 <
T < 7+ 1 such that

b o 1 2 T
/ <</ log2(Q7rX7~r/T)x—da < vlog”(Qrx )
4 a T T

The same upper bound also holds for the integral on C3. By Lemma 4.2 in [17]

we can choose a so that
T a
T logT
/ < / dt < & .
Oy -T ‘t’ + 1 xr

Thus, on taking T > exp(y/log ), all the three integrals on C1, Cs, C5 are
(6.7) < xwexp(—cy/logx).

Computing the residues at s = 1 4 479, i79, and 0 respectively, we get

O(1).

The residues at the trivial zeros can be computed similarly to what we have done
in (4.8) and (4.9), and the results are again

s x1+i7'0
(6.8) Res  J(s)— = ,
s=1+4170,i70,0 S 1+

(6.9) < 'l

To compute the residues corresponding to nontrivial zeros, we recall that the
number of zeros p = + iy of L(s,m x 7') with |y| <t is O(tlogt), and hence
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Consequently,
S 1 S
Z Res J(s)x— = — Res T
s=p S s=p §—p 8
yI<T yI<T
xf P
(610 <SP (22
[v|<T p ST yIST p
pEE PEE

where F is the set of exceptional zero in (4.4). Since |E| < 1, the sum over p € E
is again < £'7°, which is the same as in §4. By (4.3), the sum over p € E is

log 1
6.11 -3 — —cy/1
(6.11) < xexp ( 03210g(Q7rxfr/T)> Z < zexp(—cy/logz),

[y|<T o

by taking T = exp(yv/logz) + d for some d with 0 < d < 1. Hence (6.10) is
bounded by zexp(—cy/logz). Collecting (6.6)-(6.11), we complete the proof of
Theorem 2.3. U
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