Pure and Applied Mathematics Quarterly
Volume 3, Number 2

(Special Issue: In honor of

Leon Simon, Part 1 of 2)

451—480, 2007

Vector-valued Singular Integral Operators with
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Abstract: Let (X,d, 1) be a space of homogeneous type. First, the authors
introduced the notation of vector-valued singular integral operator 1" with
non-smooth kernel on X, and studied the boundedness of T and its maximal
truncated operator T,. Then, the authors gave the definition of multilinear
commutator generated by T" and BMO functions or by T and Lipschitz
functions, and discussed the boundedness of these multilinear commutators.

1. INTRODUCTION

Let X be a topological space equipped with a distance d and a non-negative Borel
regular measure u. (X,d, ) is called to be a space of homogeneous type, if the
doubling condition

w(B(x,2r)) < cu(B(x,r)) < oo (1.1)
holds for some ¢ > 1 uniformly and for all z € X and r > 0, where B(z,r) =
{y € X : d(z,y) < r}. A more general definition for this space can be found
in [1], [2] and [3]. Note that the doubling property implies the following strong
homogeneity property

u(B(x, Ar)) < eA"u(B(a, 1)), (1.2)

for some c¢,n uniformly and for all A > 1. The parameter n is a measure of
dimension of the space. There also exist ¢ > 0 and N(0 < N < n) so that

r

N
u(B(y. 7)) gc(1+d<‘”’y)) W(Bx.r)), (1.3)

uniformly for all z,y € X and r» > 0. In fact, the property (1.3) with N = n
is a direct consequence of triangle inequality of the distance d and the strong
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homogeneity property. But in general N can be smaller. In the cases of Euclidean
spaces R™ and Lie groups of polynomial growth, N can be chosen to be 0.

Throughout this paper we shall work on space of homogeneous type (X, d, )
with ©(X) = oo, and C denotes different constant in different line.

Let T be a bounded linear operator on L?(X) with an associated kernel K (x, )
in the sense that

Tf(z) = /X K (2, y)f () dp(y).

where K(z,y) is a measurable function, and the above formula holds for each
continuous function f with compact support, and for almost all x not in the
support of f.

One important result of Calderén-Zymund operator theory is the well known
Hoérmander integral condition on the kernel K (z,y), which is a sufficient condition
for the operator T to be of weak type (1,1) (see [4]). However, there are numerous
examples of operators which do not satisfy Hormander integral condition, and
certain classes of such operators can be proved to be of weak type (1,1). See,
for example [5], [6] and [7]. A natural question is whether one can weaken the
Hoérmander integral condition and still conclude that 7' is an operator of weak
type (1,1). In 1999, Duong and MclIntosh [8] gave an affirmative answer to
this question and introduced the notation of singular integral operator with non-
smooth kernel on space of homogeneous type X.

On the other hand, Duong and Yan [9] studied the boundedness of commutator
generated by the singular integral operator with non-smooth kernel and BMO
function. In the paper, we will introduced the notation of vector-valued singular
integral operator with non-smooth kernel on space of homogeneous type and
extend the results in [8] and [9] to the vector-valued situation.

Given a Banach space H, we shall denote by L% (X) or simply by L%, the
Bochner-Lebesgue spaces of H-valued strongly measurable functions f such that

1/p
1llze oo = ( / IIf(x)H%du(x)> <o, forall1<p< oo

in which || f(z)||g denotes the norm of f in H. When H is the scalar filed we
simply write LP(X) = L, (X). For p = oo, we write L3 (X) for the space of all
of the functions f such that || f||zee(x) = esssup || f|lz < oo, and Lg% (X) for the
space of all compactly supported members of L3} (X).

Let E and F' be a couple of Banach spaces, we denote by L(E, F') all of the
bounded linear operators from E to F. And set L(E) = L(FE, E) for short.

Definition 1.1. Let H be a Banach space. A family of operators {A; : t > 0} C
L(H) is said to be an “approximation to identity” on H if, for every ¢t > 0, A; is



Vector-valued Singular Integral Operators ... 453

represented by the kernel ay(z,y) : X x X —— L(H), in the following sense: for
every f € Iy (X),p > 1,

@) = [ o)1) duo),
and the following condition holds:

lae(x, Y)ll ooy < hal, ), (1.4)

for all z,y € X. Where hy(z,y) is a function satisfying

s(d(z,y)"t™")

M = (e )

(1.5)
in which m is a positive constant and s is a positive, bounded, decreasing function
satisfying

lim 7V 5(rm) = 0, (1.6)

T—00

for some 7 > 0, here N is the power which appeared in property (1.3) and n is
the “dimension” entering the strong homogeneity property.

Note that there exists a constant C > 0 such that
clg/mumeMSC, (1.7)
X

uniformly for y € X and ¢ > 0.

Moreover, for a locally integrable H—valued function f, the H—valued sharp
maximal function associated with the “approximation to identity” {A; : t > 0}
is defined by

AITMfHHXx)=§ggM£B)/;Hf@)—z%Bf@thhdy%

where tp = rif with rp is the radius of the ball B.

In the scalar case, Duong and McIntosh [8] introduced the notation of “ap-
proximation to identity” and constructed a;(z,y) which satisfies our conditions.
In addition, Martell [10] gave the definition of MjE and get an analogy of the
Fefferman-Stein estimate for the classical sharp maximal function.

After some preliminaries, in Section 2, we will introduce the definition of vector-
valued singular integral operator with non-smooth kernel and study the bound-
edness of T'. In Section 3, we will study the maximal truncated operator T%. In
section 4, the boundedness of multilinear commutator generated by T and BM O
functions or by T and Lipschitz functions will be discussed.
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2. VECTOR-VALUED SINGULAR INTEGRAL OPERATOR WITH NON-SMOOTH
KERNEL

Definition 2.1. Let £ and F be a couple of Banach spaces. A linear operator
T, mapping E—valued functions into F'—valued functions, is said to be a vector-
valued singular integral operator with non-smooth kernel K(z,y) : X x X ——
L(E, F), if T is bounded from L%(X) to L%(X) and for any f € L3%(X),

Tf(x) = / K(2,9)f(s) duly) for a.e x ¢ suppf.

Where K satisfies the following conditions:
(i) There exists an “approximation to identity” {A; : ¢ > 0} on E such that T'A;
has an associated kernel k¢ (z,y), and there exist constants c1,C' > 0, so that

/ VK (2 ) — ol )l gy dps(z) < €, for all y € X.
d(z,y)>crtt/m

(ii) There exists an “approximation to identity” {A} : ¢ > 0} on F such that A}T
has a kernel K;(z,y), and there exist constants ¢;,C' > 0, so that

/ 1K () — Ko, 9)ll e du(y) < C, for all z € X,
d(z,y)>c)tt/™

(In fact, without loss of generality in what follows we will assume that ¢; = ¢} =
1).

Let us show that in certain cases the vector-valued Hormander integral condi-
tion implies (i) or (ii) in Definition 2.1.

Proposition 2.2. Assume that 7T is a linear operator, mapping E—valued func-
tions into F'—valued functions, with an associated kernel K(z,y) : X x X —
L(E, F) which satisfies the vector-value Hormander integral condition, that is
there exist constants C' > 0 and d > 1, so that

/ 1K (2,9) — K(2,2)] oo dule) < C.
d(z,y)>8d(y,z)

for all y,z € X.

Let A; be an “approximations to the identity” on E which are represented by
the kernel a;(z,y) satisfying the following additional properties:
(i) ar(z,y) = 05, when d(z,y) > cot"/™,
(ii) / ai(z,y)du(x) = Ig, forally € X;t >0,
X
in which 6g and Ir denote the zero element and unit element in £(E), respec-
tively.



Vector-valued Singular Integral Operators ... 455

Then the kernel k;(z,y) of T'A; satisfies the condition (i) of Definition 2.1, that
is there exist constants 3, C' > 0 such that

/ 15 (2, ) — ke(s )| i) dis(z) < C,
d(x,y)zﬁtl/m

for all y € X.
To prove Proposition 2.2 we follow the idea of [8].

Proof: Choose 0 > 1 and let 3 = ¢y, where ¢ is the constant so that a;(x,y) =
0, when d(z,y) > cot'/™. Then for all y € X,

/ 1K () = el o) oy die)
d(z,y)>ptt/m

- /d(x,y)>ﬁt1/m
N /d(x,y)>ﬁt1/m

- / K(z,2)a(z,y)du(z)
X

B /d(:v,y)zﬁtl/m

< sw (/ IIK(x,y)—K(x,Z)IIaE,F)du(:v))
d(z,y)>ptt/m

d(z7y)§CDt1/m

x ( / Hat<z,y>||aE>du<z>)
d(z,y)<cotl/m

< sup </ HK(%Z/) _K(x7z)||L(E,F) d,u(x)>
d(z,y)<cot'/™ \Jd(z,y)>codt /™

<( M) du()) < C.
d(z,y)<cotl/m

In the last inequality we use (1.7).

K(:U,y)IE—/XK(x,z)at(z,y)du(z)

dp(x)
L(E,F)

K(.’L’,y)/ at(2’7y)d/,b(2)
d(z,y)<cotl/m

dp()
L(E,F)

dp()
L(E,F)

/ (K () — K (2, 2))ar(z, y)du(2)
d(z,y)<cotl/m

Remark 1. When the kernels of “approximations to identity” {A4; : ¢ > 0}
on F satisfy the similar condition as (i) and (ii) in Proposition 2.2, we can show
that if K (z,y) € L(E, F) satisfies the following vector-valued Hérmander integral
condition that is there exist C' > 0 and § > 1, so that

/ 1K (2.9) — K('9)l| .y din(y) < C,
d(z,y)>dd(x,z’)

for all z,2’ € X, then condition (ii) in Definition 2.1 also holds.
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Theorem 2.3. Let T, mapping E—valued functions into F—valued functions,
be a vector-valued singular integral operator with non-smooth kernel, then there
exists a constant C' > 0 such that

(W) T fll e x) < Cllfl Lz ), for 1 <p < oo,

(i) u({x e X || T f(z)||Fr > A}) < C’||fHL1E(X), forall A > 0,

(iii) [|ME (T Al ) < Cllf gy, for | € LH(X) N LE(X).

Remark 2. In the scalar field, when X = R" is Euclidean space, (iii) in Theorem
2.3 implies that 7" is bounded from L>(R")N L%(R") to BMO 4. Where BMO 4/
is the BMO type space associated with an “approximation to identity” {A} : ¢t >
0}. (The definition of BMO 4/ can be seen in [11]).

Given a singular integral operator T', mapping F—valued functions into F'—val-
ued functions, with non-smooth kernel K (z,y), then a new operator T mapping
[9(E)—valued functions into [¢(F')—valued functions(where ¢ is fixed and 1 < ¢ <
00) can be defined by

T(f1’f2’... i) = (T, Tfay - T ).

Thus the kernel associated with T'is K = K ®1, 14(E), and the two “approximation
to identities” corresponding to Definition 2.1 are {A; = A; ® By ot > 0} and

{4y = A4, ® g ot > 0}, where lja and Ijs denote the identity operators on 1,

and 14, respectively. It is easy to check that the kernel of T satisfy the condition
(i) and (ii) in Definition 2.1, so we have the following corollary.

Corollary 2.4. If T', mapping E—valued functions into F'—valued functions, is
a vector-valued singular integral operator with non-smooth kernel, then for all
1 < p,qg <ooand A > 0, there exists a constant C' > 0 such that

<C

1/q 1/q
0 ‘<;I|Tfj\l%> . @Hfﬂ%) o
(i) u<{m eX: (Z ||Tfj<:c>||%) s A}) <ox! (Z l'fa‘ii%)l/q!
o o (2 o), <] (> i)

LT (X).

)

LX)

, for all f; € LE(X)N
Lo(X)

Loo(X

To prove Theorem 2.3 we need the following Lemmas.

Lemma 2.5.([12]) Given function h(x, z) which satisfies (1.5) and v > 0, then
there exist positive constants C' and 7 such that

sup he(z,2) < C inf  hy(x, 2),
oup t(z, 2) et nt(,2)
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uniformly for z,y € X and r,t > 0 with ™ < vt.
Lemma 2.6. For every f € L(X),1 <p < co and t > 0, we have

(i) /X e, )1 F @) ndu(y) < CM|flm) (@),
(i) /X oo )| () i) < CM(| L) ().

In fact we need only to prove (i), for (ii) it is similar to.

Take B(x,rg) with rg = t*/™, then using (1.5),

(@, y) || f(y )I!Hdu( )

m y)mt 1)
/d(.z’7y <2rp /,L (x T»B)) ||f(y)HH dlLL(y)
std(e, )" 15')
+;/2kr3<d(x,y)<2k+1rB M(B(.CC r )) Hf( )HHd,u,(y)
=I+1I.

Since s(z,y) is a positive, bounded, decreasing function, thus by the doubling
condition (1.1), we have

1
1200 g [ @ dat) < M) @),

Moreover, when 2Frp < d(x,y) < 2¥*1rp by the strong homogeneity property
(1.2),

s(d(z,y)™t5") < C/(2kthyns(2Fm)
W(Bla,rs) ~ u(B(w, 2Hirg))
Thus using (1.6), we have

k+1\n km
II<ZC [ gt £ e o)

2kyp<d(z,y)<2ktlrg M(B( >

1
< C2kng(2km / fly du(z
kZ_l ( )/,L(B(i’, 2k+1,r.B)) d(ry) <25+ r g H ( )HH M( )

< Zcz*k(mﬂ2k<"+N+T>s<2’W>M<Hme(x)

<M (Al e) ().

Combining the estimate of I with I1, we prove Lemma 2.6.

Lemma 2.7.([1]) (Calderén-Zygmund decomposition on homogeneous space)
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Let f > 0, f € LY(X) with compact support and A > 0. Then there exists a
family of balls {B;} such that:
(i) f < CXfor pae. zeX\ Y, B,

. 1
(H)M(B)/ F(y) du(y) < O,

(i Zu </f ) dp(y

(iv) There exists an integer M > 1, independent of f and A, such that every point
in X belongs to at most M of these balls.

Remark 3. The following properties are contained in the proof of the previous
results:
(i) There exists some constant Cx, which only depends on the space X, such that

O\ ={z e X: Mf(z) > \Cx} = B,

here M f denotes the Hardy-Littlewoood maximal function of f.
(ii) There exists g > 1 independent of f and A such that (¢9B;)\Q) # &

Now, Let us turn to prove Theorem 2.3.

For 1 < p < 2, it is a straightforward generalization of Theorem 1 in [8]. But
here we need the Calderén-Zygmund decomposition for || f| g as follows.

For || f||g, by Lemma 2.7 and Remark 3, there exists a collection of balls {B;}
such that
O ={z e X: M(|f]g)(z) > ACx} = | B:.

As in [10], we decompose f as f =g+b=g+ ) b;, where
o) = faren v+ 5 (g [ SO0 ) )i
P\ u(Bi) Jp, e

57 [ £ ) )

pi(r) = Z%XUJ'& (@).

bile) = f@)pila) (M

and

So by (iv) in Lemma 2.7 and Remark 3, we have the following conclusions:
(a) If # € B;, then M~ < p;(x) < 1. Moreover, Y-, pi(x) = xu, B, ().
(b) |lg(z)||g < CA for pa.e z € X.
(

c) )| g du(z) < CA.
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Thus,

p{z € X [T (@)l[F > A})

< ul{z € X: [ To(@)llr > M2} + ul{e € X1 [ To(@)lr > A2h). 2

For the “good” part, notice that T is bounded from L% (X) to L4 (X), so by
the Chebyshev inequality and (b), we have

n({z € X || Tg(z)|r > A/2})

C
< v / 1T ()13 du(x)
< <z [ o)1 du(a)

C
< 3, lg(z)|| e du(x)

C
< A( lo(a HEdu o)+ [ Lol duto))

Q

o 2 (2.2)
< A(||f||L1 o+ [ |Z (g [ i) x| auto))

C 1
< 5 (15300 + / Z( 5 [ 100 )iy o)

C
< S (100 +Z/ Il dute))

C
< Il
Let us now estimate the “bad” part. Set t; = rg, and write
Then

| Aubi(@)|ls < / et 2,9 e 106() | 5 s ()
/ht (2.9 1bs() 1 da(y)
< sup by, (2, / 1bs(y) 1 dpay) (2.3)
yEB;

< .
CAu(B;) yléllgi hnt (z,y)

<Ox /X ot (2, 9) x5, () dpa(y).

Take ¢ € L?(X), then by (2.3), Lemma 2.6 and using the idea of [8],
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< lol, [ Aebille > |
<o /X /X (o (@) o (@, 9, () dia(y) d(a)
< Ch < M(SO)’XB«; >,

where < -, - > denotes the inner product in complex space.

So,
(el 3 I4sbill)| < € < M(@)xy, 5, >

It follows that

2

DIEIE L) o
i LQ(X)
sox(Tum) < 0A1/2||f||”2

Therefore, by the Chebyshev inequality and the boundedness of T on L%(X),

u({x eEX: HZTAtibi(x)H > )\/4 < C— /HZTAt

du( )

ey

V (2.4)

—Cﬁ

ZIIAtibz'HE
7

1
< O3y )

L2(X)

On the other hand, set B; = (1 + ¢1)B;, where ¢ is the constant in (i) in
Definition 2.1, then

u({:c €X: HZ T — TA)b: H > )\/4}>
<> u(B) + ,u({x e X\ U; B : HZ(T - TAti)bi(:p)HF > A/4})

<Y u(B) Az/X\UB (T = T44,)bi() | dpu()
::I-i-ZII.

(2.5)
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Using the property (iii) of the Calderén-Zygmund decomposition, for I we have

C
I= CZM(Bi> < XH.]C”L}E(X)' (2.6)

Since suppb; C B; and B; = (1 4 ¢;)B;, thus by assumption (i) in Definition
21,

4 Z
=5 ; /x\UiBi (T =T A )bi(2) || dpu()
du(z)

< — g

<> /||b( )l </ 1K (2, ) — ke, (2, 9)| dp )>dﬂ( )
5 Z, i\ L, , X

=32 y)l|le deysentl y) — ki, (2, 9)l 2 B,0) (1

C C
SN ZL: 1bill L1 (x) < XHfHL}E(X)’

/X (K () — o, (2, )i (9) dia ()

(2.7).

Combining (2.2), (2.4), (2.5), (2.6) with (2.7), we show that T" is an operator
of weak type (1, 1). By the Marcinkiewicz interpolation theorem, 7" is bounded
from LF(X) to LE.(X) for 1 < p < 2.

But for 2 < p < oo, we must pass to the adjoint operator. However, for 1 <
p < oo, L. (X) # (L% (X))*, in general. In fact, if f € LY (X) and g € L%,.(X),
then the active < f,g > () =< f(x), g(x) > is integrable; furthermore,

o,y =500 | [ < @) 900 > duta)

Mlzgen <1

From this we see that L"]E[* (X) C (Lh(X))*.

In the following we will show how to pass to the adjoint operator, which comes
from [13].

When F is reflexive L%,* (X) = (L%(X))*, it is enough to note that the kernel
associated with the adjoin operator 7% is K(y,z) = K*(z,y) € L(F*, E*). In
Definition 2.1 the condition (ii) for K is equivalent to (i) for K™*, so repeating the
above argument we get that 7™ is bounded for 1 < p < 2.

When L%,* (X) # (L%,(X))*, we must consider the finite dimensional subspaces
of E.

If f is a scalar function in LP(X) and b € E, define the function f-b from X to
E by (f-b)(x) = f(z)b. This function is in L1,(X) and its norm is || f|| .»x) |0 &-
The subspace of L%, (X) consisting of finite linear combinations of function of this
type, denote by LP ® F, is dense if 1 < p < oco. Given such a subspace Ej, let
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To : L2E0 (X) — L4(X) be the restriction of T' to functions with values in FEj.
The kernel associated with Ty is Ko € L(Ey, F'), which is the restriction of K
on Fy. Since ||Kollz(gy,r) < | K|lz(,F), inequalities (i) and (ii) in Definition 2.1
hold for K with constants independent of the subspaces Ey. Therefore, arguing
as before,

TJ:L%*}—>L‘1ES, for1 <gq<2.

So by duality, Ty is bounded from LY (X) to Lz(X) for 2 < p < oo. Since L, @ E
is dense in L%,(X), we get the desired result.

For the proof of (iii), it is sufficient for us to show that for any f € L%(X) N
LY (X) and z € X,

sup

1 /
o (B) /B IT(y) — AL, TF W)l pdp(y) < Ol ).

in which tp = r%% and rp is the radius of B.

Let f € L%(X)N LY (X) be given and B = B(zg,75) 2 . We write f1 = fx2p
and fo = f — f1, then

Tf—A,Tf=(TH —A,ThH)+ (T —A,T)f.

/B IT4(s) — A, TF(y) | du(y)
< /B ITf1(y) — A5, T @) r din(y) / I(T = &, T) fo(@)r dis(y)

Let us estimate I and I1 respectively.

By (1.4) and Lemma 2.6,
1A, T f1(y)llF
- H [ a2 TG )
X F
!%B Y, )l ITF () P du(z) (2.8)

htB Y, )T f1(2)l|F dp(z)
M([[Tf1l[F)(y)-

\%
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So,

1<c /B M(IT L) () du(y)
1/2
< O(u(B))2 ( / <M<HTf1HF><y>>2du<y>)
1/2
< O(u(B))2 ( / \|Tf1<y>||%du<y>)

1/2
< O(u(B))2 ( | IIf(y)Il%du(y)>
< Cu(B) || fll e x)-

By the assumption (ii) in Definition 2.1,

1< /B/X\QB 1K (y, z) = Ki(y, 2)ll e, m) L f (2) | 2dpa(2) dpa(y)

< Cllfllse / / VK (4, 2) — Koy, 2) | .y din(2) duy)
B JX\2B
< Cu(B)|| fll s x)-

Thus, for f € L%(X) N LY (X), we get the desired result.

3. MAXIMAL TRUNCATED OPERATOR

Let T be a linear operator mapping E'—valued functions into F—valued func-
tions. If 7' is bounded from L%(X) to L2%(X) and the associated kernel K (z,y) :
X x X+ L(E, F) satisfies the following conditions:

(i) There exists an “approximation to identity” {A4; : ¢ > 0} C L(E) such that
T A; has an associated kernel k;(x,y), and there exist constants co, C' > 0, so that

/ 1K (@) — ki@, ) | ey (@) < C, for all y € X.
d(z,y)>cott/m

(ii) There exists an “approximation to identity” {4} : ¢ > 0} C L(F') such that
AJT has an associated kernel K(z,y), and there is a constant ¢4 > 0, so that

a) || K¢ (x, <egp—————

() [Ki(z, )l ce,r) < B )

and

1 tl/m
b) | K(x,y) — Ki(x,y <cy w( >7
YRy = Relellewn = 06 g ) “\aey)
when d(z,y) > c3t!/™, where w is an increasing function satisfying the Dini-type

condition fol w(t)L < oo.




464 Hui-Xia Mo and Shan-Zhen Lu

Remark 4. In the scalar case, take w = r® then (b) is equivalent to (19) in
[4], so the condition assumed on K is generalized in the paper. In addition,

oo
fol w(t)% < 00 is equivalent to the discrete form Y w(27F) < co.
k=0

Then define maximal truncated operator
T.f(x) = sup | Tcf ()| r, (3.1)
>0

where T is the truncated singular operator defined by

T. :/ K(z,y)f(y)du(y), for somee > 0. (3.2)
d(z,y)>

Theorem 3.1. Assume that T, is as above, then there exists a constant C' > 0
such that

Tof(x) S CM(Tfl|F)(x) + M| flle)(x)).
Theorem 3.2. Assume that T, is as above, then T, is bounded from L%(X) to
LP(X) for all 1 < p < oc.

It is not hard to check that in this section T satisfies the condition (i) and (ii)
of Definition 2.1, so T is bounded from L%, (X) to L% (X) for 1 < p < co. Thus by
Theorem 3.1, Theorem 3.2. can be proved. So we need only to prove Theorem
3.1. Without loss of generality, we assume that c3 = 1.

For a fixed € > 0, write
T.f(z) = AL Tf(x) — (AT —T.) f ().

Since

|ALTf ()| < / o (2, 9) L2 1T £ (5) L dia(y)

< / her (2, 9) | T £ () | rdl()-
X
Thus by Lemma 2.6, we have
| AL T f(2)]| 5 < CM(ITf|1#)(@)- (3.3)

On the other hand, the kernel of the operator AL, T'—T, is given by K¢m (z,y)—
K (z,y), in which K (z,y) = K(z,y) if d(z,y) > ¢ and K.(z,y) = 0 otherwise.
So, there are two cases:
case (i) d(z,y) < ¢, then K(x,y) = 0 and it follows from (a) that

B 1
Kon(z,y) — Ke(z, = |[Kem (, S s
|Een (@) = Ke(w:9) ey = 1Ko (@ 9)lewr) < es s
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case (ii) d(x,y) > ¢, then K (z,y) = K(z,y) and it follows from (b) that

_ 1 €
[ Kem (z,y) — Ke(@,y)ll 2(,r) < C4M(B(x,d(a:,y)))w<d($7y)>.

Therefore, using > w(27%) < oo,
k=0
(AT = To) f ()|l p

- ‘ /(Kem(x,y) = Ke(z,9))f(y) du(y)
X F

< / | Kem(2,y) = Ke(2, )| e |1 £ )| 5 dinly)
X

ILf ()l e du(y)

1
<Copi |
N(B(‘T’E)) d(z,y)<e

1 €
e d(z,y)>e :U(B(x7 d(:B, y))) “ <d(l‘, y)

1
< Cm U< If (W)l e du(y)

1 €
+C Z /ke<d z,y)<2k+le w(B(z,d(z, y)))w <d(m, y)> IfW)lle du(y)
1fW)lle duly)

) 1F@)lle duly)
(3.4)

= Cu(B(m ) / e
1

+CZ D BE T s e WO
< CM(If1p)(x).

Combining the estimates of (3.3) with (3.4), we have
Tof(@) = swp |Tef(z)|r < CM(ITfllr)(z) + M| f]l2)()).

Thus we finish the proof of Theorem 3.1.

4. MULTILINEAR COMMUTATORS

4.1.Some notations and the main results. Let X be a space of homogeneous
type with a distance d and a non-negative Borel regular measure p. If for any
x € X and r > 0, where u(z) < " < pu(X), there exist 0 < ¢; < ¢ < 00, such
that c1r™ < p(B(z,7)) < cor™, then (X, d, p) is said to be normal. It is obvious
that the condition of above means the doubling condition (1.2).
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Definition 4.1.1 A locally integrable function b on X is said to be in BMO if
and only if

1
sup = /B 1b(y) — b du(y) < oo,

where bp = ﬁ J50(y) du(y). The BMO norm of b is defined by
1
b *:sup/ b(y) — bp|du(y) < oo.
2] BN(B)B|() | dp(y)

Definition 4.1.2.(]2]) Let 0 < 8 < 1, the Lipschitz space on space of homoge-
nous type X is the space of functions f such that

_ [f(z) = f(y)l

f . = sup
I lziney = s =53

< 00

Definition 4.1.3. Let T, mapping F—valued functions into F'—valued functions,
be a singular integral operator with non-smooth kernel K (z,y) : XxX — (E, F)
satisfying:

(i) T is bounded from L%(X) to L3 (X) and for any f € L3%(X),

Tf(z) = /X K(2,9)f(6) duly) for a.e x ¢ suppf.

(ii) There exists an “approximation to identity” {A; : ¢ > 0} C L(E) such that
T A; has an associated kernel ky(z,y). And there exist constants c5,C' > 0, so
that

/ 1K (2,9) — ku(@,9) | oo du(z) < C, for all y € X.
d(z,y)>cstt/m

(iii) There exist constants C' > 0, 0 < § < 1 and an “approximation to identity”
{4} :t >0} C L(F) such that A;T has an associated kernel K;(z,y) satisfying

1 to/m
w(B(z,d(z,y))) d(z,y)°

for d(x,y) > cst'/™. In what follows we will assume that c5 = ¢} = 1.

K (2, y) — Ki(@,y)|lce,r) < C

Let [ € N is finite. Suppose that b= (b1,ba,...,by) is a finite family of locally

integrable functions, then the multilinear commutator generated by 7' and b is
defined by

Tpf () = [br, - - - b2, [b1, T, - 1 f ().
It is obvious that when [ = 1, T;f(z) = [b1, T]f(x) = bi(x)Tf(x) — T(b1 f)(z) is
the commutator generated by 7" and by, and when by = --- = by, T;-f is the higher

commutator.
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Remark 5. From Theorem 2.3, it is easy to see that the operator 71" in Definition
4.1.3 is bounded from L,(X) to L4 (X) for all 1 < p < co.

Remark 6. Given any positive integer [, for all 1 < j < [, we denote the fam-

ily of all finite subsets o = {01,029, -+ ,0;} of {1,2,...,1} of different elements
by C]l- and for any o € le-, let ¢/ = {1,2,---,I}\o. Let b = (by,ba,--- ,b;)
be a finite function family then for any o = {o1,09,--- ,0;} € C'Jl-, we denote

. j
by = {boy, b0y, b5} and by(z) = [] bo;(x). With these notations, for any
i=1

J o J
[—tuple (B1,- -, 0;) of positive numbers, we set By = > Bs,, [|bolls = 1 100, ||+

=1 =1

o J l . l
and [l ips) = I lboilipga,, - Demote § = =, 1l = IT gl and
i= J= J=

o l )
10/l Lip(s) = Hl 10511 Lip(s;)» simply.
]:

Theorem 4.1.4.Let 1 < p < oo and T; be as above. If b; € BMO for all
1 < j <1, then Ty is bounded from L, (X) to L7 (X).

Theorem 4.1.5. Suppose that (X, d, 1) is normal. Let T; be as above. If 0 <
51, 82,...,8; < 1such that 0 < Zé’:l Bj =B < n,and b; € Lip(f;)(1 < j <),
then T is bounded from L%;(X) to L}(X), here 1 < p < n/f such that 1/q =
1/p—B/n.

When [ = 1, denote by = b and §; = 3, then we have the following result.

Theorem 4.1.6 Suppose that (X,d,u) is normal. Let 0 < § < 1 be as in

Definition 4.1.3. If 0 < f < 1 and n/f < p < oo such that §/n—(8/n—1/p) > 0,
then for b € Lip(3) there exists a constant C' > 0 such that

1
sp sy, IT0) = A4y (1)@ du(a) < Clblgo 1

Remark 7 Let X = R” is Euclidean space. In the scalar field, if p = n/f,
Theorem 4.1.6 implies that T} is bounded from LP(R™) to BMO 4.

4.2. The proof of Theorem 4.1.4. To prove Theorem 4.1.4 we need the fol-
lowing Lemmas.

Lemma 4.2.1([14]) Assume that b € BMO and k > 1. Then for every ball B,
we have

b5 = byrp| < CKI[b][-

where 28 B denotes the 2¥ times extensions of B with the same center.
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Lemma 4.2.2.Let b; € BMO(j = 1,2,...,1), then for any o € Cé(j =
1,2,...,0)and 1 <y < o0,

(7 [, 1060~ b)al duty >>1Msc||60u*.

Proof Take v < 71,72,...,7; < oo such that 1/y1 +1/y2+---+1/v; = 1/7,
then by Holder’s inequality

( J [ 106) = bl duty >)W
(5 / o)~ o )sl d))

SCHbaH :

Lemma 4.2.3. Let H be a Banach space. Assume that {A; : t > 0} is an
“approximation to identity” on H and b; € BMO(j = 1,2,...,1). Then for
every f € L (1 <p < ), 0 € C’Jl-(j =1,2,...,0) and 1 < v < o0, there is a
constant C' > 0 such that

B) /B 1405 (0 = b5)o )W)l 11 dia(y) < Clbo |1 (1L 1l ) (),

sup
Bz M

where tp = r}§ and rp is the radius of B.

Proof For 1 < p < oo, fixed f € L% (X). Let B = B(z,7B) 3 , then

23)1/3 1At ((0 = 08)o f)(Y) || i dp(y)
= ;L(B)/B/X’atﬁ‘(y’ e l(b(z) = bB)o f(2) || i du(z) dp(y)

i / / iy (1, 2| (6(2) = ) £(2) |11 dpa(2) dpa(y)

B)
1
/Bk /WB\%B’%B 1, | 0(=) ~ b8)o ()1 dp() diuy)

| N

—I+II

Notice that for any y € B and z € 2B, by (1.5) and the properties of function
87

hiy (y,2) < Cs(0)u(2B)~L (4.2.1)
Thus

1
<0 / 15(=) — bp)oll £ (2) 1 dp(2).
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On the other hand, take 1 < 7,+" < oo which satisfies 1/y+1/9" = 1, then by
Hoélder’s inequality, Lemma 4.2.1 and Lemma 4.2.2,

r<(gg [ 106 - el du(Z))w (g [ @I au)

< Cllbo | M (|| £ 2) (). (4.2.2)

Moreover, for any y € B and z € 21 B\ 2B, we have d(y, z) > 2¥~!rg. So,
using (1.5) and (1.3),

S(d(y, z)mt—l) S(Q(k_l)m)Q(k-H)n
w(B(y, tt/m)) — 1(2F+1B)

hig(y,z) = (4.2.3)

Thus by Lemma 4.2.2 and (4.2.3), it is similar to the estimate of (4.2.2),

o S(Q(kfl)m)2(k+l)n
ey ) Lo 106G) = o)l du(2)
<C§Z2<’““>"s<2<’“>m> S — |(b(2) = bp)o|" du(2) .
- 12541 B) Jorsap Bl K

T

1

(e [ 1))

=

< Cllbg [+ My (| £l 1) (),

where 7 is the same as in (4.2.2). Thus we complete the proof of Lemma 4.2.3.

Lemma 4.2.4. Let H be a Banach space. Assume that p(X) = oo and f € L¥,(X)
for 1 < p < co. Then for every 0 < n < 1 and any 0 < A, there exists a constant
Cx > 0 and v > O(independent of A and f), such that

n({z € X M| fllm) (@) > DA, M (If ) (z) < ¥A})
< Onp({z € X: M([[fllm)(x) > A}),

where D is a fixed constant which only depends on the space X and the “approx-
imation to identity” {A;,¢ > 0}. As a consequence, we have

112z, ) < IMA ) oy < CUME (L1l 2o )

In the scalar case, it is Martell who give the proof of Lemma 4.2.4(see [10]).
In fact by some modifications for the proofs of Proposition 4.1 and Theorem 4.2
in [10], one can prove Lemma 4.2.4. We omit the proof here for brevity.

Let us now turn to prove Theorem 4.1.4.
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To prove Theorem 4.1.4, we claim that for any z € X,

M (IT; ) (x) < OB M- (1T fll7) () + (Bl Mog (L f 11 2) ()

N ) (4.2.4)
DS ol M1, 1)) ).
Jj= O’Ecl

where 1 < 7 <pand 1 <~,& < oo, such that 1 <& < p.

In fact, for any « € X, take B = B(zo,7g) 3 =. Fix f € LY (X), we set fi

I:XQB and fo = f—f1. And denote X = ()\1, Ay, /\l) = ((bl)B, (bg)B, o (b)B) =
bp. Then T} f can be written as the following form

l

Tif ()= | T]®i() —bi(2) Ky, 2)f(2) du(2)
X

=1

j=1
l
=3 S (1) () — Ao / (b(2) — N K (4, 2) (=) dps(2)
jZOUECJZ- X
l
— i) - \)TFw)
30 ST (1) b() - Vs / (0(2) — N K (3, 2) (=) ds(2)
i=loec! x
l
HEDT[T b = AN W)

Now expanding (b(z) — A)or = ((b(z) — b(y)) + (b(y) — X)), it is easy to see that

l
Tef(y) = [ (b5 (w) - +Z > Chulb( )o Ty, f(y)

J=1 j=loec!

l l
+(=D)'T([ 0 = A @) + O = A f) (),

Jj=1 J=1
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and

!
H b; — M\)T ) (y
+ZZCHA L)

Jj=1 UECl
l

+(=1)' A, (T(T 05 = X)) W)

J

—_

=
(=14, (T (05 = X)) ()

Jj=1

Enhance,

1 /
57 [ 1T @) = 4, (T30 dut

l
[T - G T duly)

F

du(y)
F

1 /

+H(B)/B Z Z Ci1Ay, (b= b8)o Ty, )(y)
1 , i

+M(B)/B AtB(T(jli[l(bj_(bj)B)fl))(y) qu(y)

1 / l
B /B T([T () = (4))f2) ) = AL (] 45 = (05)5)£2))(v)

j=1 j=1
=+ II+IIT+IV+V+VI+VII.

du(y)
F

(4.2.5)
Let us now estimate I, I1,II1,IV,V, VI and VII respectively.
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Take 1 < 7 < pand 1 < 7’ < oo such that 1/7 + 1/7" = 1, then by Holder’s
inequality and Lemma 4.2.2,
[1®i) - (5)5)

1= (i S 11

< O[5 M (ITf ]| ) ().

1/7

’ du(y)>w (o [ ITs17 dutr))

(4.2.6)

It is similar to the estimate of I,

-1
1<Cy > CillbolM-(IT; , fllF) ().

=1 )
J O'EC]-

For I11, take 1 < 7,& < oo such that 1 < v¢ < p. Then by Hélder’s inequality,
the boundedness of T and Lemma 4.2.2, we have

l

(][ (6 — (0))8)f1)(v)

j=1

(4.2.7)

j=1

1 073 1/~¢
<C / d y)
(am /, 1 a2

1 v 1/
= (5, )
o ! gl 1/y
< ([ 0w - 6mi)| auw)
l
11w - ®))s)
1 ¢ 1/7€
(g L, 1w )
< Mol 1) (o),

here 1/v+1/7' =1
Take 7 as in (4.2.6), then by Lemma 4.2.3,

IV < O\l Mo (| TS| ) ()

and

-1
vV<C) Y Cu

=1 1
J UGC'j

bl M- (IT;., £l17) ().
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For VI we have

VI—M(lB)/ [ it 1j () du(2)
/ | et w2l (E(b”'—

+// a, , 2
M(B) B Jx\28 H tB(y )H,C(E,F)

< 1/ | hun.2) T(]jw- -

/ / e (0, 2) | T[T 05 — (43)8))(2)
X\2B s 1
= V[1 + V.

du(y)
F

B)f1)(2)|| du(z)dp(y)

F

l
T(JJ®; - (b)8)f1)(2)
j=1

du(z)du(y)
F

f1)(z)

dp(z)dp(y)
F

dp(z)du(y)
F

Thus by (4.2.1),

l

([ - ) f))

VI <C du(z)dpu(y)

F

!
T([J®; — (b)) f1)(2)

j=1

<C

du(z).
F

1
1w(2B) Jop
So, by the estimate of 111,

VI < Clbll-Mae (|1l ) (),

where v, are as in (4.2.7).
For VI, by (4.2.3) and (1.5) we have

5 > - | tao (0 2) T 05 = ) )| dtedety
B JortiB\2kB i F
2(k:+1 2(k: 1)m
/ ] e TLL = 011002 a1t
o0 k+1 (k—1)m
<>c Qkle) DI - enme)| )

k=1 j=1
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Take v, £ as in the estimate of 111, then by Holder’s inequality, Lemma 4.2.2
and (1.6), it is similar to the estimate of 111,

x_2(k+Dng(gk—1m) L v 1/y
EENCE = e VA ) CROBIACIRTE)
0 2(k+1)n8(2(k—1)m) ! . . ¥ . 1/~
= ;C w251 B) /Y (/23 Jl;[l(bj(z) (bj)B)f(2) Edﬂ( ))
i ! €' 1/~¢
kns (k—1)myo—kn/ 1 () — >
<yt (o [0 - 0| )

(g [ I e

< > C2Ms @M B Mg (1 f 1) ()

k=1

< Clbll Mg (Il f 1 ) ().
Combining the estimates of V I} with VI, we get
VI < ClbllMe(If 1 1) ().

In the last, let us estimate VII. Take 7 and 7/ as in (4.2.6), then by Lemma
4.2.1 and Lemma 4.2.2, we have

l

(T — A, (] ] (% f2)()

Jj=1

5 [ ]I = Ky e
X\2B

1

VII<
M(B)

du(y)
F

X H(bg(Z) (b)B) f(2) EdM(Z)du(y)
Y A —
B 2k+lB\2kBM z,d(z, 2))) d(y, 2)°
X H(bj(Z) — (bj)B)f(2) Edu(Z)du(y)
j=1
< 202—’“5(2;HB L H (5) =~ E)p)I )| dn(2)
1/’
<202_k6< (21B) Jyerisl; H (b ) dp(z)

X

1 B} 1/7
(MHB) L. ||f<z>||Edu<z>>
< O LM (1l @),
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In fact, in the above estimate, we have used (1.3).

Combining the estimates of I, I1, 11,1V, V,V I with VII, we get that for any
B>z,

M(lB) /B IT5f () = At (T3 )| dialy)

< C<|!5||*MT(HTfHF)(:v) + 1Bl Mag (11£ 11 2) ()

-1
+>. > Cill

i=loect

EUH*MT(HTbU,fHF)(x))-

Take supremum for all B 5 z, then we obtain (4.2.4).

From the above estimate for Mj(HTEfHF)(x), it is easy to see that when m = 1,

u<13> /B 75,1 () = 44, (T )0 | di(w)
< Ollball M- (IT 1 7) () + B Mae (1] ) ().

Take supremum for all B 5 z in (4.2.8) and use Lemma 2.2.4, we get that Tj, is
bounded from L%,(X) to L%.(X). Enhance by induction on [ and (4.2.4), we finish
the proof of Theorem 4.1.4.

(4.2.8)

4.3. The proofs of Theorem 4.1.5 and Theorem 4.1.6. Similar to the proof
of Theorem 4.1.4, we need the following Lemmas.

Lemma 4.3.1([15]) For 0 <y and 0 < 8 <, let
1 ” L/
Moo (D@ = s (i [l dutn)

Ifl<vy<gq1l<p<n/B, such that By/n <1 and 1/¢ =1/p — 3/n, then there
exists a constant C' > 0 such that

Mg (f)lle < Cllfl|zr-

Lemma 4.3.2. Suppose that (X,d,u) is normal. Then for 0 < § < 1 and
1 < g < o0, we have

1 1 Ha
e (g L= 5511) < Ol

For ¢ = oo, the formula should be modified appropriately.

Lemma 4.3.3 Suppose that (X,d, ) is normal. Let 0 < 1, 02,...,0 < 1 and
bj € Lip(B;)(j = 1,2,...,1). Then for any 1 <y < ocand 0 € CL(j = 1,2,...,1),
there is a constant C' > 0 such that
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L/ .
(s 100 = bl ) < Clbrliga B

Lemma 4.3.4 Suppose that (X,d, ) is normal. Let H be a Banach space and
0<pBj<lforalll <j <l Assume that {4;:t> 0} is an “approximation to
the identity” on H and b; € Lip(3;)(j = 1,2,...,1). Then for every f € L}, (1 <
p< @), o0 € C]l-(j =1,2,...,]) and 1 < 7y < o0, there is a constant C' > 0 such
that

sup M(lB) /B 145 (b = b8)o )W)l dis(y) < Cllbol Lip(a,) Mp A (1f 1) (),

where tp = rf and rp is the radius of B.

The method of proving Lemma 4.3.3 and Lemma 4.3.4 is analogous to that of
proving Lemma 4.2.2 and Lemma 4.2.3. We omit it for brevity.

Let us now turn to prove Theorem 4.1.5. For any = € X, take B = B(xzg,rp) 3
z. Fix f € L%(X), we set fi = fxep and fo = f — fi. And denote A =
(AL, Az, .-, \) = ((b1) B, (b2)B, - . ., (b)) B) = bp, then it is similar to (4.2.5),

1
5 /B ITof (0) — AL (Te )W)l duly) < T+ Jo+ Js+ Ja+ Js + Jo + Jr.

where
1 !

= /B jf:[le(y)—(an)Tf@) (),
1 -1

T | 3. 3 Culbt) by S| it
1 L

Iy = /B T(E(’” - )R ),
1 o

hh= s /B At3<jr:[1<bj—<bJ>B>Tf><y> (),
1 -1

Ts= /B ;(I;LCNAE«Z) b)oTy, )| duty).
1 |

7= s [ @ dTe - 0 mw)| ),
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Take 1 < 7 < ¢ such that f7/n < 1. It is similar to the estimate of I,11,IV
and V', by Holder’s inequality, Lemma 4.3.2, Lemma 4.3.3 and Lemma 4.3.4,

i, Ja < Clellip(y M. (1T f | 7) (),

and
-1

oy Js < C YY" Coallbollnip(an) Ma (175, £l ) (@).

=1 1
J GGC]-

Take 1 < 7,& < oo such that 1 < v¢ < ¢ and v§(/n < 1. Then it is similar to
the estimates of I11 and VI, by Lemma 4.3.2 and Lemma 4.3.3,

T3, Js < ClIbl| ip(s) Ma e (/11 2) (@)-
At last, using the kernel condition of 7" and Lemma 4.3.2, it analogous to VI,
Tz < Cbll ip(s) Mp - (ITf | ) ().

Thus we have

1 /
5 /B | T5f (w) — Aty (T3 ) ()1 dia(y)

-1
< C{IIbHLip(g)Mﬁ,r(||TfHF)(<E) +> > Ciallbollapa) Ma.r (I T, £l 7) (@)

Jj=1 UECJZ-
8l ine Mpoe (1717} () }-

Take supremum for all B 3 z, it follows that
MG (T3 #) (@) < C{”bHLz’p(B)Mﬁ,T(HTfHF)(m) + 18l ip(ey Mp e (ITf |1 ) ()

-1
+ 32 3 Cuallbo i Mo (1T, £16) (@) }-

Jj=1 O'ECJZ-

So, discussing as in the proof of Theorem 4.1.4, by induction on [ and Lemma
4.2.4 and Lemma 4.3.1 we get the desired results.

In the following we will prove Theorem 4.1.6.

It is enough to show that for any ball B,

1
u(BWW—l/p/B Ty f () — At (TF)(@) ]| da(x) < ClIbll Lipa) | Fl 2,
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For f € L;(1 < p < 00), set B = B(z,7p), fi = fxep and fo = f — f1, then
1
W(B) B/ 1/p /B ITof (z) — At (T,f) (@) | p dps(z)

1 1 /
< W /B Hbel(l')HF d'u(l') + W /B ||AtB(be1)($)HF d,u(:z:)
1 /
+W 5 1Ty f2(w) — Aty (Tof2) (@) || p dp()
=U1 + Uz + Us,
where tgp = rg.

Choose p; satisfying 1 < p; < n/f < p and take ¢ such that 1/¢; = 1/p1—03/n,
then by Holder’s inequality and the boundedness of T} (see Theorem 4.1.5),

1 /a1 -
,M(B)HM”(/B ”bel(ﬂ«“)H%ldu(x)> u(B)I-Ha

Cl1bl Lip(s) 1/m
e ([ 1@ duo) ) W)

Cl10l| Lip(s) pi—1/p
N ,u(B)ﬁ/n—l/erl/ql“(B) ' Hf”L%(X)

< ClIbllLipea) 11| 22, (x) -

U1

For Us, we have

1
o= sy [, o @I ) o))

1 oo
_— h Ty d d
BT Jy 2o g 05 OO i)
= Us1 + Uso.
Since for any x € B and y € 2B, by (1.5) we have
hig(2,y) < Cu(B) ™.

Then
C

e [, T o)

Thus by the estimate of Uy,
Un < Cllbll Lipes) 1L f 1| 22, ) -

U1 <

Moreover, for any x € B and y € 2*1 B\ 2¥B, we have d(x,y) > 2¥~!rp and
g () < 220
zy) <O~

v u(B)
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So take p; and ¢; as in (4.3.1), then it is similar to the estimate (4.3.1),

> 2(k 1)m
U22<CZ B)1+5/n~ >1/p/ g 1T f1 ()| P dp(y)

<C = (2(k 1)m) 7 o 1/q et it
< ;W(/WB” b1 (W) F u(y)) 1( )

[oe} 2]&‘71(171/(11)8 2(]{?71)171 1/p1
< Ol X =y @z >< / LG du@))

=1

> 9-— n/Q1+N+T)2k(n+N+7) 9(k=1)m 1/p
< Ol ( )< | IIf(y)Il%du(y)>

] ﬁ/n+1/(I1 1/p1
< ClIbllLipes) 1 /1| 22, (X).

Moreover, by = € B, the definition of b € Lip((3), Holder’s inequality and
Lemma 4.3.2, we have

Ty fo(x) — Ay, (T f2) ()|

S/ 1K (2, y) = Kip (@, y) | cem) | (0(z) = b)) f ()| 2 dr(y)
x\28

1 £om

SO [ W T g 1)~ MOl )
o> ua ) OB O HOI L)

k=1

e 1/p' 1/p

—o0k k+1 —1 ) — p/ D

<oy @ ([ o vl aw) ([, 1wl )
< C1bl| Lip(a) ZM(QkHB)ﬁ/n*l/pT&kHfHLg(X)

k=1
< Cu(B)PIm=P|b]| iy Y 27 O/ EVPBIIRE| | )

P
< C/'L(B)ﬁ/n_l/p”bHLip(ﬂ)HfHL%(X)

So,
Us < Cl0ll Lip(s) £ | 2 () -

Combining the estimates of Uy, Uy with Us we complete the proof.
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