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Vector-valued Singular Integral Operators with
Non-smooth Kernels and Related Multilinear

Commutators∗

Hui-Xia Mo and Shan-Zhen Lu

Abstract: Let (X, d, µ) be a space of homogeneous type. First, the authors
introduced the notation of vector-valued singular integral operator T with
non-smooth kernel on X, and studied the boundedness of T and its maximal
truncated operator T∗. Then, the authors gave the definition of multilinear
commutator generated by T and BMO functions or by T and Lipschitz
functions, and discussed the boundedness of these multilinear commutators.

1. Introduction

Let X be a topological space equipped with a distance d and a non-negative Borel
regular measure µ. (X, d, µ) is called to be a space of homogeneous type, if the
doubling condition

µ(B(x, 2r)) ≤ cµ(B(x, r)) < ∞ (1.1)
holds for some c ≥ 1 uniformly and for all x ∈ X and r > 0, where B(x, r) =
{y ∈ X : d(x, y) < r}. A more general definition for this space can be found
in [1], [2] and [3]. Note that the doubling property implies the following strong
homogeneity property

µ(B(x, λr)) ≤ cλnµ(B(x, r)), (1.2)

for some c, n uniformly and for all λ ≥ 1. The parameter n is a measure of
dimension of the space. There also exist c > 0 and N(0 ≤ N ≤ n) so that

µ(B(y, r)) ≤ c

(
1 +

d(x, y)
r

)N

µ(B(x, r)), (1.3)

uniformly for all x, y ∈ X and r > 0. In fact, the property (1.3) with N = n
is a direct consequence of triangle inequality of the distance d and the strong
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homogeneity property. But in general N can be smaller. In the cases of Euclidean
spaces Rn and Lie groups of polynomial growth, N can be chosen to be 0.

Throughout this paper we shall work on space of homogeneous type (X, d, µ)
with µ(X) = ∞, and C denotes different constant in different line.

Let T be a bounded linear operator on L2(X) with an associated kernel K(x, y)
in the sense that

Tf(x) =
∫

X
K(x, y)f(y)dµ(y),

where K(x, y) is a measurable function, and the above formula holds for each
continuous function f with compact support, and for almost all x not in the
support of f.

One important result of Calderón-Zymund operator theory is the well known
Hörmander integral condition on the kernel K(x, y), which is a sufficient condition
for the operator T to be of weak type (1, 1) (see [4]). However, there are numerous
examples of operators which do not satisfy Hörmander integral condition, and
certain classes of such operators can be proved to be of weak type (1, 1). See,
for example [5], [6] and [7]. A natural question is whether one can weaken the
Hörmander integral condition and still conclude that T is an operator of weak
type (1, 1). In 1999, Duong and McIntosh [8] gave an affirmative answer to
this question and introduced the notation of singular integral operator with non-
smooth kernel on space of homogeneous type X.

On the other hand, Duong and Yan [9] studied the boundedness of commutator
generated by the singular integral operator with non-smooth kernel and BMO
function. In the paper, we will introduced the notation of vector-valued singular
integral operator with non-smooth kernel on space of homogeneous type and
extend the results in [8] and [9] to the vector-valued situation.

Given a Banach space H, we shall denote by Lp
H(X) or simply by Lp

H the
Bochner-Lebesgue spaces of H-valued strongly measurable functions f such that

‖f‖Lp
H(X) =

(∫

X
‖f(x)‖p

Hdµ(x)
)1/p

< ∞, for all 1 ≤ p < ∞,

in which ‖f(x)‖H denotes the norm of f in H. When H is the scalar filed we
simply write Lp(X) = Lp

H(X). For p = ∞, we write L∞H (X) for the space of all
of the functions f such that ‖f‖L∞H (X) = ess sup ‖f‖H < ∞, and L∞c,H(X) for the
space of all compactly supported members of L∞H (X).

Let E and F be a couple of Banach spaces, we denote by L(E, F ) all of the
bounded linear operators from E to F. And set L(E) = L(E, E) for short.

Definition 1.1. Let H be a Banach space. A family of operators {At : t > 0} ⊂
L(H) is said to be an “approximation to identity” on H if, for every t > 0, At is
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represented by the kernel at(x, y) : X × X 7−→ L(H), in the following sense: for
every f ∈ Lp

H(X), p ≥ 1,

Atf(x) =
∫

X
at(x, y)f(y) dµ(y),

and the following condition holds:

‖at(x, y)‖L(H) ≤ ht(x, y), (1.4)

for all x, y ∈ X. Where ht(x, y) is a function satisfying

ht(x, y) =
s(d(x, y)mt−1)
µ(B(x, t1/m))

, (1.5)

in which m is a positive constant and s is a positive, bounded, decreasing function
satisfying

lim
r→∞ rn+N+τs(rm) = 0, (1.6)

for some τ > 0, here N is the power which appeared in property (1.3) and n is
the “dimension” entering the strong homogeneity property.

Note that there exists a constant C > 0 such that

C−1 ≤
∫

X
ht(x, y) dµ(x) ≤ C, (1.7)

uniformly for y ∈ X and t > 0.

Moreover, for a locally integrable H−valued function f , the H−valued sharp
maximal function associated with the “approximation to identity” {At : t > 0}
is defined by

M#
A (‖f‖H)(x) = sup

x∈B

1
µ(B)

∫

B
‖f(y)−AtBf(y)‖Hdµ(y),

where tB = rm
B with rB is the radius of the ball B.

In the scalar case, Duong and McIntosh [8] introduced the notation of “ap-
proximation to identity” and constructed ãt(x, y) which satisfies our conditions.
In addition, Martell [10] gave the definition of M#

A and get an analogy of the
Fefferman-Stein estimate for the classical sharp maximal function.

After some preliminaries, in Section 2, we will introduce the definition of vector-
valued singular integral operator with non-smooth kernel and study the bound-
edness of T . In Section 3, we will study the maximal truncated operator T∗. In
section 4, the boundedness of multilinear commutator generated by T and BMO
functions or by T and Lipschitz functions will be discussed.
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2. Vector-valued singular integral operator with non-smooth
kernel

Definition 2.1. Let E and F be a couple of Banach spaces. A linear operator
T, mapping E−valued functions into F−valued functions, is said to be a vector-
valued singular integral operator with non-smooth kernel K(x, y) : X × X 7−→
L(E, F ), if T is bounded from L2

E(X) to L2
F (X) and for any f ∈ L∞c,E(X),

Tf(x) =
∫

X
K(x, y)f(y) dµ(y) for a.e x /∈ suppf.

Where K satisfies the following conditions:
(i) There exists an “approximation to identity” {At : t > 0} on E such that TAt

has an associated kernel kt(x, y), and there exist constants c1, C > 0, so that
∫

d(x,y)≥c1t1/m

‖K(x, y)− kt(x, y)‖L(E,F ) dµ(x) ≤ C, for all y ∈ X.

(ii) There exists an “approximation to identity” {A′t : t > 0} on F such that A′tT
has a kernel Kt(x, y), and there exist constants c′1, C > 0, so that

∫

d(x,y)≥c′1t1/m

‖K(x, y)−Kt(x, y)‖L(E,F ) dµ(y) ≤ C, for all x ∈ X.

(In fact, without loss of generality in what follows we will assume that c1 = c′1 =
1).

Let us show that in certain cases the vector-valued Hörmander integral condi-
tion implies (i) or (ii) in Definition 2.1.

Proposition 2.2. Assume that T is a linear operator, mapping E−valued func-
tions into F−valued functions, with an associated kernel K(x, y) : X × X 7−→
L(E, F ) which satisfies the vector-value Hörmander integral condition, that is
there exist constants C > 0 and δ > 1, so that

∫

d(x,y)≥δd(y,z)
‖K(x, y)−K(x, z)‖L(E,F ) dµ(x) ≤ C,

for all y, z ∈ X.

Let At be an “approximations to the identity” on E which are represented by
the kernel at(x, y) satisfying the following additional properties:
(i) at(x, y) = θE , when d(x, y) ≥ c0t

1/m,

(ii)
∫

X
at(x, y) dµ(x) = IE , for all y ∈ X, t > 0,

in which θE and IE denote the zero element and unit element in L(E), respec-
tively.
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Then the kernel kt(x, y) of TAt satisfies the condition (i) of Definition 2.1, that
is there exist constants β, C > 0 such that

∫

d(x,y)≥βt1/m

‖K(x, y)− kt(x, y)‖L(E,F ) dµ(x) ≤ C,

for all y ∈ X.

To prove Proposition 2.2 we follow the idea of [8].

Proof: Choose δ > 1 and let β = c0δ, where c0 is the constant so that at(x, y) =
θE , when d(x, y) ≥ c0t

1/m. Then for all y ∈ X,
∫

d(x,y)≥βt1/m

‖K(x, y)− kt(x, y)‖L(E,F ) dµ(x)

=
∫

d(x,y)≥βt1/m

∥∥∥∥K(x, y)IE −
∫

X
K(x, z)at(z, y)dµ(z)

∥∥∥∥
L(E,F )

dµ(x)

=
∫

d(x,y)≥βt1/m

∥∥∥∥K(x, y)
∫

d(z,y)≤c0t1/m

at(z, y)dµ(z)

−
∫

X
K(x, z)at(z, y)dµ(z)

∥∥∥∥
L(E,F )

dµ(x)

=
∫

d(x,y)≥βt1/m

∥∥∥∥
∫

d(z,y)≤c0t1/m

(K(x, y)−K(x, z))at(z, y)dµ(z)
∥∥∥∥
L(E,F )

dµ(x)

≤ sup
d(z,y)≤c0t1/m

(∫

d(x,y)≥βt1/m

‖K(x, y)−K(x, z)‖L(E,F )dµ(x)
)

×
(∫

d(z,y)≤c0t1/m

‖at(z, y)‖L(E)dµ(z)
)

≤ sup
d(x,y)≤c0t1/m

(∫

d(x,y)≥c0δt1/m

‖K(x, y)−K(x, z)‖L(E,F ) dµ(x)
)

×
(∫

d(z,y)≤c0t1/m

ht(z, y) dµ(z)
)
≤ C.

In the last inequality we use (1.7).

Remark 1. When the kernels of “approximations to identity” {A′t : t > 0}
on F satisfy the similar condition as (i) and (ii) in Proposition 2.2, we can show
that if K(x, y) ∈ L(E, F ) satisfies the following vector-valued Hörmander integral
condition that is there exist C > 0 and δ > 1, so that

∫

d(x,y)≥δd(x,x′)
‖K(x, y)−K(x′, y)‖L(E,F ) dµ(y) ≤ C,

for all x, x′ ∈ X, then condition (ii) in Definition 2.1 also holds.
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Theorem 2.3. Let T, mapping E−valued functions into F−valued functions,
be a vector-valued singular integral operator with non-smooth kernel, then there
exists a constant C > 0 such that
(i) ‖Tf‖Lp

F (X) ≤ C‖f‖Lp
E(X), for 1 < p < ∞,

(ii) µ({x ∈ X : ‖Tf(x)‖F > λ}) ≤ C‖f‖L1
E(X), for all λ > 0,

(iii) ||M#
A′(‖Tf‖F )||L∞(X) ≤ C‖f‖L∞E (X), for f ∈ L2

E(X) ∩ L∞E (X).

Remark 2. In the scalar field, when X = Rn is Euclidean space, (iii) in Theorem
2.3 implies that T is bounded from L∞(Rn)∩L2(Rn) to BMOA′ . Where BMOA′

is the BMO type space associated with an “approximation to identity” {A′t : t >
0}. (The definition of BMOA′ can be seen in [11]).

Given a singular integral operator T, mapping E−valued functions into F−val-
ued functions, with non-smooth kernel K(x, y), then a new operator T̃ mapping
lq(E)−valued functions into lq(F )−valued functions(where q is fixed and 1 < q <
∞) can be defined by

T̃ (f1, f2, · · · , fj , · · · ) = (Tf1, T f2, · · · , T fj , · · · ).
Thus the kernel associated with T̃ is K̃ = K⊗Ilq(E), and the two “approximation
to identities” corresponding to Definition 2.1 are {Ãt = At ⊗ IlqE

: t > 0} and

{Ã′t = A′t ⊗ IlqF
: t > 0}, where IlqE

and IlqF
denote the identity operators on lqE

and lqF respectively. It is easy to check that the kernel of T̃ satisfy the condition
(i) and (ii) in Definition 2.1, so we have the following corollary.

Corollary 2.4. If T , mapping E−valued functions into F−valued functions, is
a vector-valued singular integral operator with non-smooth kernel, then for all
1 < p, q < ∞ and λ > 0, there exists a constant C > 0 such that

(i)
∥∥∥∥
(∑

j

‖Tfj‖q
F

)1/q∥∥∥∥
Lp(X)

≤ C

∥∥∥∥
(∑

j

‖fj‖q
E

)1/q∥∥∥∥
Lp(X)

,

(ii) µ

({
x ∈ X :

(∑

j

‖Tfj(x)‖q
F

)1/q

> λ

})
≤ Cλ−1

∥∥∥∥
(∑

j

‖fj‖q
E

)1/q∥∥∥
L1(X)

,

(iii)
∥∥∥∥M#

A′

(∑

j

‖Tfj‖q
F

)1/q∥∥∥∥
L∞(X)

≤ C

∥∥∥∥
(∑

j

‖fj‖q
E

)1/q∥∥∥∥
L∞(X)

, for all fj ∈ L2
E(X)∩

L∞E (X).

To prove Theorem 2.3 we need the following Lemmas.

Lemma 2.5.([12]) Given function ht(x, z) which satisfies (1.5) and ν > 0, then
there exist positive constants C and η such that

sup
z∈B(y,r)

ht(x, z) ≤ C inf
z∈B(y,r)

hηt(x, z),
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uniformly for x, y ∈ X and r, t > 0 with rm ≤ νt.

Lemma 2.6. For every f ∈ Lp
H(X), 1 ≤ p < ∞ and t > 0, we have

(i)
∫

X
ht(x, y)‖f(y)‖Hdµ(y) ≤ CM(‖f‖H)(x),

(ii)
∫

X
ht(x, y)‖f(x)‖Hdµ(x) ≤ CM(‖f‖H)(y).

In fact we need only to prove (i), for (ii) it is similar to.

Take B(x, rB) with rB = t1/m, then using (1.5),
∫

X
ht(x, y)‖f(y)‖H dµ(y)

≤
∫

d(x,y)<2rB

s(d(x, y)mt−1)
µ(B(x, rB))

‖f(y)‖H dµ(y)

+
∞∑

k=1

∫

2krB≤d(x,y)<2k+1rB

s(d(x, y)mt−1
B )

µ(B(x, rB))
‖f(y)‖H dµ(y)

:= I + II.

Since s(x, y) is a positive, bounded, decreasing function, thus by the doubling
condition (1.1), we have

I ≤ Cs(0)
1

µ(B(x, 2rB))

∫

d(x,y)<2rB

‖f(y)‖H dµ(y) ≤ M(‖f‖H)(x).

Moreover, when 2krB ≤ d(x, y) < 2k+1rB by the strong homogeneity property
(1.2),

s(d(x, y)mt−1
B )

µ(B(x, rB))
≤ C(2k+1)ns(2km)

µ(B(x, 2k+1rB))
.

Thus using (1.6), we have

II ≤
∞∑

k=1

C

∫

2krB≤d(x,y)<2k+1rB

(2k+1)ns(2km)
µ(B(x, 2k+1rB))

‖f(y)‖F dµ(y)

≤
∞∑

k=1

C2kns(2km)
1

µ(B(x, 2k+1rB))

∫

d(x,y)<2k+1rB

‖f(y)‖H dµ(z)

≤
∞∑

k=1

C2−k(N+τ)2k(n+N+τ)s(2km)M(‖f‖H)(x)

≤ CM(‖f‖H)(x).

Combining the estimate of I with II, we prove Lemma 2.6.

Lemma 2.7.([1]) (Calderón-Zygmund decomposition on homogeneous space)
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Let f ≥ 0, f ∈ L1(X) with compact support and λ > 0. Then there exists a
family of balls {Bi} such that:
(i) f ≤ Cλ for µ a.e. x ∈ X\⋃

i Bi,

(ii)
1

µ(Bi)

∫

Bi

f(y) dµ(y) ≤ Cλ,

(iii)
∑

i

µ(Bi) ≤ C

λ

∫

X
f(y) dµ(y),

(iv) There exists an integer M ≥ 1, independent of f and λ, such that every point
in X belongs to at most M of these balls.

Remark 3. The following properties are contained in the proof of the previous
results:
(i) There exists some constant CX, which only depends on the space X, such that

Ωλ = {x ∈ X : Mf(x) > λCX} =
⋃

i

Bi,

here Mf denotes the Hardy-Littlewoood maximal function of f .
(ii) There exists ε0 > 1 independent of f and λ such that (ε0Bi)\Ωλ 6= ∅

Now, Let us turn to prove Theorem 2.3.

For 1 < p < 2, it is a straightforward generalization of Theorem 1 in [8]. But
here we need the Calderón-Zygmund decomposition for ‖f‖E as follows.

For ‖f‖E , by Lemma 2.7 and Remark 3, there exists a collection of balls {Bi}
such that

Ωλ = {x ∈ X : M(‖f‖E)(x) > λCX} =
⋃

i

Bi.

As in [10], we decompose f as f = g + b = g +
∑
i

bi, where

g(x) = f(x)χX\⋃
i Bi

+
∑

i

(
1

µ(Bi)

∫

Bi

f(y)ρi(y) dµ(y)
)

χBi(x),

bi(x) = f(x)ρi(x)−
(

1
µ(Bi)

∫

Bi

f(y)ρi(y) dµ(y)
)

χBi(x),

and

ρi(x) =
χBi(x)∑

j
χBj (x)

χ⋃
jBj

(x).

So by (iv) in Lemma 2.7 and Remark 3, we have the following conclusions:
(a) If x ∈ Bi, then M−1 ≤ ρi(x) ≤ 1. Moreover,

∑
i ρi(x) = χ∪jBj (x).

(b) ‖g(x)‖E ≤ Cλ for µ a.e x ∈ X.

(c) supp bi ⊂ Bi and
1

µ(Bi)

∫

Bi

‖bi(x)‖E dµ(x) ≤ Cλ.
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Thus,

µ({x ∈ X : ‖Tf(x)‖F > λ})
≤ µ({x ∈ X : ‖Tg(x)‖F > λ/2}) + µ({x ∈ X : ‖Tb(x)‖F > λ/2}). (2.1)

For the “good” part, notice that T is bounded from L2
E(X) to L2

F (X), so by
the Chebyshev inequality and (b), we have

µ({x ∈ X : ‖Tg(x)‖F > λ/2})
≤ C

λ2

∫

X
‖Tg(x)‖2

F dµ(x)

≤ C

λ2

∫

X
‖g(x)‖2

E dµ(x)

≤ C

λ

∫

X
‖g(x)‖E dµ(x)

≤ C

λ

(∫

X\Ωλ

‖g(x)‖Edµ(x) +
∫

Ωλ

‖g(x)‖E dµ(x)
)

≤ C

λ

(
‖f‖L1

E(X) +
∫

Ωλ

∥∥∥∥
∑

i

(
1

µ(Bi)

∫

Bi

f(y)ρi(y)dµ(y)
)

χBi(x)

∥∥∥∥
E

dµ(x)
)

≤ C

λ

(
‖f‖L1

E(X) +
∫

Ωλ

∑

i

(
1

µ(Bi)

∫

Bi

‖f(y)ρi(y)‖Edµ(y)
)

χBi(x) dµ(x)
)

≤ C

λ

(
‖f‖L1

E(X) +
∑

i

∫

Bi

‖f(y)‖E dµ(y)
)

≤ C

λ
‖f‖L1

E(X).

(2.2)

Let us now estimate the “bad” part. Set ti = rm
Bi

and write

Tbi = TAtibi(x) + (T − TAti)bi(x).

Then

‖Atibi(x)‖E ≤
∫

X
‖ati(x, y)‖L(E)‖bi(y)‖E dµ(y)

≤
∫

X
hti(x, y)‖bi(y)‖E dµ(y)

≤ sup
y∈Bi

hti(x, y)
∫

Bi

‖bi(y)‖E dµ(y)

≤ Cλµ(Bi) inf
y∈Bi

hηti(x, y)

≤ Cλ

∫

X
hηti(x, y)χBi(y) dµ(y).

(2.3)

Take ϕ ∈ L2(X), then by (2.3), Lemma 2.6 and using the idea of [8],



460 Hui-Xia Mo and Shan-Zhen Lu

| < |ϕ|, ‖Atibi‖E > |

≤ Cλ

∫

X

∫

X
|ϕ(x)|hηti(x, y)χBi(y) dµ(y) dµ(x)

≤ Cλ < M(ϕ), χBi >,

where < ·, · > denotes the inner product in complex space.

So, ∣∣∣
〈
|ϕ|,

∑

i

‖Atibi‖E

〉∣∣∣ ≤ Cλ < M(ϕ), χ⋃
i Bi

> .

It follows that ∥∥∥∥
∑

i

‖Atibi‖E

∥∥∥∥
L2(X)

≤ Cλ
∥∥∥
∑

i

χBi

∥∥∥
L2(X)

≤ Cλ

(∑

i

µ(Bi)
)1/2

≤ Cλ1/2‖f‖1/2

L1
E(X)

.

Therefore, by the Chebyshev inequality and the boundedness of T on L2
E(X),

µ
({

x ∈ X :
∥∥∥
∑

i

TAtibi(x)
∥∥∥

F
> λ/4

})
≤ C

1
λ2

∫

X

∥∥∥∥
∑

i

TAtibi(x)
∥∥∥∥

2

F

dµ(x)

≤ C
1
λ2

∫

X

∥∥∥∥
∑

i

Atibi(x)
∥∥∥∥

2

E

dµ(x)

≤ C
1
λ2

∥∥∥∥
∑

i

‖Atibi‖E

∥∥∥∥
2

L2(X)

≤ C
1
λ
‖f‖L1

E(X).

(2.4)

On the other hand, set B̃i = (1 + c1)Bi, where c1 is the constant in (i) in
Definition 2.1, then

µ
({

x ∈ X :
∥∥∥
∑

i

(T − TAti)bi(x)
∥∥∥

F
> λ/4

})

≤
∑

i

µ(B̃i) + µ
({

x ∈ X\ ∪i B̃i :
∥∥∥
∑

i

(T − TAti)bi(x)
∥∥∥

F
> λ/4

})

≤ C
∑

i

µ(Bi) +
4
λ

∑

i

∫

X\⋃
i B̃i

‖(T − TAti)bi(x)‖F dµ(x)

:= I + II.

(2.5)
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Using the property (iii) of the Calderón-Zygmund decomposition, for I we have

I = C
∑

i

µ(Bi) ≤ C

λ
‖f‖L1

E(X). (2.6)

Since supp bi ⊂ Bi and B̃i = (1 + c1)Bi, thus by assumption (i) in Definition
2.1,

II =
4
λ

∑

i

∫

X\⋃
i B̃i

‖(T − TAti)bi(x)‖F dµ(x)

≤ 4
λ

∑

i

∫

X\⋃
i B̃i

∥∥∥∥
∫

X
(K(x, y)− kti(x, y))bi(y)dµ(y)

∥∥∥∥
F

dµ(x)

≤ 4
λ

∑

i

∫

X
‖bi(y)‖E

(∫

d(x,y)≥c1t
1/m
i

‖K(x, y)− kti(x, y)‖L(E,F ) dµ(x)
)

dµ(y)

≤ C

λ

∑

i

‖bi‖L1
E(X) ≤

C

λ
‖f‖L1

E(X),

(2.7).

Combining (2.2), (2.4), (2.5), (2.6) with (2.7), we show that T is an operator
of weak type (1, 1). By the Marcinkiewicz interpolation theorem, T is bounded
from Lp

E(X) to Lp
F (X) for 1 < p ≤ 2.

But for 2 < p < ∞, we must pass to the adjoint operator. However, for 1 ≤
p < ∞, Lp′

E∗(X) 6= (Lp
E(X))∗, in general. In fact, if f ∈ Lp

E(X) and g ∈ Lp′
E∗(X),

then the active < f, g > (x) =< f(x), g(x) > is integrable; furthermore,

‖g‖
Lp′

E∗ (X)
= sup

{∣∣∣∣
∫

X
< f(x), g(x) > dµ(x)

∣∣∣∣ : ‖f‖Lp
E(X) ≤ 1

}
.

From this we see that Lp′
E∗(X) ⊂ (Lp

E(X))∗.

In the following we will show how to pass to the adjoint operator, which comes
from [13].

When E is reflexive Lp′
E∗(X) = (Lp

E(X))∗, it is enough to note that the kernel
associated with the adjoin operator T ∗ is K(y, x) = K∗(x, y) ∈ L(F ∗, E∗). In
Definition 2.1 the condition (ii) for K is equivalent to (i) for K∗, so repeating the
above argument we get that T ∗ is bounded for 1 < p ≤ 2.

When Lp′
E∗(X) 6= (Lp

E(X))∗, we must consider the finite dimensional subspaces
of E.

If f is a scalar function in Lp(X) and b ∈ E, define the function f · b from X to
E by (f · b)(x) = f(x)b. This function is in Lp

E(X) and its norm is ‖f‖Lp(X)‖b‖E .

The subspace of Lp
E(X) consisting of finite linear combinations of function of this

type, denote by Lp ⊗ E, is dense if 1 ≤ p < ∞. Given such a subspace E0, let
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T0 : L2
E0

(X) 7−→ L2
F (X) be the restriction of T to functions with values in E0.

The kernel associated with T0 is K0 ∈ L(E0, F ), which is the restriction of K
on E0. Since ‖K0‖L(E0,F ) ≤ ‖K‖L(E,F ), inequalities (i) and (ii) in Definition 2.1
hold for K0 with constants independent of the subspaces E0. Therefore, arguing
as before,

T ∗0 : Lq
F ∗ 7−→ Lq

E∗0
, for 1 < q ≤ 2.

So by duality, T0 is bounded from Lp
E0

(X) to Lp
F (X) for 2 ≤ p < ∞. Since Lp

E⊗E

is dense in Lp
E(X), we get the desired result.

For the proof of (iii), it is sufficient for us to show that for any f ∈ L2
E(X) ∩

L∞E (X) and x ∈ X,

sup
B3x

1
µ(B)

∫

B
‖Tf(y)−A′tBTf(y)‖F dµ(y) ≤ C‖f‖L∞E (X),

in which tB = rm
B and rB is the radius of B.

Let f ∈ L2
E(X)∩L∞E (X) be given and B = B(x0, rB) 3 x. We write f1 = fχ2B

and f2 = f − f1, then

Tf −A′tBTf = (Tf1 −A′tBTf1) + (T −A′tBT )f2.

Thus,

∫

B
‖Tf(y)−A′tBTf(y)‖F dµ(y)

≤
∫

B
‖Tf1(y)−A′tBTf1(y)‖F dµ(y) +

∫

B
‖(T −A′tBT )f2(y)‖F dµ(y)

:= I + II.

Let us estimate I and II respectively.

By (1.4) and Lemma 2.6,

‖A′tBTf1(y)‖F

=
∥∥∥∥
∫

X
a′tB (y, z)T1f(z) dµ(z)

∥∥∥∥
F

≤
∫

X
‖a′tB (y, z)‖L(F )‖Tf1(z)‖F dµ(z)

≤
∫

X
htB (y, z)‖Tf1(z)‖F dµ(z)

≤ CM(‖Tf1‖F )(y).

(2.8)
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So,

I ≤ C

∫

B
M(‖Tf1‖F )(y)dµ(y)

≤ C(µ(B))1/2

(∫

B
(M(‖Tf1‖F )(y))2dµ(y)

)1/2

≤ C(µ(B))1/2

(∫

B
‖Tf1(y)‖2

F dµ(y)
)1/2

≤ C(µ(B))1/2

(∫

2B
‖f(y)‖2

Edµ(y)
)1/2

≤ Cµ(B)‖f‖L∞E (X).

By the assumption (ii) in Definition 2.1,

II ≤
∫

B

∫

X\2B
‖K(y, z)−Kt(y, z)‖L(E,F )‖f(z)‖Edµ(z)dµ(y)

≤ C‖f‖L∞E (X)

∫

B

∫

X\2B
‖K(y, z)−Kt(y, z)‖L(E,F )dµ(z)dµ(y)

≤ Cµ(B)‖f‖L∞E (X).

Thus, for f ∈ L2
E(X) ∩ L∞E (X), we get the desired result.

3. Maximal truncated operator

Let T be a linear operator mapping E−valued functions into F−valued func-
tions. If T is bounded from L2

E(X) to L2
F (X) and the associated kernel K(x, y) :

X× X 7−→ L(E, F ) satisfies the following conditions:
(i) There exists an “approximation to identity” {At : t > 0} ⊂ L(E) such that
TAt has an associated kernel kt(x, y), and there exist constants c2, C > 0, so that

∫

d(x,y)≥c2t1/m

‖K(x, y)− kt(x, y)‖L(E,F ) dµ(x) ≤ C, for all y ∈ X.

(ii) There exists an “approximation to identity” {A′t : t > 0} ⊂ L(F ) such that
A′tT has an associated kernel Kt(x, y), and there is a constant c4 > 0, so that

(a) ‖Kt(x, y)‖L(E,F ) ≤ c4
1

µ(B(x, t1/m))
and

(b) ‖K(x, y)−Kt(x, y)‖L(E,F ) ≤ c4
1

µ(B(x, d(x, y)))
ω

(
t1/m

d(x, y)

)
,

when d(x, y) ≥ c3t
1/m, where ω is an increasing function satisfying the Dini-type

condition
∫ 1
0 ω(t)dt

t < ∞.
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Remark 4. In the scalar case, take ω = rα then (b) is equivalent to (19) in
[4], so the condition assumed on K is generalized in the paper. In addition,
∫ 1
0 ω(t)dt

t < ∞ is equivalent to the discrete form
∞∑

k=0

ω(2−k) < ∞.

Then define maximal truncated operator

T∗f(x) = sup
ε>0

‖Tεf(x)‖F , (3.1)

where Tε is the truncated singular operator defined by

Tε =
∫

d(x,y)≥ε
K(x, y)f(y) dµ(y), for some ε > 0. (3.2)

Theorem 3.1. Assume that T∗ is as above, then there exists a constant C > 0
such that

T∗f(x) ≤ C(M(‖Tf‖F )(x) + M(‖f‖E)(x)).

Theorem 3.2. Assume that T∗ is as above, then T∗ is bounded from Lp
E(X) to

Lp(X) for all 1 < p < ∞.

It is not hard to check that in this section T satisfies the condition (i) and (ii)
of Definition 2.1, so T is bounded from Lp

E(X) to Lp
F (X) for 1 < p < ∞. Thus by

Theorem 3.1, Theorem 3.2. can be proved. So we need only to prove Theorem
3.1. Without loss of generality, we assume that c3 = 1.

For a fixed ε > 0, write

Tεf(x) = A′εmTf(x)− (A′εmT − Tε)f(x).

Since

‖A′εmTf(x)‖F ≤
∫

X
‖a′εm(x, y)‖L(F )‖Tf(y)‖F dµ(y)

≤
∫

X
hεm(x, y)‖Tf(y)‖F dµ(y).

Thus by Lemma 2.6, we have

‖A′εmTf(x)‖E ≤ CM(‖Tf‖F )(x). (3.3)

On the other hand, the kernel of the operator A′εmT−Tε is given by Kεm(x, y)−
K̄ε(x, y), in which K̄ε(x, y) = K(x, y) if d(x, y) ≥ ε and K̄ε(x, y) = 0 otherwise.
So, there are two cases:
case (i) d(x, y) < ε, then Kε(x, y) = 0 and it follows from (a) that

‖Kεm(x, y)− K̄ε(x, y)‖L(E,F ) = ‖Kεm(x, y)‖L(E,F ) ≤ c4
1

µ(B(x, ε))
,
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case (ii) d(x, y) ≥ ε, then K̄ε(x, y) = K(x, y) and it follows from (b) that

‖Kεm(x, y)− K̄ε(x, y)‖L(E,F ) ≤ c4
1

µ(B(x, d(x, y)))
ω

(
ε

d(x, y)

)
.

Therefore, using
∞∑

k=0

ω(2−k) < ∞,

‖(A′εmT − Tε)f(x)‖F

=
∥∥∥∥
∫

X
(Kεm(x, y)− K̄ε(x, y))f(y) dµ(y)

∥∥∥∥
F

≤
∫

X
‖Kεm(x, y)− K̄ε(x, y)‖L(E,F )‖f(y)‖E dµ(y)

≤ C
1

µ(B(x, ε))

∫

d(x,y)<ε
‖f(y)‖E dµ(y)

+C

∫

d(x,y)≥ε

1
µ(B(x, d(x, y)))

ω

(
ε

d(x, y)

)
‖f(y)‖E dµ(y)

≤ C
1

µ(B(x, ε))

∫

d(x,y)<ε
‖f(y)‖E dµ(y)

+C
∞∑

k=0

∫

2kε≤d(x,y)<2k+1ε

1
µ(B(x, d(x, y)))

ω

(
ε

d(x, y)

)
‖f(y)‖E dµ(y)

≤ C
1

µ(B(x, ε))

∫

d(x,y)≤ε
‖f(y)‖E dµ(y)

+C
∞∑

k=0

ω(2−k)
1

µ(B(x, 2k+1ε))

∫

d(x,y)≤2k+1ε
‖f(y)‖E dµ(y)

≤ CM(‖f‖E)(x).

(3.4)

Combining the estimates of (3.3) with (3.4), we have

T∗f(x) = sup
ε>0

‖Tεf(x)‖F ≤ C(M(‖Tf‖F )(x) + M(‖f‖E)(x)).

Thus we finish the proof of Theorem 3.1.

4. Multilinear commutators

4.1.. Some notations and the main results. Let X be a space of homogeneous
type with a distance d and a non-negative Borel regular measure µ. If for any
x ∈ X and r > 0, where µ(x) < rn < µ(X), there exist 0 < c1 ≤ c2 < ∞, such
that c1r

n ≤ µ(B(x, r)) ≤ c2r
n, then (X, d, µ) is said to be normal. It is obvious

that the condition of above means the doubling condition (1.2).
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Definition 4.1.1 A locally integrable function b on X is said to be in BMO if
and only if

sup
x∈B

1
µ(B)

∫

B
|b(y)− bB| dµ(y) < ∞,

where bB = 1
µ(B)

∫
B b(y) dµ(y). The BMO norm of b is defined by

‖b‖∗ = sup
B

1
µ(B)

∫

B
|b(y)− bB| dµ(y) < ∞.

Definition 4.1.2.([2]) Let 0 < β < 1, the Lipschitz space on space of homoge-
nous type X is the space of functions f such that

‖f‖Lip(β) = sup
x,y∈X,x 6=y

|f(x)− f(y)|
d(x, y)β

< ∞.

Definition 4.1.3. Let T, mapping E−valued functions into F−valued functions,
be a singular integral operator with non-smooth kernel K(x, y) : X×X 7−→ (E, F )
satisfying:
(i) T is bounded from L2

E(X) to L2
F (X) and for any f ∈ L∞c,E(X),

Tf(x) =
∫

X
K(x, y)f(y) dµ(y) for a.e x /∈ suppf.

(ii) There exists an “approximation to identity” {At : t > 0} ⊂ L(E) such that
TAt has an associated kernel kt(x, y). And there exist constants c5, C > 0, so
that ∫

d(x,y)≥c5t1/m

‖K(x, y)− kt(x, y)‖L(E,F ) dµ(x) ≤ C, for all y ∈ X.

(iii) There exist constants C > 0, 0 < δ < 1 and an “approximation to identity”
{A′t : t > 0} ⊂ L(F ) such that A′tT has an associated kernel Kt(x, y) satisfying

‖K(x, y)−Kt(x, y)‖L(E,F ) ≤ C
1

µ(B(x, d(x, y)))
tδ/m

d(x, y)δ
,

for d(x, y) ≥ c′5t
1/m. In what follows we will assume that c5 = c′5 = 1.

Let l ∈ N is finite. Suppose that ~b = (b1, b2, . . . , bl) is a finite family of locally
integrable functions, then the multilinear commutator generated by T and ~b is
defined by

T~b
f(x) = [bl, . . . , [b2, [b1, T ]], . . . , ]f(x).

It is obvious that when l = 1, T~b
f(x) = [b1, T ]f(x) = b1(x)Tf(x)− T (b1f)(x) is

the commutator generated by T and b1, and when b1 = · · · = bl, T~b
f is the higher

commutator.
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Remark 5. From Theorem 2.3, it is easy to see that the operator T in Definition
4.1.3 is bounded from Lp

E(X) to Lp
F (X) for all 1 < p < ∞.

Remark 6. Given any positive integer l, for all 1 ≤ j ≤ l, we denote the fam-
ily of all finite subsets σ = {σ1, σ2, · · · , σj} of {1, 2, . . . , l} of different elements
by C l

j and for any σ ∈ C l
j , let σ′ = {1, 2, · · · , l}\σ. Let ~b = (b1, b2, · · · , bl)

be a finite function family then for any σ = {σ1, σ2, · · · , σj} ∈ C l
j , we denote

~bσ = {bσ1 , bσ2 , · · · , bσj} and bσ(x) =
j∏

i=1
bσi(x). With these notations, for any

l−tuple (β1, · · · , βl) of positive numbers, we set βσ =
j∑

i=1
βσi , ‖~bσ‖∗ =

j∏
i=1

‖bσi‖∗,

and ‖~bσ‖Lip(βσ) =
j∏

i=1
‖bσi‖Lip(βσi )

. Denote β =
l∑

j=1
βj , ‖~b‖∗ =

l∏
j=1

‖bj‖∗ and

‖~b‖Lip(β) =
l∏

j=1
‖bj‖Lip(βj), simply.

Theorem 4.1.4. Let 1 < p < ∞ and T~b
be as above. If bj ∈ BMO for all

1 ≤ j ≤ l, then T~b
is bounded from Lp

E(X) to Lp
F (X).

Theorem 4.1.5. Suppose that (X, d, µ) is normal. Let T~b
be as above. If 0 <

β1, β2, . . . , βl < 1 such that 0 <
∑l

j=1 βj = β < n, and bj ∈ Lip(βj)(1 ≤ j ≤ l),
then T~b

is bounded from Lp
E(X) to Lq

F (X), here 1 < p < n/β such that 1/q =
1/p− β/n.

When l = 1, denote b1 = b and β1 = β, then we have the following result.

Theorem 4.1.6 Suppose that (X, d, µ) is normal. Let 0 < δ < 1 be as in
Definition 4.1.3. If 0 < β < 1 and n/β ≤ p < ∞ such that δ/n− (β/n−1/p) > 0,
then for b ∈ Lip(β) there exists a constant C > 0 such that

sup
B

1
µ(B)1+β/n−1/p

∫

B
‖Tbf(x)−A′tB (Tbf)(x)‖F dµ(x) ≤ C‖b‖Lip(β)‖f‖Lp

E(X).

Remark 7 Let X = Rn is Euclidean space. In the scalar field, if p = n/β,
Theorem 4.1.6 implies that Tb is bounded from Lp(Rn) to BMOA′ .

4.2. The proof of Theorem 4.1.4. To prove Theorem 4.1.4 we need the fol-
lowing Lemmas.

Lemma 4.2.1([14]) Assume that b ∈ BMO and k > 1. Then for every ball B,
we have

|bB − b2kB| ≤ Ck‖b‖∗,
where 2kB denotes the 2k times extensions of B with the same center.
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Lemma 4.2.2. Let bj ∈ BMO(j = 1, 2, . . . , l), then for any σ ∈ C l
j(j =

1, 2, . . . , l) and 1 ≤ γ < ∞,

(
1

µ(B)

∫

B
|(b(y)− bB)σ|γ dµ(y)

)1/γ

≤ C‖~bσ‖∗.

Proof Take γ ≤ γ1, γ2, . . . , γj < ∞ such that 1/γ1 + 1/γ2 + · · · + 1/γj = 1/γ,
then by Hölder’s inequality

(
1

µ(B)

∫

B
|(b(y)− bB)σ|γ dµ(y)

)1/γ

≤ C

j∏

i=1

(
1

µ(B)

∫

B
|bσi(y)− (bσi)B|γi dµ(y)

)1/γi

≤ C‖~bσ‖∗.

Lemma 4.2.3. Let H be a Banach space. Assume that {At : t > 0} is an
“approximation to identity” on H and bj ∈ BMO(j = 1, 2, . . . , l). Then for
every f ∈ Lp

H(1 < p < ∞), σ ∈ C l
j(j = 1, 2, . . . , l) and 1 < γ < ∞, there is a

constant C > 0 such that

sup
B3x

1
µ(B)

∫

B
‖AtB ((b− bB)σf)(y)‖H dµ(y) ≤ C‖~bσ‖∗Mγ(‖f‖H)(x),

where tB = rm
B and rB is the radius of B.

Proof For 1 < p < ∞, fixed f ∈ Lp
H(X). Let B = B(x0, rB) 3 x, then

1
µ(B)

∫

B
‖AtB ((b− bB)σf)(y)‖H dµ(y)

≤ 1
µ(B)

∫

B

∫

X
‖atB (y, z)‖L(H)‖(b(z)− bB)σf(z)‖H dµ(z) dµ(y)

≤ 1
µ(B)

∫

B

∫

2B
htB (y, z)‖(b(z)− bB)σf(z)‖H dµ(z) dµ(y)

+
1

µ(B)

∫

B

∞∑

k=1

∫

2k+1B\2kB
htB (y, z)‖(b(z)− bB)σf(z)‖H dµ(z) dµ(y)

:= I + II.

Notice that for any y ∈ B and z ∈ 2B, by (1.5) and the properties of function
s,

htB (y, z) ≤ Cs(0)µ(2B)−1. (4.2.1)

Thus

I ≤ C
1

µ(2B)

∫

2B
|(b(z)− bB)σ|‖f(z)‖H dµ(z).
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On the other hand, take 1 < γ, γ′ < ∞ which satisfies 1/γ + 1/γ′ = 1, then by
Hölder’s inequality, Lemma 4.2.1 and Lemma 4.2.2,

I ≤ C

(
1

µ(2B)

∫

2B
|(b(z)− bB)σ|γ′ dµ(z)

)1/γ′( 1
µ(2B)

∫

2B
‖f(z)‖γ

E dµ(z)
)γ

≤ C‖~bσ‖∗Mγ(‖f‖E)(x).
(4.2.2)

Moreover, for any y ∈ B and z ∈ 2k+1B \ 2kB, we have d(y, z) ≥ 2k−1rB. So,
using (1.5) and (1.3),

htB (y, z) =
s(d(y, z)mt−1)
µ(B(y, t1/m))

≤ C
s(2(k−1)m)2(k+1)n

µ(2k+1B)
. (4.2.3)

Thus by Lemma 4.2.2 and (4.2.3), it is similar to the estimate of (4.2.2),

II ≤ C

∞∑

k=1

s(2(k−1)m)2(k+1)n

µ(2k+1B)

∫

2k+1B
|(b(z)− bB)σ|‖f(z)‖H dµ(z)

≤ C
∞∑

k=1

2(k+1)ns(2(k−1)m)
(

1
µ(2k+1B)

∫

2k+1B
|(b(z)− bB)σ|γ′ dµ(z)

)1/γ′

×
(

1
µ(2k+1B)

∫

2k+1B
‖f(z)‖γ

H dµ(z)
)1/γ

≤ C‖~bσ‖∗Mγ(‖f‖H)(x),

where γ is the same as in (4.2.2). Thus we complete the proof of Lemma 4.2.3.

Lemma 4.2.4. Let H be a Banach space. Assume that µ(X) = ∞ and f ∈ Lp
H(X)

for 1 < p < ∞. Then for every 0 < η < 1 and any 0 < λ, there exists a constant
CX > 0 and γ > 0(independent of λ and f), such that

µ({x ∈ X : M(‖f‖H)(x) > Dλ, M#
A (‖f‖H)(x) ≤ γλ})

≤ Cηµ({x ∈ X : M(‖f‖H)(x) > λ}),
where D is a fixed constant which only depends on the space X and the “approx-
imation to identity” {At, t > 0}. As a consequence, we have

‖f‖Lp
H(X) ≤ ‖M(‖f‖H)‖Lp(X) ≤ C‖M#

A (‖f‖H)‖Lp(X).

In the scalar case, it is Martell who give the proof of Lemma 4.2.4(see [10]).
In fact by some modifications for the proofs of Proposition 4.1 and Theorem 4.2
in [10], one can prove Lemma 4.2.4. We omit the proof here for brevity.

Let us now turn to prove Theorem 4.1.4.
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To prove Theorem 4.1.4, we claim that for any x ∈ X,

M#
A′(‖T~b

f‖F )(x)≤ C

(
‖~b‖∗Mτ (‖Tf‖F )(x) + ‖~b‖∗Mγξ(‖f‖E)(x)

+
l−1∑

j=1

∑

σ∈Cl
j

Cj,l‖~bσ‖∗Mτ (‖T~bσ′
f‖F )(x)

)
,

(4.2.4)

where 1 < τ < p and 1 < γ, ξ < ∞, such that 1 < γξ < p.

In fact, for any x ∈ X, take B = B(x0, rB) 3 x. Fix f ∈ Lp
E(X), we set f1 =

fχ2B and f2 = f−f1. And denote ~λ = (λ1, λ2, . . . , λl) = ((b1)B, (b2)B, . . . , (bl)B) =
~bB. Then T~b

f can be written as the following form

T~b
f(y) =

∫

X

l∏

j=1

(bj(y)− bj(z))K(y, z)f(z) dµ(z)

=
∫

X

l∏

j=1

((bj(y)− λj)− (bj(z)− λj))K(y, z)f(z) dµ(z)

=
l∑

j=0

∑

σ∈Cl
j

(−1)l−j(b(y)− λ)σ

∫

X
(b(z)− λ)σ′K(y, z)f(z) dµ(z)

=
l∏

j=1

(bj(y)− λj)Tf(y)

+
l−1∑

j=1

∑

σ∈Cl
j

(−1)l−j(b(y)− λ)σ

∫

X
(b(z)− λ)σ′K(y, z)f(z) dµ(z)

+(−1)lT (
l∏

j=1

(bj − λj)f)(y).

Now expanding (b(z)− λ)σ′ = ((b(z)− b(y)) + (b(y)− λ))σ′ , it is easy to see that

T~b
f(y) =

l∏

j=1

(bj(y)− λj)Tf(y) +
l−1∑

j=1

∑

σ∈Cl
j

Cj,l(b(y)− λ)σT~bσ′
f(y)

+(−1)lT (
l∏

j=1

(bj − λj)f1)(y) + (−1)lT (
l∏

j=1

(bj − λj)f2)(y),
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and

A′tB (T~b
f)(y) = A′tB (

l∏

j=1

(bj − λj)Tf)(y)

+
l−1∑

j=1

∑

σ∈Cl
j

Cj,lA
′
tB

((b− λ)σT~bσ′
f)(y)

+(−1)lA′tB (T (
l∏

j=1

(bj − λj)f1))(y)

+(−1)lA′tB (T (
l∏

j=1

(bj − λj)f2))(y).

Enhance,

1
µ(B)

∫

B
‖T~b

f(y)−A′tB (T~b
f)(y)‖F dµ(y)

≤ 1
µ(B)

∫

B

∥∥∥∥
l∏

j=1

(bj(y)− (bj)B)Tf(y)
∥∥∥∥

F

dµ(y)

+
1

µ(B)

∫

B

∥∥∥∥
l−1∑

j=1

∑

σ∈Cl
j

Cj,l(b(y)− bB)σT~bσ′
f(y)

∥∥∥∥
F

dµ(y)

+
1

µ(B)

∫

B

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f1)(y)
∥∥∥∥

F

dµ(y)

+
1

µ(B)

∫

B

∥∥∥∥A′tB (
l∏

j=1

(bj − (bj)B)Tf)(y)
∥∥∥∥

F

dµ(y)

+
1

µ(B)

∫

B

∥∥∥∥
l−1∑

j=1

∑

σ∈Cl
j

Cj,lA
′
tB

((b− bB)σT~bσ′
f)(y)

∥∥∥∥
F

dµ(y)

+
1

µ(B)

∫

B

∥∥∥∥A′tB (T (
l∏

j=1

(bj − (bj)B)f1))(y)
∥∥∥∥

F

dµ(y)

+
1

µ(B)

∫

B

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f2)(y)−A′tB (T (
l∏

j=1

(bj − (bj)B)f2))(y)
∥∥∥∥

F

dµ(y)

:= I + II + III + IV + V + V I + V II.
(4.2.5)

Let us now estimate I, II, III, IV, V, V I and V II respectively.
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Take 1 < τ < p and 1 < τ ′ < ∞ such that 1/τ + 1/τ ′ = 1, then by Hölder’s
inequality and Lemma 4.2.2,

I ≤
(

1
µ(B)

∫

B

∣∣∣∣
l∏

j=1

(bj(y)− (bj)B)
∣∣∣∣
τ ′

dµ(y)
)1/τ ′( 1

µ(B)

∫

B
‖Tf(y)‖τ

F dµ(y)
)1/τ

≤ C‖~b‖∗Mτ (‖Tf‖F )(x).
(4.2.6)

It is similar to the estimate of I,

II ≤ C
l−1∑

j=1

∑

σ∈Cl
j

Cj,l‖~bσ‖∗Mτ (‖T~bσ′
f‖F )(x).

For III, take 1 < γ, ξ < ∞ such that 1 < γξ < p. Then by Hölder’s inequality,
the boundedness of T and Lemma 4.2.2, we have

III ≤
(

1
µ(B)

∫

B

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f1)(y)
∥∥∥∥

γ

F

dµ(y)
)1/γ

≤ C

µ(B)1/γ

(∫

2B

∥∥∥∥
l∏

j=1

(bj(y)− (bj)B)f(y)
∥∥∥∥

γ

E

dµ(y)
)1/γ

≤ C

(
1

µ(B)

∫

2B

∣∣∣∣
l∏

j=1

(bj(y)− (bj)B)
∣∣∣∣
γξ′

dµ(y)
)1/γξ′

×
(

1
µ(B)

∫

2B
‖f(y)‖γξ

E dµ(y)
)1/γξ

≤ C‖~b‖∗Mγξ(‖f‖E)(x),

(4.2.7)

here 1/γ + 1/γ′ = 1

Take τ as in (4.2.6), then by Lemma 4.2.3,

IV ≤ C‖~b‖∗Mτ (‖Tf‖F )(x)

and

V ≤ C

l−1∑

j=1

∑

σ∈Cl
j

Cj,l‖~bσ‖∗Mτ (‖T~bσ′
f‖F )(x).
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For V I we have

V I =
1

µ(B)

∫

B

∥∥∥∥
∫

X
a′tB (y, z)(T (

l∏

j=1

(bj − (bj)B)f1)(z) dµ(z)
∥∥∥∥

F

dµ(y)

≤ 1
µ(B)

∫

B

∫

2B
‖a′tB (y, z)‖L(E,F )

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f1)(z)
∥∥∥∥

F

dµ(z)dµ(y)

+
1

µ(B)

∫

B

∫

X\2B
‖a′tB (y, z)‖L(E,F )

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f1)(z)
∥∥∥∥

F

dµ(z)dµ(y)

≤ 1
µ(B)

∫

B

∫

2B
htB (y, z)

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f1)(z)
∥∥∥∥

F

dµ(z)dµ(y)

+
1

µ(B)

∫

B

∫

X\2B
htB (y, z)

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f1)(z)
∥∥∥∥

F

dµ(z)dµ(y)

:= V I1 + V I2.

Thus by (4.2.1),

V I1≤ C
1

µ(2B)µ(B)

∫

B

∫

2B

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f1)(z)
∥∥∥∥

F

dµ(z)dµ(y)

≤ C
1

µ(2B)

∫

2B

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f1)(z)
∥∥∥∥

F

dµ(z).

So, by the estimate of III,

V I1 ≤ C‖~b‖∗Mγξ(‖f‖E)(x),

where γ, ξ are as in (4.2.7).

For V I2, by (4.2.3) and (1.5) we have

V I2 =
1

µ(B)

∫

B

∞∑

k=1

∫

2k+1B\2kB
htB (y, z)

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f1)(z)
∥∥∥∥

F

dµ(z)dµ(y)

≤
∫

B

∞∑

k=1

C
2(k+1)ns(2(k−1)m)
µ(B)µ(2k+1B)

∫

2k+1B

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f1)(z)
∥∥∥∥ dµ(z)dµ(y)

≤
∞∑

k=1

C
2(k+1)ns(2(k−1)m)

µ(2k+1B)

∫

2k+1B

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f1)(z)
∥∥∥∥

F

dµ(z).
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Take γ, ξ as in the estimate of III, then by Hölder’s inequality, Lemma 4.2.2
and (1.6), it is similar to the estimate of III,

V I2 ≤
∞∑

k=1

C
2(k+1)ns(2(k−1)m)

µ(2k+1B)1/γ

(∫

2k+1B

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f1)(z)
∥∥∥∥

γ

F

dµ(z)
)1/γ

≤
∞∑

k=1

C
2(k+1)ns(2(k−1)m)

µ(2k+1B)1/γ

(∫

2B

∥∥∥∥
l∏

j=1

(bj(z)− (bj)B)f(z)
∥∥∥∥

γ

E

dµ(z)
)1/γ

≤
∞∑

k=1

2kns(2(k−1)m)2−kn/γ

(
1

µ(2B)

∫

2B

∣∣∣∣
l∏

j=1

(bj(z)− (bj)B)
∣∣∣∣
γξ′

dµ(z)
)1/γξ′

×
(

1
µ(2B)

∫

2B
‖f(z)‖γξ

E dµ(z)
)1/γξ

≤
∞∑

k=1

C2kns(2(k−1)m)2−kn/γ‖~b‖∗Mγξ(‖f‖E)(x)

≤ C‖~b‖∗Mγξ(‖f‖E)(x).

Combining the estimates of V I1 with V I2, we get

V I ≤ C‖~b‖∗Mγξ(‖f‖E)(x).

In the last, let us estimate V II. Take τ and τ ′ as in (4.2.6), then by Lemma
4.2.1 and Lemma 4.2.2, we have

V II ≤ 1
µ(B)

∫

B

∥∥∥∥(T −A′tBT )(
l∏

j=1

(bj − (bj)B)f2)(y)
∥∥∥∥

F

dµ(y)

≤ 1
µ(B)

∫

B

∫

X\2B
‖K(y, z)−KtB (y, z)‖L(E,F )

×
∥∥∥∥

l∏

j=1

(bj(z)− (bj)B)f(z)
∥∥∥∥

E

dµ(z)dµ(y)

≤ C

µ(B)

∫

B

∞∑

k=1

∫

2k+1B\2kB

1
µ(B(x, d(x, z)))

t
δ/m
B

d(y, z)δ

×
∥∥∥∥

l∏

j=1

(bj(z)− (bj)B)f(z)
∥∥∥∥

E

dµ(z)dµ(y)

≤
∞∑

k=1

C2−kδ 1
µ(2k+1B)

∫

2k+1B

∥∥∥∥
l∏

j=1

(bj(z)− (bj)B)f(z)
∥∥∥∥

E

dµ(z)

≤
∞∑

k=1

C2−kδ

(
1

µ(2k+1B)

∫

2k+1B

∣∣∣∣
l∏

j=1

(bj(z)− (bj)B)
∣∣∣∣
τ ′)1/τ ′

dµ(z)

×
(

1
µ(2k+1B)

∫

2k+1B
‖f(z)‖τ

E dµ(z)
)1/τ

≤ C‖~b‖∗Mτ (‖f‖E)(x).
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In fact, in the above estimate, we have used (1.3).

Combining the estimates of I, II, III, IV, V, V I with V II, we get that for any
B 3 x,

1
µ(B)

∫

B
‖T~b

f(y)−A′tB (T~b
f)(y)‖F dµ(y)

≤ C

(
‖~b‖∗Mτ (‖Tf‖F )(x) + ‖~b‖∗Mγξ(‖f‖E)(x)

+
l−1∑

j=1

∑

σ∈Cl
j

Cj,l‖~bσ‖∗Mτ (‖Tbσ′f‖F )(x)
)

.

Take supremum for all B 3 x, then we obtain (4.2.4).

From the above estimate for M#
A′(‖T~b

f‖F )(x), it is easy to see that when m = 1,

1
µ(B)

∫

B
‖Tb1f(y)−A′tB (Tb1f)(y)‖F dµ(y)

≤ C‖b1‖∗Mτ (‖Tf‖F )(x) + C‖~b‖∗Mγξ(‖f‖E)(x).
(4.2.8)

Take supremum for all B 3 x in (4.2.8) and use Lemma 2.2.4, we get that Tb1 is
bounded from Lp

E(X) to Lp
F (X). Enhance by induction on l and (4.2.4), we finish

the proof of Theorem 4.1.4.

4.3. The proofs of Theorem 4.1.5 and Theorem 4.1.6. Similar to the proof
of Theorem 4.1.4, we need the following Lemmas.

Lemma 4.3.1([15]) For 0 < γ and 0 < β < n, let

Mβ,γ(f)(x) = sup
B3x

(
1

µ(B)1−βγ/n

∫

B
|f(y)|γ dµ(y)

)1/γ

.

If 1 < γ < q, 1 < p < n/β, such that βγ/n < 1 and 1/q = 1/p− β/n, then there
exists a constant C > 0 such that

‖Mβ,γ(f)‖Lq ≤ C‖f‖Lp .

Lemma 4.3.2. Suppose that (X, d, µ) is normal. Then for 0 < β < 1 and
1 ≤ q < ∞, we have

sup
B

1
µ(B)β/n

(
1

µ(B)

∫

B
|f − fB|q

)1/q

≤ C‖f‖Lip(β).

For q = ∞, the formula should be modified appropriately.

Lemma 4.3.3 Suppose that (X, d, µ) is normal. Let 0 < β1, β2, . . . , βl < 1 and
bj ∈ Lip(βj)(j = 1, 2, . . . , l). Then for any 1 ≤ γ < ∞ and σ ∈ C l

j(j = 1, 2, . . . , l),
there is a constant C > 0 such that
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(
1

µ(B)

∫

B
|(b(y)− bB)σ|γ dµ(y)

)1/γ

≤ C‖~bσ‖Lip(βσ)µ(B)βσ/n.

Lemma 4.3.4 Suppose that (X, d, µ) is normal. Let H be a Banach space and
0 < βj < 1 for all 1 ≤ j ≤ l. Assume that {At : t > 0} is an “approximation to
the identity” on H and bj ∈ Lip(βj)(j = 1, 2, . . . , l). Then for every f ∈ Lp

H(1 <

p < ∞), σ ∈ C l
j(j = 1, 2, . . . , l) and 1 < γ < ∞, there is a constant C > 0 such

that

sup
B3x

1
µ(B)

∫

B
‖AtB ((b− bB)σf)(y)‖H dµ(y) ≤ C‖~bσ‖Lip(βσ)Mβ,γ(‖f‖H)(x),

where tB = rm
B and rB is the radius of B.

The method of proving Lemma 4.3.3 and Lemma 4.3.4 is analogous to that of
proving Lemma 4.2.2 and Lemma 4.2.3. We omit it for brevity.

Let us now turn to prove Theorem 4.1.5. For any x ∈ X, take B = B(x0, rB) 3
x. Fix f ∈ Lp

E(X), we set f1 = fχ2B and f2 = f − f1. And denote ~λ =
(λ1, λ2, . . . , λl) = ((b1)B, (b2)B, . . . , (bl)B) = ~bB, then it is similar to (4.2.5),

1
µ(B)

∫

B
‖T~b

f(y)−A′tB (T~b
f)(y)‖F dµ(y) ≤ J1 + J2 + J3 + J4 + J5 + J6 + J7,

where

J1 =
1

µ(B)

∫

B

∥∥∥∥
l∏

j=1

(bj(y)− (bj)B)Tf(y)
∥∥∥∥

F

dµ(y),

J2 =
1

µ(B)

∫

B

∥∥∥∥
l−1∑

j=1

∑

σ∈Cl
j

Cj,l(b(y)− bB)σT~bσ′
f(y)

∥∥∥∥
F

dµ(y),

J3 =
1

µ(B)

∫

B

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f1)(y)
∥∥∥∥

F

dµ(y),

J4 =
1

µ(B)

∫

B

∥∥∥∥A′tB (
l∏

j=1

(bj − (bj)B)Tf)(y)
∥∥∥∥

F

dµ(y),

J5 =
1

µ(B)

∫

B

∥∥∥∥
l−1∑

j=1

∑

σ∈Cl
j

Cj,lA
′
tB

((b− bB)σT~bσ′
f)(y)

∥∥∥∥
F

dµ(y),

J6 =
1

µ(B)

∫

B

∥∥∥∥A′tB (T (
l∏

j=1

(bj − (bj)B)f1))(y)
∥∥∥∥

F

dµ(y),

J7 =
1

µ(B)

∫

B

∥∥∥∥T (
l∏

j=1

(bj − (bj)B)f2)(y)−A′tB (T (
l∏

j=1

(bj − (bj)B)f2))(y)
∥∥∥∥

F

dµ(y).
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Take 1 < τ < q such that βτ/n < 1. It is similar to the estimate of I, II, IV
and V , by Hölder’s inequality, Lemma 4.3.2, Lemma 4.3.3 and Lemma 4.3.4,

J1, J4 ≤ C‖~b‖Lip(β)Mβ,τ (‖Tf‖F )(x),

and

J2, J5 ≤ C

l−1∑

j=1

∑

σ∈Cl
j

Cj,l‖~bσ‖Lip(βσ)Mβ,τ (‖T~bσ′
f‖F )(x).

Take 1 < γ, ξ < ∞ such that 1 < γξ < q and γξβ/n < 1. Then it is similar to
the estimates of III and V I, by Lemma 4.3.2 and Lemma 4.3.3,

J3, J6 ≤ C‖~b‖Lip(β)Mβ,γξ(‖f‖E)(x).

At last, using the kernel condition of T and Lemma 4.3.2, it analogous to V II,

J7 ≤ C‖~b‖Lip(β)Mβ,τ (‖Tf‖F )(x).

Thus we have

1
µ(B)

∫

B
‖T~b

f(y)−A′tB (T~b
f)(y)‖F dµ(y)

≤ C
{
‖~b‖Lip(β)Mβ,τ (‖Tf‖F )(x) +

l−1∑

j=1

∑

σ∈Cl
j

Cj,l‖~bσ‖Lip(βσ)Mβ,τ (‖T~bσ′
f‖F )(x)

+‖~b‖Lip(β)Mβ,γξ(‖Tf‖F )(x)
}

.

Take supremum for all B 3 x, it follows that

M#
A′(‖T~b

f‖F )(x)≤ C
{
‖~b‖Lip(β)Mβ,τ (‖Tf‖F )(x) + ‖~b‖Lip(β)Mβ,γξ(‖Tf‖F )(x)

+
l−1∑

j=1

∑

σ∈Cl
j

Cj,l‖~bσ‖Lip(βσ)Mβ,τ (‖T~bσ′
f‖F )(x)

}
.

So, discussing as in the proof of Theorem 4.1.4, by induction on l and Lemma
4.2.4 and Lemma 4.3.1 we get the desired results.

In the following we will prove Theorem 4.1.6.

It is enough to show that for any ball B,

1
µ(B)1+β/n−1/p

∫

B
‖Tbf(x)−A′tB (Tf)(x)‖F dµ(x) ≤ C‖b‖Lip(β)‖f‖Lp

E(X).
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For f ∈ Lp
E(1 < p < ∞), set B = B(x0, rB), f1 = fχ2B and f2 = f − f1, then

1
µ(B)1+β/n−1/p

∫

B
‖Tbf(x)−A′tB (Tbf)(x)‖F dµ(x)

≤ 1
µ(B)1+β/n−1/p

∫

B
‖Tbf1(x)‖F dµ(x) +

1
µ(B)1+β/n−1/p

∫

B
‖A′tB (Tbf1)(x)‖F dµ(x)

+
1

µ(B)1+β/n−1/p

∫

B
‖Tbf2(x)−A′tB (Tbf2)(x)‖F dµ(x)

:= U1 + U2 + U3,

where tB = rm
B .

Choose p1 satisfying 1 < p1 < n/β ≤ p and take q1 such that 1/q1 = 1/p1−β/n,
then by Hölder’s inequality and the boundedness of Tb (see Theorem 4.1.5),

U1≤ 1
µ(B)1+β/n−1/p

(∫

B
‖Tbf1(x)‖q1

F dµ(x)
)1/q1

µ(B)1−1/q1

≤ C‖b‖Lip(β)

µ(B)β/n−1/p+1/q1

(∫

2B
‖f(x)‖p1

E dµ(x)
)1/p1

≤ C‖b‖Lip(β)

µ(B)β/n−1/p+1/q1
µ(B)1/p1−1/p‖f‖Lp

E(X)

≤ C‖b‖Lip(β)‖f‖Lp
E(X).

(4.3.1)

For U2, we have

U2 =
1

µ(B)1+β/n−1/p

∫

B

∫

2B
htB (x, y)‖Tbf1(y)‖F dµ(y)dµ(x)

+
1

µ(B)1+β/n−1/p

∫

B

∞∑

k=1

∫

2k+1B\2kB
htB (x, y)‖Tbf1(y)‖F dµ(y)dµ(x)

:= U21 + U22.

Since for any x ∈ B and y ∈ 2B, by (1.5) we have

htB (x, y) ≤ Cµ(B)−1.

Then
U21 ≤ C

µ(B)1+β/n−1/p

∫

2B
‖Tbf1(y)‖F dµ(y).

Thus by the estimate of U1,

U21 ≤ C‖b‖Lip(β)‖f‖Lp
E(X).

Moreover, for any x ∈ B and y ∈ 2k+1B \ 2kB, we have d(x, y) ≥ 2k−1rB and

htB (x, y) ≤ C
s(2(k−1)m)

µ(B)
.
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So take p1 and q1 as in (4.3.1), then it is similar to the estimate (4.3.1),

U22≤ C

∞∑

k=1

s(2(k−1)m)
µ(B)1+β/n−1/p

∫

2k+1B
‖Tbf1(y)‖F dµ(y)

≤ C

∞∑

k=1

s(2(k−1)m)
µ(B)1+β/n−1/p

(∫

2k+1B
‖Tbf1(y)‖q1

F dµ(y)
)1/q1

µ(2k+1B)1−1/q1

≤ C‖b‖Lip(β)

∞∑

k=1

2kn(1−1/q1)s(2(k−1)m)
µ(B)β/n−1/p+1/q1

(∫

2B
‖f(y)‖p1

E dµ(y)
)1/p1

≤ C‖b‖Lip(β)

∞∑

k=1

2−k(n/q1+N+τ)2k(n+N+τ)s(2(k−1)m)
µ(B)β/n+1/q1−1/p1

(∫

2B
‖f(y)‖p

E dµ(y)
)1/p

≤ C‖b‖Lip(β)‖f‖Lp
E
(X).

Moreover, by x ∈ B, the definition of b ∈ Lip(β), Hölder’s inequality and
Lemma 4.3.2, we have

‖Tbf2(x)−A′tB (Tbf2)(x)‖F

≤
∫

X\2B
‖K(x, y)−KtB (x, y)‖L(E,F )‖(b(x)− b(y))f(y)‖E dµ(y)

≤ C
∞∑

k=1

∫

2k+1B\2kB

1
µ(B(x, d(x, y)))

t
δ/m
B

d(x, y)δ
‖(b(x)− b(y))f(y)‖E dµ(y)

≤ C
∞∑

k=1

2−δkµ(2k+1B)−1

∫

2k+1B
|b(x)− b(y)|‖f(y)‖E dµ(y)

≤ C
∞∑

k=1

2−δkµ(2k+1B)−1

(∫

2k+1B
|b(x)− b(y)|p′dµ(y)

)1/p′(∫

2k+1B
‖f(y)‖p

Edµ(y)
)1/p

≤ C‖b‖Lip(β)

∞∑

k=1

µ(2k+1B)β/n−1/p2−δk‖f‖Lp
E(X)

≤ Cµ(B)β/n−1/p‖b‖Lip(β)

∞∑

k=1

2−(δ/n+1/p−β/n)nk‖f‖Lp
E(X)

≤ Cµ(B)β/n−1/p‖b‖Lip(β)‖f‖Lp
E(X)

So,
U3 ≤ C‖b‖Lip(β)‖f‖Lp

E(Rn).

Combining the estimates of U1, U2 with U3 we complete the proof.
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