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Abstract: We consider the problem F = f(ν) for strictly convex, closed
hypersurfaces in Sn+1 and solve it for curvature functions F the inverses of
which are of class (K).
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0. Introduction

In the classical Minkowski problem in Rn+1 one wants to find a strictly convex
closed hypersurface M ⊂ Rn+1 such that its Gauß curvature K equals a given
function f defined in the normal space of M or equivalently defined on Sn

(0.1) K |M = f(ν).

The problem has been partially solved by Minkowski [13], Alexandrov [1], Lewy
[11], Nirenberg [14], and Pogorelov [15], and in full generality by Cheng and Yau
[2].

Instead of prescribing the Gaussian curvature other curvature functions F can
be considered, i.e., one studies the problem

(0.2) F |M = f(ν).

If F is one of the symmetric polynomials Hk, 1 ≤ k ≤ n, this problem has
recently been solved by Guan and Guan [9]. They proved that (0.2) has a solution,
if f is invariant with respect to a fixed point free group of isometries of Sn.

In this paper we consider the problem (0.2) for strictly convex hypersurfaces
M ⊂ Sn+1 and for curvature functions F the inverses of which are of class (K),
see Section 1 or [8, Definition 1.3]. These F include all Hk, 1 ≤ k ≤ n, |A|2, and
also any symmetric, convex curvature function homogeneous of degree 1, cf. [7,
Lemma 1.6].

We shall show in Section 2 that for any closed strictly convex hypersurface
M ⊂ Sn+1 there exists a Gauß map

(0.3) x ∈ M → x̃ ∈ M∗,

where M∗ is the polar set of M . M∗ is also strictly convex, as smooth as M , and
the Gauß map is a diffeomorphism.

If we consider M as an embedding in Rn+2 of codimension 2, so that the
tangent spaces Tx(M) and Tx(Sn+1) can be identified with subspaces of Tx(Rn+2),
then the image of the point x under the Gauß map is exactly the normal vector
ν ∈ Tx(Sn+1)

(0.4) x̃ = ν ∈ Tx(Sn+1) ⊂ Tx(Rn+2).

Thus, the equation (0.2) can also be written in the form

(0.5) F |M = f(x̃) ∀x ∈ M,

where f is given as a function defined in Sn+1.

We shall also prove that (0.5) has a dual problem, namely,

(0.6) F̃ |M∗ = f−1(x̃) ∀ x̃ ∈ M∗,
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where F̃ is the inverse of F

(0.7) F̃ (κi) =
1

F (κ−1
i )

.

In the dual problem the curvature is not prescribed by a function defined in
the normal space, but by a function defined on the hypersurface.

Both problems are equivalent, solving one also leads to a solution of the dual
one; notice also that

(0.8) M∗∗ = M ∧ ˜̃x = x.

To find a solution we either impose some symmetry requirement with respect
to a group of isometries or we assume the existence of barriers.

0.1. Assumption. (i) Let G ⊂ O(n+2) be a group of orthogonal transformations
with a common fixed point x0 ∈ Sn+1 and assume that the induced group of
isometries in Sn, i.e., the equator of the hemisphere with center in x0, is fixed
point free.

(ii) Let 0 < f ∈ C5(Sn+1) be invariant with respect to the group G, i.e.,

(0.9) f(Ax) = f(x) ∀x ∈ Sn+1, ∀A ∈ G.

Then we shall prove

0.2. Theorem. Let F ∈ C5(Γ+) be a symmetric, positively homogeneous and
monotone curvature function such that its inverse F̃ is of class (K), then the
dual problems

(0.10) F |M = f(x̃)

and

(0.11) F̃ |M∗ = f−1(x̃)

have strictly convex solutions M resp. M∗ of class C4,α, 0 < α < 1, such that the
hypersurfaces M resp. M∗ are invariant with respect to the group G. Furthermore,
−x0 is an interior point of the convex body M̂ and x0 an interior point of the
convex body M̂∗ of M∗. The convex bodies M̂ , M̂∗ are strictly contained in the
corresponding open hemispheres H(−x0) resp. H(x0).

Instead of imposing some symmetry assumption, a barrier condition will also
work.

0.3. Assumption. Let Mi, i = 1, 2, be strictly convex hypersurfaces of class C6,α

contained in an open hemisphere H(−x0). M1 is said to be a lower barrier for
the pair (F, f), if

(0.12) F |M1
≤ f,
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and M2 is called an upper barrier for (F, f), if

(0.13) F |M2
≥ f,

where in both cases the right-hand side f may either depend on x ∈ Mi or ν ∈
Tx(Sn+1) for x ∈ Mi, or, in the latter case, equivalently on x̃ ∈ M∗

i .

0.4. Theorem. Let F ∈ C5(Γ+) be a symmetric, positively homogeneous and
monotone curvature function such that its inverse F̃ is of class (K), let 0 <
f ∈ C5(Sn+1), and assume that there exist upper and lower barriers for (F, f) in
the hemisphere H(−x0) as defined in the Assumption 0.3, where in addition the
barriers Mi should bound a connected open set Ω such that the mean curvature
vector of M1 should point to the exterior of Ω and the mean curvature vector of
M2 should point into Ω. Then the dual problems

(0.14) F |M = f(x̃)

and

(0.15) F̃ |M∗ = f−1(x̃)

have strictly convex solutions M resp. M∗ of class C6,α, 0 < α < 1, such that
the convex bodies M̂ , M̂∗ are strictly contained in the open hemispheres H(−x0)
resp. H(x0).

The paper is organized as follows: Section 1 gives an overview of the definitions
and conventions we rely on, while the dual relationship between M and M∗
and the properties of the Gauß map are derived in Section 2. The curvature
estimates are proved in Section 3, the lower order estimates in Section 4. The
next two sections contain a uniqueness result for invariant convex hypersurfaces
with constant F , and the existence proof in the invariance case, which is based on
a continuity method using Smale’s infinite dimensional version of Sard’s theorem
[18]. Finally, in Section 7 we prove Theorem 0.4.

0.5. Remark. Let us emphasize that after Section 2 we shall only consider equa-
tion (0.11). In order to simplify notation we then shall drop the tilde and the
other embellishments and shall solve the equation

(0.16) F |M = f(x)

for a curvature function F of class (K), where we note that we also replaced f−1

by f .

1. Notations and definitions

The main objective of this section is to state the equations of Gauß, Codazzi,
and Weingarten for hypersurfaces M in a (n+1)-dimensional Riemannian mani-
fold N . Geometric quantities in N will be denoted by (ḡαβ), (R̄αβγδ), etc., and
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those in M by (gij), (Rijkl), etc. Greek indices range from 0 to n and Latin from
1 to n; the summation convention is always used. Generic coordinate systems
in N resp. M will be denoted by (xα) resp. (ξi). Covariant differentiation will
simply be indicated by indices, only in case of possible ambiguity they will be
preceded by a semicolon, i.e., for a function u in N , (uα) will be the gradient and
(uαβ) the Hessian, but e.g., the covariant derivative of the curvature tensor will
be abbreviated by R̄αβγδ;ε. We also point out that

(1.1) R̄αβγδ;i = R̄αβγδ;εx
ε
i

with obvious generalizations to other quantities.

Let M be a C2-hypersurface with normal ν.

In local coordinates, (xα) and (ξi), the geometric quantities of the hypersurface
M are connected through the following equations

(1.2) xα
ij = −hijν

α

the so-called Gauß formula. Here, and also in the sequel, a covariant derivative
is always a full tensor, i.e.,

(1.3) xα
ij = xα

,ij − Γ k
ijx

α
k + Γ̄α

βγxβ
i xγ

j .

The comma indicates ordinary partial derivatives.

In this implicit definition the second fundamental form (hij) is taken with
respect to −ν.

The second equation is the Weingarten equation

(1.4) να
i = hk

i x
α
k ,

where we remember that να
i is a full tensor.

Finally, we have the Codazzi equation

(1.5) hij;k − hik;j = R̄αβγδν
αxβ

i xγ
j xδ

k

and the Gauß equation

(1.6) Rijkl = {hikhjl − hilhjk}+ R̄αβγδx
α
i xβ

j xγ
kxδ

l .

When we consider hypersurfaces M ⊂ Sn+1 to be embedded in Rn+2, we label
the coordinates in Rn+2 as (xa), i.e., indices a, b, c, ... always run through n + 2
values either from 1 to n + 2 or from 0 to n + 1.

Let us also state the definition of curvature functions of class (K)

1.1. Definition. A symmetric curvature function F ∈ C2,α(Γ+) ∩ C0(Γ̄+) posi-
tively homogeneous of degree d0 > 0 is said to be of class (K) if

(1.7) Fi =
∂F

∂κi
> 0 in Γ+,
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(1.8) F|∂Γ+
= 0,

and

(1.9) F ij,klηijηkl ≤ F−1(F ijηij)2 − F ikh̃jlηijηkl ∀ η ∈ S,

or, equivalently, if we set F̂ = log F ,

(1.10) F̂ ij,klηijηkl ≤ −F̂ ikh̃jlηijηkl ∀ η ∈ S,

where F is evaluated at (hij).

A detailed analysis of these curvature functions can be found in [8, Section 1].
In this paper we actually do not need the full strength of inequality (1.10).

As we have shown in [7, Lemma 1.3 and Remark 1.4] a symmetric curvature
function F ∈ C2(Γ+) satisfies inequality (1.9) iff

(1.11) Fiκi ≤ Fjκj , for κj ≤ κi,

and

(1.12) Fijξ
iξj ≤ F−1(Fiξ

i)2 − Fiκ
−1
i |ξi|2 ∀ ξ ∈ Rn,

where Fi, Fij are ordinary partial derivatives of F in Γ+.

We only need the property (1.11).

Let us finish this section with a simple yet useful observation.

1.2. Lemma. Let F ∈ (K) be homogeneous of degree 1, then F is concave.

Proof. It suffices to prove that the right-hand side of the inequality (1.12) is
non-positive, if F is homogeneous of degree 1.

Using Schwarz’s inequality we deduce

(1.13)

Fiξ
i =

∑

i

F
1
2

i κ
1
2
i F

1
2

i κ
− 1

2
i ξi

≤ ( ∑

i

Fiκi

) 1
2
( ∑

i

Fiκ
−1
i |ξi|2)

1
2 = F

1
2
( ∑

i

Fiκ
−1
i |ξi|2)

1
2 ,

hence the result. ¤

2. Polar sets

Let M ⊂ Sn+1 be a connected, closed, immersed, strictly convex hypersurface
given by an immersion

(2.1) x : M0 → M ⊂ Sn+1,

then M is embedded, homeomorphic to Sn, contained in an open hemisphere and
is the boundary of a convex body M̂ ⊂ Sn+1, cf. [3].
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Considering M as a codimension 2 submanifold of Rn+2 such that

(2.2) xij = −gijx− hij x̃,

where x̃ ∈ Tx(Rn+2) represents the exterior normal vector ν ∈ Tx(Sn+1), we want
to prove that the mapping

(2.3) x̃ : M0 → Sn+1

is an embedding of a strictly convex, closed, connected hypersurface M̃ . We call
this mapping the Gauß map of M .

First, we shall show that the Gauß map is injective. To prove this result we
need the following lemma.

2.1. Lemma. Let M ⊂ Sn+1 be a closed, connected, strictly convex hypersurface
and denote by M̂ its (closed) convex body. Let x ∈ M be fixed and x̃ be the
corresponding outward normal vector, then

(2.4) 〈y, x̃〉 ≤ 0 ∀ y ∈ M̂

and also strictly less than 0 unless y = x.

The preceding inequality also characterizes the points in M̂ , namely, let y ∈
Sn+1 be such that

(2.5) 〈y, x̃〉 ≤ 0 ∀x ∈ M,

then y ∈ M̂ .

Proof. ”(2.4)“ First, we note that M̂ is contained in an open hemisphere H(x0).

Let y ∈ int M̂ be arbitrary and let z = z(t), 0 ≤ t ≤ d, be the unique
minimizing geodesic in Sn+1 connecting y and x such that

(2.6) z(0) = x ∧ z(d) = y

parametrized by arc length, and hence 0 < d < π.

Viewing z as a curve in Rn+2 the geodesic equation has the form

(2.7) z̈ ≡ D
dt ż = −z.

If the coordinate system in Rn+2 is Euclidean, the covariant derivatives are just
ordinary derivatives.

It is well-known that the geodesic z is contained in M̂ and that

(2.8) 〈ż(0), x̃〉 < 0;

notice that, after introducing geodesic polar coordinates in Sn+1 centered in y,
we have

(2.9) 〈ż(0), x̃〉 = −〈 ∂

∂r
, ν〉
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and hence is strictly negative, cf. the remarks in [5, Section 4] after Theorem 4.6.

Thus, ϕ(t) = 〈z(t), x̃〉 satisfies the initial value problem

(2.10) ϕ̈ = −ϕ, ϕ(0) = 0, ϕ̇(0) < 0,

and is therefore equal to

(2.11) ϕ(t) = −λ sin t, λ > 0,

i.e.,

(2.12) ϕ(t) < 0 ∀ 0 < t < π.

Now, let y ∈ M , y 6= x, be arbitrary, and consider a sequence zk of geodesics
parametrized in the interval 0 ≤ t ≤ 1, such that

(2.13) zk(0) = x ∧ zk(1) → y,

where zk(1) ∈ int M̂ .

The geodesics zk converge to a geodesic z connecting x and y. If

(2.14) 〈ż(0), x̃〉 < 0,

then the previous arguments are valid yielding

(2.15) 〈y, x̃〉 < 0.

On the other hand, the alternative

(2.16) 〈y, x̃〉 = 0

leads to a contradiction, since then the geodesic z would be part of the tangent
space Tx(M) which is impossible, cf. the considerations in [5] after the equation
(4.17).

”y ∈ M̂“ Suppose now that y ∈ Sn+1 satisfies (2.5), and assume by contra-
diction that y ∈ {M̂ . Pick an arbitrary x̄0 ∈ intM̂ , x̄0 6= −y, and let z = z(t),
0 ≤ t ≤ d, be the minimizing geodesic joining x̄0 and y parameterized by arc
length, such that z(0) = x̄0 and z(d) = y. The geodesic intersects M in a unique
point x, x = z(t1), 0 < t1 < d.

Define

(2.17) ϕ(t) = 〈z(t), x̃〉,
then

(2.18) ϕ(t1) = 0 ∧ ϕ̇(t1) > 0,

and hence

(2.19) ϕ(t) = λ sin(t− t1), λ > 0,
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and we conclude

(2.20) ϕ(t) > 0 ∀ t1 < t < t1 + π

contradicting the assumption ϕ(d) ≤ 0.

Therefore we have proved y ∈ M̂ . ¤
2.2. Theorem. Let x : M0 → M ⊂ Sn+1 be the embedding of a closed, connected,
strictly convex hypersurface, then the Gauß map defined in (2.3) is injective,
where we identify Rn+2 with its individual tangent spaces.

Proof. We again assume M to be a codimension 2 submanifold in Rn+2. Suppose
there would be two points p1 6= p2 in M0 such that

(2.21) x̃(p1) = x̃(p2),

then the function

(2.22) ϕ(y) = 〈y, x̃(p1)〉
would vanish in the points x(p1) as well as x(p2) contrary to the results of
Lemma 2.1. ¤
2.3. Lemma. As a submanifold of codimension 2 M satisfies the Weingarten
equations

(2.23) x̃i = hk
i xk

for the normal x̃ and also

(2.24) xi = gk
i xk

for the normal x.

Proof. We only have to prove the non-trivial Weingarten equation.

First we infer from

(2.25) 〈x, x̃〉 = 0

that

(2.26) 0 = 〈xi, x̃〉+ 〈x, x̃i〉 = 〈x, x̃i〉.
Furthermore, there holds

(2.27) 0 = 〈x̃, x̃i〉,
since 〈x̃, x̃〉 = 1. Hence, we deduce

(2.28) x̃i = ak
i xk.

Differentiating the relation 〈xj , x̃〉 = 0 covariantly we obtain

(2.29) 〈x̃j , xi〉 = hij
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and we infer (2.23) in view of (2.28). ¤

We can now prove

2.4. Theorem. Let x : M0 → M ⊂ Sn+1 be a closed, connected, strictly convex
hypersurface of class Cm, m ≥ 3, then the Gauß map x̃ in (2.3) is the embedding
of a closed, connected, strictly convex hypersurface M̃ ⊂ Sn+1 of class Cm−1.

Viewing M̃ as a codimension 2 submanifold in Rn+2, its Gaussian formula is

(2.30) x̃ij = −g̃ij x̃− h̃ijx,

where g̃ij, h̃ij are the metric and second fundamental form of the hypersurface
M̃ ⊂ Sn+1, and x = x(ξ) is the embedding of M which also represents the exterior
normal vector of M̃ . The second fundamental form h̃ij is defined with respect to
the interior normal vector.

The second fundamental forms of M , M̃ and the corresponding principal cur-
vatures κi, κ̃i satisfy

(2.31) hij = h̃ij = 〈x̃i, xj〉
and

(2.32) κ̃i = κ−1
i .

Proof. (i) From the Weingarten equation (2.23) we infer

(2.33) g̃ij = 〈x̃i, x̃j〉 = hk
i hkj

is positive definite, hence x̃ = x̃(ξ) is an embedding of a closed, connected hyper-
surface, where we also used Theorem 2.2.

(ii) The pair (x, x̃) satisfies

(2.34) 〈x, x̃〉 = 0

and we claim that x is the exterior normal vector of M̃ in x̃, where as usual we
identify the normal vector ν̃ = (ν̃α) ∈ Tx̃(Sn+1) with its embedding in Tx̃(Rn+2).

Differentiating (2.34) covariantly and using the fact that x̃ is a normal vector
for M we deduce

(2.35) 0 = 〈x, x̃i〉,
i.e., x̃ and x span the normal space of the codimension 2 submanifold M̃ .

Let us define the second fundamental form h̃ij of M̃ ⊂ Sn+1 with respect to
the normal vector ν̃ ∈ Tx̃(Sn+1) corresponding to x, then the codimension 2
Gaussian formula is exactly (2.30).
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Differentiating the Weingarten equation (2.23) covariantly with respect to the
metric g̃ij and indicating the covariant derivatives with respect to g̃ij by a semi-
colon and those with respect to gij simply by indices, we obtain

(2.36) x̃;ij = hk
i;jxk + hk

i x;kj

and we deduce further

(2.37) h̃ij = −〈x̃;ij , x〉 = −hk
i 〈xkj , x〉 = hk

i gkj = hij .

On the other hand, we infer from (2.35)

(2.38) h̃ij = −〈x̃;ij , x〉 = 〈x̃i, xj〉
which proves (2.31).

The last relation (2.32) follows from (2.37) and (2.33).

Finally, the normal vector x must correspond to the exterior normal of M̃ in
Tx̃(Sn+1), since h̃ij is positive definite. ¤

We can also define a Gauß map from the strictly convex, connected, closed
hypersurfaces M̃ ⊂ Sn+1 into Sn+1, and the preceding theorem shows that the
two Gauß maps are inverse to each other, i.e., if we start with a closed, strictly
convex hypersurface M ⊂ Sn+1, apply the Gauß map to obtain a strictly convex
hypersurface M̃ ⊂ Sn+1, and then apply the second Gauß map, then we return
to M with a pointwise equality.

Denoting the two Gauß maps simply by a tilde, this can be expressed in the
form

(2.39) x = ˜̃x,

or, equivalently, in the form of a commutative diagram

(2.40)
M M̃

M

-˜

@
@Rid

¡
¡ª˜

Before we give an equivalent characterization of the images of the Gauß maps,
let us show that the images of strictly convex hypersurfaces by the Gauß maps
are as smooth as the original hypersurfaces.

2.5. Lemma. Let M ⊂ Sn+1 be a closed, connected, strictly convex hypersurface
of class Cm,α, m ≥ 3, 0 ≤ α ≤ 1 and let M̃ ⊂ Sn+1 be its image under the Gauß
map. Let M̃ ⊂ H(x0) and express M̃ as a graph in geodesic polar coordinates
(ρ, xi) centered in x0, M̃ = graph ũ|Sn , then h̃ij, expressed in corresponding local
coordinates xi of Sn, is of class Cm−2,α.
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Proof. Notice that this is a non-trivial statement, since M̃ is only known to be
of class Cm−1,α.

Let (xa) = (x0, xi) be Euclidean coordinates in Rn+2 and assume without loss
of generality that x0 = (1, 0). Writing x = (x0, z), z ∈ Rn+1, we have

(2.41) |x0|2 = 1− |z|2 ∀x ∈ Sn+1,

i.e., after introducing Euclidean polar coordinates (r, xi) in Rn+1, the hemisphere
H(x0) is given as the embedding

(2.42) x = (x0, r, xi) = (
√

1− r2, r, xi)

and the lower hemisphere H(−x0) by the embedding

(2.43) x = (x0, r, xi) = (−
√

1− r2, r, xi).

The metric in Sn+1\{x0 = 0} is then expressed as

(2.44) ds̄2 = 1
1−r2 dr2 + r2σijdxidxj ,

where σij is the metric of Sn.

Defining ρ by

(2.45) dρ =
1√

1− r2
dr ∧ ρ(0) = 0

will give us geodesic polar coordinates (ρ, xi) in H(x0) centered in x0.

Now, assuming M̃ ⊂ H(x0) implies M ⊂ H(−x0), in view of Lemma 2.1. Let
(ξi) be local coordinates for M and express the Gauß map x̃(ξ) in the coordinates
in (2.42)

(2.46) x̃(ξ) = (x0(ξ), r(ξ), xi(ξ)),

then

(2.47) r(ξ) = u(xi(ξ)) ∧ x0(ξ) =
√

1− u2(xi(ξ)),

where M̃ has been written as a graph over Sn

(2.48) M̃ = { r = u(xi) : (xi) ∈ Sn };
notice that in geodesic polar coordinates we have M̃ = graph ũ with

(2.49) ũ = ρ(u).

In the coordinates (ξi) the second fundamental form h̃ij is already known to be
of class Cm−2,α because of the relation (2.31). Hence the lemma will be proved,
if we can show that the transformation (xi(ξ)) is a Cm−1,α-diffeomorphism, i.e.,
we have to show that the Jacobian is invertible.
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Now, the induced metric g̃ij can be expressed as

(2.50)

g̃ij = 〈x̃i, x̃j〉 = x0
i x

0
j + rirj + r2σklx

k
i x

k
j

= 1
1−r2 rirj + r2σklx

k
i x

l
j

= { 1
1−u2 ukul + u2σkl}xk

i x
l
j ,

hence (xk
i ) is invertible, since the left-hand side of this equation has this property.

¤
2.6. Theorem. Let M ⊂ Sn+1 be a closed, connected, strictly convex hypersurface
of class Cm,α, m ≥ 2, 0 ≤ α ≤ 1, then M̃ ⊂ N , its image under the Gauß map
is also of class Cm,α.

Proof. (i) First, let us assume that m ≥ 3 and 0 ≤ α ≤ 1. The Gauß map is then
of class Cm−1,α, i.e., M̃ is of class Cm−1,α. Here, we use the coordinates (ξi) for
M also as coordinates for M̃ . The metric g̃ij and the Christoffel symbols of M̃

are then of class Cm−2,α resp. Cm−3,α, while the second fundamental form h̃ij is
of class Cm−2,α, in view of (2.31).

We may assume that M ⊂ H(−x0) and M̃ ⊂ H(x0), where x0 = (1, 0). Using
then geodesic polar coordinates (ρ, ξi) centered in x0, the metric in Sn+1 can be
expressed in the form

(2.51) ds̄2 = dρ2 + e2ψ(ρ)σijdξidξj ,

or, in conformal coordinates

(2.52) ds̄2 = e2ψ(ρ){dτ2 + σijdξidξj}.

Writing M̃ as a graph in the coordinates (τ, ξi)

(2.53) M̃ = graphu|Sn ,

the second fundamental form hij of M̃ can be expressed as

(2.54) e−ψv−1hij = −uij − Γ̄ 0
00uiuj − Γ̄ 0

0iuj − Γ̄ 0
0jui − Γ̄ 0

ij ,

where

(2.55) v2 = 1 + σijuiuj

and where we note that the second fundamental form hij is of class Cm−2,α, cf.
Lemma 2.5.

We want to replace the covariant derivatives uij of u with the covariant deriva-
tives u;ij of u with respect to the metric σij to deduce that u;ij is of class Cm−2,α,
and hence u ∈ Cm,α(Sn).

To achieve this we define a new metric ĝαβ in the ambient space

(2.56) ĝαβ = e−2ψ ḡαβ ,
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where ḡαβ is the metric in (2.52). Let ĝij , ĥij and ν̂ be the obvious geometric
quantities of M̃ with respect to the new metric, then there holds

(2.57) hije
−ψ = ĥij + ψαν̂αĝij

as one easily checks.

On the other hand, ĥij can be expressed in terms of the Hessian u;ij of u with
respect to the metric σij , namely,

(2.58) ĥij = −u;ijv
−1,

i.e.,

(2.59) hije
−ψ = −u;ijv

−1 + ψαν̂α(uiuj + σij),

hence, u;ij is of class Cm−2,α.

(ii) The case m = 2 and 0 ≤ α ≤ 1 follows by approximation and the uniform
C2,α-estimates. Notice that the approximating second fundamental forms will
converge in C0. ¤

2.7. Definition. (i) Let M ⊂ Sn+1 be a closed, connected, strictly convex hyper-
surface, then we define its polar set M∗ ⊂ Sn+1 by

(2.60) M∗ = { y ∈ Sn+1 : sup
x∈M

〈x, y〉 = 0 },

where the scalar product is the scalar product in Rn+2 and x, y are Euclidean
coordinates.

(ii) Let M̂ be the convex body of M ⊂ Sn+1, then we define the polar of M̂ by

(2.61) M̂∗ = { y ∈ Sn+1 : sup
x∈M̂

〈x, y〉 ≤ 0 }.

2.8. Theorem. The M ⊂ Sn+1 be a closed, connected and strictly convex hyper-
surface, then

(2.62) M∗ = M̃

and

(2.63) M̂∗ = ˆ̃M.

Proof. ”(2.62)“ In view of Lemma 2.1 there holds

(2.64) M̃ ⊂ M∗.

On the other hand, let y ∈ M∗ and x ∈ M be such that

(2.65) 〈x, y〉 = 0.
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Then we deduce, after introducing local coordinates in M ,

(2.66) 〈xi, y〉 = 0

and

(2.67) 〈xij , y〉 ≤ 0,

where the derivatives are covariant derivatives with respect to the induced metric
gij of M being viewed as a codimension 2 submanifold.

Combining (2.65) and (2.66) we infer

(2.68) y = ±x̃,

but because of (2.2) and (2.67) we deduce y = x̃.

”(2.63)“ In view of Lemma 2.1 we immediately deduce

(2.69) M̂∗ ⊂ ˆ̃M,

hence we only have to prove the reverse inclusion.

Let y ∈ M̂ and x̃, z̃ ∈ M̃ , x̃ 6= z̃, be arbitrary and let z = z(t) be the minimizing
geodesic connecting z(0) = x̃ and z(d) = z̃ parametrized by arc length. Then it
suffices to prove

(2.70) ϕ(t) = 〈y, z(t)〉 ≤ 0 ∀ 0 ≤ t ≤ d < π.

Assume by contradiction that there exists 0 < t0 < d such that

(2.71) 0 < ϕ(t0) = sup{ϕ(t) : 0 ≤ t ≤ d },
then ϕ solves the initial value problem

(2.72) ϕ̈ = −ϕ, ϕ(t0) > 0, ϕ̇(t0) = 0,

and hence, it is equal to

(2.73) ϕ(t) = λ cos(t− t0) λ > 0,

contradicting the relations ϕ(0) ≤ 0 and ϕ(d) ≤ 0, cf. Lemma 2.1, since there
holds

¤(2.74) 0 < t0 <
π

2
∨ 0 < d− t0 <

π

2
.

An important corollary is

2.9. Corollary. (i) Let Mi, i = 1, 2, be connected, closed, strictly convex hyper-
surfaces in Sn+1, then

(2.75) M̂1 ⊂ M̂2 =⇒ M̂∗
2 ⊂ M̂∗

1 .
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(ii) Let Br(x0) ⊂ H(x0) be a geodesic ball of radius 0 < r < π
2 , then its polar

set is a closed geodesic ball centered in −x0

(2.76) Br(x0)∗ = B̄r∗(−x0), 0 < r∗ = ϕ(r) <
π

2
,

where ϕ is continuous function.

Proof. We only need to prove (2.76). But since the convex body of a geodesic
sphere is the corresponding closed geodesic ball, it suffices to prove that the polar
of a geodesic sphere Sr(x0) is a geodesic sphere Sr∗(−x0).

Let M̃ be the polar of Sr(x0), then we deduce from (2.31), that M̃ is totally
umbilic and hence a geodesic sphere, cf. Section 5 for details. This sphere must
be centered in −x0, since it is invariant under all A ∈ O(n + 2) having x0 as a
fixed point. ¤

To conclude this section, we note that, with the help of the Gauß map, the
Minkowski type equation

(2.77) F |M = f(ν)

in Sn+1 can be expressed in the form

(2.78) F |M = f(x̃),

where f is supposed to be defined in Sn+1, or more precisely, in Tx(Rn+2) ≡ Rn+2,
the latter can be achieved by extending f homogeneously of degree 0.

Let M∗ be the polar set of M , F̃ the inverse of F , then the equation (2.78) is
equivalent to

(2.79) F̃ |M∗ = f−1(x̃),

where this time the right-hand side is looked at to be a function defined in the
ambient space of M∗. Solving one equation is equivalent to solving the other.

3. Curvature estimates

We prove curvature estimates for the polar hypersurface M∗ satisfying the
equation (2.79). Since neither the result nor its proof relies on the fact that the
underlying hypersurface is a polar hypersurface, we consider in this and in the
following sections a strictly convex hypersurface M satisfying the equation

(3.1) F |M = f(x) ∀x ∈ M,

where 0 < f ∈ C5(Sn+1) and F ∈ (K) of class C5, and we shall prove that this
problem has a solution, if Assumption 0.1 is satisfied. Since any positive power
of F is again of class (K), we shall assume that F is homogeneous of degree 1
and hence concave, cf. Lemma 1.2.



Minkowski Type Problems 433

3.1. Theorem. Let M ∈ C4,α be a strictly convex hypersurface in Sn+1 satisfying
the equation (3.1), then its principal curvatures κi are uniformly bounded, i.e.,
there exist positive constants c1, c2 such that

(3.2) 0 < c1 ≤ κi ≤ c2 ∀ 1 ≤ i ≤ n,

where the ci only depend on F and f , which are supposed to satisfy the require-
ments mentioned above.

Proof. It suffices to prove the upper estimate, since the lower estimate follows
from the fact that F is continuous in Γ̄+ and vanishes on the boundary.

The second fundamental form hij satisfies the equation

(3.3)
−F klhi

j;kl = F klhkrh
r
l h

i
j − Fhkihkj + F kl,rshkl;jhrs;mgmi

− fαβxα
kxβ

j gki + fαναhi
j + Fδi

j − F klgklh
i
j ,

cf. the corresponding equation in [6, equ. (5.4)], where an evolution problem is
considered. The present situation can be recovered by setting Φ̇ = 1, Φ̈ = 0,
f̃ = f , Φ− f̃ = 0 and KN = 1.

We want to apply the maximum principle to obtain an a priori estimate for

(3.4) ϕ = sup{hijη
iηj : ‖η‖ = 1 }.

Let x0 ∈ M be a point where ϕ attains its maximum. We then introduce
Riemannian normal coordinates ξi at x0 such that at x0 = x(ξ0) we have

(3.5) gij = δij , hij = κiδij and ϕ = hn
n.

Let η = (ηi) be the contravariant vector field defined by

(3.6) η = (0, . . . , 1)

in a neighbourhood of ξ0 and set

(3.7) ϕ̃ =
hijη

iηj

gijηiηj
.

ϕ̃ is well defined in a neighbourhood of ξ0.

Now ϕ̃ assumes its maximum at ξ = ξ0. Moreover, at ξ = ξ0 the covariant
derivatives up to order two of ϕ̃ coincide with those of hn

n, i.e., ϕ̃ satisfies the same
differential equation at ξ0 as hn

n. For the sake of greater clarity let us therefore
treat hn

n like a scalar and pretend that ϕ is defined by

(3.8) ϕ = hn
n.
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Applying the maximum principle in ξ0 we deduce

(3.9)
0 ≤ F klhkrh

r
l h

n
n − F |hn

n|2 + F kl,rshkl;nhrs;mgmn

− fαβxα
kxβ

ngkn + fαναhn
n + F − F klgklh

n
n,

yielding

(3.10) 0 ≤ F klhkrh
r
l h

n
n − F |hn

n|2 + c0(1 + hn
n)− F klgklh

n
n,

where

(3.11) c0 = c0(|f |2,0).

The function F is of class (K) and thus satisfies the estimate (1.11). Let κ1

be the smallest principal curvature of M in x0, then

(3.12) F =
∑

i

Fiκi ≤ nF1κ1

and hence

(3.13)
F klhr

khrlh
n
n − F |hn

n|2 = F1κ1(κ1 − κn)κn +
n∑

i=2

Fiκi(κi − κn)κn

≤ − 1
nF (κn − κ1)κn.

Now, if κn is supposed to be large in x0, then

(3.14) κ1 ≤ κn

2
,

because F = f is bounded, hence κn = hn
n is a priori bounded. ¤

4. Lower order bounds

To derive the lower bounds we use the group invariance assumption. Let
M ⊂ Sn+1 be a strictly convex, closed hypersurface and suppose that M is
invariant with respect to the group G ⊂ O(n + 2)

(4.1) AM ⊂ M ∀A ∈ G.

Assume furthermore that a common fixed point x0 of G is an interior point of
M̂ . The principal curvatures κi of M are then also invariant with respect to G,
i.e.,

(4.2) κi(x) = κi(Ax) ∀x ∈ M, ∀A ∈ G,

as one easily checks.



Minkowski Type Problems 435

Representing M in geodesic polar coordinates with center x0 as a graph u =
u(ξ) over Sn, we conclude that the function u is also invariant with respect to
the induced isometry group in Sn, still denoted by G, i.e.,

(4.3) u(ξ) = u(Aξ) ∀ ξ ∈ Sn, ∀A ∈ G.

Since by assumption the induced group has no fixed points in Sn, u is orthog-
onal to the first eigenfunctions of the Laplace operator in Sn, i.e.,

(4.4)
∫

Sn

xiu = 0 ∀ 1 ≤ i ≤ n + 1,

cf. [9, Proposition 2.5]. Let us state this result as lemma.

4.1. Lemma. Let u ∈ C0(Sn) be invariant with respect to the induced group G,
then u is orthogonal to the spherical harmonics of degree 1.

Now, we use stereographic projection π to compare M with a strictly convex
hypersurface π(M) ⊂ Rn+1. Let −x0 be the north pole of Sn+1 and assume that
M̂ is contained in the lower open hemisphere H(x0)

(4.5) M̂ ⊂ H(x0)

such that x0 ∈ int M̂ , notice that by definition a convex body is always closed.
The metric ḡαβ of Sn+1 is then conformal to the Euclidean metric

(4.6) ḡαβ =
1

(1 + 1
4 |x|2)2

δαβ ,

where x = (xα) are Euclidean coordinates in Rn+1.

The point x0 ∈ Sn+1 corresponds to the origin 0 ∈ Rn+1 and, introducing
Euclidean polar coordinates (ρ, ξi), the metric in Sn+1 is expressed as

(4.7) ds̄2 =
1

(1 + 1
4ρ2)2

{dρ2 + ρ2σijdξidξj}.

Comparing this expression with the representation of ḡαβ in geodesic polar
coordinates (r, ξi) centered in x0, namely,

(4.8) ds̄2 = dr2 + h(r)σijdξidξj

and observing that the radial geodesics in Sn+1 are mapped onto the radial
geodesics in Rn+1 we deduce that

(4.9) r =
∫ ρ

0

1
1 + 1

4 t2
= 2 arctan ρ

2 .

Finally, defining

(4.10) τ = log ρ,
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we can express the metric in Sn+1 as

(4.11) ds̄2 =
ρ2

(1 + 1
4ρ2)2

{dτ2 + σijdξidξj}.

Writing M in these coordinates as a graph over Sn

(4.12) M = graphu|Sn

u is still invariant with respect to the induced group, and graphu also represents
π(M).

Let

(4.13) ψ = − log(1 + 1
4ρ2),

such that

(4.14) ḡαβ = e2ψ ĝαβ ,

where (ĝαβ) is the Euclidean metric, then the respective second fundamental
forms hij and ĥij are related by

(4.15) eψhj
i = ĥj

i + ψαναδj
i ,

where ν is the exterior normal of π(M) and

(4.16) ψανα = ψ0ν
0 = −1

2

ρ

1 + 1
4ρ2

v−1,

with

(4.17) v2 = 1 + σijuiuj .

Thus, ĥij is also positive definite and invariant with respect to the induced
group, as is the metric

(4.18) ĝij = e2u{uiuj + σij}.

Moreover, since M̂ is contained in the lower hemisphere, we have

(4.19) 0 ≤ r ≤ π

2
and hence

(4.20) ρ ≤ 2 tan
π

4
= 2.

Thus, if the principal curvatures of M are bounded by

(4.21) 0 < k1 ≤ κi ≤ k2,

then those of π(M) are bounded by

(4.22) 0 < k̂1 ≤ κ̂i ≤ k̂2,
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where

(4.23) k̂j = k̂j(k1, k2), j = 1, 2.

Now we can prove that the convex body of π(M) contains a Euclidean ball
Bρ0(0) and therefore M̂ a geodesic ball Br0(x0).

4.2. Lemma. Assume x0 ∈ int M̂ , M̂ ⊂ H(x0), that M is invariant with respect
to the group G and the principal curvatures satisfy the estimate (4.21). Then
there exists 0 < r0 = r0(k1, k2) such that the geodesic ball

(4.24) Br0(x0) b int M̂.

Proof. We shall prove that there exists a Euclidean ball of radius 0 < ρ0 =
ρ0(k̂1, k̂2) such that

(4.25) Bρ0(0) b int π̂(M).

Let K̂ be the Gaussian curvature of π(M) = graphu, then u, ĝij and

(4.26) K̂ = K̂(u, ξ)

are invariant functions in Sn with respect to the induced group G, and hence
orthogonal to the spherical harmonics of degree 1, cf. Lemma 4.1. Hence the
Steiner point p of π(M) coincides with the origin, since in Euclidean coordinates

(4.27)

pi =
1
|Sn|

∫

π(M)
xiK̂

=
1
|Sn|

∫

Sn

xieuK̂v = 0.

The relation (4.25) is then proved in [2]. A similar, more general, result was
later proved in [16]. ¤

Let M∗ be the polar hypersurface of M , which is then also invariant with
respect to the group G, since

(4.28) 0 = 〈x, x̃〉 = 〈Ax,Ax̃〉 ∀x ∈ M, ∀A ∈ G.

Then we shall prove

4.3. Lemma. Let M ⊂ H(x0) be a strictly convex hypersurface satisfying the
assumptions of Lemma 4.2. Then the polar convex body M̂∗ of M̂ is contained
in H(−x0) and there exist radii 0 < r∗1 < r∗0 < π

2 such that

(4.29) Br∗1 (−x0) b int M̂∗ b Br∗0 (−x0) b H(−x0).
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Proof. Since M̂ is compact there exists a geodesic ball Br1(x0) such that

(4.30) M̂ ⊂ Br1(x0) b H(x0).

Moreover, due to Lemma 4.2, there exists a geodesic ball Br0(x0) such that

(4.31) Br0(x0) b int M̂,

hence we conclude

(4.32) Br∗1 (−x0) = intB∗
r1

(x0) b int M̂∗ b B∗
r0

(x0) = B̄r∗0 (−x0) b H(−x0).

¤

Combining the two lemmata, and having in mind that both M and M∗ are
invariant with respect to G, so that Lemma 4.2 can be applied to M as well as
M∗, we obtain

4.4. Theorem. Let M ⊂ H(x0) be a strictly convex hypersurface, invariant with
respect to the group G and assume that x0 ∈ int M̂ and that the principal cur-
vatures κi satisfy the estimate (4.21), then there exist radii 0 < r0 < r1 < π

2 ,
depending only on the constants kj, j = 1, 2, in (4.21) such that

(4.33) Br0(x0) b int M̂ b Br1(x0).

The dual relation then also holds for M̂∗, namely,

(4.34) Br∗1 (−x0) b int M̂∗ b Br∗0 (−x0),

where

(4.35) B̄r∗i (−x0) = B∗
ri

(x0), i = 0, 1,

and 0 < r∗1 < r∗0 < π
2 .

5. A uniqueness result

In this section we shall show that a strictly convex solution M ⊂ Sn+1 of the
equation

(5.1) F = c ≡ const > 0,

where F is an arbitrary curvature function, homogeneous of degree 1 and concave,
is a geodesic sphere; notice that a curvature function is always supposed to be
symmetric and monotone.

5.1. Theorem. Let M ⊂ Sn+1 be a closed strictly convex solution of (5.1), then
M is a geodesic sphere. Assuming that M is invariant with respect to the group
G and contained in H(x0), where x0 is a fixed point of G, then M has to be a
geodesic sphere with center in x0.
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Proof. Assume without loss of generality that

(5.2) F (1, . . . , 1) = n

and consider the equation (3.3) for the second fundamental form. At a point
x̄ ∈ M , where

(5.3) sup
M

max
i

κi = κn = hn
n

is attained, the maximum principle yields, compare the proof of Theorem 3.1,

(5.4)

0 ≤ F klhkrh
r
l h

n
n − F |hn

n|2 + F − F klgklh
n
n

=
∑

i

Fiκi(κi − κn)κn +
∑

i

Fi(κi − κn) ≤ 0.

Hence x̄ must be an umbilic and

(5.5) c = F (κ, . . . , κ) = κn,

i.e.,

(5.6) sup
M

max
i

κi = c
n .

But then all other points have to be umbilics too, since

(5.7) c = F (κi) ≤ F ( c
n , . . . , c

n) = c.

Now, any convex umbilic hypersurface M of Sn+1 has to be a geodesic sphere,
as can be most easily seen by choosing a point y0 ∈ M̂ and using stereographic
projection as in Section 4. From equation (4.15) we then deduce that the pro-
jected hypersurface in Euclidean space is also umbilic and hence a sphere, cf. [19,
Vol. IV, p. 11].

If M is invariant with respect to G and contained in H(x0), then its polar M∗
is also a strictly convex umbilic hypersurface such that its convex body contains
a geodesic ball centered in −x0 in its interior

(5.8) Br∗0 (−x0) b int M̂∗,

since M̂ is contained in a geodesic ball Br1(x0) b H(x0), in view of the compact-
ness of M̂ and the assumption M̂ ⊂ H(x0). Now for our purpose M∗ is as good
as M , thus let us assume without loss of generality that Br0(x0) b M̂ and let us
discard the assumption M̂ b H(x0), since the corresponding result isn’t known
yet for M̂∗.

Looking again at the stereographic projection π(M) of M , where x0 is now
the south pole, i.e., π(x0) = 0, we still deduce that π(M) is umbilic and hence a
sphere, which now is invariant with respect to the group G. But as in the proof
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of Lemma 4.2 we can then show that the Steiner point of π(M) is the origin, and
hence the origin must be the center of the sphere as one easily checks.

We then conclude that M is a ”geodesic“ sphere centered in x0 by the proper-
ties of the stereographic projection. Using now the convexity of M and the fact
that x0 is supposed to be part of M̂ , we obtain the final result that M̂ ⊂ H(x0)
and that M is a geodesic sphere centered in x0. ¤

6. Existence of a solution

The existence is proved by a continuity method using Smale’s infinite dimen-
sional version of Sard’s theorem [18]. Writing the strictly convex hypersurfaces
as graphs over Sn it is convenient to express the differential operator

(6.1) F = F (hij) = F |M
in terms of the standard Levi-Cività connection in Sn.

Let x0 ∈ Sn be a fixed point for the group G and H(x0) the corresponding
hemisphere. Introducing geodesic polar coordinates centered in x0, the metric in
H(x0)\{x0} can be expressed as

(6.2) ds̄2 = dr2 + e2ψσijdξidξj ,

where ψ = ψ(r), or in conformal coordinates

(6.3) ds̄2 = e2ψ{dτ2 + σijdξidξj},
where

(6.4) τ =
∫ r

r̄
e−ψ(t), 0 < r̄ ≤ r <

π

2
,

and r̄ very small. Since all hypersurfaces we are concerned with lie in a region

(6.5) H(x0, r0, r1) = {x ∈ H(x0) : 0 < r0 ≤ r ≤ r1 <
π

2
},

in view of Theorem 4.4, choosing r̄ < r0 ensures that we do not have to worry
about a possible coordinate singularity and still have a positive τ -coordinate.

Let M ⊂ H(x0, r0, r1) be a strictly convex hypersurface, then, writing M as a
graph

(6.6) M = graphu = { (τ, ξ) : τ = u(ξ), ξ ∈ Sn },
the induced metric and the second fundamental form of M are given by

(6.7) gij = e2ψ{uiuj + σij}
and

(6.8) hije
−ψ = h̃ij + ψβ ν̃β g̃ij ,
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where the symbols with the tilde refer to the geometric quantities of M , when M
is considered to be embedded in the ambient space with metric

(6.9) ds̃2 = dτ2 + σijdξidξj .

h̃ij is then given by the relation

(6.10) v−1h̃ij = −uij = −v−2u;ij ,

where uij is the Hessian of u with respect to the induced metric g̃ij and u;ij is
the Hessian of u with respect to the standard metric σij of Sn. The term v is
defined by

(6.11) v2 = 1 + σijuiuj .

Writing uij instead of u;ij in the following, we see that

(6.12) hije
−ψ = −v−1uij + v−1ψ̇g̃ij ,

where

(6.13) ψ̇ =
dψ

dτ
.

If M is invariant under G, then the function u is also invariant under the group
action. Let Ak(ξ) be the local representation of Aξ and (Ak

i ) its derivative, then
the covariant derivatives of u satisfy

(6.14) ui(ξ) = uk(Aξ)Ak
i ,

and

(6.15) uij(ξ) = ukl(Aξ)Ak
i A

l
j ,

notice that Ak
i;j = 0.

6.1. Definition. A tensor field ϕ in T (Sn) is called invariant with respect to
G, if it satisfies transformation relations according to (6.14), (6.15), where the
contravariant indices transform like

(6.16) ϕi(ξ) = ϕk(Aξ)Ai
k ∀A ∈ G,

and there holds

(6.17) Ai
kA

k
j = δi

j .

These transformation rules hold for invariant tensor fields of arbitrary order.

The metric σij of Sn is of course invariant by the very definition of an isometry.
Hence we conclude from (6.12) that the second fundamental form is also invariant
and consequently also the tensor

(6.18) F ij =
∂F

∂hij
.
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Now consider the Banach spaces E1, E2 defined by

(6.19) E1 = {u ∈ H5,p(Sn) : u invariant }
and

(6.20) E2 = {w ∈ H3,p(Sn) : w invariant }
for some fixed n < p < ∞, such that Hm,p(Sn) ↪→ Cm−1,α(Sn).

Let Ω ⊂ E1 be an open bounded set such that M(u) = graphu is uniformly
strictly convex, contained in H(x0, r0, r1), such that x0 is in interior point of
M̂(u) for all u ∈ Ω. We then define

(6.21) Φ : Ω → E2

by

(6.22) Φ(u) = F (hij)− f(u, ξ)

expressing a position vector x ∈ H(x0) by x = (τ, ξ).

All possible solutions of Φ = 0 are strictly contained in Ω, if Ω is specified by
the requirements

(6.23) 0 < τ0 = τ(r0) < u < τ1 = τ(r1),

(6.24) x0 ∈ int M̂(u),

and

(6.25) 0 < ε0 < κi < κ̄,

where κi are the principal curvatures of graphu, in view of the a priori estimates
in Section 3 and Section 4.

6.2. Lemma. Φ is a proper nonlinear Fredholm operator of index zero.

Proof. F and hence Φ are uniformly elliptic in Ω. The properness is due to the
a priori estimates in Section 3 and Section 4, the Evans-Krylov and Calderòn-
Zygmund estimates and our assumption that F and f are of class C5.

If the Banach spaces Ei would have been defined without the symmetry re-
quirement, the other properties of Φ would have been well known. Let L be the
derivative of Φ, then L is an elliptic linear partial differential operator of second
order

(6.26) Lu = −F ijuij + biui + cu

and the lemma will be proved, if we can show that the operator

(6.27) −F ijuij + λu, λ > 0,

is surjective, i.e., for arbitrary w ∈ E2 there exists u ∈ E1 such that

(6.28) −F ijuij + λu = w.



Minkowski Type Problems 443

It is well known that there exists a function u ∈ H5,p(Sn) that solves the
preceding equation, and we shall show u is invariant, if w is.

Let A ∈ G, then we claim that ũ = u ◦ A also satisfies (6.28), which would
yield

(6.29) ũ = u

because of the uniqueness.

Now, differentiating ũ = u ◦A we obtain

(6.30) ũij(ξ) = ukl(Aξ)Ak
i A

l
j

and we infer

(6.31) −F ij ũij = −F ijAk
i A

l
jukl = −F klukl,

since F ij is invariant. ¤

Recall that w ∈ E2 is said to be a regular value for Φ, if either w /∈ R(Φ), or if
for any u ∈ Φ−1(w) DΦ(u) is surjective.

Smale [18] proved that for separable Banach spaces Ei and proper Fredholm
maps Φ the set of regular values in E2 is open and dense, if Φ is of class Ck such
that

(6.32) k > max(indΦ, 0).

All requirements are satisfied in the present situation.

Next we want to use the uniqueness result in Theorem 5.1. Let c > 0 be a
constant such that

(6.33) c < inf
Sn

f

and let u0 ≡ const be such that the geodesic sphere M0 = graphu0 satisfies

(6.34) F |M0
= c.

We assume furthermore that the constants r0, r1 and ε0, κ̄ are chosen such that
all possible solutions of

(6.35) F = tf + (1− t)c, 0 ≤ t ≤ 1,

in H(x0) satisfy the corresponding estimates.

The requirement (6.33) is not essential, it will only simplify some of the fol-
lowing arguments.

Let 0 < δ be small and define

(6.36) Λ : Ω × [−δ, 1 + δ] → E2
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by

(6.37) Λ(u, t) = F (hij)− (tf + (1− t)c).

Then Λ is also a proper Fredholm operator such that indΛ(·, t) = 0 for fixed t,
and, if w ∈ E2 is a regular value for Λ, then

(6.38) indΛ = 1 ∀ (u, t) ∈ Λ−1(w).

Recall that

(6.39) indΛ = dim N(DΛ)− dimCoker (DΛ).

The relation (6.38) will be proved in Lemma 6.5 below.

6.3. Theorem. Let 0 < f ∈ C5(Sn) be invariant under G, then for any F ∈ (K)
of class C5, there exists a strictly convex invariant hypersurface M ⊂ H(x0)
satisfying

(6.40) F |M = f.

Proof. Consider the Fredholm map Λ = Λ(u, t). The theorem will be proved, if
we can show that there exists u ∈ Ω such that

(6.41) Λ(u, 1) = 0.

On the other hand, there exists a unique solution of the equation

(6.42) Λ(u, 0) = 0,

namely, u = u0, the geodesic sphere. In the lemma below we shall show that u0

is also a regular point for Λ(·, 0), or equivalently, (u0, 0) a regular point for Λ.

Without loss of generality we may assume 0 /∈ R(Λ(·, 1)), for otherwise we have
nothing to prove, and thus, 0 is also regular value for Λ(·, 1).

Let ε > 0 be small, then there exists a

(6.43) wε ∈ Bε(0) ⊂ E2,

such that

(6.44) tf + (1− t)c + wε > 0 ∀ − δ ≤ t ≤ 1 + δ,

wε ∈ R(Λ(·, 0)), and such that wε is a regular value for Λ(·, 0), Λ(·, 1) and Λ.

Consider

(6.45) Γε = Λ−1(wε) ∩ (E1 × (−δ, 1 + δ)),

then Γε 6= ∅ and Γε is a 1-dimensional submanifold without boundary.

The intersection

(6.46) Γ̃ε = Γε ∩ (E1 × [0, 1])
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is then compact, since Λ is proper, and it consists of finitely many closed curves
or segments.

We want to prove that there is uε ∈ Ω such that (uε, 1) ∈ Γ̃ε. Suppose this were
not the case, then consider a point (ūε, 0) ∈ Γ̃ε. Such points exist by assumption.
Moreover, the 1-dimensional connected submanifold Mε ⊂ Γε containing (ūε, 0)
can be expressed near (ūε, 0) by

(6.47) Mε = { (ϕ(t), t) : − δ < t < δ },
where ϕ ∈ C1, ϕ(0) = ūε, and

(6.48) Λ(ϕ(t), t) = wε,

since by assumption D1Λ(ūε, 0) is an isomorphism and the implicit function the-
orem can be applied.

Let M̃ε = Mε ∩ Γ̃ε, then M̃ε isn’t closed because of (6.47), and hence has two
endpoints, see [12, Appendix]. One of them is (ūε, 0) and the other also belongs
to Λ(·, 0)−1(wε) and can therefore be expressed as

(6.49) (ũε, 0),

where ũε 6= ūε because of the implicit function theorem.

Hence we have proved that the assumption

(6.50) Λ(·, 1)−1(wε) = ∅
implies

(6.51) #Λ(·, 0)−1(wε) is even.

However, we shall show that Λ(·, 0)−1(wε) contains only one point, if ε is small.

Indeed, let ūε ∈ Λ(·, 0)−1(wε), then the ūε converge to the unique solution u0

of (6.42). Thus, if ε is small all ūε are contained in an open ball

(6.52) Bρ(u0) ⊂ Ω,

where Φ = Λ(·, 0) is a diffeomorphism due to Lemma 6.4, hence there exists just
one solution of the equation

(6.53) Λ(ūε, 0) = wε.

Thus we have proved that there exists a sequence

(6.54) uε ∈ Λ(·, 1)−1(wε),

if ε tends to zero. A subsequence will then converge to a solution u of

¤(6.55) Λ(u, 1) = 0.

It remains to prove two lemmata

6.4. Lemma. u0 is a regular point for Λ(·, 0).
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Proof. Let ϕ ∈ E1 be arbitrary and ε > 0 so small that

(6.56) u = u0 + εϕ ∈ Ω.

Then we have to calculate

(6.57)
d

dε
Λ(u, 0)|ε=0

=
d

dε
{F (hij)− c}.

Now,

(6.58)
d

dε
F (hij) = F i

j ḣ
j
i

and

(6.59) hj
i = −v−1e−ψ g̃jkuik + ψ̇e−ψδj

i ,

in view of (6.12), where

(6.60) g̃jk = σjk − ujuk

v2
.

Evaluating the resulting expressions at ε = 0 we conclude

(6.61) ḣj
i = −e−ψϕj

i + {ψ̈ − |ψ̇|2}e−ψδj
i ϕ,

hence,

(6.62)
d

dε
F (hij) = e−ψ{−∆ϕ− n(|ψ̇|2 − ψ̈)ϕ},

where the Laplace operator is taken with respect to the metric in Sn and e−ψ is
a constant.

Looking at the equations (4.10), (4.11) we deduce that ψ can be expressed as
a function of τ as

(6.63) ψ = log ρ− log(1 + 1
4ρ2), ρ = eτ+τ0 ,

where τ0 is an integration constant depending on the value of r̄ in (6.4), yielding

(6.64) |ψ̇|2 − ψ̈ = 1.

Thus ϕ ∈ N(D1Λ(u0, 0)) satisfies

(6.65) −∆ϕ− nϕ = 0

and is therefore a spherical harmonic of degree 1 or identically zero. But the G-
invariant functions are orthogonal to the spherical harmonics of degree 1, hence
D1Λ(u0, 0) is an isomorphism. ¤

6.5. Lemma. Let Λ be defined as above, then

(6.66) indΛ = 1.
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Proof. Let (u0, t0) ∈ E1× [−δ, 1 + δ] be fixed, where we may assume that t0 = 1,
since Λ is continuous. We distinguish two cases:

Case 1: (f − c) ∈ R(DΦ(u0))

Notice that Λ can be extended as a class C2-function to E1 × R. We have

(6.67) DΛ = (D1Λ,−(f − c)),

where all derivatives are evaluated at (u0, 1) resp. u0. Then we deduce

(6.68) dim N(DΛ) = dim N(D1Λ) + 1 = dim N(DΦ) + 1,

for let

(6.69) D1Λu1 = f − c,

then

(6.70) N(DΛ) = N(DΦ)× {0} ⊕ 〈(u1, 1)〉
as one easily checks, and of course there holds

(6.71) R(DΛ) = R(DΦ).

Case 2: (f − c) /∈ R(DΦ(u0))

In this case

(6.72) R(DΛ) = R(D1Λ)⊕ 〈(f − c)〉
and

(6.73) N(DΛ) = N(D1Λ)× {0},
hence

(6.74) indΛ = indΦ + 1 = 1

in both cases. ¤

7. Proof of Theorem 0.4

The barrier condition for the original pair (F, f) in H(−x0) immediately trans-
lates to a barrier condition for (F̃ , f−1) in H(x0). Following the stipulations in
Remark 0.5, we again assume that we consider the problem

(7.1) F |M = f(x) ∀x ∈ M,

where F ∈ (K) and M1 resp. M2 are lower resp. upper barriers for (F, f) bounding
a connected open set Ω ⊂ H(x0).

We want to apply an old result, [7, Theorem 0.4], in which we showed that
the problem (7.1) has a strictly convex solution M ⊂ Ω̄ of class C6,α assuming
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that F is of class (K), homogeneous of degree 1, and concave. In addition there
should exist a strictly convex function ψ ∈ C2(Ω̄). The ambient space was an
arbitrary Riemannian manifold N , Ω̄ was supposed to be compact, and should
be covered by a normal Gaussian coordinate system (xα).

All hypotheses are satisfied in the present situation: Ω̄ is compact, the normal
Gaussian coordinate system is given by choosing geodesic polar coordinates with
center in x0, the strictly convex function ψ can be defined by

(7.2) ψ = 1
2 |x0|2,

where x0 is the radial distance to x0, as one easily checks observing that the level
hypersurfaces {x0 = const} which intersect Ω̄ are all uniformly strictly convex,
and F is homogeneous of degree 1 and therefore also concave.
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