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Introduction

0.1. A perfect complex P of R-modules yields a homotopy point [P ] of the
K-theory spectrum K(R). The Euler characteristics, i.e., the class χ(P ) of P
in K0(R) = π0K(R), is the connected component where [P ] lies, so [P ] can be
considered as an “animation” of χ(P ). When R is commutative, the determinant
sends the fundamental groupoid of K(R) to the groupoid L(R) of graded super
R-lines; this is a morphism of the Picard groupoids (see [Del3]), so [P ] controls,
in particular, the determinant line detP . The local Riemann-Roch story, as seen
in [Del3] and [Gr], unfolds within these grounds.

Now let F be a perfect constructible complex of sheaves of R-modules on a
compact real analytic manifold X. Then the complex of R-modules RΓ(X, F ) is
perfect. In this article we prove two (closely related) results about [RΓ(X, F )]:

(a) Let SS(F ) be the micro-support of F (see [K], [KS]); this is a conic La-
grangian subvariety of the cotangent bundle T ∗X. Suppose we have a closed
subset Y ⊂ X and a continuous 1-form ν defined on X r Y which takes values
in the complement to SS(F ). Then ν can be used to “localize” [RΓ(X, F )] at Y :
namely, there is a natural homotopy point ενY (F ) of K(R), which is determined
by the restrictions of F and ν to any neighborhood of Y , together with a natural
identification of ενY (F ) with [RΓ(X, F )]. If Y is disjoint union of finitely many
Yα’s, then ενY (F ) = Σ ενYα(F ), hence

(0.1.1) [RΓ(X, F )] = Σ ενYα(F ).

If R is commutative, then we get the ε-lines EνYα(F ) := det ενYα(F ) and the
ε-factorization isomorphism

(0.1.2) det RΓ(X, F ) ∼→ ⊗α E(F )νYα .
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Example. If X is a circle, ν = dθ, then the ε-factorization looks as follows. Sup-
pose Y = {yα} is a finite non-empty set; we order it clockwise, so α ∈ Z/n. Con-
sider the open intervals Iα := (yα−1, yα) and semi-closed ones I−α := (yα−1, yα].
Then E(F )νyα = det RΓc(I−α , F |I−α ), and (0.1.2) is the composition of the stan-
dard identifications detRΓ(X, F ) ∼→ det RΓc(X r Y, F |XrY ) ⊗ det Γ(Y, F |Y ) =
⊗α(detRΓc(Iα, F |Iα)⊗ det Fyα) ∼→ ⊗α det RΓc(I−α , F |I−α ).

(b) When R is a field, Kashiwara defined the characteristic cycle CC(F ), which
is an integral cycle of local nature supported on SS(F ), and proved that its inter-
section index with the zero section T ∗XX ⊂ T ∗X equals the Euler characteristics
(the Dubson-Kashiwara microlocal index formula, see [D], [K], or [KS] ch. IX):

(0.1.3) χ(X, F ) = 〈CC(F ), T ∗XX〉.

We show that (0.1.3) admits a natural animation. Namely, there is a natural
cycle ε(F )SS(F ) with coefficients in K(R) supported on SS(F ), whose intersection
with T ∗XX identifies canonically with [RΓ(X, F )]. Here R can be any associative
algebra; if R is a field, then ε(F )SS(F ) lifts CC(F ). In particular, for R commu-
tative, we get a Dubson-Kashiwara-style description of detRΓ(X, F ).

Idea of the construction: [RΓ(X, F )] satisfies an additivity property: for ev-
ery partition of X by locally closed subanalytic pieces {Zβ} there is a natural
identification [RΓ(X, F )] = Σ [RΓc(Zβ , F |Zβ

)]. Now ν yields a supply of special
locally closed subsets Z ⊂ X r Y , called lenses, such that RΓc(Z, F |Z) = 0 (see
2.4, 2.5; in the above example, these were I−α ). Using them as components of the
partition, we get (a). And (b) is essentially a combination of (a) for all possible
ν and Y .

Remarks. (i) In short, (b) says that [RΓ(X, F )] has essentially micro-local
nature.

(ii) The constructions are compatible with filtrations on F . In fact, instead of
treating individual F , in the exposition we play all the way with the K-theory
spectrum of the whole category of constructible sheaves on X subject to a micro-
support condition.

(iii) If ν = df , where f is a C1-function on X which is constant on Yα, then
ε(F )νYα comes from the Morse complex at Yα and (0.1.1) comes from the filtration
on RΓ(X, F ) provided by the Morse theory. Notice that the exactness of ν is
essential when one wants to see the actual cohomology, and not merely the Euler
characteristics, however animated (consider the example of X = S1, F a constant
sheaf, and ν = dθ).
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(iv) One can define (0.1.2) working directly with L(R) (and avoiding K(R)).
Nonetheless, spectra still lurk there for the Picard groupoid L(R) is not strictly
commutative.1

0.2. It would be very interesting to find out if the construction of this note
(purely transcendental, as it is) admits a motivic (`-adic or de Rham) counter-
part. Indeed, the idea of the ε-factorization of detRΓ comes from arithmetics:
for a constructible sheaf on a curve over finite field, the ε-factorization of the de-
terminant of the Frobenius action on its cohomology is inherent for the Langlands
reciprocity. The precise statement was conjectured by Deligne [Del1] and proved
by Laumon [L]. To my knowledge, the geometric ε-factorization, which would be
an `-adic version of (0.1.2) providing the classical ε-factorization by passing to
the traces of the Frobenius symmetry,2 is not properly understood3 (to say noth-
ing about the format of (0.1.1) or of 0.1(b)). Notice that on higher dimensional
varieties in finite characteristics the notion of micro-support for `-adic sheaves is
not developed (but see [AS]). In the case of curves, the geometric ε-factorization
in the de Rham setting was constructed in [Del2] (and reinvented in [BBE]) using
polarized determinants of certain Fredholm operators.

Guided by the analogy, Deligne considered in [Del2] the problem of ε-factorizat-
ion of the determinant of a period matrix on a curve. At the level of numbers,
the result was established in [BDE] by a variant of Laumon’s method. On the
geometric level, a factorization format was envisioned in the last exposé of [Del2].
Namely, for an algebraic vector bundle with a connection on a complex curve, one
defines its Betti cohomology as the cohomology of the sheaf F of tame horizontal
sections (which lives on the real blow-up X of the Riemann surface at the singular
points of the connection, see [M]). One has the Betti ε-factorization4 (0.1.2). The
period isomorphism identifies the Betti cohomology with the de Rham one. Then
Deligne’s format asks for a canonical identification of the Betti ε-lines with the
de Rham ones that would factorize the determinant of the period isomorphism.

Here is another question proposed by Drinfeld. As in [KS], our habitat is a
smooth variety, which does not look very natural for the story. What intrinsic
geometry is truly relevant for the micro-local analysis of sheaves? It should make
sense outside the smooth context, so that one could play with singular spaces
directly, without embedding them into smooth ones.

1Picard groupoids are essentially the same as spectra with π 6=0,1 vanishing, see 1.5(iv); a
Picard groupoid is strictly commutative iff the corresponding spectrum is abelian, i.e., comes
from a (length 2) complex of abelian groups.

2Since the classical ε-factors also depend on an additive character of the base finite field,
their geometric counterparts should lie in an appropriate gerbe rather than be mere graded
super lines.

3[L] gives a construction when ν = d log f , f is a rational function, and the base field is finite.
4In [Del2] the Betti ε-lines were defined only for ν = d log |f |, f is a rational function.
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0.3. The contents. In §1 we remind a few elementary facts about spectra,
and §2 is essentially a review of some micro-support basics (with proofs) from
[KS] 5.1, 5.2 in a format we need. Sections 3 and 4 treat, respectively, 0.1(a) and
0.1(b).

Notation: For a subset Z of a topological space X, we denote by Z̄ its closure,
by Int(Z) its interior, and by ∂Z := Z̄rInt(Z) the boundary. The embedding
Z ↪→ X is denoted by iZ = iZX , or (if Z is open) by jZ = jZX .

1. A spectral reminder

This section is intended to alleviate a reader who, like the author, feels foreign
in the lands of homotopy theory. This is not a review of the basics of the subject;
we merely recall a few needed facts, structures, and constructions.

1.1. An informal homotopy comment. A peculiar trait of the homotopy
theory is the lack of intrinsic language. By default, people resort to a description
of the homotopy world as a clever “homotopy localization” of a usual category of
rigid objects (topological spaces, simplicial sets, complexes, etc.), referred to as
model category. The latter is rather an artificial device, an amber spyglass of the
trade, one needs to see objects of the homotopy world. An unsettling quality of
this order of things is that all constructions must be performed at the rigidified
level, which takes effort and ingenuity, and adds arbitrariness.5

Intuitively, a homotopy world is a kind of ∞-category (see Remark below).
Lopping off higher homotopies (i.e., replacing the clever localization by a stupid
one), one gets a plain category - the homotopy category of the model category.
This is a desolate place where no interesting constructions can be performed.
The homotopy world is a (yet unnamed) animation of the homotopy category
that hovers inbetween the latter and highly non-canonical model categories.

Remark. In [Gr] Grothendieck suggested to perceive homotopy types as ∞-
groupoids.6 Unfortunately, a simple intrinsic definition of the concept is not

5The search for a model category where a given construction can be performed could be a
serious problem (as the example of the symmetric monoidal structure on spectra shows).

6So the homotopy type of a topological space is its fundamental ∞-groupoid whose objects
are points, 1-morphisms are paths between points, 2-morphisms are homotopies between paths,
etc.
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available. Arguably, the common language of category theory may be inadequate
for describing the homotopy world.7

1.2. We will be interested in the homotopy world of spectra S. For our modest
purposes (we will not use the tensor structure on spectra), the traditional model
category of spectra from [BF] will do. So a spectrum is a sequence P of pointed
simplicial sets P0, P1, . . ., connected by maps αn : SPn → Pn+1; here SP := S1∧P
is the suspension. The category S̃ of those is closed under limits and colimits.

If X is any simplicial set and P ∈ S̃, then the sequence X ∧Pi forms naturally
a spectrum X ∧ P ;8 thus the monoidal category of simplicial sets (with × as the
tensor product) acts on S̃. The endofunctor P 7→ X ∧ P admits right adjoint
Q 7→ QX . A morphism X ∧ P → Q is referred to as an X-family of morphisms
P → Q. There is a pointed simplicial set HomS̃(P, Q) such that

(1.2.1) HomS̃(P, Q)(X) = HomS̃(X ∧ P, Q) = HomS̃(P, QX),

so S̃ is a pointed simplicial category.

Example. If S is the sphere spectrum, then HomS̃(P, Q) = Q0.

For P ∈ S̃ its homotopy groups πiP , i ∈ Z, are defined as πiP := lim−→πi+n|Pn|
where |Pn| is the realization of Pn (which is a pointed topological space) and the
limit is taken with respect to the maps αn. A morphism f : P → Q is said to be
a weak equivalence if it induces an isomorphism between the homotopy groups;
it is a cofibration if the maps P0 → Q0 and Pn ∪

SPn−1

SQn−1 → Qn, n ≥ 1, are

all injective. The datum of weak equivalences and cofibrations defines on S̃ a
structure of simplicial model category which is stable and proper (see [GS] for a
brief introduction to model categories and [Hi] for a detailed exposition).

The cofibrant objects for this model structure are P with SPn → Pn+1 all
injective; the fibrant objects are Ω-spectra, i.e., those Q ∈ S̃ that each Qn is a
Kan simplicial set and every map Qn → ΩQn+1 is a weak equivalence of simplicial
sets.

1.3. The simplicial model category structure permits to play with spectra in
much the same way as with simplicial sets.

7A shade of this inadequacy presents already in the plain category theory: while its force lies
in the fact that one need not distinguish equivalent categories, it ostensibly asserts that for a
(small) category its set of objects is a meaningful notion.

8Here X ∧ Pi := X+ ∧ Pi where X+ is X with the marked point added. Of course, X ∧ P is
the same as the wedge product of spectra S∞X and P ; as was mentioned, the wedge products
of arbitrary spectra are not needed for our modest purposes.
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For example, suppose P is cofibrant, Q is fibrant. Then weak equivalences
between such P ’s or such Q’s yield weak equivalences between the HomS̃ ’s; cofi-
brations between P ’s or fibrations between Q’s yield Kan fibrations beween the
HomS̃ ’s. In particular, HomS̃(P, Q) is a Kan simplicial set.

A corollary: for any simplicial set X and a cofibrant P the spectrum X ∧ P
is also cofibrant, and the functor (X, P ) 7→ X ∧ P transforms weak equiva-
lences between X’s and P ’s to weak equivalences. Sometimes we use notation
C\(X, P ) := X ∧ P ; this is the homology spectrum of X with coefficients in P .
Dually, if Q is fibrant, then C\(X, Q) := QX is fibrant, and this cohomology
functor transforms weak equivalences between X’s and Q’s to weak equivalences.
The homology and cohomology spectra are naturally functorial; in particular, the
map X → (point) yields a canonical morphism

(1.3.1) tr : C\(X, P ) → P.

One often needs to consider the homology and cohomology with non-constant
coefficients. Namely, for a simplicial set X a homology type coefficient system on
X is a rule P that assigns to each a ∈ Xn a spectrum P a ∈ S̃ and to each non-
decreasing map φ : [0,m] → [0, n] a morphism P a → P φ(a) in S̃ compatible with
the composition of φ’s. Then the homology spectrum C\(X, P ) is the colimit of a
diagram formed by spectra9 ∆n∧P a labeled by pairs (a, n) as above, and ∆m∧P a

labeled by pairs (a, φ) as above, which are connected by the arrows ∆m∧P φ(a) ←
∆m ∧ P a → ∆n ∧ P a coming from φ. A cohomology type coefficient system Q on
X is defined in a dual manner; for such Q one constructs its cohomology spectrum
C\(X, Q) as the limit of a diagram formed by spectra Q∆n

a labeled by (a, n) as
above, and Q∆n

a labeled by (a, φ) as above, which are connected by the arrows
Q∆n

a → Q∆m
a ← Q∆m

φ(a) coming from φ. For constant coefficient systems P , Q, we
get the previous construction.

Examples. (i) If X is a point, then P is the same as simpicial object in the
category S̃, and Q is the same as a cosimplicial object.

(ii) Let I be a small category and F : I → S̃ be an I-diagram of spectra. It
yields a homology type coefficient systems F\ on the nerve Ner(I). Namely, for
(i0 → . . . → in) ∈ Ner(I)n one has F\(i0→...→in) := F (i0). Set hocolimIF :=
C\(Ner(I), F\). If F → F ′ is a morphism of diagrams such that for each i ∈ I
the map F (i) → F ′(i) is a weak equivalence of cofibrant spectra, then the map
hocolimIF → hocolimIF

′ is a weak equivalence of cofibrant spectra. Dually, F

yields a cohomology type coefficient system F \
(i0→...→in) := F (in), holimI(F ) :=

C\(Ner(I), F \), and holimI sends pointwise weak equivalences between pointwise
fibrant F ’s to weak equivalences of fibrant spectra. These are parts of the story

9We denote by ∆n the standard n-simplex.
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of natural model structures on the categories of diagrams, coefficient systems,
etc.

The usual constructions of the standard homotopy category, such as the cone,
cylinder, path space, and homotopy fiber space of a morphism are particular cases
of the homotopy (co)limits.

1.4. One gets spectra localizing S̃ with respect to weak equivalences, and the
model category format explains how to do this with minimum of pain. To produce
Ho S, one simply localizes the category S̃ with respect to weak equivalences, which
is the same as to consider the subcategory of both fibrant and cofibrant objects
with π0HomS̃ as morphisms. This is naturally a triangulated category with a
non-degenerate t-structure whose core equals the category Ab of abelian groups;
the corresponding homology functor assigns to a spectrum P its homotopy groups
πiP .

Remark. Among all spectra live abelian ones, which are the same as complexes
of abelian groups (see 1.5(i)); on the level of the homotopy categories, one has a
faithful t-exact embedding D(Ab) → Ho S which identifies the cores.

As a move towards the elusive clever localization S (see 1.1), one considers for
P, Q ∈ S̃, instead of true morphisms P → Q, the homotopy morphisms, which
are X-families of morphisms with base X contractible. An identification of a
homotopy morphism f with base X and one g with base Y is a homotopy mor-
phism h with base Z and maps X → Z ← Y such that f and g are the respective
pull-backs of h, etc. If P is the spherical spectrum, we refer to homotopy mor-
phisms P → Q as homotopy points of Q. In practice, the base X is provided
in the course of constructions and rarely specified explicitly. A related notion is
that of homotopy object of S̃, by which we understand a simplicial functor B → S̃
where B is a non-empty small simplicial category all of whose Hom spaces are
contractible.

Examples. (i) For any P ∈ S̃ its fibrant resolution is a morphism i : P → P f

such that i is an acyclic cofibration10 and P f is fibrant. Fibrant resolutions exist,
and form a single homotopy object. More precisely, for any morphism φ : P → Q
and fibrant resolutions P f , Qf all morphisms φf : P f → Qf compatible with
φ form a contractible simplicial subset of HomS̃(P f , Qf ), so φf is canonically
defined as a homotopy morphism. There is a dual statement for cofibrant resolu-
tions P c → P . Iterating, one get fibrant-cofibrant P ← P c → (P c)f =: P fc and
cofibrant-fibrant P → P f ← (P f )c =: P fc resolutions; these form single homo-
topy objects which are both fibrant and cofibrant, together with a canonical weak
equivalence P fc → P cf . If wanted, the resolutions can be chosen functorially.

10I.e., i is a cofibration and a weak equivalence.
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(ii) Suppose P , Q are both fibrant and cofibrant, and f : P → Q is a weak
equivalence. Let us spell out how one inverts f as a homotopy morphism. A
right homotopy inverse to f is a pair (gr, hr) where gr is a morphism gr : Q → P
and hr is a homotopy ∆1 ∧ Q → Q between fgr and idQ. The right homotopy
inverses form a contractible simplicial set. The left homotopy inverses (g`, h`)
are defined dually; they form a contractible simplicial set as well. Thus we have
canonical homotopy morphisms g`, gr : Q → P . To identify them, one uses the
contractible set of collections (g`, h`; gr, hr; h̃) where (g`, h`), (gr, hr) are left and
right homotopy inverses to f and h̃ : ∆2 ∧ Q → P is a map which equals g`,
g`fgr, and gr at the vertices, g`hr, h`gr at the two edges.

Remark. If f is a fibration, then its true right inverses (i.e., sections) g form
a contractible simplicial set, as well as the pairs (g, h) where h is a fiberwise
homotopy between gf and idP . There is a dual statement if f is a cofibration.

(iii) Let us show that spectra carry a canonical homotopy sum operation. Take
any P which is both fibrant and cofibrant, and let I be any finite set. Consider a
morphism e :

∨
I P → P I whose components eii′ : P → P equal idP if i = i′ and

are the trivial maps otherwise. Then e is an acyclic cofibration, so all morphisms
ΣI : P I → P such that the composition ΣIe is the map which has idP as the
components, form a contractible simplicial set E(P )I . Thus we have a canonical
single homotopy morphism Σ = ΣI : P I → P . When I changes, the spaces
E(P )I form in an evident way an operad which acts on P .

1.5. Examples. (i) Any complex of abelian groups A defines an Eilenberg-
MacLane spectrum EM(A). Namely, for each n ≥ 0 the complex τ≤0(A[n]) can
be seen, by Dold-Puppe, as a commutative simplicial group which we denote by
An. There is an evident identification An

∼→ ΩAn+1, so An form an Ω-spectrum.
Notice that for any simplicial set X one has C\(X, EM(A)) = EM(C\(X, A)),
C\(X, EM(A)) = EM(C\(X, A)), where C\(X, A) and C\(X, A) are the usual
simplicial homology and cohomology complexes.

(ii) Let P be as in Example (iii) in 1.4. The operad EP acts on the (Kan)
simplicial set P0; the corresponding operation on π0(P0) is the group operation
on π0(P ). Conversely, suppose we have an operad E with contractible terms.
Then any E-space, i.e., a Kan simplicial set equipped with an action of E, such
that π0 is a group can be lifted in a natural (and homotopically unique) way to
an Ω-spectrum with π<0 = 0.

(iii) If M is a small symmetric monoidal category, then its nerve Ner(M) is
naturally an E-space; here E is the nerve of an operad in groupoids whose nth
term is the contractible groupoid of all “n-fold operation” functors Mn → M .
Thus Ner(M) is a spectrum if π0 Ner(M) is a group.
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(iv) The latter happens if M is a Picard groupoid.11 The only non-trivial
homotopy groups of Ner(M) are π0 (which is the group of isomorphism classes
of objects of M) and π1 (which is the automorphism group of any object in M).
Conversely, for any P as in (ii) the EP -operation defines on the fundamental
groupoid ΠP := ΠP0 the structure of a Picard groupoid; if π<0P = 0, then
one has a natural homotopy morphism of spectra P → Ner(ΠP ) which is an
isomorphism on π0, π1. These constructions identify homotopically the 2-category
of Picard groupoids with that of spectra having all homotopy groups but π1, π0

trivial.

1.6. For the next subject, see [J1], [J2]. Let T be a small category. A presheaf
P of spectra on T is the same as a T ◦-diagram of spectra. Such objects form a
simplicial category PSh(T , S̃). Our P yields presheaves πiP of homotopy groups.
A morphism of presheaves P → Q is said to be objectwise weak equivalence if the
morphisms πiP → πiQ are all isomorphisms; it is a cofibration if the maps
P (U) → Q(U) are cofibrations for all U ∈ T . These data define on PSh(T , S̃) a
stable proper simplicial model category structure.

Suppose that T is equipped with a Grothendieck topology. For a presheaf P
of spectra we denote by πiP the sheafification of the presheaf πiP . A morphism
of presheaves P → Q is said to be local weak equivalence if all πiP → πiQ are
isomorphisms. The local weak equivalences and the above cofibrations define on
PSh(T , S̃) a stable proper simplicial model category structure (the “sheafified”
model structure). Its fibrant objects can be characterized by a homotopy descent
property with respect to all hypercoverings in T (see [DHI]). The corresponding
homotopy category is naturally a t-category whose core is the category of sheaves
of abelian groups on T and the cohomology functor P 7→ π−iP .

The embedding of the presheaves of abelian spectra, i.e., complexes of presheav-
es of abelian groups, into PSh(T , S̃) yields a t-exact functor from D(T ) to the
homotopy category of PSh(T , S̃) with respect to the “sheafified” model structure
which induces an equivalence between the cores. Here D(T ) is the derived cate-
gory of sheaves of abelian groups on X (which is the same as the localization of the
homotopy category of complexes of presheaves modulo local quasi-isomorphisms).

For a presheaf P consider its fibrant resolution P → P f for the “sheafified”
model structure (it is uniquely defined as a homotopy object and can be cho-
sen functorially, see Example (i) in 1.4), and define RΓ(T , P ) := limT ◦P

f ∼→
holimT ◦P

f .

Remarks. (i) RΓ yields a triangulated functor between the homotopy cate-
gories. For presheaves of abelian spectra, RΓ is the usual cohomology functor.

11Which means that each morphism in M is invertible, and each object is invertible with
respect to the operation.
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(ii) Let T ′ ⊂ T be a subcategory such that every object of T admits a covering
by objects of T ′, and every T -covering of an object of T ′ admits a refinement
which lies in T ′. Equip T ′ with induced Grothendieck topology; then the restric-
tion functor PSh(T , S̃) → PSh(T ′, S̃) is compatible with the model categories
structures, induces equivalences between the localized categories, and for any
P ∈ PSh(T , S̃) one has RΓ(T , P ) ∼→ RΓ(T ′, P |T ′).1.7. Let X be a locally com-
pact topological space. Any cofibrant spectrum P yields a cofibrant presheaf P !

X

on X, U 7→ P !
X(U) = C\(X, X r U ;P ) := Cone(C\(X r U,P ) → C\(X, P )), the

restriction maps are the evident ones.12 This is a spectral version of the dualiz-
ing complex with coefficients in P . One has the corresponding Poincaré duality
theorem:

Proposition. Suppose X is compact and has finite homological dimension.
Then the morphism C\(X, P ) → RΓ(X, P !

X) is a weak equivalence.

Proof. The fact is standard if P is abelian. The case of general P can be re-
duced to the abelian one as follows. The canonical filtration on P defined by the
t-structure (i.e., the Postnikov tower) yields filtrations on C\(X, P ), RΓ(X, P !

X),
and our morphism is compatible with them. The corresponding spectral se-
quences with Ep,q

1 = π−qC\(X, EM(π−pP )) and Ep,q
1 = π−qRΓ(X, EM(π−pP ))

converge, respectively, to π−p−qC\(X, P ) and π−p−qRΓ(X, P !
X) due to the finite-

ness condition. Our morphism yields an isomorphism on Ep,q
1 , and we are done.

¤
1.8. For details on K-theory spectra, see [DS], [C] and references therein.

The basic construction of K-theory assigns to every small pretriangulated DG
category A a spectrum K(A), to each DG functor φ : A → B a homotopy
morphism of spectra K(φ) : K(A) → K(B), to any d-morphism13 of DG functors
φ → φ′ such that for every M ∈ A the morphism φ(M) → φ′(M) is a homotopy
equivalence, a homotopy between K(φ) and K(φ′), etc. We can (and will) assume
that K(A) is fibrant and cofibrant. Set Ki(A) := πiK(A).

In fact, K(A) is constructed as an EA-space (see 1.5(ii)) where EA is the nerve
of an operad in groupoids whose nth term is the contractible groupoid of all
direct sum DG functors An → A. We do not need a precise construction of K(A)
(consider it as a black box). The next properties will be of use:

(i) The K-functor commutes with finite direct products (and the above operad
EA acts on K(A) via the direct sum functors K(A)n = K(An) → K(A)).

12To fit into simplicial format, we replace each topological space by a natural simplicial
approximation (say, all continuous simplices).

13A d-morphism between objects of a DG category, or between DG functors, is a morphism
of degree 0 which commutes with the differential.
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(ii) K0(A) is the Grothendieck group of the triangulated category Atri defined
by A.

(iii) If φtri : Atri → Btri is an equivalence of categories, then K(φ) is a weak
equivalence. In particular, as a homotopy object, K(A) makes sense whenever
Atri is essentially small. By abuse of notation, we can write K(A) = K(Atri).

(iv) For n ≥ 1 let A(n) be the DG category of n-filtered objects, i.e., diagrams
A· = (A1 → . . . → An) in A (here → are d-morphisms, i.e., closed morphisms of
degree 0 in A). For i = 1, . . . , n set griA· := Cone(Ai−1 → Ai).14 Then the DG
functor gr· = (gri) : A(n) → An yields a weak equivalence K(A(n)) → K(A)n.
Notice that a right inverse to gr· is provided by a functor An → A(n), (Ai) 7→
(A1 ↪→ A1 ⊕A2 ↪→ . . . A1 ⊕ . . .⊕An).

This property will be used in the following form: Suppose one has a sequence φ
of DG functors and d-morphisms φ1 → . . . → φn. Then the morphisms of the K-
spectra K(φn) and

∑
K(griφ) are naturally identified as homotopy morphisms;

here griφ := Cone(φi−1 → φi).

(v) Consider the category A× whose objects are the same as objects of A
and morphisms are d-morphisms in A which are homotopically invertible (i.e.,
are invertible in Atri); this is a symmetric monoidal category with respect to
⊕, so Ner(A×) is an E-space. Then there is a natural morphism of E-spaces
Ner(A×) → K(A). In particular, each object A ∈ A yields a point in K(A)
which we denote by [A].

(vi) Let Btri ⊂ Atri be a thick subcategory, B ⊂ A the corresponding DG
subcategory, and A/B be the DG quotient (see [Dr]), so (A/B)tri is the Verdier
quotient Atri/Btri. Then K(Atri/Btri) ∼→ Cone(K(Btri) → K(Atri)).

If R is an associative algebra,15 then K(R) denotes the K-spectrum of the
triangulated category of perfect complexes of R-modules (localized by quasi-
isomorphisms).

(vii) Let R be a commutative algebra. Denote by L(R) the Picard groupoid
of Z-graded super R-lines. Thus objects of L(R) are invertible Z-graded R-
modules. Locally on SpecR any L ∈ L(R) lies in a fixed degree degL. So degL

is a locally constant Z-valued function on SpecR, and our L is the same as a
pair (Lo,degL) where Lo is an invertible (non-graded) R-module and degL is any
function as above. By abuse of notation, we usually write Lo = L. The operation
in L(R) is the tensor product of Z-graded modules, so degL⊗L′ = degL +degL′ ,
(L ⊗ L′)o = Lo ⊗R L′o, and the commutativity constraint for L ⊗ L′ equals the
one for Lo ⊗R L′o multiplied by the super sign (−1)degL degL′ .

14For i = 1 we set A−1 := 0.
15Or, more generally, a DG algebra, or even a small DG category as in [Dr].
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Then the determinant line construction provides a canonical “character sheaf”
λ on K(R), which is a local system of graded super lines together with an identifi-
cation ·xy : λx⊗λy

∼→ λx+y compatible with the associativity and commutativity
constraints. Equivalently, λ can be seen as a morphism of the Picard groupoids
ΠK(R) → L(R) (see 1.5(iv)). For a perfect R-complex P the graded super line
λ[P ] equals det(P ), for a quasi-isomorphism α : P → P ′ the monodromy of λ

along the corresponding arc in K(R) equals det(α) : det(P ) ∼→ det(P ′), and
·[P ][P ′] is the standard isomorphism det(P )⊗ det(P ′) ∼→ det(P ⊕ P ′).

2. Morse-theoretic preliminaries

This section is mostly an exposition of the story of [KS] 5.1–5.2 in a format
convenient for our purposes. The principal fact is the proposition in 2.5 (which is
a variant of [KS] 5.1.1, 5.2.1) that locates the micro-support of a sheaf in terms
of cohomology vanishing for certain displays of locally closed subsets of X, called
lenses, controlled by conical domains in the tangent bundle.

2.1. For this subsection, X is any locally compact topological space of fi-
nite cohomological dimension, and D(X) = D(X, Z) is the derived category of
complexes of sheaves of abelian groups on X.

Let U, V be open subsets of X such that U ∩V = ∅. For any sheaf F the com-
position of the canonical maps jU !j

∗
UF → F → jV ∗j∗V F equals 0, so F carries a

natural 3-step filtration jU !j
∗
UF ⊂ Ker(F → jV ∗j∗V F ) = iXrV ∗i!XrV F ⊂ F . Pass-

ing to the right derived functor, we see that every F ∈ D(X) carries a canonical
3-step Morse filtration16 jU !j

∗
UF ⊂ iXrV ∗Ri!XrV F ⊂ F . Its top quotient equals

RjV ∗j∗V F . Denote by MUV (F ) the middle successive quotient; this is the Morse
complex. The construction has local nature and is self-dual in the evident sense.

Example. Let f be a continuous R-valued function on X. Then each a ∈ R
yields a pair U = Xf>a, V = Xf<a as above; the corresponding Morse complex
is denoted by Mf=a(F ). Here Xf<a := {x ∈ X : f(x) > a}, etc.

We will mostly consider the case when U = X r V̄ ; the Morse complex
MV (F ) := MUV (F ) is supported then on ∂V := V̄ r V .

The next lemma (cf. [KS] 2.7.2) describes a situation when the vanishing of
Morse complexes yields the vanishing of global cohomology. Let Vt, t ∈ [0, 1], be
a family of open subsets of X such that ∪

t′<t
Vt′ = Vt for each t > 0, ∩

t′>t
Vt′ ⊂ V̄t

for each t < 1, and the subset Z := V1 r V0 is relatively compact.

Lemma. If MVt(F ) = 0 for every t < 1, then RΓ(Z, Ri!ZF ) = 0.

16I.e., one has an exact functor D(X) → DF (X)(:= the filtered derived category) whose
composition with the forgetting of the filtration functor DF (X) → D(X) equals IdD(X).
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Proof. We can assume that each F i is a flabby sheaf. The map F (V1) → F (V0)
is surjective, and its kernel K represents RΓ(Z, Ri!ZF ). Take any cycle α ∈ K0;
we want to find β ∈ K−1 such that dβ = α. Consider the set C of pairs (βt, t)
where βt ∈ F−1(Vt) is such that βt|V0 = 0 and dβt = α|Vt . It is naturally ordered
(one has (βt, t) ≤ (βt′ , t

′) if t ≤ t′ and βt′ |Vt = βt) and satisfies the condition of
Zorn’s lemma. Thus there is a maximal element (βt, t) ∈ C; we want to check
that t = 1.

If not, pick any t′ ∈ (t, 1); since MVt′ (F ) = 0, one can find a neighborhood U

of V̄t′ and α′ ∈ F 0(U) such that dα′ = 0 and α′|Vt′ = α|Vt′ . Since MVt(F ) = 0,
one can find a neighborhood U ′ of V̄t, U ′ ⊂ U , and β′ ∈ F−1(U ′) such that
dβ′ = α′|U ′, β′|Vt = βt. Since Z̄ is compact, U ′ ⊃ Vt′′ for some t′′ ∈ (t, t′); set
βt′′ := β′|Vt′′ . Then (βt′′ , t

′′) ∈ C and (βt′′ , t
′′) > (βt, t), so (βt, t) is not maximal,

q.e.d. ¤
2.2. Notation. A closed subset N of a finite-dimensional R-vector space T is

said to be round cone if N is convex, invariant with respect to R≥0-homotheties,
Int(N) 6= ∅, and N ∩ N◦ = {0}. Here N◦ := −N is the opposite subset. Then
N∨ := {ν ∈ T ∗ : 〈ν,N〉 ⊂ R≤0} is a round cone in the dual vector space T ∗, and
(N∨)∨ = N . If T is an R-vector bundle over a topological space X, then a family
of round cones, or simply a round cone, in T is a closed subspace N ⊂ T such that
each Nx, x ∈ X, is a round cone in Tx which depends continuously on x. Then
the family of dual cones N∨ is a round cone in T ∗. Notice that N = Int(N), and
Int(N)x = Int(Nx). For round cones N, N ′ ⊂ T we write N b N ′ if N r {0} ⊂
Int(N ′). Sometimes we write NX instead of N ; if Y ⊂ X is a subset (equipped
with the induced topology), then NY ⊂ T |Y is the pull-back of NX to Y .

Suppose now that our X is a C1-manifold; let πT : TX → X, πT ∗ : T ∗X → X
be the tangent and the cotangent bundles. We denote by TX• the complement
to the zero section of TX; for any N ⊂ X set N• := N ∩ TX•.

For the rest of the section we fix a round cone N ⊂ TX.

A subset P ⊂ X is said to be N -invariant if for every C1-arc γ : [0, 1] → X
with γ(0) ∈ P , ( d

dtγ)([0, 1]) ⊂ N•, one has γ([0, 1]) ⊂ P .

Lemma. (i) N -invariantness is a local property: P ⊂ X is N -invariant if
and only if for some (or any) open covering {Vα} of X each P ∩ Vα ⊂ Vα is
NVα-invariant.

(ii) If P ⊂ X is N -invariant, then P̄ , Int(P ) are N -invariant, and Int(P ) =
Int(P̄ ). The subset Int(P ) is dense in P . More precisely, for any C1-arc γ :
[0, 1] → X with ( d

dtγ)([0, 1]) ⊂ Int(N) and x ∈ P̄ , one has γ((0, 1]) ⊂ Int(P ).

(iii) If P, Q ⊂ X are N -invariant, then P ∩Q = P̄ ∩ Q̄.
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Proof. (i) is clear. (ii): When checking if a set is N -invariant, it suffices to
consider only those γ : [0, 1] → X which are embeddings. In this case, d

dtγ extends
to a continuous vector field τ on a neighborhood of γ([0, 1]) which takes values
in N•. Solving the differential equation, we get an open neighborhood U ⊂ X of
x := γ(0) and C1-morphism U × [0, 1] → X, (y, t) 7→ gt(y), such that g0(y) = y,
∂tgt(y) = τ(gt(y)); then gt(x) = γ(t) and for each t the map gt : U → X is an
open embedding. This implies that P̄ , Int(P ) are N -invariant.

Let S be the set of all C1-arcs γ : [0, 1] → X such that ( d
dtγ)([0, 1]) ⊂ Int(N).

Then for each n ≥ 1 the map S → Xn+1, γ 7→ (γ(i/n))i=0,...,n, has open image.
This observation shows that for x ∈ P̄ and γ ∈ S, γ(0) = x, one has y := γ(1) ∈
Int(P ). Indeed, to see that y := γ(1) ∈ Int(P ), notice that γ(1/2) ∈ P̄ by above;
thus for z ∈ P sufficiently close to γ(1/2) one can find γ′ ∈ S with γ′(1/2) = z
and γ′(1) = y. Then the image of the set of all γ′′ ∈ S with γ′′(1/2) = z by the
map γ′′ 7→ γ′′(1) is open; since it lies in P , one has y ∈ Int(P ), q.e.d.

It remains to check that Int(P ) = Int(P̄ ), i.e., that every y ∈ Int(P̄ ) lies in
Int(P ). Pick any γ ∈ S such that γ(1) = y. Then γ(t) ∈ P̄ for any t < 1
sufficiently close to 1, which implies that γ(1) ∈ Int(P ), as we’ve seen.

(iii) It suffices to show that any x ∈ P̄ ∩ Q̄ lies in P ∩Q. Pick any γ ∈ S with
γ(0) = x; then γ((0, 1]) ⊂ P ∩Q, and we are done. ¤.

A subset U ⊂ X is said to be N -open if it is open and N -invariant. Such
subsets form a topology on X, called the N -topology. Its closed sets, referred to
as N -closed subsets, are the same as closed N◦-invariant subsets of X.

Remark. By (ii) of the above lemma, the map U 7→ Ū is a 1–1 correspondence
between the sets of N -open and N◦-closed subsets of X.

As the example of X = S1 shows, the N -topology can be rather stupid. We
will consider instead the NU -topologies for sufficiently small open U ’s.

2.3. A C1-function f on an open subset U ⊂ X is said to be N -smooth if
τ(f) < 0 for every τ ∈ N•

U , i.e., if df(U) ⊂ Int(N∨
U ), or, equivalently, if there is

N ′
U c NU such that each Uf<a is N ′

U -open.17

Lemma. N -smooth functions exist locally.

Proof. Take any x ∈ X. Choosing coordinates, identify a neighborhood V of x
with that of 0 ∈ Rn. Choose a round cone N ′ ⊂ Rn = TxX such that N ′ c Nx.
Shrinking V , we can assume that N ′ c Ny for every y ∈ V . Then any non-zero
linear function from N ′∨ is N -smooth on V . ¤

A subset P ⊂ X is said to be N -small if there is a neighborhood of P which
admits an N -smooth function. Of course, any subset of an N -small set is N -small.

17If we call N a light cone, then f is a time function for it.
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Lemma. Supposethat U ⊂ X is open and N -small.

(i) Each x ∈ U admits a base of open neighborhoods {Vα} such that the NVα-
topology on Vα coincides with the topology induced by the NU -topology on U .

(ii) Suppose we have round cones N ′′
U c N ′

U ⊃ NU and an N ′′
U -open subset

W ⊂ U . Then for any x ∈ U ∩ ∂W the subsets Q r W , where Q is an N ′
U -

neighborhood of x, form a base of neighborhoods of x in U rW .

Proof. (i) Let f be an N -smooth function on U . Choose a coordinate neighbor-
hood V of x and N ′ as in the previous lemma so that the first coordinate t1 equals
f . For ε > 0 let ε̃ := (ε, 0, . . . , 0) ∈ Rn. Set Rε :=Int(N ′) + ε̃, Vε := (Rε)t1>−ε;
then Vε form a base of neighborhoods of 0 ∈ Rn. Let {Vα} be the set of those Vε

that lie in V ; we leave it to the reader to check the promised property.

(ii) Choose V as above and round cones N ′, N ′′ ⊂ Rn such that N ′′
y c N ′′ c

N ′ c N ′
y for y ∈ V . The subsets Rεr Int(N ′′), where Rε is as in (ii), form a base

of neighborhoods of 0 in Rnr Int(N ′′). Fix some ε′ such that Vε′ ⊂ V . Then
Qε := (Rε ∩ Vε′) ∪ W for ε ≤ ε′ are N ′

U -open neighborhoods of x. For ε small
enough, Rεr Int(N ′′) ⊂ Vε′ , so Qε rW = (Rεr Int(N ′′))rW ; we are done. ¤

2.4. A subset Z ⊂ X is called N -special if every x ∈ Z̄ admits a neighborhood
V such that Z ∩ V is locally closed with respect to the N ′

V -topology for some
round cone N ′

V c NV . If, in addition, Z̄ is compact and N -small, then Z is
called N -lens.

Lemma. (i) Suppose Z is N -special. Then Int(Z) = Int(Z̄) is dense in Z.

One recovers Z from U := Int(Z) as follows. For any x ∈ Ū r U there is its
neighborhood V such that for each arc γ : [0, 1] → V with γ(0) = x, ( d

dtγ)([0, 1]) ⊂
N◦•, one either has γ((0, 1]) ⊂ U (then x ∈ Z), or γ((0, 1]) ⊂ V rŪ (then x /∈ Z).

(ii) If Z is N -special, then it is N -̃special for every round cone N˜which equals
N over Int(Z). Same is true for the property of being N -lens.

(iii) The intersection of finitely many N -special subsets is N -special, same for
N -lenses. Each point x ∈ X admits a base of neighborhoods formed by N -lenses.

Proof. (i) Our assertions are local, so we can assume that Z = W ∩ Q where
W is N -open, Q is N -closed. Then, by (ii) of the lemma in 2.2, Int(Z̄) ⊂
Int(W̄ )∩Int(Q) = W∩Int(Q) = Int(Z), so Int(Z) = Int(Z̄). It is dense in Z since
Int(Q) is dense in Q by loc. cit. The recipe for the recovery of Z from Int(Z)
follows from loc. cit.

(ii) Since Int(Z) is dense in Z̄, the cone N ′ from the first paragraph of 2.4
works for N˜as well.

(iii) The first claim is evident. For the second one, choose V , N ′ as in the proof
of the first lemma in 2.3. For a, b ∈ Int(N ′) set ZN ′

ab := (Int(N ′)− a) ∩ (b−N ′).
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Then ZN ′
ab form a base of neighborhoods of 0 ∈ Rn. Those that lie in V are

N -lenses, and we are done. ¤
For U = Int(Z) as in (i) above, we write Z = U+

N , or simply Z = U+.

Exercise. Such an U also equals Int(Z◦) where Z◦ is a uniquely defined N◦-
special set. One has Z ∩ Z◦ = U . The map Z 7→ Z◦ is a 1–1 correspondence
between the sets of N - and N◦-special sets, which preserves the lenses and extends
the correspondence from Remark in 2.2.

2.5. A complex of sheaves F ∈ D(X) is said to be N -smooth if for every open
U ⊂ X, a round cone N ′

U c NU , and a N ′
U -open V ⊂ U , one has MV (F ) = 0,

i.e., iV̄ ∗i
∗̄
V

F
∼→ RjV ∗j∗V F (see 2.1). N -smooth F ’s form a thick subcategory of

D(X).

Remark. One can consider an a priori weaker condition, demanding that
MV (F ) vanishes for all V of type Xf<a, where f is an N -smooth function. We
will see that this property is equivalent to N -smoothness.

Lemma.If F ∈ D(X) is N -smooth and Z ⊂ X is N -special, then the com-
plexes RiZ∗Ri!ZF and iZ◦!i

∗
Z◦F are N -smooth, and the canonical morphism iZ◦!i

∗
Z◦

F → RiZ∗Ri!ZF (which equals idF on Int(Z) = Z ∩Z◦) is a quasi-isomorphism.

Proof. Our assertions are local, so we can assume that Z = U r U ′, where U ,
U ′ are N ′-open for some N ′ c N . Then Z◦ = Ū r Ū ′.

Let us check first that G := RjU∗j∗UF is N -smooth. For any N ′-open V one
has RjV ∗j∗V G = RjU∩V ∗j∗U∩V F , which is iU∩V ∗i

∗
U∩V

F by N -smoothness of F .
By the same reason, one has iV̄ ∗i

∗̄
V

G = iV̄ ∗i
∗̄
V

iŪ∗i
∗̄
U
F = iŪ∩V̄ ∗i

∗̄
U∩V̄

F . Since
U ∩ V = Ū ∩ V̄ by 2.2(iii), one has iV̄ ∗i

∗̄
V

G
∼→ RjV ∗j∗V G; we are done. Also, since

F is N ′-smooth, one has iU◦!i
∗
U◦F = iŪ∗i

∗̄
U

= G.

Now one has RiZ∗Ri!ZF = RjU∗j∗UCone(F → RjU ′∗j∗U ′F )[−1] and iZ◦!i
∗
Z◦F =

iŪ∗i
∗̄
U
Cone(F → iŪ ′∗i

∗̄
U ′F )[−1]. Therefore, by the above, the complexes RiZ∗Ri!ZF

and iZ◦!i
∗
Z◦F are equal and N -smooth, q.e.d. ¤

Exercise. If Z is N -special, then any N -smooth complex supported on Z̄ is
determined uniquely (up to a unique isomorphism) by its restriction to Int(Z).

Proposition. For F ∈ D(X) the next properties are equivalent:

(i) F is N -smooth;

(ii) F satisfies the property from Remark above;

(iii) For each N -lens Z one has RΓ(Z, Ri!ZF ) = 0;

(iv) For each N -lens Z one has RΓc(Z◦, i∗Z◦F ) = 0.
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Proof. (iii)⇒(i): Pick any U , V , N ′
U as in the beginning of 2.5; let us show

that MV (F ) = 0. Our problem is local, so we can assume that Ū is compact
and N -small. It suffices to check that RΓ(U ′,MV (F )) = 0 for every open U ′

such that Ū ′ ⊂ U . Since MV (F ) = i∂V ∗i∗∂V Ri!UrV F , one has RΓ(U ′,MV (F )) =
RΓ(U ′∩∂V, i∗∂V Ri!UrV F ) ∼← lim−→RΓ(Z,Ri!ZF ), where Z runs the directed set T of
open neighborhoods of U ′∩∂V in U ′rV . Choose N ′′

U such that N ′
U c N ′′

U c NU .
Then, by (ii) of the second lemma in 2.3,18 those Z which can be represented as
Q r V , where Q ⊂ U is an N ′′

U -open subset, form a cofinal subset in T . Such a
Z is an NU -lens, hence RΓ(Z, Ri!ZF ) vanishes; we are done.

(iv)⇒(i): We use the dual argument, handling accurately the inverse limits:

Let U , V , N ′
U be as above. To prove that MV (F ) vanishes, it suffices to show

that for every U ′ as above the complex KU ′ := RΓc(U ′,MV (F )) is acyclic. One
can assume that F is a complex of flabby sheaves; then KU ′ = Γc(U ′∩∂V, i!∂V i∗̄

V
F )

is the subcomplex of Γc(U ′ ∩ V̄ , i∗̄
V

F ) formed by sections that vanish on U ′r∂V .
Since KU ′ = ∪KU ′′ , the union is taken with respect to all open U ′′ with Ū ′′ ⊂ U ′,
it suffices to show that each map H0KU ′′ → H0KU ′ vanishes.

Let T ′ be the collection of all subsets Z ′ ⊂ U ′′ which contain U ′′ ∩ ∂V and
can be represented as P ∩ V̄ , where P ⊂ U is an N ′′

U
◦-open subset. By (ii) of

the second lemma in 2.3,19 such Z ′’s are cofinal among the open neighborhoods
of U ′′ ∩ ∂V in U ′′ ∩ V̄ . So there is a decreasing sequence Z ′0 ⊃ Z ′1 ⊃ . . . in
T ′ with ∩Z ′i = U ′′ ∩ ∂V . Set Li := Γc(Z ′i, i

∗
Z′i

F ); then L0 ⊃ L1 ⊃ . . ., and
KU ′′ = ∩Li. Since Li = RΓc(Z ′i, i

∗
Z′i

F ) and Z ′i is an N◦-lens, each Li is acyclic.

So L̂ := lim←−L0/Li is also acyclic. Notice that L̂ is the subcomplex of Γ(Z ′0r∂V, F )
that consists of those sections γ that the closure of supp(γ) is contained in Z ′0.
Since F i are flabby, any such γ can be extended to a section γ̃ ∈ Γ(U ′ ∩ V̄ , i∗̄

V
F )

whose support is compact and lies in supp(γ) ∪ ∂V

Now let α ∈ K0
U ′′ be any cycle. Then α = dβ for some β ∈ L−1

0 . The image β̂

of β in L̂−1 is a cycle, hence β̂ = dγ for some γ ∈ L̂−3. Pick γ̃ as above. Then
β′ := β − dγ̃ ∈ K−1

U ′ and dβ′ = α, i.e., α is exact in KU ′ , q.e.d.

(i)⇒(iii),(iv): By Exercise, for N -smooth F assertions (iii) and (iv) are equiv-
alent; we check (iii). By Lemma, it suffices to show that for any N -smooth F
whose support S is compact and N -small, one has RΓ(X, F ) = 0. Since S is com-
pact, one can choose a N -smooth function f on a neighborhood of S such that
f(S) ⊂ (0, 1). Now the lemma from 2.2 (for X in loc. cit. equal to S, Vt := Sf<t,
and the sheaf i∗SF ) does the job.

18Sorry for the discrepancy of notation: the present N ′
U , N ′′

U , V are N ′′
U , N ′

U , W in loc. cit.
19The present N ′

U , N ′′
U , U r V̄ are N ′′

U
◦
, N ′

U
◦
, W of loc. cit.
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(ii)⇒(i): Let U , V , N ′
U be as in the beginning of 2.5. Pick x ∈ ∂V ; let us

check that MV (F )x = 0. The problem is local, so, as in the proofs in 2.3, we can
assume that U is an open subset of Rn, x = 0, and there is a round cone N ′ ⊂ Rn

such that N ′
U c NU and V is N ′

U -invariant.

Pick any ` ∈ Int(N ′∨); for y ∈ Rn, a ∈ R set Zay := `≥a∩Int(N ′+y) ⊂ Rn. One
easily finds a C∞-function φ(v, t) = φt(v) on Rn × [0, 1) such that φ0 = ` − a,
each φt is N ′

Rn-smooth (i.e., dφt takes values in Int(N∨)) and decreases as a
function of t, and ∪tR

n
φt<0 = Int(N ′ + y) ∪ Rn

`<0. Applying the lemma from 2.2
to Vt = Rn

φt<0 (and V1 = Int(N ′ + y) ∪ Rn
`<a), we see that RΓ(Zay, Ri!Zay

F ) = 0
whenever Z̄ay ∈ U .

Now MV (F )x = lim−→Cone(RΓ(Zay, Ri!Zay
F ) → RΓ(V ∩ Zay, Ri!Zay

F ))[−1],
where y ∈ −Int(N ′) tends to 0 and a < 0 is such that Z̄ay ⊂ U for some
y ∈ −Int(N ′) (cf. the proof of (iii)⇒(i)). Since V ∩ Zay admits an (open) hyper-
covering by Zav’s, v ∈ V ∩ Zay, the vanishing of RΓ(Zay, Ri!Zay

F ) implies that
MV (F )x = 0, q.e.d. ¤

As in [KS] 5.1, one defines the micro-support of F ∈ D(X) as the smallest closed
subset SS(F ) ⊂ T ∗X such that for every open U ⊂ X and a C1-function f on U
with property df(U)∩SS(F ) = ∅, the Morse complexes Mf=a(F ) ∈ D(U) vanish.
So condition (ii) of the proposition can be restated as SS(F )∩Int(N∨) = ∅.

2.6. Notation. A partition {Zα} of a topological space Z is always assumed
to be finite. We say that a partition {Zα} is locally closed if each Zα is locally
closed. A filtration on Z always means finite filtration ∅ = Z−1 ⊂ . . . ⊂ Zm = Z;
such a filtration defines a partition {Zi r Zi−1}. Our filtration is closed if Zi’s
are closed subsets. We say that a partition {Zα} comes from a closed filtration
if there is a closed filtration such that the corresponding partition coincides with
{Zα}. Such a filtration amounts to a linear ordering on the set of indices α such
that for every α the subset Z̄αrZα is closed and lies in the union of subsets Zα′ ,
α′ < α. A locally closed partition {Zα} is a stratification if for every α the closure
Z̄α is a union of parts Zα′ (the parts Zα are called then strata). The set Par(Z) of
partitions is ordered with respect to the refinement: one has {Zα} ≤ {Zβ} if for
every β there is a (necessary unique) α = α(β) such that Zβ ⊂ Zα(β). Every finite
subset of Par(Z) admits the least upper bound, so Par(Z) is directed. The class
Parc(Z) of partitions that come from a closed filtration satisfies the transitivity
property: if {Zα} ≤ {Zβ} are such that {Zα} ∈ Parc(Z), and for each Zα the
partition {Zβα} of Zα formed by those Zβ that lie in Zα belongs to Parc(Zα),
then {Zβ} ∈ Parc(Z).20 This implies that Parc(Z) is closed with respect to the
least upper bound of finite subsets, so it is a directed subset of Par(Z). Same is
true for the larger class of locally closed partitions.

20To see this, consider the lexicographic ordering of β’s.
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2.7. We return to our situation. Let Z be an N -lens. A partition {Zα} of
Z is said to be N -special if it comes from a closed filtration and each Zα is N -
special (i.e., is an N -lens). The filtration is referred to as N -special filtration.
The set Parsp

N (Z) ⊂ Parc(Z) of N -special partitions is closed with respect to the
least upper bound of finite subsets, hence is directed, and satisfies the above
transitivity property.

Lemma. (i) Suppose we have an open covering of Z̄ in X. Then one can find
{Zα} ∈ Parsp

N (Z) such that each Zα lies in some open subset of the covering.

(ii) If, in addition, we have a finite collection of N -lenses Z ′i, then there is
{Zα} which is finer than all the partitions {Z ∩ Z ′i, Z r Z ′i}.

Proof. (i) Replacing X by a neighborhood of Z̄, we can assume that there is
a global N -smooth function f . Refining the open covering {Uβ}, we can assume
that for each Uβ the intersection Z ∩ Uβ is locally closed in Uβ with respect to
the NUβ

-topology.

Take any x ∈ Z̄, and choose Uβ that contains x. Then one can find a neigh-
borhood Px of x such that P̄x ⊂ Uβ , Px is locally closed in NUβ

-topology, and
f(x) < f(y) for every y ∈ P̄xrPx. To see this, we proceed as in the proof of part
(iii) of the lemma in 2.4, assuming in addition that df(x) ∈ N ′∨. Then df takes
values in N ′∨ on a neighborhood of x, and one can choose Px among ZN ′

ab ’s from
loc. cit. (with a, b small, and b much smaller than a).

For every a ∈ R the open subsets Int(Px), x ∈ Z̄f=a, cover the compact set
Z̄f=a. Choose a finite subset P a

1 , . . . , P a
N(a) of these Px’s such that Int(P a

i ) cover
Z̄f=a. There is an open interval Ia 3 a such that f−1(Ia) ⊂ ∪

i
P a

i , f(∪
i
(P̄ a

i r
P a

i )) ∩ Ia = ∅.
The intervals Ia cover f(Z̄). Let Ia1 , . . . , Iam be a finite subcovering; we or-

der aj ’s so that the top points of Iaj ’s decrease. Consider the collection of the
subsets Pij := P

aj

i . Ordering the indices lexicografically, denote these subsets as
P1, . . . , PN . Then (P̄i r Pi) ∩ Z ⊂ ∪

k<i
Pk, and Zi := ∪

k≤i
(Pk ∩ Z) is an N -special

filtration of the kind we look for.

(ii) Since Parsp
N (Z) is directed, it suffices to consider the case of a single Z ′.

We modify the above procedure as follows.

Refining {Uβ}, we can assume that each Z ′ ∩ Uβ is locally closed in Uβ with
respect to the NUβ

-topology, so Z ′ ∩ Uβ = Q1
β r Q2

β where Qi
β ⊂ Uβ are NUβ

-
closed subsets. For x ∈ Z̄ we pick Px ⊂ Uβ as above, and set Px2 := Px r Q1

β ,
Px1 := Px ∩ (Q1

β rQ2
β), Px0 := Px ∩Q2

β .
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Choose from all Px’s the subsets Pij as above; for ` = 0, 1, 2 let P ′
i`j ⊂ Pij be

the corresponding Px`. Ordering the indices lexicographically, denote the subsets
P ′

i`j by P ′
1, . . . , P

′
M . Then (P̄ ′

i r P ′
i ) ∩ Z ⊂ ∪

k<i
P ′

k, and Zi := ∪
k≤i

(P ′
k ∩ Z) is an

N -special filtration of the kind we look for. ¤
2.8. The class of N -constructible subsets of X comes from that of N -lenses by

closing it with respect to finite unions, intersections and differences.

Remark. N -constructibility is essentially a local property. Namely, a subset
Y ⊂ X is N -constructible if (and only if) Ȳ is compact and for some (or every)
open covering {Ui} of X each Y ∩Ui belongs to the Boolean algebra of the subsets
of Ui generated by the NUi-special subsets.21

Let Y be an N -constructible set. Denote by Par≺N (Y ) the set of partitions
{Yα} of Y such that each Yα is an N -lens. It carries a partial order ≺ which is
finer than the order < coming from Par(Y ): namely, {Yα} ¹ {Yβ} if for each α
those Yβ that lie in Yα form an N -special partition of Yα (see 2.7).

Proposition. Par≺N (Y ) is a non-empty directed poset.

Proof. Y admits a partition {Yβ} such that each Yβ can be written as Zr∪Z ′i,
where Z, {Z ′i} are N -lenses. By 2.7(ii), Yβ admits a partition by N -lenses {Yαβ}.
Then all Yαβ together form a partition of Y by N -lenses, so Par≺N (Y ) 6= ∅.

It remains to check that Par≺N (Y ) is directed. Suppose we have {Yα}, {Yβ} ∈
Par≺N (Y ); let us find their upper bound with respect to ≺. Let {Yγ} be their least
upper bound for <. Then {Yγ} ∈ Par≺N (Y ). Applying 2.7(ii) to each Z = Yα

and Z ′i = Yγ , we find {Yδ} ∈ Par≺N (Y ) such that {Yα} ¹ {Yδ} and {Yγ} ≤ {Yδ}.
Applying 2.7(ii) to each Z = Yβ and Z ′i = Yδ, we find {Yε} ∈ Par≺N (Y ) such that
{Yβ} ¹ {Yε} and {Yδ} ≤ {Yε}. The latter inequalities imply that {Yδ} ¹ {Yε},
so {Yε} is an upper bound of {Yα}, {Yβ} for ≺, q.e.d. ¤

3. K-spectra of constructible sheaves and the ε-factorization.

In this section we explain the constructions mentioned in 0.1(a).

3.1. For the next notions and facts see [KS] 8.2 and references therein.

From now on our X is a real analytic manifold. Recall that a subset Z of X is
subanalytic if every point of X admits an open neighborhood U such that Z ∩U
belongs to the Boolean algebra of subsets of U generated by the images of proper
real analytic maps Y → U , Y are real analytic manifolds. If X is compact, then
one can take for U the whole X. The property of being subanalytic is local; the

21To see this, pick for any x ∈ X a neighborhood Vx which is an N -lens such that V̄x lies in
some Ui, and choose finitely many of Vx’s that cover Ȳ . Then each Y ∩ Vx is N -constructible,
and their union equals V , so V is N -constructible.
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closure of a subanalytic subset is subanalytic; every closed subanalytic subset can
be represented as the image of a proper map as above.

We use the terminology from 2.6. A partition {Zα} of a subset of X is sub-
analytic if each Zα is subanalytic in X. Notice that if {Zα} is a subanalytic
stratification of a locally closed subset Z ⊂ X such that each Zα is smooth
equidimensional, then {Zα} comes from a closed filtration. If Z̄ is compact, then
subanalytic stratifications {Zα} with each Zα smooth, equidimensional, and con-
tractible, are cofinal in the set Para(Z) of subanalytic partitions. Moreover, those
that are homeomorphic to a simplicial decomposition still do.

Let R be an associative unital ring22 and P ⊂ D(R) be a full triangulated
subcategory in the derived category of complexes of R-modules.

For a locally closed subanalytic subset Z a P -constructible complex on Z is a
complex of sheaves of R-modules F on Z with the following properties: (a) every
point of Z̄ admits a neighborhood U such that for some {Zα} ∈ Para(Z ∩U) the
restrictions of the cohomology sheaves H i(F )|Zα are all constant, and (b) for each
x ∈ Z one has Fx ∈ P . If Z̄ is compact, then one can take U = X. Such complexes
form a full triangulated subcategory P (Z) of the derived category of complexes
of sheaves of R-modules on Z. We assume that P is essentially small; then such
is P (Z). We have the K-theory spectra K := K(P ) and K(Z) := K(P (Z)) (see
1.8).

If f : X → Y a proper real analytic map, then Rf∗ sends P (X) to P (Y ), so
we have the homotopy morphism of spectra Rf∗ : K(X) → K(Y ). If T ⊂ Y is a
locally closed subanalytic subset that contains f(Z), and g := f |Z : Z → T , then
the functors Rg!, Rg∗ send P (Z) to P (T ), so we have homotopy morphisms of
spectra Rg!, Rg∗ : K(Z) → K(T ). If Y is a point, then we write RΓ = RΓ(Z, ·)
instead of Rf∗, and RΓc = RΓc(Z, ·) for Rg!.

Principal example: P = Dperf (R) is formed by perfect R-complexes, so K =
K(R), and P (Z) consists of perfect constructible R-complexes of sheaves.

3.2. Let Z ⊂ X be a locally closed subanalytic subset with Z̄ compact, {Zα}
be its locally closed subanalytic partition. Denote by iα the embeddings Zα ↪→ Z.
Set K({Zα}) :=

∏
α

K(Zα) = K(t
α

Zα).

Lemma. The morphisms

(3.2.1) K(Z)
(i∗α)→ →

Σiα!

ÀK({Zα})
are homotopically mutually inverse weak equivalences of spectra. The arrows
in (3.2.1) are transitive, in the evident sense, with respect to the refinement of
partitions.

22In fact, R can be any associative DG algebra, or even a small DG category, as in [Dr].
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Proof. (a) The transitivity statement is clear. Since (i∗α) is the left inverse to
Σiα!, it suffices to check that either of the arrows in (3.2.1) is a weak equivalence.

(b) It suffices to consider the case when our partition comes from a closed
filtration. Indeed, for an arbitrary {Zα} one can find {Zβ} that comes from a
closed filtration, which is finer than {Zα}. Then for any α the subset {Zβα} of
those Zβ that lie in Zα is a partition of Zα that comes from a closed filtration.
By the transitivity, our assertion for (Z, {Zα}) follows from those for (Z, {Zβ})
and (Zα, {Zβα}).

(c) Assuming that our partition comes from a closed filtration, let us show
that the composition (Σiα!)(i∗α) is homotopic to the identity. A closed filtration
Zn on Z yields a natural filtration on every sheaf F on Z with grF = ⊕iα!i

∗
αF .

Thus the identity functor of P (Z) carries a canonical filtration with gr equal to
⊕iα!i

∗
α. By 1.8(iv), this implies that (Σiα!)(i∗α) is naturally homotopic to idK(Z),

q.e.d. ¤

Remark. Since the composition K({Zα}) Σ iα!−→ K(Z) RΓc−→ K has components
RΓc : K(Zα) → K, we see that RΓc = Σα RΓci

∗
α : K(Z) → K.

3.3. This subsection will not be used in the sequel; the reader can skip it.

For Z as in 3.2 and a spectrum C let Cons(Z, C) be the spectrum of con-
structible C-valued functions on Z. Precisely, for each {Zα} ∈ Para(Z) we have a
spectrum C{Zα} of C-valued functions on Z constant along Zα’s; if {Zβ} is a finer
partition, then the projection {Zβ} ³ {Zα} yields an embedding C{Zα} ⊂ C{Zβ}.
One has Cons(Z, C) := ∪

Para(Z)
C{Zα}; thus πiCons(Z, C) is the group of πiC-

valued constructible functions on Z.

Lemma. There is a canonical weak equivalence of spectra

(3.3.1) K(Z) ∼→ Cons(Z, K).

Proof. Let S ⊂ Para(Z) be the subset of those {Zα} that come from a
closed filtration and each Zα is contractible. It is cofinal in Para(Z), hence
Cons(Z, K) = ∪

S
K{Zα} (see 3.1). For {Zα} ∈ S let P (Z, {Zα}) ⊂ P (Z) be the

full DG subcategory of complexes F such that all sheaves Ha(F )|Zα are con-
stant; set K(Z, {Zα}) := K(P (Z, {Zα})). Since P (Z) = ∪

S
P (Z, {Zα}), one has

K(Z) = ∪
S

K(Z, {Zα}). Since S is a directed poset, one can replace ∪ by the

homotopy colimit.

Choose a natural flabby resolution F → F̃ . For {Zα} ∈ S consider DG

functors P (Z, {Zα})
ψ{Zα}→ →

χ{Zα}
ÀP {Zα}, where ψ{Zα}(F ) := (Γ(Zα, i∗αF̃ )), and
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χ{Zα}((Lα)) := ⊕iα!LαZα .23 By the argument from the proof in 3.2, the mor-
phisms of the K-spectra K(Z, {Zα}) À K{Zα} are homotopically mutually inverse
weak equivalences.

If {Zβ} ∈ S is finer than {Zα}, then for F ∈ P (Z, {Zα}) one has an evi-
dent natural quasi-isomorphism ψ{Zα}(F ) → ψ{Zβ}(F ) in P {Zβ}. It satisfies the
transitivity property, so we get a weak equivalence ψ : hocolimS K(Z, {Zα}) →
Cons(Z, K), which is (3.3.1). ¤

3.4. We need a version of 3.2 in the presence of a round cone N ⊂ TX.

We use a subanalytic version of some structures from §2. Namely, an N -lens Z
(see 2.4) is said to be subanalytic if one can choose V and N ′

V as in loc. cit. so that
Z∩V = U1rU2 where Ui are N ′

V -open subanalytic subsets. As in 2.8, subanalytic
N -lenses give rise to subanalytic N -constructible subsets. The results of 2.4, 2.7,
2.8 remain valid (together with the proofs) in the subanalytic setting. From now
on, all N -lenses and N -constructible sets are tacitly assumed to be subanalytic.

The complexes F with SS(F )∩Int(N∨) = ∅ form a thick subcategory P (X)N ⊂
P (X); set KN (X) := K(P (X)N ). For an N◦-lens Z let P (Z)N be a thick
subcategory of P (Z) formed by those complexes F that iZ!F ∈ P (X)N ; set
KN (Z) := K(P (Z)N ). By 2.5, the functor i∗Z sends P (X)N to P (Z)N ; similarly,
if i : Z1 ↪→ Z2 are N◦-lenses, then i! and i∗ interchange P (Zi)N . Therefore we

have the morphisms of spectra KN (X)
i∗Z→→

iZ!

ÀKN (Z), KN (Z2)
i∗→→

i!
ÀKN (Z1).

Lemma. Let Z be an N◦-lens, {Zα} its partition by N◦-lenses. Then

(3.4.1) KN (Z)
(i∗α)→ →

Σiα!

ÀKN ({Zα}) :=
∏
α

KN (Zα)

are homotopically mutually inverse weak equivalences of spectra; the arrow in
(3.4.1) is transitive with respect to the refinement of partitions.

Proof. The argument repeats that from 3.2 with P (·) replaced by P (·)N , using
2.7(ii) to refine {Zα} to a partition that comes from a closed filtration. ¤

3.5. From now on, X is compact. Let U be an open subset of X, and suppose
that we have a round cone N = NW ⊂ TW defined over an open neighborhood W
of X r U . The complexes F with SS(F )∩Int(N∨) = ∅ form a thick subcategory
P (X)N ⊂ P (X); set KN (X) := K(P (X)N ). Replacing X by U and N by NW∩U ,
we get P (U)N and KN (U).

23Here LαZα is the constant sheaf on Zα with fibers Lα.
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Theorem-construction. There is a natural homotopy morphism of spectra
εN
U : KN (U) → K, defined by the datum of (U,NU∩W ), such that the diagram

(3.5.1)
KN (X)−→ K(X)
j∗U ↓ ↓ RΓ

KN (U)
εN
U−→ K

is naturally homotopically commutative.

Proof. We construct εN
U and the homotopy in (3.5.1) using an auxiliary datum

of P , {Zα} below, and then show that the output is independent of the choice.

Choose an N◦-constructible subset P ⊂ W which is a neighborhood of X rU .
Choose a locally closed subanalytic partition {Zα} of X which is finer than the
partition {P, X r P}. Let {Zin

α }, {Zout
α } be the components that lie in X r P =

U r P , resp. in P . Assume that each Zout
α is an N◦-lens. Such a {Zα} exists by

2.8. We write K({Zin
α }) :=

∏
K(Zin

α ), etc.

Let εN
U be the composition KN (U) → K(U)

i∗α−→ K({Zin
α }) RΓc−→ K. Here the

last arrow is the map with components RΓc : K(Zin
α ) → K.

Let us construct the homotopy in (3.5.1). By Remark in 3.2, RΓ : K(X) → K

is naturally homotopic to the composition K(X)
(i∗α)−→ K({Zin

α })×K({Zout
α }) RΓc−→

K. Therefore the composition KN (X) → K(X) RΓ−→ K is the sum of εN
U j∗U and

the map defined by the DG functor P (X)N → P , F 7→ Σ RΓc(Zout
α , i∗αF ). Since,

by 2.5, the latter functor take values in acyclic complexes, the map KN (X) → K
it defines is naturally homotopic to zero, and we are done.

It remains to show that the construction does not depend on the choice of
(P, {Zα}). The latter datum form an ordered set (one has (P, {Zα}) ≤ (Q, {Zβ})
if P ⊃ Q and {Zα} ≤ {Zβ}) whose nerve is contractible. So it suffices to iden-
tify the morphisms εN

U and the homotopies in (3.5.1) constructed by means of
(P, {Zα}) ≤ (Q, {Zβ}) in a transitive manner. Refining {Zα} and {Zβ}, we can
assume that {Zα} is finer than the partition {Q,P rQ,X rP}. Then the maps
εN
U for (P, {Zα}) and (Q, {Zβ}) differ then by a map KN (X) → K defined by the

DG functor P (X)N → P which assigns to F the direct sum of RΓc(Zα, i∗αF ) for
all α with Zα ⊂ P rQ. As above, this functor takes values in acyclic complexes,
so the map of the K-spectra is naturally homotopic to zero. The homotopies in
(3.5.1) are identified in the same way. ¤

3.6. Remarks. (i) By the construction, if U is the disjoint union of finitely
many Ui’s, then KN (U) = ⊕KN (Ui) and the ith component of εN

U equals εN
Ui

.

(ii) Every complex F ∈ P (X)N yields a homotopy point [F ] ∈ KN (X), hence
a homotopy point εN

U (F ) := εN
U (j∗U [G]) ∈ K. The homotopy from (3.5.1) yields a
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natural identification of the homotopy points

(3.6.1) [RΓ(X, F )] = εN
U (F ) ∈ K.

Therefore if U = tUi as in (i), then [RΓ(X, F )] = Σ εN
Ui

(F ).

(iii) The construction is natural with respect to embeddings of the cones N ,
and shrinking of U and W (subject to the condition U ∪W = X).

(iv) If R is commutative and P consists of perfect complexes, then we have the
morphism of the Picard groupoids det : ΠK(R) → L(R) (see 1.8(vii)), hence a
graded super line EN

U (F ) := det εN
U (F ) identified with detRΓ(X, F ). If U = tUi,

then, by (i), one has a canonical factorization isomorphism EN
U (F ) = ⊗EN

Ui
(F ),

hence we get the ε-factorization detRΓ(X, F ) ∼→ ⊗EN
Ui

(F ).

(v) The construction of 3.5 should be compatible with the Poincaré-Verdier
duality. Namely, all the constructions can be literally repeated replacing the
datum of functors (i!, i∗, RΓc) by the dual datum (Ri∗, Ri!, RΓ), and replacing
N◦-lences by N -lenses. Presumably, the resulting ε morphism and the compat-
ibility homotopy of (3.5.1) do not change; the key point should be the lemma
in 2.5. If P consists of perfect complexes, then the Poincaré-Verdier duality
PR(X)◦ ∼→ PR◦(X),24 interchanges (i!, i∗, RΓc) and (Ri∗, Ri!, RΓ) and, by 2.5,
identifies (PR(X)N )◦ with PR◦(X)N◦

. The should imply that the duality iden-
tifies εN

U with εN◦
U , and interchanges the respective homotopies in (3.5.1). I did

not check the details.

3.7. Variant. Let Y ⊂ X be a closed subset, and ν be a continuous nowhere
vanishing 1-form on W := XrY . We have the category P (X)ν of P -constructible
complexes F on X such that SS(F ) ∩ ν(W ) = ∅ and its K-spectrum Kν(X).
There is a similar category P (U)ν for each open neighborhood U of Y . Let
P (Ỹ )ν be the inductive limit of the directed set of these categories and Kν(Ỹ )
be its K-spectrum (which is the colimit of Kν(U)’s). One has evident morphisms
Kν(X) → K(X) and j∗Y : Kν(X) → Kν(Ỹ ).

Theorem. There is a natural homotopy morphism ενY : Kν(Ỹ ) → K such
that the diagram

(3.7.1)
Kν(X)−→ K(X)
j∗Y ↓ ↓ RΓ
Kν(Ỹ ) ενY−→ K

is naturally homotopically commutative.

Sketch of a proof. Consider the set C = C(ν) of all round cones N ⊂ TW
such that ν ∈ Int(N∨); the map N 7→ N∨ identifies C with the set of all round
cone neighborhoods of ν(W ). Our C is ordered by inclusion; it is directed, and

24Here R◦ is R with the opposite product.
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P (X)ν = ∪CP (X)N . To establish the theorem, one combines the constructions
from 3.5 for all N ∈ C. Namely, for an open neighborhood U of Y we consider the
set CU of pairs (N, P ) where N ∈ C and P ⊂ W is an N -constructible subset
which is a neighborhood of X r U . Then CU is ordered by inclusion, and is
directed. For each (N,P ) we consider the morphism εN

U and the homotopy from
(3.5.1). If (N, P ) ≤ (N ′, P ′) then the restriction of εN ′

P ′ to KN (U) is naturally
homotopic to εN

U , same for the homotopies from (3.5.1). The identifications are
transitive, which yields the pull-back of ενY to Kν(U) and the corresponding
homotopy. Their compatibility for different U ’s is immediate. The details are
left to the reader. ¤

3.8. We are in the setting of 3.7. Suppose that there is a C1-function f on
X which is locally constant on Y and such that ν = df |W (the principal case
is that of finite Y ). Let us show that in this situation the datum of 3.7 can be
recovered from the classical Morse theory picture. The latter can be summarized
as follows:

Let a0 > . . . > an be the values of f on Y ; set Yi := Yf=ai
. Any F ∈ D(X)

carries a canonical filtration F0 ⊂ . . . ⊂ F2n = F with F2i−1 ⊂ F2i ⊂ F being
the Morse filtration for U = Xf>ai

, V = Xf<ai
(see 2.1). If F ∈ P (X)ν , then,

by 2.5, gr2iF = Mf=ai
(F ) is supported on Yi. Set Mi(F ) := RΓ(X, Mf=ai

(F )).
By 2.5 and the lemma from 2.1, one has RΓ(X, gr2i+1F ) = 0. Therefore we
get the Morse filtration on RΓ(X, F ) with griRΓ(X, F ) = Mi(F ). By (i) of the
lemma below, one has DG functors Mi : P (X)ν → P , hence the morphisms of
the K-spectra Mi : K(X)ν → K; the Morse filtration on RΓ yields a Morse
identification of the homotopy morphisms RΓ = Σ Mi : K(X)ν → K. Of course,
Mi is defined on P (Ui)ν where Ui is any open neighborhood of Yi, hence we have
Mi : K(Ui)ν → K.

Proposition. (i) For F in P (X)ν or P (Ui)ν one has Mi(F ) ∈ P .

(ii) The above morphisms of the K-spectra Mi identify naturally with ενYi, and
the Morse identification RΓ = Σ Mi with the homotopy from (3.7.1).

Proof. Let Ui be any open neighborhoods of Yi such that Ui does not intersect
Uj and Xf=aj

for j 6= i; set U := tUi. Pick N ∈ C(ν) (see the proof 3.7); we
will construct the identifications of (ii) on P (X)N leaving the compatibilities for
different N ’s to the reader.

We will construct a filtration X0 ⊂ X1 ⊂ . . . ⊂ X2n = X such that Xi are
open subanalytic subsets, the closure of Zi := X2i rX2i−1 lies in Ui, Int(Zi) ⊃
Yi, and Xi ∩ W are N◦-open subsets of W . Such a datum yields then (i) and
(ii).25 Indeed, on any sheaf F we get a filtration F ′

0 ⊂ . . . ⊂ F ′
2n = F , F ′

i :=

25We leave to the reader to check that the identifications of (ii) constructed from different
filtrations Xi are naturally homotopic.
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jXi!j
∗
Xi

F . If F ∈ P (X)N , then, by the lemma in 2.5, one has gr′·F ∈ P (X)N .
It is clear that Mi(gr′aF ) equals Mi(F ) if a = 2i and vanishes otherwise. Thus
Mi(F ) = RΓ(X, gr′2iF ) ∈ P , hence (i), and RΓ(X, gr′2i+1F ) = 0. The filtration of
RΓ(X, F ) by RΓ(X, F ′

2i) coincides with the Morse filtration in the filtered derived
category.26 By the construction in 3.5, gr′iRΓ(X, F ) = RΓc(Zi, i

∗
Zi

F ) = εN
Ui

(F ),
and the homotopy of (3.5.1) comes from our filtration on RΓ(X, F ), and we are
done.

To construct Xi, pick any non-negative C1-function φ on X which equals 1
on a neighborhood of Y and 0 on a neighborhood of X r U . For a constant
ε > 0 set f±ε := f ± εφ. If ε is sufficiently small, then df±ε (W ) ⊂ Int(N).
Consider a filtration X ′

0 ⊂ . . . X ′
2n = X where X ′

2i := Xf+
ε >ai

, X ′
2i−1 := Xf−ε >ai

.
This filtration satisfies all our conditions except subanaliticity. We modify it as
follows. For x ∈ Xf+

ε =ai
pick, as in the proof of 2.7(i), a subanalytic N◦-lens

P+
x ⊂ W such that x ∈ Int(P+

x ) and f+
ε (P̄+

x r P+
x ) > ai; we demand that P+

x

does not intersect Uj and Xf=aj
for j 6= i. Replacing + by −, pick similar P−

x

for x in the closure Γi of Xf−ε =ai
rXf+

ε =ai
; we want in addition that P−

x ⊂ Ui.
Let {P+

iα} be a finite subset of P+
x ’s that cover Xf+

ε =ai
, and {P−

iβ} that of P−
x ’s

that cover Γi. Then X2i := X ′
2i r ∪P+

iα, X2i−1 := X2i r ∪P−
iβ is the promised

filtration. ¤

4. The animation of the Dubson-Kashiwara formula.

In this section we explain 0.1(b). To do this, we first “localize” the map of K-
spectra RΓ : K(X) → K defining the map ε, which can be further microlocalized.

4.1. Our X is a compact real analytic manifold. We use the notation of 1.3.

Proposition-construction. There is a natural homotopy morphism of spec-
tra

(4.1.1) ε : K(X) → C\(X, K)

such that the composition K(X) ε→ C\(X, K) tr→ K is naturally homotopic to RΓ.

Proof. We construct ε using an auxiliary datum of {Zα, Vα} where {Zα} is
a locally closed subanalytic partition of X and each Vα is a contractible subset
of X which contains Zα. The set A(X) of such data is ordered with respect
to refinement: {Zα, Vα} ≤ {Zβ , Vβ} if for every β there is a (necessary unique)
α = α(β) such that Zβ ⊂ Zα and Vβ ⊂ Vα.

Our A(X) is directed. Indeed, let Par0(X) ⊂ Para(X) be the subset of locally
closed partitions with each Zα contractible. One has an embedding of ordered

26Since grigr′jRΓ(X, F ) equals Mi(F ) if i = j and vanishes otherwise.
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sets Par0(X) ↪→ A(X), {Zα} 7→ {Zα, Zα}. Then Par0(X) is directed (see 3.1)
and is a cofinal subset of A(X), whence the assertion.

Consider a chain of morphisms of spectra

(4.1.2) K(X) Σiα!←− K({Zα}) (RΓc)−→
∏
α

K
(tr)←−

∏
α

C\(Vα,K) → C\(X, K),

where the middle arrows are diagonal matrices, last arrow comes from the em-
beddings Vα ↪→ X.27 Both arrows that look to the left are weak equivalences (the
first one by 3.2, the second one since Vα are contractible), so they admit canonical
homotopy inverses. Let ε{Zα,Vα} : K(X) → C\(X, K) be the composition.

For {Zβ, Vβ} ≥ {Zα, Vα} there is a natural morphism of diagrams

(4.1.3) κ : (4.1.2){Zβ ,Vβ} → (4.1.2){Zα,Vα}

which is identity at the ends K(X) and C\(X, K), and is formed by morphisms
with the components iβα(β)! : K(Zβ) → K(Zα(β)), idK : Kβ → Kα(β), C\(Vβ ,K) →
C\(Vα(β),K) in the middle. This κ yields a natural homotopy between ε{Zα,Vα}
and ε{Zβ ,Vβ}. Our κ’s are transitive, so (4.1.2){Zα,Vα} form an A(X)-diagram.
Since A(X) is directed, we see that all ε{Zα,Vα}’s for {Zα, Vα} ∈ A(X) are all
naturally homotopic, thus defining (4.1.1).

A slightly more canonical way to define ε (which will be useful in 4.6) is to con-
sider a chain of morphisms of spectra holimA(X) (4.1.2){Zα,Vα}. Add the standard
weak equivalences K(X) → holimA(X)K(X) at the left and holimA(X)C\(X, K) ←
C\(X, K) at the right, and invert homotopically the arrows looking to the left.
Our ε is the composition.

It remains to identify the composition tr ε with RΓ. Notice that each term
of (4.1.2) projects naturally to K: the projection is RΓ at the left end, tr at
the right end, and its α-components at the middle terms are, respectively, RΓc,
idK , and tr. The projections commute with the arrows in (4.1.2), so they yield
the identification tr ε{Zα,Vα} = RΓ. Since they are also compatible with the
morphisms from (4.1.3), the choice of {Zα, Vα} is irrelevant. ¤

Remarks. (i) One can define ε using any directed subset of A(X), e.g. Par0(X)
(which has advantage of excluding the redundant Vα’s), or the subset of all
{(Zα, Vα)} with open Vα’s.

(ii) Realizing the homotopy inverse to Σiα! as (i∗α) (see 3.2), one can write
ε{Zα,Vα} =

∑
α

ε(Zα,Vα) where each ε(Zα,Vα) is the individual composition

(4.1.4) K(X)
i∗α−→ K(Zα) RΓc−→ K

tr←− C\(Vα,K) → C\(X, K).

27As in 3.1, RΓc is constructed using a natural flabby resolution F → F̃ .
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We did not do this on the spot for κ of (4.1.3) strictly commutes with all the
arrows of (4.1.2) as written. A choice of a point in Vα provides a morphism
K → C\(Vα,K) which is right inverse, hence homotopy inverse, to the left arrow
tr in (4.1.4).

(iii) Any F ∈ P (X) yields a homotopy point [F ] ∈ K(X), hence a homotopy
point ε(F ) ∈ C\(X, K). Truncating K(X) to K0 := π0K(X), it becomes a mere
zero cycle of degree equal to the Euler characteristics, which is canonically defined
up to all higher homotopies.

Exercises (irrelevant for the sequel). (i) Replacing X by a locally closed subset
Z, define morphisms ε!, ε∗ : K(Z) → C\(Z, K) with tr ε! = RΓc, tr ε∗ = RΓ.
Check that ε! is compatible with Rf! maps, and ε∗ - with Rf∗ maps (see 3.1).

(ii) The trace map tr : C\(X, K(X)) → K(X) admits a canonical homotopy

section28 s : K(X) → C\(X, K(X)) defined as the composition K(X)
(iα!i

∗
α)−→∏

α
K(X) ∼← ∏

α
C\(Vα,K(X)) → C\(X, K(X)), and ε is naturally homotopic to

the composition K(X) s−→ C\(X, K(X)) RΓ−→ C\(X, K).

4.2. Below we consider the conical topology on T ∗X, so an open subset E ⊂
T ∗X is always assumed to be conic. Set UE := πT ∗(E). For a spectrum R we
denote by RT ∗X the corresponding constant presheaf on T ∗X.

One has a cofibrant presheaf of spectra K !
X on X, K !

X(U) = C\(X, X rU ;K)
(see 1.7). Consider its pull-back π∗T ∗K

!
X to T ∗X, π∗T ∗K

!
X(E) = K !

X(UE); one
has an evident morphism of presheaves C\(X, K)T ∗X → π∗T ∗K

!
X . The morphisms

C\(X, K) → RΓ(X, K !
X) → RΓ(T ∗X, π∗T ∗K

!
X) are weak equivalences of spectra

(the first one by 1.7, the second one since the fibers of πT ∗ are contractible).

For E as above, let P (X)†E be a thick subcategory of P (X) formed by those
complexes F that SS(F ) ∩ E = ∅. Since P (X)†E ⊂ P (X)†E′ if E ⊃ E′, our
P (X)†E form a presheaf P (X)† of DG categories over T ∗X. Denote by K† the
presheaf of K-spectra K†(E) := K(P (X)†E); one has an evident morphism ι :
K† → K(X)T ∗X . We define a morphism η by the next commutative diagram:

(4.2.1)
K(X)T ∗X

ε−→C\(X, K)T ∗X
↑ ι ↓
K† η−→ π∗T ∗K

!
X .

Let π∗T ∗K
!
X → Fµ be a fibrant resolution of π∗T ∗K

!
X for the Jardine “sheafified”

model structure (see 1.6).

28Consider the trace map tr : C\(X, P ) → P for any spectrum P . Then any point x ∈ X
yields a section sx : P → C\(X, P ) of tr which depends on x unless X is contractible.
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Theorem-construction.The composition K† η→ π∗T ∗K
!
X → Fµ is naturally

homotopic to zero. More precisely, it factors naturally through a homotopically
trivial presheaf.

Here “homotopically trivial” means triviality of the presheaves of the homotopy
groups. The proof occupies 4.3–4.6. We assume it for the moment.

Consider a presheaf Kµ on T ∗X, Kµ(E) := Cone(K†(E) → K(X)). It can
be interpreted as follows. Let Pµ(E) be the Verdier quotient P (X)/P (X)†E (for
a construction on DG level, see [Dr]). This is the category of microlocal con-
structible sheaves on E as defined in [KS] 6.1. According to 1.8(vi), one has a
canonical weak equivalence of spectra Kµ(E) ∼→ K(Pµ(E)).

Consider the composition of C\(X, K)T ∗X → π∗T ∗K
!
X → Fµ. Let us factor it as

C\(X, K)T ∗X → C\(X, K)[
T ∗X → Fµ where the first arrow is an objectwise weak

equivalence, the second one is a fibration for the plain (non-sheafified) model
structure on presheaves. Let F † be the fiber of this fibration. By the above
theorem, the composition K† → K(X)T ∗X

ε−→ C\(X, K)[
T ∗X → Fµ is naturally

homotopic to zero. This homotopy yields a naturally homotopy commutative
diagram

(4.2.2)

K† ε†−→ F †
↓ ↓

K(X)T ∗X
ε−→C\(X, K)[

T ∗X
↓ ↓

Kµ εµ−→ Fµ.

Notice that Fµ(E) = RΓ(E, π∗T ∗K
!
X) and F †(E) = RΓS(T ∗X, π∗T ∗K

!
X) where

S := T ∗X r E. The morphism εµ can be seen as the microlocalization of the ε
map.

Remarks. (i) I do not know if Pµ(E) is always Karoubian, or if the Karoubian
property holds locally on T ∗X. If this is not the case, it would be nice to extend
εµ to the presheaf of K-spectra of the idempotent completions.

(ii) The theorem-construction from 3.5 (and 3.7) is a corollary of the present
theorem.29 Indeed, in the notation of loc. cit., set E := Int(N∨) ⊂ T ∗X.
Then P (X)N = P (X)†E , KN (X) = K†(E) and one has C(X, X r W ;K) =
RΓ(W,K !

X) ∼→ RΓ(E, π∗T ∗K
!
X) (since the E/W is fiberwise contractible). There-

fore the composition KN (X) → K(X) ε−→ C\(X, K) → C\(X, X r W ;K) is
naturally homotopic to zero by the theorem. Since C\(X rW,K) is the homo-
topy fiber of the last arrow, we see, as in (4.2.2), that the homotopy amounts

29The constructions from 3.5 are presented independently for they are less involved and more
direct than those used in the proof of 4.2.
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to a lifting of ε|KN (X) to a morphism KN (X) → C\(X r W,K). We leave it

to the reader to check that the composition KN (X) → C\(X rW,K) tr−→ K is
naturally homotopic to εN

U j∗U of (3.5.1), to construct εN
U itself, and to show that

the homotopy from (3.5.1) comes from the identification RΓ = tr ε of 4.1.

(iii) Let F be any P -constructible complex. It yields a homotopy point [F ] ∈
K†(T ∗X r SS(F )), hence a homotopy point ε†(F ) ∈ RΓSS(F )(T ∗X, π∗T ∗K

!
X)

whose image by RΓSS(F )(T ∗X, π∗T ∗K
!
X) → RΓ(T ∗X, π∗T ∗K

!
X) ∼→ RΓ(X, K !

X) ∼←
C\(X, K) equals ε(F ); here the middle arrow is pull-back by the zero section
X → T ∗X. One can view ε†(F ) as an animation of Kashiwara’s characteristic
cycle CC(F ); therefore the identification [RΓ(X, F )] = tr ε(F ) of 4.1 becomes
an animation of the Dubson-Kashiwara formula (0.1.3). To see this, notice that
for any abelian group A the group H0RΓSS(F )(T ∗X, π∗T ∗A

!
X) is the group of

Lagrangian cycles supported on SS(F ) with coefficients in A (see [KS] 9.3). Now
the image of ε†(F ) by the map K → π0(K) = K0(P ) coincides with CC(F ).
This follows easily from (ii) and the Morse-theoretic interpretation of εdf from
3.8 (for ν = df intersecting transversally a component of SS(F )). The details
are left to the reader.

(iv) When R is commutative and P consists of perfect complexes, the image of
ε†(F ) by the determinant map provides a microlocal description of the determi-
nant line detRΓ(X, F ). Can one deduce from it the Lefschetz formulas of [KS]
9.6?

4.3. Proof of the theorem. We will use the next approximation of the topology
of X and the conical topology of T ∗X:

Let Xa be the Grothendieck topology formed by open subanalytic subsets of
X (the morphisms are embeddings, the coverings are evident ones).

Let T ∗Xa be the Grothendieck topology whose objects are open D ⊂ T ∗X
which are either πT ∗-preimages of subsets from Xa or subanalytic lenses as defined
below. The morphisms are embeddings D1 ⊂ D2 subject to a condition: if D1 is
a lens, D2 is not, then one has ŪD1 ⊂ UD2 . The coverings are evident ones.

We say that D is a lens if there is a round cone N (D) defined over an open neigh-
borhood W of ŪD and an N (D)-lens Z such that UD = Int(Z), D = Int(N (D)∨

UD
).

By 2.4(i), Z is uniquely determined by D; we write U+
D := Z, U−

D := Z◦, and
refer to UD and U±

D as the open and locally closed D-lenses. We say that D is a
subanalytic lens if Z is a subanalytic N (D)-lens (see 3.4). Notice that D̄ = N

(D)

ŪD
,

and one can take for N (D) any extension of D∨ to a neighborhood of ŪD (see
2.4(ii)).
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For any open U ⊂ X we denote by Ua the topology of open subsets V of U that
belong to Xa. For a presheaf of spectra M on X we define Ma(U) as holim M(V ),
V ∈ Ua. Then Ma is a presheaf of spectra on X. One has an evident natural
morphism α : M → Ma. If M is fibrant for the “sheafified” model structure,
then such is Ma, and α is an objectwise weak equivalence (to see this, notice that
every point admits a base of neighborhoods from Xa, so every hypercovering of
U can be refined to an Ua-hypercovering).

Similarly, for an open E ⊂ T ∗Xa its open subsets D from T ∗Xa form a topol-
ogy Ea. For a presheaf L on (the conical topology of) T ∗X we get a presheaf La

where La(E) := holimL(D), D ∈ Ea, and a morphism α : L → La which is an
objectwise weak equivalence if L is fibrant for the “sheafified” model structure
(use 2.4(iii)).

4.4. If π∗T ∗K
!
X → Fµ is a fibrant resolution of π∗T ∗K

!
X , then so is π∗T ∗K

!
X →

Fµ → Fµa. The composition K† η−→ π∗T ∗K
!
X → Fµa can be rewritten as

K† α−→ K†a ηa

−→ (π∗T ∗K
!
X)a → Fµa. Therefore the theorem follows from the

next assertion:

Proposition. The morphism ηa : K†a → (π∗T ∗K
!
X)a naturally factors through

a homotopically trivial presheaf.

Notice that the topology on T ∗X plays no role in the claim: we deal with mere
presheaves.

The proof of the proposition takes the rest of the section.

4.5. We need a lemma. For D ∈ T ∗Xa let AD ⊂ A(X) be the subset of
{Zα, Vα} such that Vα are open subsets, for every α with Zα ⊂ X r UD the set
VαrUD is contractible, and the next condition is satisfied: if D = π−1

T ∗ (UD), then
the partition {Zα} is finer than that {UD, X r UD}; if D is a lens, then {Zα} is
finer than {U−

D , X rU−
D}, and each Zα ⊂ U−

D is an N (D)◦-lens. For an n-simplex
D· := (D0 ⊂ . . . ⊂ Dn) of Ner T ∗Xa set AD· := ∩ADi .

Lemma. AD· is a non-empty directed subset of A(X).

Proof. There is a ∈ [0, n] such that Di are lenses for i ≤ a, and are not lenses
for i > a. Set Ui := UDi ; for i ≤ a set N i := N (Di).

To show that AD· 6= ∅, we present some {Zα, Vα} ∈ AD· . Let Pi, i = 0, . . . , n+
1, be the partition of X defined by the filtration U−

0 ⊂ . . . ⊂ U−
a ⊂ Ua+1 ⊂ . . . ⊂

Un+1 := X (see 2.6). Choose collections of open subsets {Vδ0}, . . . , {Vδn+1} such
that the sets Vδi

and Vδi
r Ui−1 are contractible, and for each i the union ∪Vδi

contains Pi. By 2.7(ii), for each i ≤ a one can find a partition {Zαi} of U−
i rU−

i−1

by N◦
i -lenses such that every Zαi lies in some Vαi from {Vδi

}. For i > a let {Zαi}
be any subanalytic partition of UirUi−1 if i > a+1, or of UirU−

i−1 if i = a+1,
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such that each Zαi lies in some Vαi from {Vδi
}. The promised {Zα, Vα} is the

union of all {Zαi , Vαi}.
Let us check that AD· is directed. Pick any {Zα, Vα}, {Zβ , Vβ} ∈ AD· ; let us

construct their upper bound. Let Zαi , etc., be those Zα that lie in Pi. The
least upper bound of the partitions is formed by sets Zαi ∩ Zβi

, which are N i-
lenses for i ≤ a. Choose open contractible V (αiβi)δ ⊂ Vαi ∩ Vβi

which cover
Zαi∩Zβi

and such that V (αiβi)δrUi−1 are also contractible. Choose a subanalytic
partition {Z(αiβi)γ} of Zαi ∩Zβi

such that each Z(αiβi)γ lies in some V (αiβi)γ ;
if i ≤ a, then we ask Z(αiβi)γ to be N i-lenses, which is possible by 2.7(i). Now
{Z(αiβi)γ , V (αiβi)γ} is an upper bound of {Zα, Vα}, {Zβ, Vβ} in AD· , q.e.d. ¤

4.6. Take any D· = (D0 ⊂ . . . ⊂ Dn) ∈ NernT ∗Xa and {Zα, Vα} ∈ AD· .
Let A′ be the subset of the set A of indices formed by those α that Zα lies in
U 0̄ if D0 is a lens and in U0 otherwise; set A′′ := A r A′. Set K†({Zα}, D0) :=
(

∏
α∈A′

K†(Zα, D0)) × (
∏

α∈A′′
K(Zα)), where K†(Zα, D0) is KN0(Zα) from 3.4 if

D0 is a lens, and is the contractible K-spectrum Ktriv(Zα) of the DG category
P (Zα)triv of acyclic complexes from P (Zα) otherwise. We leave it to the reader to

check that the morphism K†({Zα}, D0)
Σiα!−→ K†(D0) is a weak equivalence of spec-

tra (cf. 3.4). By 2.5, RΓc vanishes on each P (Zα)N0 , hence it maps K†(Zα, D0)
to Ktriv.

Consider two chains of morphisms of spectra

(4.6.1) K(X) Σiα!←− K({Zα}) (RΓc)−→
∏

α∈A

K
(tr)←−

∏

α∈A

C\(Vα,K) →

→ (
∏

α∈A′
C\(Vα,K))× (

∏

α∈A′′
C\(Vα, Vα r U0;K)) → K !

X(U0),

(4.6.2) K†(D0)
Σiα!←− K†({Zα}, D0)

(RΓc)−→ (
∏

α∈A′
Ktriv)× (

∏

α∈A′′
K)

(tr)←−

← (
∏

α∈A′
C\(Vα,Ktriv))× (

∏

α∈A′′
C\(Vα,K)) →

→ (
∏

α∈A′
C\(Vα,Ktriv))× (

∏

α∈A′′
C\(Vα, Vα r U0;K)) → K !

X(U0),

whose left looking arrows are weak equivalences. There is an evident morphism of
diagrams ι : (4.6.2)→(4.6.1) which is identity map at the last term. Notice that
the composition of (4.6.1) (with the left looking arrows homotopically inverted)

is the same as that of K(X)
ε{Zα,Vα}−→ C\(X, K) → K !

X(U0) (see (4.1.2)). Thus the

composition η{Zα,Vα}D· of (4.6.2) is the same as that of K†(D0)
ι−→ K(X)

ε{Zα,Vα}−→
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C\(X, K) → K !
X(U0). Denote by G{Zα,Vα}D· the penultimate term in (4.6.2);

notice that it is homotopically trivial.

As in (4.1.3), for {Zβ, Vβ} ≥ {Zα, Vα} in AD· there are natural morphisms
of diagrams κ : (4.6.1){Zβ ,Vβ} → (4.6.1){Zα,Vα}, (4.6.2){Zβ ,Vβ} → (4.6.2){Zα,Vα}
which are identity maps at the beginning and end terms. They commute with
the ι maps. Consider the homotopy AD·-limit of diagrams (4.6.1) and (4.6.2), and
add to them the arrows K(X) → holimAD·K(X), K†(D0) → holimAD·K

†(D0)
from the left and holimAD·K

!
X(U0) ← K !

X(U0) from the right (which are weak
equivalences by 4.5). Let εD· : K(X) → K !

X(U0), ηD· : K†(D0) → K !
X(U0) be

the compositions. One has ηD· = εD·ι, and this morphism factors canonically
through the homotopically trivial spectrum GD· :=holimAD·G{Zα,Vα}D· .

The above constructions are compatible with the simplicial structure on the
nerve. Namely, if φ : [0,m] → [0, n] is a monotone map, then D· ∈ NernT ∗Xa

yields Dφ
· ∈ NermT ∗Xa. One has AD· ⊂ A

Dφ
·
, and for each {Zα, Vα} ∈ AD·

there are evident morphisms of diagrams φ : (4.6.1){Zα,Vα}Dφ
·
→ (4.6.1){Zα,Vα}D· ,

(4.6.2){Zα,Vα}Dφ
·
→ (4.6.2){Zα,Vα}D· , which commute with the ι and κ maps. Pass-

ing to holimAD· , we get cohomological type coefficient systems on Ner T ∗Xa (see
1.3) and morphisms of those.

Any cohomological type coefficient system L = LD· on NerT ∗Xa yields a
presheaf La on T ∗X, La(E) := C\(NerEa, L). If L comes from a presheaf on
T ∗X (as in Example (ii) in 1.3), then the corresponding La equals that from 4.3.

Applying this functor to εD· , we get the morphism εa : K(X)a
T ∗X → (π∗T ∗K

!
X)a.

Applying it to ηD· , we get εaιa, which is the morphism ηa from 4.4. Therefore ηa

factors through the homotopically trivial Ga, and we are done. ¤
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