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Abstract: Let fi(P ) denote the number of i-dimensional faces of a convex
polytope P . Furthermore, let S(n, d) and C(n, d) denote, respectively, the
stacked and the cyclic d-dimensional polytopes on n vertices. Our main
result is that for every simplicial d-polytope P , if

fr(S(n1, d)) ≤ fr(P ) ≤ fr(C(n2, d))

for some integers n1, n2 and r, then

fs(S(n1, d)) ≤ fs(P ) ≤ fs(C(n2, d))

for all s such that r < s.
For r = 0 these inequalities are the well-known lower and upper bound
theorems for simplicial polytopes.
The result is implied by a certain “comparison theorem” for f -vectors, for-
mulated in Section 4. Among its other consequences is a similar lower bound
theorem for centrally-symmetric simplicial polytopes.

1. Introduction

The following extremal problem and its ramifications have a long tradition
in the theory of convex polytopes: among all d-dimensional polytopes P with n
vertices determine the maximum (or, minimum) of fi(P ). The answers were given
around 1970 by McMullen [5] and Barnette [1], who proved that (as had been
conjectured) the upper bound is attained in all dimensions by the cyclic polytope
C(n, d) and the lower bound is attained in all dimensions by the stacked polytope
S(n, d).
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What if we specify the number of r-dimensional faces of P , for some r > 0,
and pose the analogous extremal problem? The following can be said in general.

Theorem 1. Let P be a d-dimensional simplicial polytope.
Suppose that

fr(S(n1, d)) ≤ fr(P ) ≤ fr(C(n2, d))
for some integers n1, n2 and 0 ≤ r ≤ d− 2. Then,

fs(S(n1, d)) ≤ fs(P ) ≤ fs(C(n2, d))

for all s such that r < s < d.

For r = 0 these inequalities are the lower and upper bound theorems of Bar-
nette and McMullen [1], [5], [9, Ch. 8]. The s = d − 1 case of the upper bound
part is also known; it is covered by the “generalized upper bound theorem” of
Kalai [4, Theorem 2].

The proof of Theorem 1 relies on a comparison theorem for f -vectors of simpli-
cial homology spheres (Theorem 4 in Section 4) together with Stanley’s proof of
necessity for the g-theorem [7]. By the same technique we obtain the following.
Here CS(2n, d) denotes the centrally-symmetric stacked d-dimensional polytopes
on 2n vertices.

Theorem 2. Let P be a d-dimensional centrally-symmetric simplicial polytope.
Suppose that

fr(CS(2n, d)) ≤ fr(P )
for some integers n and 0 ≤ r ≤ d− 2. Then,

fs(CS(2n, d)) ≤ fs(P )

for all s such that r < s < d.

Acknowledgment. This paper was written in response to a question of
C. Smyth, who asked whether the upper bound part of Theorem 1 might be
true (personal communication). Partial results in this direction have also been
achieved by A. Werner and G. M. Ziegler (personal communication). I am grate-
ful to G. M. Ziegler and to an anonymous referee for helpful comments on a
preliminary version of the paper, and to S. Linusson who spotted and helped
correct an error in the proof of Lemma 3.

2. Preliminaries

For the standard notions concerning convex polytopes and simplicial complexes
we refer to the literature, see e.g. [9]. In this section we gather some basic
definitions and recall some core results.
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The cyclic polytope C(n, d) is defined and extensively discussed in [9]. The
stacked polytope S(n, d), n > d, is obtained from the d-simplex by performing
an arbitrary sequence of n − d − 1 stellar subdivisions of facets. Similarly, the
centrally-symmetric stacked polytope CS(2n, d), 2n ≥ 2d, is obtained from the
d-dimensional cross-polytope by performing an arbitrary sequence of n− d pairs
of centrally-symmetric stellar subdivisions of facets. For n > d + 1 > 3 the
combinatorial types of the resulting polytopes depend on choices made during
the construction, but their f -vectors are well-defined.

Let ∆ be a (d−1)-dimensional simplicial complex, and let fi be the number of
i-dimensional faces of ∆. The sequence f = (f0, . . . , fd−1) is called the f-vector
of ∆. We put f−1 = 1. The h-vector h = (h0, . . . , hd) of ∆ is defined by the
equation

d∑

i=0

fi−1x
d−i =

d∑

i=0

hi(x + 1)d−i.

From now on we fix the integer d ≥ 3, and let δ = bd
2c. The g-vector of ∆ is the

integer sequence g = (g0, g1, . . . , gδ) defined by g0 = 1 and

gi = hi − hi−1, i = 1, . . . , δ.

The f -vector, h-vector and g-vector of a simplicial d-polytope are those of its
boundary complex.

In the case when ∆ is a homology sphere (or, more generally, a psedomani-
fold such that the complex itself as well as the link of every face has the Euler
characteristic of a sphere of the same dimension) we have the Dehn-Sommerville
equations hi = hd−i, which show that the f -vector of ∆ is completely determined
by its g-vector. The linear relation can be expressed as a matrix product (see
e.g. [2] or [9, p. 269])

f = g ·Md,

where the (δ + 1)× d-matrix Md = (mij) is defined by

mi,j =
(

d + 1− i

d− j

)
−

(
i

d− j

)
, for 0 ≤ i ≤ δ, 0 ≤ j ≤ d− 1.

Thus, the set of f -vectors of homology (d−1)-spheres coincides with the g-vector
weighted linear span of the row vectors of Md.

For instance, we have that
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M10 =




11 55 165 330 462 462 330 165 55 11
1 10 45 120 210 252 210 120 45 9
0 1 9 36 84 126 126 84 35 7
0 0 1 8 28 56 70 55 25 5
0 0 0 1 7 21 34 31 15 3
0 0 0 0 1 5 10 10 5 1




3. Nonnegativity of the Md matrix

We need the following technical property of the matrix Md.

Lemma 3. All 2× 2 minors of the matrix Md are nonnegative.

Proof. For 0 ≤ a < b ≤ δ and 0 ≤ r < s ≤ d− 1, let

Φa,b
r,s

def= ma,rmb,s −ma,smb,r.

We want to show that Φa,b
r,s ≥ 0.

Let r
def= d− r, s

def= d− s, ã
def= d+1−a and b̃

def= d+1− b. Then, by definition

Φa,b
r,s =

[(
ã

r

)
−

(
a

r

)] [(
b̃

s

)
−

(
b

s

)]
−

[(
ã

s

)
−

(
a

s

)] [(
b̃

r

)
−

(
b

r

)]

Rearranging terms, and letting Bp,q
t,u denote the binomial determinant

Bp,q
t,u

def= det




(
p
t

) (
p
u

)

(
q
t

) (
q
u

)




we can write

(1) Φa,b
r,s = Ba,b̃

s,r + Bb̃,ã
s,r −Ba,b

s,r −Bb,ã
s,r

Step 1. Note that

(2) det
(

mi,t mi,u

mj,t mj,u

)
≥ 0 ⇔ mi,t

mi,u
≥ mj,t

mj,u
,

if i < j, t < u and mj,u > 0.

An elementary argument based on this observation shows that it suffices to
prove nonnegativity of Φa,b

r,s for the special case when b = a + 1.

(Remark: We could also reduce to the case s = r + 1; however, this leads to
no simplification in what follows.)

Step 2.
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In order to show that Φa,a+1
r,s ≥ 0 we put to use the lattice-path interpretation

of binomial determinants, due to Gessel and Viennot [3].

Let Lp,q
t,u denote the set of pairs (P, Q) of vertex-disjoint NE-lattice paths in

Z2, such that P leads from (0,−p) to (t,−t) and Q from (0,−q) to (u,−u). By
a NE-lattice path we mean a path taking steps N=(0, 1) to the north and steps
E=(1, 0) to the east.

The formula of Gessel and Viennot [3, Theorem 1] states that

Bp,q
t,u = #Lp,q

t,u

Thus, from equation (1) we have

Φa,a+1
r,s = #La,ã−1

s,r + #Lã−1,ã
s,r −#La,a+1

s,r −#La+1,ã
s,r

For ease of notation we from now let Lp,q def= Lp,q
s,r . The proof will be concluded

by producing an injective mapping

ϕ : La,a+1 ∪ La+1,ã → La,ã−1 ∪ Lã−1,ã

The construction of the mapping ϕ proceeds by cases.

Case 1: (P, Q) ∈ La,a+1. Then ϕ(P, Q) ∈ La,ã−1 is constructed by keeping the
path P and extending the path Q by an intitial vertical segment (a sequence of
North steps) so that it begins at the point (0,−(ã− 1)).

Case 2: (P, Q) ∈ La+1,ã.

Subcase 2a: Both Q and P begin with N steps. Then ϕ(P, Q) ∈ La,ã−1 is
constructed by removing the first step from both paths.

Subcase 2b: Q begins with an E step. Then ϕ(P, Q) ∈ Lã−1,ã is constructed by
keeping the path Q and extending the path P by an intitial vertical segment so
that it originates in (0,−(ã− 1)).

Subcase 2c: Q begins with an N step, and P begins with an E step. Then
ϕ(P, Q) ∈ Lã−1,ã is constructed as follows. We may assume that a ≥ s, since
otherwise some binomial coefficients are zero and the situation simplifies. Thus,
the path P begins with a sequence of E steps, say k of them, followed by a N
step. Denoting the rest of P by P ′ we can write: P = EkNP ′. Similarly, Q has
the factorization Q = NRENvEQ′, where the two E:s designate the k-th and
(k +1)-st occurrences of the letter “E” in Q. See Figure 1 for the geometric idea.

The integers k and v are determined by the definition of the paths P and Q.
Let h be the number of occurrences of the letter “N” in R. Let P and Q be the
paths

P = N ã−a−h−3ERN2P ′ and Q = EkNvENh+1Q′,



352 Anders Björner

originating in the points (0,−ã + 1) and (0,−ã), respectively. A straightforward
inspection of the construction shows that these paths are disjoint. Namely, the
lowest point on P and the highest point on Q with first coordinate k are, respec-
tively, (k,−a − h − 2) and (k,−ã + v). Their distance is ã − a − h − v − 2 > 0.
Let ϕ(P, Q) = (P, Q) ∈ Lã−1,ã.

This defines the mapping ϕ in all cases. Each case separately is clearly injective.
That there is no interference among the four cases, and hence that ϕ is injective
globally, is most easily seen from following properties of the construction:

• ϕ(P, Q) ∈ La,ã−1 in cases 1 and 2a
• ϕ(P, Q) ∈ Lã−1,ã in cases 2b and 2c
• (0,−a− 1) ∈ ϕ(Q) in cases 1 and 2b
• (0,−a− 1) /∈ ϕ(Q) in cases 2a and 2c

This completes the proof. ¤

Q

R
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P’
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P

Q

Q’
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v
k

_

_

h+1

R

Figure 1: A sketch of subcase 2c.

Remark: We conjecture that the matrix Md is totally nonnegative, meaning
that all minors of all orders are nonnegative. This has been verified for all d ≤ 13
by A. Hultman.

4. Homology spheres

A key role for this paper is played by the following comparison theorem for
f -vectors of homology spheres.
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Theorem 4. Let ∆ and Γ be (d − 1)-dimensional simplicial homology spheres
whose g-vectors for some t (0 ≤ t ≤ δ) satisfy

• gi(∆) ≥ gi(Γ) for i = 1, . . . , t
• gi(∆) ≤ gi(Γ) for i = t + 1, . . . , δ.

Suppose that
fr(∆) ≤ fr(Γ)

for some 0 ≤ r ≤ d− 2. Then

fs(∆) ≤ fs(Γ)

for all s such that r < s < d.

Proof. Let vi = gi(∆)− gi(Γ). Now,

0 ≥ fr(∆)− fr(Γ) =
δ∑

i=0

vimi,r =
δ∑

i=0

vimi,s
mi,r

mi,s
(3)

Lemma 3 implies, in view of equivalence (2), that
m0,r

m0,s
≥ m1,r

m1,s
≥ · · · ≥ mδ,r

mδ,s
≥ 0

(Remark: It is possible that mi,s = 0 for i = k, . . . , δ. Then also mi,r = 0 for
i = k− 1, . . . , δ while mi,s > 0 for all i < v. This requires notational adjustments
in our argument, but no new ideas.)

By assumption, the vector v = (v0, v1, . . . , vδ) satisfies

v1, . . . , vt ≥ 0 and vt+1, . . . , vδ ≤ 0.

Thus,
δ∑

i=0

vimi,s
mi,r

mi,s
≥

(
t∑

i=0

vimi,s

)
mt,r

mt,s
+

(
δ∑

i=t+1

vimi,s

)
mt,r

mt,s

which implies that

0 ≥ fr(∆)− fr(Γ) ≥ mt,r

mt,s

(
δ∑

i=0

vimi,s

)
=

mt,r

mt,s
(fs(∆)− fs(Γ))

It follows that
0 ≥ fs(∆)− fs(Γ),

as desired. ¤
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We will say that an integer vector (n0, . . . , nδ) is an m-sequence if n0 = 1 and
nj ≥

(
m
j

)
implies that nj−1 ≥

(
m−1
j−1

)
, for all m ≥ j > 1. In particular, if some

entry in an m-sequence is positive then so are all earlier entries. The notion of
m-sequence is less restrictive than the well-established concept of M -sequence,
recalled in Section 5.

Corollary 5. (Upper bounds) Let ∆ be a (d − 1)-dimensional homology sphere
whose g-vector is an m-sequence. Suppose that

fr(∆) ≤ fr(C(n, d))

for some integers n and 0 ≤ r ≤ d− 2. Then

fs(∆) ≤ fs(C(n, d))

for all s such that r < s < d.

Proof. The g-vector of the cyclic polytope C(n, d) is

gi(C(n, d)) =
(

n− d− 2 + i

i

)

Thus, since g(∆) is an m-sequence the conditions of Theorem 4 are satisfied. ¤

Stanley’s upper bound theorem for homology spheres [6] shows that in the
special case when r = 0 Corollary 5 is valid also without the assumption that
g(∆) is an m-sequence.

Corollary 6. (Lower bounds) Let Γ be a (d − 1)-dimensional homology sphere
whose g-vector is nonnegative. Suppose that

fr(S(n, d)) ≤ fr(Γ)

for some integers n and r ≤ d− 2. Then

fs(S(n, d)) ≤ fs(Γ)

for all s such that r < s < d.

Proof. The g-vector of the stacked polytope S(n, d) is

gi(S(n, d)) =





1, for i = 0
n− d− 1, for i = 1
0, for i > 1

Thus, since g(Γ) is nonnegative the conditions of Theorem 4 are satisfied. ¤
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5. Polytopes

We recall the definition of an M -sequence. For any integers k, n ≥ 1 there is a
unique way of writing

n =
(

ak

k

)
+

(
ak−1

k − 1

)
+ . . . +

(
ai

i

)
,

so that ak > ak−1 > . . . > ai ≥ i ≥ 1. Then define

∂k(n) =
(

ak − 1
k − 1

)
+

(
ak−1 − 1

k − 2

)
+ . . . +

(
ai − 1
i− 1

)
.

Also let ∂k(0) = 0.

A nonnegative integer sequence (n0, n1, n2, . . .) such that n0 = 1 and

∂k (nk) ≤ nk−1 for all k > 1

is called an M -sequence. Clearly, an M -sequence is an m-sequence (as defined in
connection with Corollary 5), but not conversely.

Proof of Theorem 1. The g-vector of a simplicial polytope is an M -sequence, by
the theorem of Stanley [7]. In particular, it is a nonnegative m-sequence, so both
Corollaries 5 and 6 apply. 2

Proof of Theorem 2. The g-vector of the centrally-symmetric stacked polytope
CS(2n, d) is

gi(CS(n, d)) =





1, for i = 0
2n− d− 1, for i = 1(
d
i

)− (
d

i−1

)
, for i > 1

Stanley [8] has shown that

gi(P ) ≥
(

d

i

)
−

(
d

i− 1

)
, for i ≥ 1

holds for every centrally-symmetric simplicial polytope P . Hence, Theorem 4
applies.

2
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