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INTRODUCTION

The quotient M = T'\ D of a Hermitian symmetric domain by an arithmetic group
of automorphisms is a quasiprojective algebraic variety. Varieties like this, variously
called modular or locally symmetric or arithmetic varieties, play an important role in
representation theory and arithmetic. Many naturally occurring arithmetic varieties are
noncompact, and the study of their compactifications has a long history. The variety
M has a canonical embedding in a projective space given by certain automorphic forms
for I" (essentially sections of a power of the canonical bundle); the closure M™* in this
embedding is the minimal compactification of Satake and Baily-Borel. It is a normal
variety which usually has complicated singularities at the boundary and any smooth
compactification in which M is the complement of a normal-crossings divisor dominates
it. There is no canonical smooth compactification of M in general, but in [1], Mumford
et al. showed how to desingularize M™* using an extra choice. Given a suitable I'-
admissible rational polyhedral cone decomposition ¥ (the notion is recalled in §§2, 4),
the method produces a smooth projective toroidal compactification M> in which the
complement of M is a divisor with simple normal crossings. There is a morphism

T M® — M*
extending the identity on M. It is of interest in various questions to study the fibres
of 7. In this paper I want to describe a homological property of these fibres when the
Q-rank of M is one (so that M* — M is the quotient of a smooth variety by a finite
group). I shall assume always that I" is neat (which can always be achieved by passing
to a subgroup of finite index), so that M* — M is smooth. In this introduction it will be
further assumed that M * — M consists of points (i.e. D is a Q-rank one tube domain with

cusps). Examples include Hilbert modular varieties and arithmetic varieties associated
to Q-rank one forms of SO(2, n).
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A fibre of m : M> — M* atacusp s € M* — M is the geometric quotient
7 (s) = A\D

of a certain scheme D by a free action of an infinite discrete group A. The scheme D is
not usually of finite type, but each irreducible component is smooth and of finite type,
and D has normal crossings. There is a natural ind-variety structure on D (as we show
here). The simplest example is that of Hilbert modular surfaces, where the preimage of
a cusp of M* is a cycle of rational curves: the quotient of an infinite chain of projective
lines joined “end-to-end” (our D) by an infinite cyclic group (our A). In general, there
is a morphism D — A to an abelian variety which on each irreducible component of
D restricts to a smooth projective toric fibration over A. The group A is an arithmetic
subgroup of the automorphism group of a self-adjoint homogeneous cone C' (e.g. A
could be Z% or SL(n, Z) or an arithmetic group in SO(n, 1)).

The ind-variety D comes with an embedding in a certain smooth scheme Y — A
locally of finite type; indeed, Y is a relative torus embedding of a relative torus T — A
using the cone system 3, and D is the complement of the dense torus T in Y. The action
of A comes from one on Y, but it is not proper, so that the quotient A\Y exists only as an
analytic space and not as a scheme. There is an analytic map A\Y — M?> identifying
A\D with the fibre and it is an analytic isomorphism locally along A\D. (Indeed, M*
is actually constructed in [1] by gluing together certain analytic neighbourhoods of A\D
in A\Y for the various cusps of M*.) The main result of this note is that D — Y is a
homology isomorphism (cf. Thm 3.2 when A is trivial, Thm 4.1 in general), i.e.

H.(D) = H.(Y).
Since A acts freely on D, it follows that there is a natural isomorphism
H,(A\D) = H}(Y)

giving a description of the homology of the fibre as the A-equivariant homology of the
smooth scheme Y. This suggests that the “quotient” of the smooth scheme Y by A
should be thought of as an algebraic version of a regular neighbourhood of the fibre
in M*. A consequence of the isomorphism H;(D) = H;(Y) is that this group is pure
of weight —i, i.e. the ind-variety D is pure. (This is Corollary 3.2 when A is trivial;
note that this is only obvious in the simplest case of Hilbert modular surfaces.) Roughly
speaking, D satisfies the valuative criterion for properness, so that H;(D) has weights
> —i, while Y is smooth, so that H;(Y) has weights < —i. This purity has pleasant
consequences: the spectral sequence computing H,(A\D) = H2(Y) in terms of A-
homology of H.(D) = H,(Y) degenerates at Eo and the limit filtration is (with a shift)
the weight filtration (Cor. 3.4, Thm 4.1). So one has an expression for the graded pieces
of the weight filtration on the fibre homology in terms of group homology and Y. (})

IThere is a formal resemblance between the fibres studied here and the varieties appearing in [5] in the
context of the “fundamental lemma”: In each case one has a quotient of a ind-variety by a discrete group.
Here, the discrete group A (which is typically like GL(n,Z)) is complicated, while the ind-variety D is
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Another consequence of purity (to which attention was drawn in [4]) is that the torus
action on D is equivariantly formal. It follows that the equivariant cohomology is local-
ized to the fixed-point locus and has a description in terms of the fixed point locus and
one-dimensional (over A) orbits. This is mentioned in 3.6 and 4.5, a fuller treatment be-
ing left for another occasion. The purity statement also has consequences for the Hodge
theory of the exceptional divisor 7~!(M* — M), which we mention in 4.6.

The essential tool in proving these results is an enumeration of the top-dimensional
cones in Y. The cone system X is a decomposition of the open self-adjoint homogeneous
cone C' into rational polyhedral cones. For example, if M is a Hilbert modular surface
associated to a real quadratic field F, the cone C'is the convex hull in F®gR = RR? of the
set of totally positive elements of F' and ¥ is a decomposition of C' = Ri into rational
sectors, invariant under the action of a subgroup A =2 Z of the group of totally positive
units of F'. In general, the fan X consists of cones on the faces of an unbounded locally
polyhedral convex set P (a A-polyhedral cocore in the terminology of [1, Chp. II]), the
convexity of P being responsible for the projectivity of M>. The idea of line shellings
from the theory of convex polytopes allows us to enumerate the facets of P, and hence
the top-dimensional cones of X, in a nice way (Prop. 2.5). This gives the ind-variety
structure of D and defines filtrations of D and Y which allow for an inductive proof that
H.(D) = H.(Y) using elementary facts about the topology of torus embeddings.

The methods used here to study the fibres of 7 are applicable if the Q-rank is > 2, but
the results have to be reformulated (cf. 3.10 for some comments).

The contents of this article are as follows: In §1 the necessary properties of self-
adjoint homogeneous cones are recalled from [1]. In §2 the construction of nice polyhe-
dral decompositions > of such cones is recalled, following [1], and the enumeration of
top-dimensional cones of such > mentioned above is proved. (No assumption is made
on the QQ-rank in these sections, but the simplifications in the case of QQ-rank one are
indicated.) From §3 we assume that the Q-rank is one. In §3 the enumeration from §2
is used to prove the main theorem when the abelian variety A is trivial. Then weights
are brought in and various consequences of purity indicated, under the same assumption.
General Q-rank one arithmetic varieties (where A is nontrivial) are treated in §4.

It is a pleasure to dedicate this article to R. MacPherson on his sixtieth birthday. I hope
he finds the mix of topics — convexity, toric geometry, arithmetic groups — appealing.

I thank M. Goresky and E. Looijenga for discussions related to this material and the
referee for useful remarks.

simple (its homology is pure). In [5], the discrete group is simple (= Z%), but the ind-variety, an affine
Springer fibre, is complicated. In particular, the conjecture that they are pure appears to be difficult.
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1. SELF-ADJOINT HOMOGENEOUS CONES

This section contains background material on cones and their geometry. The key fact
used later is Lemma 1.2.

1.1. Self-adjoint homogeneous cones. We start a real vector space V' of finite dimen-
sion IV and a nondegenerate open cone

ccv

i.e. an open subset invariant under dilations by R which contains no line in its closure.
The (connected) automorphism group of the cone is

Aut(0)? := {g € GL(V) : gC = C}°.

The cone is homogeneous if Aut(C)? acts transitively on C. It is self-adjoint if there is
an inner product (,) on V such that C is identified with its dual cone C* = {v € V :
{(v,w) >0 Yw € C,w # 0}. A self-adjoint cone is convex.

Let C' C V be self-adjoint and homogeneous. The automorphism group is a Lie
subgroup of GL(V), stable under transpose, and therefore reductive. The isotropy sub-
group of any point in C' is a maximal compact subgroup, and so C'is identified with the
symmetric space of Aut(C). (Conversely, if a connected reductive Lie group acts on a
vector space with an open orbit at points of which the isotropy subgroups are maximal
compact, then the orbit is a self-adjoint homogeneous cone.)

Let g be the Lie algebra of Aut(C)°. Fix a basepoint e € C and let K be the isotropy
subgroup at e. The Cartan decomposition g = £ 4 p given by K fixes an isomorphism

p—V by X — Xe

(here X € gactson V viag C End(V)). For a maximal abelian subspace a C p let
A =e" Then C = K Ae.

Let Vo C V be a rational structure. The cone C' is rational if there is a Q-algebraic
group
G C GL(Vp)  with G(R)? = Aut(0)?,

i.e. the automorphism group is, up to connected components, the real points of a Q-
algebraic group. This will be assumed to be the case from now on, and we will fix, once
and for all, a rational basepoint e € C' N V. It is known that the inner product on V'
(with respect to which C' is self-dual) may be chosen to be rational.

For k = Q or R, a cone is k-irreducible if it cannot be written as a sum C = C + Co
for a k-rational decomposition V' = V; & V5 and k-rational self-adjoint homogeneous
cones C; C V;. An equivalent condition is that V' is irreducible for G over k (p. 87 of
[1]). In this situation the k-split centre of G is one-dimensional and acts by dilations on
V. Any k-rational cone C' is a sum of irreducible ones. The R-irreducible cones have
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been classified (cf. [1, p. 63] for the list, which includes four infinite families plus one
exceptional cone).

1.2. Jordan algebra. A Jordan algebra is a finite-dimensional commutative algebra in
which the product a - b satisfies a® - (b- a) = (a® - b) - a. It is Euclidean if a® + b2 = 0
implies that a = b = 0.

It is a basic fact ([1, p. 76]) that for a rational self-adjoint homogeneous cone C' C V
as in the previous paragraph, there is a Euclidean Jordan algebra structure on V, with e
as unit, which is rational over Q. Let T,, € p be the element mapped to a € V under
p = V,ie. T,e = a. The Jordan algebra structure satisfies 7 (b) = a - bforallb € V.
The cone is C = {z% : z € V is invertible} and its closure is C' = {z% : z € V'}. The
inner product in V' can be taken to be (x, y)= trace of left multiplication by = - y on V.
(Note that this is Q-rational.)

Two idempotents ej,e2 € V (for the Jordan algebra structure), are orthogonal if
ey - ea = 0. An idempotent is minimal if it cannot be written as the sum of mutually
orthogonal idempotents. A collection of idempotents ey, ..., e, is complete if ), e; =
e. A maximal collection of mutually orthogonal idempotents is complete. Let {e;} be
such a collection. Let z; € p be defined by z; = 21, (i.e. ;¢ = 2e¢; in the action
of pon V). Then a = ), Rz; is a maximal abelian subspace of p, and every such
subspace arises from a complete set of mutually orthogonal minimal idempotents in this
way (cf. p. 89 of [1]). From the description of the cone as invertible squares, one sees
that C' N ), Re; = Ae = ) . R e;. In other words, the orbit Ae is open in its linear
span, which is ae C V, and ae N C' = Ae (cf. Prop. 14 on p. 104 of [1]).

Fix a maximal collection of mutually orthogonal idempotents ey, ..., e,. Letz], ...,z
be the basis of a* dual to the corresponding basis 1, ..., z, of a. They will be consid-
ered as characters on A via the logarithm isomorphism log : A — a,i.e. z}(e¥) = z}(y)
for y € a.

Lemma 1.1. det |4 = (z])M (25)2 ... (x2) N where \; > 0 for all i.

*
T

Proof. First assume that C' is R-irreducible. The space V has a (Peirce) decomposition

where

Vii={veV:e -v=uv}

Vij={veV:ie -v=e¢-v=1v/2}.
If k #i,j theney-v = 0forv € V;;. Fori # j, the dimension of V;; is a number d
which depends only on the cone, i.e. it is independent of ¢ and j; the dimension of Vj; is

one. (These facts are proved in pp. 92-97 of [1].) This gives N = r +dr(r —1)/2. The
trace of left multiplication by e; on V' is then 1+d(r—1)/2 = N/r. Since z; = 2T,, we
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have det(e%) = e?"(Te;) = ¢2N/" Then det |4 = (zfz3 ... 2%)*V/7. The general case
follows by writing the cone as a sum of irreducible cones and applying this calculation
to each one. U

Let
G1 = ker(det |g).
This is a rational algebraic group, and the symmetric space of G1(R)" is the quotient
C/R, of C by dilations. The subgroup A; C G1(R)° (i.e. the connected real points of
a maximal R-split torus in G1) is the subgroup ker(det | 4) of A, for which the lemma
gives the explicit equation [, tl’-\i = 1 (in the preferred coordinates on A). Similarly,
a; C ais given by X;\t; = 0.

1.3. Sublevel sets of the characteristic function. Fix a translation-invariant measure
dy on V. The characteristic function ¢ : C' — R of the cone is defined by

o(z) ::/ e~ (@y) dy.
C

It is canonical up to the choice of measure dy, i.e. up to a constant. Let us normalize it
by requiring ¢(e) = 1. The following properties of ¢ are found in [1, p. 57ff]:

(i) o(gz) = det(g) tp(x) for g € G(R)?,x € C. In particular, p(Az) =
A No(x) for A € R, It follows that (z) dz is a G(R)-invariant measure
on C, ¢ is G1(R)’-invariant, and its level sets are G'1(R)"-orbits. By our nor-
malization we have ((ge) = det(g)~! for g € G1(R)°.

(i) ¢ : C — Ry is strictly convex, i.e. o(tz+ (1 —t)y) < tp(z)+ (1 —1t) o(y)
forz,y € C,t € (0,1). In particular its sublevel sets are convex.

Fix a point y € C and consider its G (R)-orbit:
S :=G1(R)y

Itis a level set of ¢ (by (i)) and R>1.5 is a sublevel set of . By property (ii), R>15 is a
closed convex set in V' with boundary S and interior R~ 1.S.

Let x € C' — R>1S. A point s € S is visible from x if the tangent hyperplane
TS separates x from R+ 1S. (The tangent hyperplane is being thought of as an affine
hyperplane in V'.) The set £, := {s € S : s is visible from x} is open in S and invariant
by K(z) = Stabgo(z). If z = gy for g € G(R)Y, then 2, = g,,.

Lemma 1.2. The set of points in S visible from x € C — R>1S is relatively compact.

Proof. Let s = Rx N S. Let g = € 4 p be the Cartan decomposition given by s € C,
let a C p be a maximal abelian subspace, and let A = e®. Then x € (0, s] C as. The set
of points visible from = € (0, s] is K (x) B where B is the set of points in as N R>; S
visible from x inside the subspace as. It suffices to show that B is relatively compact.
Using the coordinates on as given by a = as and the basis 1, . .., z, of a, plus the fact
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that as N .S = e s, this reduces (by (i) and Lemma 1.1) to the following assertion in
R": If B = {(t1,...,t,) € (Ry)" : t}52 --- £} = ¢} and all \; are > 0, then for any
t € (Ry)",t ¢ R>1 B, the set of points on B visible from ¢ is relatively compact. This
is easily checked by a direct calculation. U

(It is easy to see from the proof that the set of points visible from x is geodesically
starlike around the point Rz NS and has nonempty interior, and is in fact homeomorphic
to a ball.)

1.4. Examples. (i) Let F//Q be totally real of degree d and G = Resp/gGm, act-
ing on Vy = F. Consider the embedding F — V = F ®g R = R? given by
the various real embeddings of F. The cone C is the convex hull of the set of to-
tally positive elements of F' in this embedding. The subgroup G is the norm torus

G1 = ker(Resp;oGm o Gm), which is Q-anisotropic of rank d — 1. In suitable
coordinates C = RY and p(t1,...,tq) = (t1...tq) L.

(ii) Let G = GO(q) be the similitude group of a nondegenerate quadratic form ¢ :
Vo — Q such that gg is of signature (n, 1). The cone C'is one component of {v € V' :
q(v) > 0}, G1 = SO(q), and ¢(v) = q(v)~ "D/ forv € C.

(iii) If G = GL(n) and V = {X € M(n,R) : X! = X} with the action (g, X) —
g' X g, then the orbit of the identity matrix is the cone C' of positive definite symmetric
matrices, equivalently, the set of positive definite quadratic forms in n variables. Here
G1 = SL(n) and (X)) = det(X)~(+1/2,

2. POLYHEDRAL CONE DECOMPOSITIONS

In this section polyhedral cone decompositions associated to cocores are introduced
(following Ash’s Chapter I in [1]) and their top-dimensional cones are enumerated using
the notion of visibility.

2.1. LetV,G,C etc. be asin §1. Let L C Vj be a free Z-module with L @z R =V
and let Ag = {g € G(R) : gL = L}. A subgroup of G(R) is arithmetic (for the
given Q-structure) if it is commensurable with Ag. Let A be an arithmetic subgroup of
G(R)? which is neat (i.e. the subgroup of C* generated by eigenvalues of elements of A
is torsion-free). Let L* = L — {0}.

A convex polytope in V is the convex hull of a finite set of points. It is rational
if the points are in V. A polyhedral cone is a closed convex cone in V' of the form
o={x eV :&(x)>0fori=1,...,r} for some linear functionals i, ...,&, € V*.
It is rational if the linear functionals may be chosen in V().
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2.2. Boundary components. The relation in 1.2 between complete sets of mutually or-
thogonal Jordan idempotents in V' and maximal split tori in G works over QQ: a complete
set of mutually orthogonal rational idempotents determines a maximal Q-split torus in G
and vice versa (cf. [1, p. 90]). The maximal cardinality of a set of mutually orthogonal
rational idempotents, called the Q-rank of C, is therefore the same as the Q-rank of G.
So C' has Q-rank one if and only if AR \C' is compact.

Let C; be the convex hull of C' N V. For a rational idempotent eq, let V(e;) =
{z € V : x-e; = x}; this is a rational Jordan subalgebra of V. The cone of invertible
squares C'(e1) = {2? : & € V(ey) invertible} is a self-adjoint homogeneous cone in
V(e1) and C(e1) C C4. The cones C'(e1) C C4 as e; varies over rational idempotents
are the rational boundary components of C. Distinct rational boundary components are
disjoint, and the union of all rational boundary components is C; — {0} (cf. Remark 3
on p. 133 of [1]). Note that C. = C'U {0} if and only if C has Q-rank one.

2.3. Examples. Consider the examples in 1.4:

() G = Resp/qGm, C = Ri the convex hull in V' = F' ® R of the totally positive
elements of F'. This cone is of Q-rank one and Cy = C'U {0}. An arithmetic group is
a subgroup of the group of totally positive units in the ring of integers of F, so if it neat
then it is free abelian of rank d — 1.

(i) G = GO(g) and C is a component of {g(v) > 0}. The rational boundary com-
ponents are half-lines R, one for each QQ-rational g-isotropic line in V. If there are no
such lines C' is of Q-rank one; otherwise it is of (Q-rank two.

(iii) G = GL(n) and C the cone of positive definite quadratic forms in n variables.
The cone is of Q-rank n (for the standard @Q-structure) and C. is the set of positive
semidefinite quadratic forms in n variables with rational nullspace. An arithmetic group
in GL(n, R) is a group commensurable with GL(n, Z).

2.4. Kernels, cores, cocores and polarization functions. A closed convex subset X C
C is a kernel if 0 ¢ K,C C RiK,and R>1 K C K. (So K does not contain 0 and
every ray in C' is eventually in K.) (This is a slight departure from [1], where neither
closure nor convexity is required of a kernel.) Two kernels K and Ky are comparable
if for some A1, Ay € Ry we have A\1 K1 C Ky C A2 K.

The closed convex hull of C'N L is a kernel. Any kernel comparable with it is called
a core. (For some other comparable kernels cf. p. 120 of [1].)

The closed convex hull of C'N L* is also a kernel. Any kernel comparable with it is
called a cocore.

_ (Note that if Q-rank(C) = 1 there is no difference between cores and cocores since
CNL*=CnNL)
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There is a duality on kernels which exchanges cores and cocores [1, p. 128]. For a set
K C V define

KY:={xeV:(x,y) > 1forally € K}.
If K is a kernel for C then sois KV, and KVV = K. If K is a core then KV is a cocore.

A kernel K is A-polyhedral if

(1) yK = K forally € A

(1) K is locally rationally polyhedral (l.r.p.), i.e. for any rational polyhedral cone
IT with vertices in Cy, II N K is cut out of 1I by a finite number of supporting
hyperplanes of K.

The basic examples of such kernels are the closed convex hulls of C' N L and C N L*
mentioned above (which are shown to be L.r.p. on p. 142 of [1]).

If K is a A-polyhedral kernel then KV is a A’-polyhedral kernel (cf. p. 141 of [1]).
(Here A! = {+' : v € A}, an arithmetic group in G* = G).

A A-invariant polarization function on C is a continuous piecewise-linear function
¢ : 4 — R>q such that:

(i) ¢isconvex: ¢(z +y) > o(x) + ¢(y) for z,y € C
(i) ¢(z) >0ifx #0
(iii) ¢ takes integer values on C'y N L
(iv) ¢ is A-invariant

(The notion of convex in (i) is the opposite of the notion of convex used in §1 for the
characteristic function ¢; (i) is the standard convention in the torus embedding game.)
Such a function determines a A-polyhedral cocore P := {z € Cy : ¢(z) > 1}.

Conversely, given a A-polyhedral cocore P, there is a A-invariant polarization func-
tion ¢ such that P = {¢ > k} for some large integer k. (Define ¢ to be the unique
convex piecewise-linear function which takes the value k£ on each face of the cocore and
is linear on the cone over each face (cf. p. 310 of [1]). Properties (i), (ii) and (iv) are
easy. To get (iii) note that the extreme points of P lie in ﬁL for some integer M [1, p.
136]. The lattice generated by these points is of finite index in ﬁL, so by choosing &
suitably we may assume that ¢ is integral on C N ﬁL. Then (iii) holds.) Note that the
maximal cones on which ¢ is linear are the cones over the faces of P.

(For a picture of a cocore P in the case of Example (i) of 1.4 with F' = Q(v/3) see p.
52 of [1].)

2.5. Facets and visibility. Let P be a closed convex L.r.p. subset of V' of dimension V.
Recall that a face of P is a subset f C P such that every closed line segment whose
relative interior meets f lies entirely in f. A point p € P is an extreme point if {p} is
a face. Let F(P) denote the set of extreme points. A facet of P is a face of dimension
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N — 1 (facets exist since P is L.r.p.). For a facet F' denote by aff (F') its affine hull; then
aff(F)N P =F.

Lemma 2.1. Let P be an L.r.p. kernel. The unit inward normal to a facet belongs to C.

Proof. Let vp be the unit inward (i.e. pointing into P) normal vector to the facet F'
of P. Suppose that vp ¢ C. Let £ : V — R be defined by £(x) = (z,vp). Then
C - v# has two connected components C; and Cs, where £|¢, < 0 and £|c, > 0. Let
w € F. Then w + v = aff(F) is a supporting hyperplane of P, so £(z) > &(w) for
x € P. On the other hand, £|¢, is unbounded below, so that there exists y € C; such
that £(y) < &(w). Since {(y) < 0, one has {(A\y) = AE(y) < &(y) < &(w) for A > 1.
Thus R>;y N P = ¢. But P is a kernel, so any ray in C' must eventually be contained in
P. This is a contradiction, showing that vp € C. U

For a facet F' let aff (F')+ be the closed affine halfspace containing P and bounded
by aff(F'). Forz € V — P, a facet F of P is visible from x if aff (F') separates = from
the interior of P, equivalently if = ¢ aff(F')y. A facet is relevant if it is visible from
0. The set of relevant facets is A-invariant. (When the Q-rank of C is one every facet is
relevant, cf. Remark 2.7(i) below.)

Lemma 2.2. Let P be a A-polyhedral cocore, F a facet of P, and vp its unit inward
normal. Then F is relevant if and only if vy € C.

Proof. For any affine hyperplane H meeting C, C — H N C has two components. If
either normal to H is in C' then exactly one component is bounded, the one containing 0.
Suppose F is irrelevant. Then C' — aff(F') has two components, one of which contains
0 in its closure and also contains the interior of P. If vy € C' then this component is
bounded. But P is unbounded. So vy ¢ C.

By Remark 1 on p. 132 of [1],if y € C' — C then inf &, « (y,2) = 0. Since P is
a cocore, there exists A € R such that P D A\(C' N L*), and so inf,ep(y, ) = 0. It
follows that a facet F' with vy € C' — C must actually lie in ’Ui—v‘. But then 0 € Uf; =
aff(F), so F is irrelevant. O

(The lemma fails for cores if Q-rank(C') > 2, as the example on p. 135 of [1] shows.
Let Vg = Q% C = R? and P the closed convex hull of Z* N C = Z2.. There are facets
which are visible from 0 but have normal vector in C — C.)

Lemma 2.3. Let H, be an affine halfspace in V with bounding hyperplane H such that
HNC # ¢. Suppose that the inward normal vector v of Hy belongs to C. Then for any
x€C —Hytheset {y € A:x ¢ yH,} is finite.

Proof. If a sequence of points z; in C' tends to a limit in C — C then the sequence
of values ¢(x;) of the characteristic function tends to infinity (Prop. 3 on p. 60 of
[1]). Therefore the function ¢|cnp extends continuously to ¢ : C'N H — (0, 00] by
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setting p(z) = oo forx € (C — C) N H. Since v € C and H is a translate of v,
C N H is compact. So ¢ takes its minimum value at some point s € C' N H. Since
¢ is strictly convex, this point is unique. The orbit S = G1(R)? - s = p~(¢(s)) has
tangent hyperplane H at s. For g € G1(R)°, z ¢ gH if and only if gs € S is visible
from x. The set of such gs is relatively compact by Lemma 1.2, and so the set of such
g is relatively compact, i.e. {g € G1(R)? : x ¢ gH,} is relatively compact. Since
A C G1(R)? is discrete, the intersection A N {g : = ¢ gH } is finite. O

The following is a key fact:

Lemma 2.4. Let P be a A-polyhedral cocore and x € C' — P. The number of facets of
P visible from x is finite.

Proof. First let us see that facets visible from x € C' are relevant, i.e. visible from
0. Let F' be visible from z, i.e. x ¢ aff(F)y. If F is not visible from 0 we have
0 € aff(F')., in which case R>qz N aff (F); = ¢ and hence R>12 N P = ¢. But P is
a kernel, so that every ray in C must eventually be in P. So F is visible from 0 (and in
fact from any point in the line segment [0, z]).

Since P is a A-polyhedral cocore, it has finitely many relevant facets modulo the
action of A (Prop. 8 on p. 137 of [1]). Choose representatives Fi, ..., F;. for the A-
orbits among these facets. For each i, the unit normal vector to F; belongs to C' by
Lemma 2.2. By Lemma 2.3 the set {y € A : = ¢ yaff(F;)+} is finite, i.e. only finitely
many A-translates of F; are visible from . (]

2.6. Lemma 2.4 lets us enumerate the relevant facets of P in a nice way using the idea
of line shellings from the theory of convex polytopes:

Proposition 2.5. Let P be a A-polyhedral cocore. There is an enumeration Fy, Fy, . ..
of the relevant facets of P such that for each k, the intersection of Fy, with Uj 1 F; is the
union of facets of Fy, visible from a point in aff (Fy,).

Proof. Choose a starting relevant facet F and a point x in its relative interior. The
idea is to move towards 0 along the line segment (0, 2] and enumerate the facets as they
become visible. From points sufficiently close to z the only visible facetis F;. A relevant
facet F' # F1, is invisible from x but as one moves towards 0 along the line segment
[x,0] it becomes visible at the point xp = [x,0] N aff(F'). By the previous lemma,
the set of points {xr} r is discrete in [z, 0) and accumulates at 0. Enumerate the facets
in the order they become visible, i.e. the order in which one meets the various points
xp. There is ambiguity only if 2 = xp for distinct facets ' and F’. By choosing
x € Fy carefully we can ensure that this does not happen, i.e. the points zr € [0, x] are
all distinct as F' runs over all facets of P. (Indeed, for each pair F, F’ of facets, the set
{x € Fy : xp = xp} is the set of x for which [z, 0] meets aff (F) N aff (F"). This is the
projection (centred at 0) to F; of a set of dimension N — 2, hence is of dimension [NV — 2.
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As the pair F, F' varies, this gives a countable family of N — 2-dimensional subsets of
F, which has dimension N — 1. Take x outside the union of this family.) This gives an
enumeration of the relevant facets. The intersection of F with U; .4 F; consists of those
facets of Fy, visible in aff (F};) from the point z 5, = [0, z] N aff (Fy). O

(Note that for each £ the union U;<, F}, is homeomorphic to a closed N — 1-ball: F;
is a closed ball, and to go from Uj<;_1 F} to U< F); one attaches a closed N — 1 ball
along a subset which is a closed N — 2-ball in the boundary.)

2.7. Remarks. (i) In the Q-rank one case, every facet of P is relevant. Indeed, in the
proof of Lemma 2.2 it was shown that any irrelevant facet F is contained in C' — C. Since
Fis closed and convex and contains no line, it has at least one extreme point, which is
then an extreme point of P. The extreme points of P are rational (Prop. 7 on p. 136 of
[1]) and nonzero. But C' — C contains no nonzero rational points if the Q-rank is one.

(i) In the Q-rank one case, PV is a Al-polyhedral (co)core, so that there is an enu-
meration of its facets as in the proposition.

2.8. Polyhedral cone decompositions. A cocore can be used to construct certain de-
compositions of Cy. A A-admissible rational polyhedral decomposition (rpd) of C is
a collection X of rational polyhedral cones in C satisfying

(1) if risafaceof 0 € X thenT € X
(i1) if o,7 € Y then o N Tis aface of ¢ and 7
(iii) if o € Y and v € A then yo € X
(iv) there are only finitely many cones in 3 modulo A
V) C=U,ex, oNC.

It is simplicial if each o € X is a simplicial cone, i.e. the cone on a simplex. It is smooth
if

(vi) each o € X is generated by a subset of a basis of L
and projective if it admits a polarization function, i.e. if

(vii) there is a A-invariant polarization function ¢ such that maximal cones on which
¢ is linear are precisely the top-dimensional cones of >..

Let us see how a A-polyhedral cocore gives a A-admissible rpd, following Ash. If
F' is relevant then vp € C, so that F' = aff(F’) N P is compact and convex, hence
equal to the convex hull of its set £(F') of extreme points. Now E(F) C E(P), while
E(P) C ;L for some M € Z (cf. [1, p. 136]), so E(P) is discrete. Then E(F)
is finite, F' is a convex polytope, and the cone over F' is a closed polyhedral cone of
dimension N. (In contrast the cone over an irrelevant facet has dimension < /N and may
not be polyhedral.) As F' runs over the relevant facets of P, the resulting N-dimensional
polyhedral cones, together with their faces and the cone {0}, give a A-admissible rpd of
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C4, i.e. a collection ¥ of cones satistying (i)—(v) of 2.8 (cf. Prop. 8 on p. 137 of [1]).
Since the A-polyhedral cocore admits a polarization function, such a A-admissible rpd
is necessarily projective, i.e. (vii) holds too.

The A-admissible rpd can be further refined so that (i)—(vii) hold. This is done using
barycentric subdivision as follows. It is a consequence of the Siegel property for poly-
hedral cones (Corollary (i) on p. 116 of [1]) and the neatness of A thatif o € X,v € A
such that o N yo # ¢ then + fixes o pointwise. Fix a set {o; } of representatives for the
cones of X modulo A. For each ¢; choose a ray p; in its relative interior (the barycentre).
By the previous observation U; Ap; is a A-invariant set of barycentres for all cones in
3. If the p; are chosen (as they can be) so that every cone in the barycentric subdivision
of o; with these barycentres is smooth, then the barycentric subdivision of X using the
A-invariant family of barycentres is smooth. Conditions (i)—(v) are unaffected by this
procedure and it is easy to see that there is a new polarization function ¢ for which (vii)
holds. In other words, one can find a A-polyhedral cocore P for which the associated
A-admissible rpd X is smooth and projective. Prop. 2.5 gives an enumeration of the
relevant facets of P and hence of the maximal-dimensional cones of ..

A collection of cones X satisfying (i)—(v) above is locally finite at points of C, i.e.
each point of C belongs to finitely many cones. (If z € C belongs to infinitely many
cones then by (iv) there exist v # e and o with x € o N yo. By neatness, v fixes o
pointwise, hence fixes x. But A acts freely on C.) It is not usually locally finite at points
of C+ - C.

3. TORUS EMBEDDING

In this section the cone C' will always have Q-rank one. We consider the homological
properties of torus embeddings associated to the decompositions of the previous section.

3.1. Torus embeddings. Let us recall some elementary facts and fix some notation
about torus embeddings and their topology (cf. e.g. [3]). For the moment 7' is a torus of
dimension d, ¥ is a fan in X, (T)g = R? which is locally finite (i.e. every z € |X| — {0}
belongs to finitely many cones of o.) We will assume that |%| has nonempty interior.
Assume that X is smooth, i.e. each cone in X has a set of generators which extends
to a basis for X, (7). For 0 € ¥ let Star(c) be the union of the relative interiors of
cones which intersect o. Then Star(c) is an open neighborhood of ¢ in |X|. Since ¥ is
simplicial, one has Star(o) N Star(7) = Star(c N 7). The collection {Star(c) },ex is
an open cover of |X|. The Star(o) for o of maximal dimension already cover |X|.

Let Y := T be the torus embedding of 7" with fan . The T-orbits in Y correspond
to cones 0 € X. Let O, be the orbit corresponding to ¢ and let T}, be the isotropy
subgroup along this orbit. If T, is the closure of T, in Y = T then (1,,T,) =
(CF, (C*)¥) for k = dim . For o € ¥ let Y (o) be the interior of the union of T-orbits
corresponding to cones in Star(o). This is an open neighborhood of O, in Y and the
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collection {Y (0)},cx is an open cover of Y with the property that Y (o) N Y (1) =
Y (o N 7). The Y (o) for o maximal cover Y. For ¢ maximal, the orbit O, is a fixed
point, and Y (o) is the union of orbits which have O, in their closure. It is smooth and
affine with a single 7-fixed point and is contractible. The same is true of Y (o) — 7.

For o € %, the closure O, of the orbit is smooth and projective. Let ¥, be the subfan
consisting of cones 7 with 7No # ¢ and all their faces. The torus embedding Y, := 1%,
is identified with an open neighborhood of O, in Y = T.. Choose j : G,, — T in the
relative interior of ¢ and consider r(y) = lim;_o p(t)y. Then Y, = {y € Y : r(y) €
60} and the morphism r : Y, — O, is an affine fibration of relative dimension dim o.
In particular, it is a homology isomorphism. For any T-stable subvariety Z C O, the

restrictions 7 : r~1(Z) — Zandr : r~1(Z)—~T — Z are both homology isomorphisms.

(When o is of maximal dimension, >, is the fan consisting of faces of o and Y, =
Y(0).)

3.2. Torus embedding using a polyhedral cone decomposition. Now suppose we are
in the following situation: C' C V is a self-adjoint homogeneous cone of (Q-rank one
in a vector space V' with an integral lattice L. The quotient 7' := V¢ /L is a torus of
dimension N with X, (T) = L. Let ¢ : C' — R, be a A-invariant polarization function,
P = {¢ > 1} the associated A-polyhedral cocore, and ¥ the fan consisting of cones on
the facets of P and their faces; we assume (cf. 2.8) that ¢ is such that X is smooth.

Let

Y := torus embedding of 7" using the fan ¥ in X,.(T)g =V
D:=Y-T

These schemes are separated and locally of finite type (by the local finiteness of > at
points of C' mentioned at the end of 2.8). The scheme Y is smooth while D has normal
crossings and each irreducible component is a smooth projective toric variety. There is
an action of the arithmetic group A on each. Since A is assumed neat it acts freely on D
(Indeed, there are A-equivariant homeomorphisms D /T, = P/R>; = C'/R and the
action on C//R is free since it is the symmetric space of G1(RR)".) The quotient A\ D
is projective (an ample line bundle on A\ D can be constructed from the polarization
function in the usual way [3, Ch. 3]). The action on Y is not free (every element of A
fixes the identity of T').

The enumeration Fy, F, ... of the relevant facets of P in Prop. 2.5 defines filtrations
of D and Y by subvarieties of finite type. Let o1, 02,... be the enumeration of top-
dimensional cones (i.e. o}, is the cone on F},). For k > 1 let

>;, = fan consisting of cones o1, . .., 0 and their faces
Y}, = T, the torus embedding associated to Xy,
Dp=Y,-1T.
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The variety Y}, is smooth and of finite type and is identified with an open complex sub-
manifold of Y. This defines a filtration Y7 C Ya C ... of Y by open subsets with
Y = U, Y. The divisor D), C Y}, has normal crossing and smooth irreducible compo-
nents. Each Dy, is open in D and D = J,, D. Denote the closure of Dy, in D by Dy;
this is a divisor with normal crossings in Y, for r large. The morphisms D, < Dy
are closed immersions and D = J,, Dj.. Bach Dy, is projective (indeed, it admits a finite
morphism to the projective variety A\ D which is surjective for k large enough). This
gives D the structure of an ind-variety.

Theorem 3.1. The inclusion D — Y is a homology isomorphism.

Proof. We show by induction on k that for each k the inclusion Dy — Y} is a
homology isomorphism. Since Hy(D) = lim H,(Dy) and H.(Y") = lim H.(Y%), this
will imply the theorem. For & = 1, the variety Y; is an affine toric variety with a single
fixed point, hence is contractible. The same is true of D;. Assume that Dy, C Y3 _q is
known to be a homology isomorphism.

For simplicity write o for o, and F' for F}, the corresponding facet of P. By the way
in which facets were enumerated, the intersection F' N |X;_1| is the union of facets of F’
visible from a point in aff (F). Let f1,. .., f, be these facets of F'. Since F' is a simplex,
the intersection fy = f1N---N f, is a face of F' of dimension dim F' — r, and, moreover,
fi,-.., fr are exactly the facets of F' containing fy. Let 79 € X be the cone on fj.

Consider the Mayer-Vietoris sequences associated to the coverings Y, = Yi_1 U
Y (o) and Dy, = Djy._1UDy(0) (where Y (o) is defined as in 3.1 and Dy (0) = Yi(o)N
D=Yy(o)-T):

—— Hi(Dy—1N Dy(0)) —— Hiy(Dx—1U Dy(0)) —— Hi(Dg) ——

l l |

— H;(Yio1NYi(o)) —— Hi(Yio1UYi(o)) —— Hi(Ya) ——

Since o has maximal dimension, Y} (o) and Dy (o) are both contractible (a retraction
to the fixed point O, being given by any G,, — T in the relative interior of ¢.) To
complete the inductive step, it suffices to show that Dy(c) N Di—1 — Yi(o) N Vi1
is a homology isomorphism. Let Z be the union of T-orbits corresponding to cones on
faces f of F such that f O fy and f C f; for some i > 1. This is a subset of O,.
Choose 1 : G,,, — 7T lying in the relative interior of 7y and consider the retraction
r: Yy — Or. Then 7 1(Z) = Yi(0) N Yy while r=1(Z) — T = Dy(c) N Dy_1,
so that r gives a retraction of each onto Z which is a homology isomorphism. This
completes the inductive step. ([

3.3. Weights and purity. From now until 3.6 all (co)homology groups and Chow groups
have rational coefficients. The rational cohomology of an algebraic variety X carries an
increasing weight filtration ... C W;H*(X) ¢ W;;1H*(X) C ... with Gr;H (X) #
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0 = j € [0,2d] (cf. [2]). The weight filtration on the rational homology H;(X) =
HY(X)* is the increasing filtration defined by W H;(X) = (HY(X)/W_1_;H!(X))*;
then Gr;jH;(X) # 0 = j € [-2¢,0]. If X is proper then Gr;H;(X) # 0 only for
J > —i; if X is smooth then Gr;jH;(X) # 0 only for j < —i. The weight filtration is
strictly compatible with the homomorphisms induced by morphisms of varieties, so that
one has weight filtrations on H,(Y") and H, (D) from the previous subsection.

Corollary 3.2. The homology of D is pure, i.e. H;(D) is pure of weight —i for each i
(and is entirely of Tate type).

Proof. Since each Y}, is smooth, H;(Y}) has weights < —i, so H; (V) = lim, H;(Y%)
has weights < —i. Since each Dy, is proper, H;(D},) has weights > —i, so H;(D) =
lim, H; (D) has weights > —i. The isomorphism H;(Y") = H;(D) respects weights, so
this group must be pure of weight —i. (That H;(D) is purely Tate can be seen as follows:
Since D has normal crossings, the map H; (D)) — W_;H;(D) = H;(D) is surjective,
where DIYl — D is the normalization (cf. [2, 8.2.5]). Since each component of DWisa
smooth projective toric variety, H., (Dm) is entirely Tate.) O

(A slight refinement of this corollary is true, cf. 3.9 below.)

The theory of weights is not elementary, so it useful to remark that in our context
weights have a nice concrete (and elementary) interpretation using natural endomor-
phisms of toric varieties which lift the various Frobenii, an idea of Totaro [7]. (In the
setting of locally symmetric varieties these are the local Hecke operators of [6], cf. 4.1).
I briefly sketch his argument to show how it applies here. For each positive integer
n € Z4, the nth power map z — 2™ on the torus 7' extends to a finite endomorphism
of Y and D preserving each of Y}, Dy, D;, and each irreducible component of each Dj,.
Their homology groups become representations of the monoid Z. Let X be either Y},
or Dy,. It has a filtration by closed subsets defined by: X;= union of torus orbits of codi-
mension > 4. The corresponding E! spectral sequence converging to HZM (X) is natural
with respect to the Z_ -action and n € Z acts on Ezl,y o by multiplication by n”. The spec-
tral sequence degenerates at E', the limit filtration is the weight filtration on HZM (X)),
and the action of n € Z, on Ger*BM(X) is by n/ (cf. [7, §§5,6]). Now any extension of
7. -representations over QQ of different weights (in the sense that n acts by different pow-

ers of n) has a unique splitting. So the actions of Z on H;(Yy) = Hfg/{m Y ;(YR)* (Y

is smooth) and H,(Dy,) = HBM (Dy,) (Dy, is proper) are semisimple and split the weight
filtration. The same then holds for H, (Y") = lim H, (Y}) and H,(D) = lim H.(Dy,). So
in fact we could define weights for all our cohomology groups using this action.

Let D!¥! be the disjoint union of all k-fold intersections of irreducible components of
D. There is a spectral sequence with

E}, = Hy(DPH) = Hy (D).
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Each D! is smooth with projective connected components, SO Ezlw is pure of weight
—q. The spectral sequence degenerates at E and (by definition [2]) the E; = E., term
is Equ = Ex, = GrKVquJrq(D). By purity Eg,q = 0 for p > 0, i.e. the rows of the
spectral sequence are exact except at the last place. This implies the first part of:

Corollary 3.3. For each q the sequence of A-modules
0~ H,(DY)) -+~ H,(D?) — Hy(DU) — H,(D) — 0
is a resolution of Hy(D) by finitely generated free Q[A]-modules.

Proof. We have already seen that the sequence is exact. The connected components
of DIl are parametrized by cones of dimension k in . Let oq,...,0, be represen-
tatives for the k-dimensional cones of ¥ modulo A and Dy, ..., D, the corresponding
components of D*]; each D; is a smooth projective toric variety and hence has finite-
dimensional homology. Then A [®;H,(D,,)] = H,(D*]), so that H,(D*) is generated
over Q[A] by a basis for @;H,(D,,). The freeness of the A-action follows from the fact
that if vo; N o; # ¢ then v = e because A is neat. O

3.4. Homology of A\ D. For a space X with a A-action the A-equivariant homology is
defined to be
HA(X) = Ho(X xa EA)

where F'A is any contractible space with a free A-action (in particular, one could take
EA = Cor EA =V 4iC). The Leray spectral sequence for the fibration X x, EA —
BA has

E2, = Hy(A Hy(X)) = H),  (X).
In the situation at hand, the A-invariance of X gives an action of A on the torus em-
bedding Y, preserving D. Since D — Y is A-equivariant, the homology isomorphism
H.(D) = H,(Y) of Theorem 3.1 is one of A-modules. By the spectral sequence the
induced map H2 (D) — HA(Y) is also an isomorphism. The differentials in the spectral
sequence are natural, in particular they respect weights. By purity, the spectral sequence
degenerates at E2. Since A acts freely on D, HX(D) = H.(A\D), giving a natural
isomorphism H,(A\ D) = HX(Y). We arrive at:

Corollary 3.4. There is a natural isomorphism H,(A\D) = HX(Y). The spectral se-
quence E2 . = H, (A, Hy(D)) = H;} '\ o(D) degenerates at E2. The limit filtration (suit-
ably shifted) is the weight filtration on H;(A\D) = HX(D), so that Gr‘ffjHi(A\D) =

Hi—j (A H; (D)) = Hi—; (A, H; (V).

3.5. Remarks. (i) The analogous results for singular cohomology follow from these
results for singular homology since H*(Y") = lim, H*(Y};). (Our main reason for work-
ing in homology rather than cohomology is that it is a little simpler to work with direct
limits.)
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(ii) The results, suitably rephrased, hold in /-adic cohomology. For a discrete group
A acting on a k-scheme X the A-equivariant /-adic cohomology is defined to be

RHomg, 5 (Qr, RT (X, Qr)).-

If the action is free, so that A\ X exists as a k-scheme, then this is presumably the
cohomology H*((A\X)z, Q) of the quotient. (In our situation, i.e. X = D and k = Q
this can be deduced from the corresponding statement in singular cohomology using the
comparison theorem.) With these definitions, the analogues of the results above in Q-
cohomology hold (and follow from the results for singular cohomology by comparison
theorems).

(iii) The results so far also hold if the fan X is simplicial, provided we work every-
where with rational coefficients.

3.6. Torus-equivariant homology. Another consequence of purity is that the torus ac-
tion on D is equivariantly formal (cf. [4]). By considerations of weights the spectral
sequence for the fibration D xp E'T' — BT with

E?,=H,(D) ® Hy(BT) = H], (D)

degenerates at E? to give H! (D) = H,(D)®H, (BT) (noncanonically). The same holds
with D replaced by Y, showing, in particular, that HZ (D) = HI(Y"). The cohomology
of the classifying space H*(BT) = Sym H?(BT) = Sym X*(T) acts on H! (D) by
cap product, and H, (D) can be recovered from HZ (D) with its H*(BT)-module struc-
ture. Since T is a torus, there is a localization of the equivariant cohomology to the
T-fixed points, and a recipe for computing HZ (D) in terms of the fixed points and the
1-dimensional torus orbits (the Chang-Skjelbred lemma [4]). All this is natural with
respect to A, so that we have, in principle, a description of H. (D) as a A-module, and
hence (by Corollary 3.4) a description of (the associated graded of) H,(Dy).

3.7. A refinement of purity. Corollary 3.2 can be improved using the enumeration of
the facets of the dual core PV mentioned in 2.7(ii). The result, Theorem 3.5 below, will
not be used later. We first recall the description of the homology of a smooth projec-
tive toric variety using a G,,-action (2 la Bialynicki-Birula). From now until 3.9 Chow
groups and homology groups have integer coefficients.

3.8. LetT be atorus and let F’ be a convex polytope in X, (7")g with nonempty interior
containing zero. Let X be the fan consisting of cones on its facets and their faces, and
let X be the torus embedding of 7" using ¥ . Assume that X is smooth. Choose p :
G,,, — T which lies in the relative interior of a top-dimensional cone of > . Then the
set X#(Gm) — XT of fixed points is finite, in bijection with the top-dimensional cones of
Y. F or, equivalently, with the facets of F'. Let us assume that the fixed points have been
enumerated 1, za, ... according to visibility of the corresponding facets along the ray
through 4. For each fixed point z; € X*(©m) define X; := {x € X : lim; . p(t)x =
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x;}. Each X; is an affine space and X<p = U< X; is closed in X for each k. Let
A;(—) denote the Chow group of dimension i algebraic cycles on a variety modulo
rational equivalence; there is a cycle class map A;(—) — HZM(-) to Borel-Moore
homology (i.e. homology with locally finite supports). Let us show by induction that
Al (X<p) =2 HBM (X <y) for all k, the case k = 1 being trivial. Consider the diagram

Ai(X<pm1) —— AiX<r) —— Ai(Xy) —— 0

| l |

0 —— HEY(X<po1) —— HEY(X<p) —— HE'(X) —— 0.
The top row is the usual exact sequence of Chow groups for a closed subscheme and its
complement. The bottom row is part of the long exact sequence for Borel-Moore homol-
ogy; it is short exact since Hf"M (X}) vanishes in odd degrees. The first and third vertical
maps are isomorphisms (by the induction hypothesis and since A, (X}) = HPM (X},) re-
spectively). So A.(X<y) = HBM (X <},) for all k, and hence A.(X) = H,(X) since X
is proper.

3.9. Suppose now that we are in the situation of §§1, 2 and that C' has QQ-rank one. Let
T. C T(C) be the compact torus. The quotient Y/T, is naturally identified with P;
denote the quotient map by ¢ : Y — PV. Let F|, F},... be the enumeration of the
facets of PV given by visibility along a line segment (0, z) for z € F| (cf. Remark
2.7(ii)). For each k, let Zy = Uj<p ¢~ '(Fj). Then Zy C Zy C ... is a filtration of D
by closed subsets and D = Uy Z.

Theorem 3.5. The homology of D is concentrated in even degrees, is torsion-free, and
is spanned by classes of algebraic cycles.

Proof. It is enough, since H;(D) = lim H;(Zy), to prove the corresponding state-
ments for each Z;,. We will do this by induction. For k = 1, Z; is a smooth projective
toric variety, so that the cycle class map A.(Z;) — H.(Z1) is an isomorphism (by 3.8).
The induction hypothesis is that A, (Zx_1) = H.(Zk_1). Suppose we knew that

() Au(Zy — Zy—1) 2 HBM(Z), — Z),_4).

Then there is a diagram
Ai(Zy—) —— Ai(Zy) —— AilZy—Zp—1) —— O

| l l

0 —— Hoi(Zk—1) —— Ho(Zy) —— HEM(Zp — Z)_1) —— 0.

The first row is the usual exact sequence of Chow groups. The second row (part of the
long exact sequence in Borel-Moore homology) is short-exact by the induction hypothe-
sis and (). The first and third vertical maps are isomorphisms, so the second one is too,
showing that A, (Zy) = H.(Zy).
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The argument to prove (x) uses a suitable G,,-action as in 3.8. To simplify notation
let Z' := Z, — Z_1 and let F' := F}. Let 0 € ¥ be the ray through the vertex of P
dual to F’. The variety Z’ is open and dense in the smooth projective torus embedding
X of the torus 7" = T/ T, associated to the convex polytope (F’)V. Let g : X — F’ be
the quotient by 7”. Then X — Z’ is the preimage under ¢ of those facets of F” visible
from some point = € X, (T")g, which may be assumed to be rational. Let u € X, (T")
be a generator of the ray through x; consider the G,,-action via p : G, — T". It
gives a filtration of X by closed subsets X<; C X< C ... asin 3.8, with each X, =
X< — X<i—1 an affine space. Since X — Z’ is closed and x(G,,)-stable, we have
X —7"=,,ex_z Xiand hence Z' = | |, . 5 X;. Then Z,; := Z' N X<y, defines
a filtration of Z’ by closed subsets such that Z_, — Z_, | is either empty or an affine

space. By the same argument as in 3.8 above, an induction gives A.(Z') = HEM (7).
O

3.10. Remarks on the higher-rank situation. We indicate how (some of) the results
of this section extend to the situation when C' has Q-rank > 2. No assumption was made
in §2, so the results of that section are general. Thus if P is a A-polyhedral cocore in
C4 and X the associated rpd. The arguments of §2 give an enumeration of the facets
of the top-dimensional cones in 2. As in 3.2 we consider the torus embedding Y along
Y,and D =Y — T. These are no longer locally of finite type, but the schemes Y}, Dy
are of finite type and the proof of Theorem 3.1 goes through without change, so that
H.(Y) = H,(D). The statements involving weights also remain valid if we define
weights using the action of Z mentioned after Cor. 3.2, and the same proofs work.

The spectral sequence computing Hi\(Y) or Hi\(D) degenerates as before (using
weights), but this no longer converges to H,(A\D) as the action of A is not free. So
the remaining results have to be suitably reformulated.

4. ARITHMETIC VARIETIES OF (Q-RANK ONE

In this section we apply the previous results to arithmetic varieties. The notation here
differs from that of previous sections. Let G be an algebraic group over QQ such that
the symmetric space D of G(R)" is Hermitian. Let I' C G(Q) be a neat arithmetic
subgroup and M := T'\ D the associated arithmetic variety. Assume that G has Q-rank
one, so that M is noncompact. As a notational convention, for subgroups J < H C G,
letI'y :=TNHR)and 'y :=Ty /Ty C H/J.

4.1. Minimal compactification. The compact dual symmetric space D" is a flag vari-
ety of G(C) with a G(R)%-equivariant holomorphic embedding D — DV. The bound-
ary components of D are the maximal connected analytic submanifolds of the closure of
D in DV. The stabilizer of a boundary component is a parabolic subgroup whose pro-
jection to each simple factor of G is a maximal R-parabolic subgroup. The boundary
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component is rational if the stabilizer is Q-rational, in which case it is a maximal Q-
parabolic subgroup. The union of rational boundary components D* is G(Q)-invariant
and carries a natural topology, the Satake topology, for which the G(Q)-action is con-
tinous. The quotient M* = I'\ D* is compact Hausdorff and contains M as an open
dense subset. The decomposition of D* into rational boundary components descends to
a stratification of M™* by complex manifolds, each an arithmetic variety of smaller di-
mension. There is a unique structure of a normal analytic space on M ™ restricting to the
given complex structure on each stratum. Moreover, according to Baily and Borel, M*
is a normal projective variety. Since the Q-rank of M is one and I is neat, the boundary
M* — M is smooth.

4.2. Stabilizer of a boundary component. The stabilizer Pr of a rational boundary
component F' has the following structure (cf. [1, II1.4.1-I11.4.2]). Its unipotent radical
W is two-step unipotent: its centre U is abelian and the quotient V' := W/U is abelian.
The quotient P/W splits as an almost-direct product P/W = M, - M},. (The groups
My, and M, are denoted G,  and Gy r in [1].) The symmetric space of Mh(}R)O is
the rational boundary component F. The adjoint action of M;(R)? on u := Lie U(R)
has an open orbit C' C u and the stabilizer of a point is maximal compact. Thus C'is a
self-adjoint homogeneous cone, of Q-rank one since G is of Q-rank one and I"yy, is an
arithmetic group of its automorphisms (as in §§1,2).

4.3. Relative torus embedding. Fix a rational boundary component (r.b.c.) F. Con-
sider the open domain D(F) := U(C) - D in D", on which P(R)U(C) acts. Let
T = T'y\U(C), a torus of rank dim U, and write M, W C P for the preimage of M},
by P — P/W. Let

T .= Fth\D(F)
A= FthU((C)\D(F)
S =T p, W(R)U(C)\D(F) = Ty, \F

Each is a smooth algebraic variety with a I'z,-action, the action on S being trivial. There
are I"pz,-equivariant morphisms

T—-A— 5.

Here T — A is a torsor for T = I'y\U(C) and A — S is an abelian scheme with fibres
R-isomorphic to I'y \V(R).

Let X be aI')z,-admissible rpd of C' which is smooth and projective (as in 2.8). Per-
forming a torus-torsor embedding along the fibres of T — A using ¥ gives a scheme
Y — A which is locally of finite type over A. Let D := Y—T. For s € S, write T for the
fibre of T — S and D, := T, N D. Applying Theorem 3.1 fibrewise one concludes that
Dy — Y, is a homology isomorphism. The action of I'y;, on D is free, and preserves

the fibres of Y — S. One gets a natural isomorphism H, (I"y;,\Ds) = H}:Mﬁ (Ys) for
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each s. The spectral sequence E2 . = H,(I'a,, Hy(Ys)) = Hi(Iag,\Ds) degenerates
at E2 for weight reasons and the statements of 3.4 carry over.

4.4. Toroidal compactifications. Fix a I"-admissible rational polyhedral cone decom-
position Y. Recall what this means: For each r.b.c. ' one has a I'j;,-admissible rpd
(as in 2.8) X of the cone C' and the whole collection > = Up3p is required to be
I-invariant. Given X, the theory of [1] constructs a toroidal compactification M*>. If
each X is smooth and projective (as in 2.8) then M> is a smooth projective variety
containing M as a Zariski-dense open subvariety, and there is a projective morphism
7. M* — M* such that 7—'(M* — M) is a divisor with simple normal crossings (cf.
p- 312 of [1]).

The situation of 4.3 is a local model for the toroidal compactification along the preim-
age of the stratum .S: Fix a stratum S of M* and let ' C D* be an r.b.c. covering S. Let
P, My, My, etc. be the associated groups and D, Y etc. the associated schemes. There
exist:

(i) aT'p,-equivariant morphism Y — M 2 (where T M, acts trivially on M 2y,
(ii) a neighbourhood U of D in Y (in the classical topology) on which I'y, acts
freely

such that the induced map I'j;,\U — M? is a biholomorphism onto an analytic neigh-
bourhood of 771(.S) and restricts to a natural isomorphism
7'('71(5) = FMZ\D

of complex spaces over S. Algebraically speaking, the geometric quotient of the ind-
scheme D by the action of the discrete group I"y, exists and is naturally identified with
71(S) (as a scheme over S); the formal completion Y5, of Y along D has a free action
of the discrete group I'y,, and the geometric quotient is isomorphic to the formal com-
pletion (M E)ﬂq( s) as a scheme over S. The “quotient” I'y7,\Y (which does not exist

as a scheme) should be thought of as a formal neighbourhood of 7~1(S) in M*. Let D
and Y denote the fibres over s € S. Applying the remarks in 4.3 we arrive at:

Theorem 4.1. For s € S there is a natural isomorphism
_ r
H (77 (s)) = Ha(Tar,\Ds) = H ™ (Ys).
The homology of Ys (or D) is pure. The spectral sequence
r
Eg,q = Hp(T'n,, He(Ys)) = pr;(%)

degenerates at E* and the (shifted) limit filtration is the weight filtration on H, (7 =1(s)).
The graded pieces are given by

GriViH; (7 (s)) = Hi—j(Ta,, Hj(Ds)) = Hij(Tag,, Hj(Ys))-
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4.5. Remarks. (i) The Z  -action of 3.3 is explicitly realized by Looijenga’s local Hecke
operators [6] (and the assertion that they split the weight filtration on H, (771 (s)) is con-
tained there). One can replace Y, by an open neighbourhood of D in Y in the classical
topology stable under these operators and one can formulate an etale version of the the-
orem.

(ii) The story in 3.6 carries over to the current context: The T-action on D is equivari-
antly formal and HZ' (D) is localized to the fixed point locus. The fixed point locus D7
is a disjoint union of copies of A, one for each top-dimensional cone. The equivariant
homology can be computed from D’ and the locus corresponding to cones of one less
dimension, each connected component of which is an G, -fibration over A.

4.6. Remark on the Hodge theory of 7—!(M* — M). Fix a connected component of
M* — M and let D,Y,I"y, etc. be as in 4.3. The corresponding component of the
exceptional divisor has cohomology

Hl’i]ﬂg (y’c) = Hk(y XFIVIZ EFM€7(C)

A natural complex computing this group is the total complex associated to the double
complex K** = C*(I'y,, I'(Y, £5)). (Here C*(I'ay,, —) is the usual group cohomology
complex of a I'yz,-module.) This complex has two filtrations: An increasing filtration
W, can be defined by applying the canonical truncation functor 7<; in the first index,
a decreasing filtration F'* by applying the filtration F? by type to &3. It follows from
theorems proved above that the spectral sequence for W, degenerates at Eo and the

induced filtration on the graded pieces Gr}” H{?M (Y) = HE={(Ty,, H(Y)) is the Hodge
, .

filtration under the identification Gr!"’ HlliM (Y) = GrlVHF(T'5;,\D). (There is another
J4

way to define a naive Hodge filtration on HlliM (Y) = H*(Y xr w, ET'M, ), namely using
, .
the model ET'y;, = C' + 4u, which has a complex structure; this should give the same

filtration.)

This suggests that it is possible to understand the mixed Hodge structure (MHS) on
the exceptional divisor using the embedding in M*, i.e. it should be possible to find a
cohomological mixed Hodge complex (i.e. a complex with two filtrations which define
a mixed Hodge structure in cohomology, cf. [2]) consisting of differential forms on a
classical neighborhood of =1 (s) (of the form T'p;,\U for U as in 4.4) which computes
the MHS on H*(7~1(s), C). (The Hodge filtration should be the natural one on differen-
tial forms. Note that the MHS is defined in [2] without reference to the embedding, and
a priori has no simple relation to it, so this is a special feature of arithmetic varieties.)
This would then have interesting applications to the Hodge theory of M, and hence to
M.
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