
Pure and Applied Mathematics Quarterly
Volume 3, Number 1
(Special Issue: In honor of
Robert MacPherson, Part 3 of 3)
307—322, 2007

Sheafhom: Software for Sparse Integer Matrices

Mark McConnell

With warm regards for Bob MacPherson on his 60th birthday.

Abstract: Sheafhom is a free software package for large-scale computations
in the category of finitely-generated modules over the integers and related
rings. Its front end is a language for problems in algebraic topology and
geometry. These problems come down to sparse systems of linear equations
over the integers. Sheafhom’s back end solves the sparse systems, with em-
phasis on avoiding fill-in and integer explosion. We survey and compare
algorithms for integer sparse matrices, and we present implementation tech-
niques in Common Lisp. The final section finds the quotient of the free
abelian group on 26 letters by sets of words in the dictionary, in the spirit
of [14].

1. Introduction

Sheafhom is a free software package for large-scale computations in the category
of finitely-generated R-modules, where R is any principal ideal domain in which
exact computation is possible. At present Sheafhom focuses on Z-modules, and
in this paper R = Z except when noted. However, the system is adaptable to
any R, as described in 4.2.

Sheafhom’s front end is a language for problems in algebraic topology and
geometry. These problems come down to large sparse systems of linear equations
over Z, which are solved by the back end. The major goal for the back end is to
avoid fill-in and integer explosion. In Section 2 we introduce these terms. The
heart of the paper is Section 3, where we survey and compare integer sparse matrix
algorithms. The next section discusses implementation techniques in Common
Lisp. Section 5 describes the goals of different versions of Sheafhom. The final
section is a tutorial: it finds the quotient of the free abelian group on 26 letters
by sets of words in the dictionary, in the spirit of [14].

Received November 3, 2005.

308 Mark McConnell

Sheafhom 2.x has produced some of the results in [2]. That paper is a sequel
to [1], which used Sheafhom 1.x heavily.

Sheafhom’s home pages are at [12] and [13]. They offer descriptions of the
code, a tutorial, and download links for the source code and manuals.1

The development of Sheafhom 1.x was partially supported by grants from the
National Science Foundation (1994–97 and 1997–2000).

2. Background on Sparse Linear Algebra

2.1. Linear Algebra Over the Integers. Round-off error is always an aspect
of floating-point computations. To solve the system

21x + 18z = 0
28x− 3y + 24z = 0

we would row-reduce the matrix
21 0 18
28−3 24

We might divide the first row by 21

1 0 0.8571
28−3 24

and subtract 28 times the top row from the bottom row

1 0 0.8571
0−3 0.0012

(Here 21 is the pivot.) The trouble is, the 0.0012 should be zero. There is no
error using rational numbers:

24− 28 · 18
21

= 0.

However, the rationals can be too slow for large-scale computations, because of
the need to carry around denominators and reduce fractions (18/21 = 6/7).

We now turn to linear algebra over Z. Let’s find the greatest common divisor
of 21 and 28 by the Euclidean algorithm:

28÷ 21 = 1 remainder 7
21÷ 7 = 3 remainder 0

1This paper is a snapshot of Sheafhom in October 2005. Like all large programs, Sheafhom
continues to evolve. Several new algorithms use memory more efficiently by storing most of
the matrix on disk and keeping only a small part in RAM at any one time. There is greater
emphasis on computing over finite fields, where there is no integer explosion. Please consult the
websites for up-to-date information.

Sheafhom: Software for Sparse Integer Matrices 309

The GCD is 7. In our matrix example, carry out the analogous steps by sub-
tracting 1 times the first row from the second

21 0 18
7−3 6

and then subtracting 3 times the second from the first.

0 9 0
7−3 6

This clears out the left-hand column, filling it with zeros except for the pivot 7.
It also gives a zero in the upper right corner, avoiding the round-off error with
0.0012.

Divide the top row by 9, and use the resulting 1 to clear the -3 out of the
bottom row.

0 1 0
7 0 6

The general solution is thus y = 0 and 7x+6z = 0. If x, y and z must be integers
themselves, the general solution is

(x, y, z) = (−6k, 0, 7k) ∀k ∈ Z.

2.2. Conventions. For simplicity, our exposition in this paper discusses only
row reduction. Sheafhom actually performs row and column reduction, converting
matrices to Smith normal form [5, Def. 2.4.11]. This means the resulting matrix
has zeros everywhere besides the diagonal, and has integer diagonal entries d1,
d2, d3, . . . with d1 | d2 and d2 | d3, etc.

In the example above, we reduced matrices by taking the columns in order
from left to right. In fact, Sheafhom uses complete pivoting: it permutes rows
and columns to bring a better selection of pivot into the row and column being
reduced. Pivoting is the topic of Section 3.

2.3. Fill-In. A sparse matrix is one where only a small fraction of the entries
are non-zero. A matrix coming from topology as in [1, 2] might have tens of
thousands of rows and hundreds of thousands of columns, but only about 100
non-zeros in each row and column. For such matrices, one uses data structures
that store only the non-zero entries.

Many scientific applications involve sparse matrices whose non-zero elements
form a pattern: tridiagonal, banded diagonal, banded diagonal with a border,
and so forth. Sheafhom was designed for matrices coming from topology that
have no recognizable sparsity pattern. A matrix coming from an n-dimensional
topological space would have a pattern in n dimensions, but not when the data
is flattened into a two-dimensional table of rows and columns.

310 Mark McConnell

Fill-in is a concern in sparse linear algebra using any number system. Imag-
ine row-reducing the following matrix, where the letters are arbitrary non-zero
numbers and all x’s are distinct.

a x 0 0 x x
x 0 x x 0 0
x 0 x x 0 x
b 0 0 x 0 x

We want to choose one row and add multiples of it to the other rows until the
first column has only a single non-zero entry. If we choose the top row (a is
the pivot), the result will in general look like this, where ∗ is an entry that has
changed from zero to non-zero.

a x 0 0 x x
0 ∗ x x ∗ ∗
0 ∗ x x ∗ x
0 ∗ 0 x ∗ x

If b is the pivot, the result will be

0 x 0 ∗ x x
0 0 x x 0 ∗
0 0 x x 0 x
b 0 0 x 0 x

The second result has less fill-in, two ∗’s rather than seven. All other things being
equal, b is the better choice of pivot. If we do not keep fill-in in check, the sparse
matrix will quickly become dense and exceed the resources of the computer.

2.4. Integer Explosion. Floating-point work must balance fill-in with numer-
ical stability. In the example, if b is much smaller than a, using b as pivot may
introduce too much round-off error. We may be forced to use a, with its larger
fill-in.

Over the integers, numerical stability is replaced with the opposite problem:
integer explosion. In integer multiplication, the length (number of digits) of the
product is roughly the sum of the lengths of the factors. Thus a row operation
that puts zeros into one column will tend to increase the length of the numbers
in the rest of the row. Even in our small integer example, the −3 grew quickly to
a 9. Near the end of a full Smith normal form computation, matrix entries often
have hundreds or thousands of digits.

3. Algorithms for Sparse Linear Algebra

3.1. A Survey of Algorithms. A sparse solver must reduce both fill-in and
integer explosion by choosing the pivots appropriately. Sheafhom is a platform

Sheafhom: Software for Sparse Integer Matrices 311

for experiments with pivoting strategies. We now discuss and compare some of
these strategies.

3.1.1. The Markowitz Algorithm. The Markowitz algorithm [6, 7.2] is a well-
established approach to reducing fill-in. It is a greedy algorithm, reducing fill-in
as much as possible at each step. Let aij be a non-zero matrix entry. Let ri be
the number of non-zero entries in aij ’s row, and cj the number of non-zero entries
in its column. If one adds a multiple of row i to row k in order to zero out the akj

entry, one will create as many as ri− 1 new non-zeros in row k, coming from the
ri − 1 entries of row i besides aij itself. Using row i to clear out the j-th column
will produce as many as (ri − 1)(cj − 1) new entries. The Markowitz algorithm,
in its simplest form (what we call pure Markowitz), chooses at each step the pivot
aij that minimizes the Markowitz count (ri − 1)(cj − 1). We always exclude the
region of the matrix that has already been reduced. The algorithm uses the pivot
to clear out the j-th column, then goes on to the next j.

3.1.2. Sheafhom 2.1. Sheafhom 2.1, which is the stable version as of October
2005, essentially uses the pure Markowitz algorithm. In addition, though, we
need to consider integer explosion, as in the following example.

100 99 0 0 0 0
1 1 1 1 1 1

55 49 56 69 51 48

Among pivots in the left column, 100 has the lowest Markowitz count, but we
cannot use it over the integers because 1 and 55 are smaller than 100. Instead,
we choose the 1, obtaining

0−1−100−100−100−100
1 1 1 1 1 1
0−6 1 14 −4 −7

Sheafhom 2.1’s pivoting algorithm is to search at each stage for pivots of the
smallest possible absolute value, and among these to search for the pivot with
the smallest Markowitz count.

In the topology problems Sheafhom was designed for, the non-zero entries in
the sparse matrices are 1 and −1, or occasionally a bit larger. Throughout the
computation, the vast majority of entries have absolute value 1 until about 5%
of the rows remain. Thus the condition “smallest possible absolute value” is not
burdensome till the end of the computation, when the matrix has become quite
dense anyway.

3.1.3. Speeding Up a Markowitz Search. It can be slow to compute the Markowitz
count for all aij , at least by the time fill-in has become fairly bad. One approach,
suggested by several authors, is to look at only a certain number of rows with

312 Mark McConnell

small ri—say the smallest ten rows—and then minimize the Markowitz count for
only the aij in those rows. Early predecessors of the Sheafhom code used this
approach. Currently, though, we prefer to avoid fill-in at whatever cost in speed,
and we search over all aij . In fact, with the linked list implementation of sparse
vectors in 4.2, the time for Markowitz is less overall than the total time for row
operations.

3.1.4. Triangular Markowitz Sort. A variation on the Markowitz algorithm, due
to the author, aimed to be faster while still controlling fill-in. Sort the columns so
those with the smaller cj are on the left. (As always, we tacitly exclude columns
that have already been reduced.) If two columns have the same cj , find the one
whose first non-zero entry has greater index i, and put that column on the left.
The result looks like a series of triangular strips, with very sparse strips on the
left and denser strips on the right.

0 0 0 0 0 ∗
0 0 0 ∗ ∗ 0
0 ∗ ∗ 0 0 ∗
∗ 0 ∗ 0 ∗ ∗
∗ ∗ 0 ∗ ∗ ∗

For a genuine picture, see Figure 1 below.

To find a pivot, search the columns from left to right, and return an element of
minimal absolute value. The matrix usually has many ±1 entries, and the search
terminates as soon as one of these is found. We expect the pivot to have a low
Markowitz count, assuming it was found quickly on the far left side of the sorted
matrix. The method is faster than pure Markowitz, at least for mild to moderate
fill-in, for two reasons. First, the O(n log n) sort is faster than the O(n2) search
over all aij . Second, if the pivot is found quickly, it means that essentially all the
work went into the O(n log n) sort.

3.1.5. LLL to Avoid Integer Explosion. The Lenstra-Lenstra-Lovasz (LLL) algo-
rithm [5, 2.6–2.7] reduces an integer matrix using a strategy different from the
methods so far. Rather than clear out the columns one after the other, it makes
all the columns as short as possible and makes different columns as orthogonal
to each other as possible. The notions “short” and “orthogonal” are defined with
respect to a fixed Euclidean inner product, which we take to be the standard one.
The algorithm works strictly over Z [5, Alg. 2.7.2]. Finding absolutely the best
columns satisfying these conditions would take exponential time. Part of LLL’s
value is that its definition of “reduced matrix” is good enough for most purposes
and yet allows the algorithm to run in polynomial time.

As a by-product of making the columns small in Euclidean norm, LLL helps
control integer explosion. Just as significant, it finds the linear dependencies

Sheafhom: Software for Sparse Integer Matrices 313

among the columns. Our matrices usually have far from full rank. LLL throws
away columns that are dependent, saving a great deal of memory. However, LLL
tends to make fill-in worse among the columns it does not throw away. The
definition of “LLL-reduced” allows columns on the right to be longer than those
on the left. In our examples, the short columns on the left have many zeros, and
their non-zero entries tend to be in the single digits. On the right side, however,
columns have large Euclidean norm and tend to be dense.

3.1.6. Triangular Markowitz Sort with LLL. Sheafhom 2.0’s reduction algorithm
combined the ideas above into several steps.

0.: Let S be a variable representing an algorithm for sorting the columns
of a matrix and choosing a pivot. Initialize S to the algorithm SMar =
“perform a triangular Markowitz sort and choose a pivot as in 3.1.4”.

1.: Sort the matrix and choose a pivot using S. Clear out the pivot’s row
and column, and advance to the next column.

2.: If fill-in has grown so that the matrix is no longer sparse enough—say,
when 10% of its entries are non-zero—go to step 3. If S 6= SMar, go to
step 3. Otherwise, go to step 1.

3.: Use LLL to reduce integer explosion. In practice, doing LLL on more
than a few hundred columns at a time is very slow, because the interme-
diate integer results are huge. Hence we do LLL reduction on blocks of
200 columns at a time, moving from left to right. Before doing LLL, we
sort all the columns by Euclidean length, so that the first block of 200
will contain relatively short vectors, the next block slightly longer vectors,
etc. We ignore columns of zeros at the left (and LLL fortunately tends
to produce many zero columns in our matrices).

3a.: If this is the first time for LLL reduction, perform step 3 a second time:
sort by Euclidean length, then do LLL 200 columns at a time. Since the
first block of 200 in the previous step contained relatively short vectors,
this helps make the second, third, and later blocks relatively short.

4.: Set S to the new algorithm SLLL = “sort the columns by Euclidean
length, then scan through all the entries from left to right, choosing as
pivot an entry of minimal absolute value.” The reason is that once LLL
has run, sparsity is largely destroyed. The sort then aims to preserve the
LLL structure rather than the sparse structure.

5.: Perform step 1 up to 50 times, or until the whole matrix is reduced.
6.: If the whole matrix is reduced, exit. Otherwise, go to step 2.

It is interesting to compare this algorithm with 3.1.2’s. On the first few
large examples in our experiments, 3.1.2 has proved to offer the better method.
The triangular Markowitz sort introduces fill-in a little bit faster than the pure
Markowitz algorithm, since pure Markowitz is so miserly. Integer explosion also

314 Mark McConnell

Figure 1. Sparsity pattern for a triangular Markowitz sort.

seems to occur a bit more slowly with pure Markowitz, perhaps because fill-in
occurs more slowly. When LLL starts up in step 3, it’s too much, too little, too
late: LLL can be very slow, and replacing sparse columns with dense ones can
strain memory resources.

For these reasons, the pure Markowitz algorithm is our method of choice in
Sheafhom 2.1. Experiments with better algorithms continue. One open question
is whether there is better way to combine pure Markowitz with LLL.

3.2. Graphical Tools. Sheafhom 2.x offers graphical tools for studying fill-in
and integer explosion. There are line graphs showing the growth of the sparsity
percentage and the numbers of row and column operations. Sheafhom can also
generate movies showing the sparsity pattern changing in real time. These movies
have been indispensable in carrying out the comparative studies above. Figure 1
shows one frame of a movie for a 545×2146 matrix that arises in the computation
of the equivariant cohomology of one of the locally symmetric spaces in [1, 2].
Each pixel represents a 3×3 submatrix, and is dark or light in proportion to how
many of the nine entries are non-zero. The curves are the tops of the triangular
strips of 3.1.4.

3.3. Other Approaches. One can consider sparse matrices modulo an inte-
ger N . Here there is no problem with integer explosion. Fill-in, of course, is an
ever-present concern. One spectacular use of these methods was for the RSA-129
challenge [18], where the final step was to solve a sparse matrix mod 2 with half
a million rows and columns. The matrix was reduced by the sparse techniques
in [15]. Early code of the author’s followed [15] also.

Some authors approach sparse matrices over Z by working modulo prime num-
bers p. One can reduce the matrix mod p for several different p and reconstruct
the integer result at the end. For an example, see [7]. For a similar idea with
dense matrices, see [3].

Sheafhom: Software for Sparse Integer Matrices 315

One can solve mod p matrices with Lanczos mod p. Lanczos methods [8,
Chs. 9–10] are best known over the real or complex numbers as techniques for
finding eigenvalues or solving matrix equations. They are iterative methods that
do not change the matrix itself, but run through a convergence process in some
small auxiliary vectors of storage. There is no fill-in at all. Lanczos methods
rely on a fixed positive-definite inner product, say

∑
xiyi, and use the notion

of orthogonal vectors. When one works mod p, it makes sense to say
∑

xiyi

defines a notion of orthogonality, because the quadratic form is non-degenerate.
However, it no longer makes sense to say it is positive definite, and this obstacle
can make Lanczos methods mod p fail if applied directly. The paper [1] worked
around this obstacle in one way. A systematic way of overcoming the obstacle
appears in [17].

3.4. Size Records. Working over Z and using the algorithm of 3.1.2, Sheaf-
hom 2.1 has reduced a matrix of size 8407× 32826. This took about half an hour
and peaked at about 151M of RAM usage. The intermediate integers never grew
larger than four digits.2 We used Allegro Common Lisp 7.0 on a Compaq laptop
running Windows XP. The laptop had 1G of RAM and a Celeron M processor
with a speed of 1.30 GHz. Using the algorithm of 3.1.6 in Java on the same
laptop, Sheafhom 2.0 was not able to reduce matrices of even half this number
of rows and columns.

In [1], we used Lanczos methods modulo the prime 31991 to reduce matrices
as large as 110464× 30836. We did not attempt to lift the solutions to Z.

4. Sheafhom and Lisp

A mathematician should program in Lisp. Bob MacPherson (1985)

4.1. Implementations. Common Lisp is an ideal language for Sheafhom for
several reasons. Arbitrary-precision integers are built into the language and can
be very fast. Lisp is object-oriented; indeed, its object package CLOS is the most
flexible of any language’s. The crowing glory of Lisp is its macros, which allows
one to redefine the syntax of the language itself. For introductions to Lisp, see
the comic-book site [4] and the practical textbook [16].

Sheafhom 2.1 is written entirely in ANSI Common Lisp. The only exception is
the graphics file gui.lisp, which calls out to Java to draw pictures like Figure 1.
Strictly speaking, we do not call out to Java, but to Linj [11], a Lisp-like language
created by António Menezes Leitão that compiles to high-quality Java source
code.

2Other examples have produced integers of up to 1000 digits, but in our experience such
examples have not run to completion.

316 Mark McConnell

Sheafhom 2.1 was developed in Allegro Common Lisp 6.2 and 7.0. Version 1.x
used Carnegie-Mellon University Common Lisp.

4.2. No One Ring to Rule Them All: Low-Level Arithmetic. Many com-
puter algebra programs treat the underlying ring as a plug-and-play part of the
system. The same code for (say) Gröbner bases works with coefficients in a wide
range of rings, and one can change the ring as one goes along. The philosophy is
object-oriented: a polynomial leaves it up to its coefficients to add and multiply
themselves together.

Other forces pull in the opposite direction. While Lisp is a high-level language,
its users are proud of how efficient its compiled code can be down at the machine
level. If the programmer commits in advance to which ring they will use, the
efficiency will be greater. This is because the programmer can declare to the
compiler which variables are 32-bit integers, which are arbitrary-precision inte-
gers, and so on. Macros help to hide the low-level details of these declarations,
and Lisp’s disassemble command shows what effect the declarations have in
each compiled function.

In the latter spirit, the Lisp versions of Sheafhom have stepped away from the
object-oriented approach to rings. The challenge is to keep open the possibility
of using different rings while still preserving efficiency. Sheafhom 2.1 handles the
issue with the data types sparse-elt and sparse-v. A sparse-v, or sparse vec-
tor, is a singly-linked list (the classic Lisp list) whose elements are sparse-elts.
A sparse-elt is a data structure holding an i ≥ 0 and a v; here i means this
is the i-th element of the vector, and v is a value in the underlying ring. The
elements always appear in the list in order of increasing index, and an element of
value zero never appears.

All ring operations are expressed as operations on sparse-elts. For instance,
the addition operator sp-add takes as input two sparse-elts. It returns a new
sparse-elt whose value is the sum of the given values, and whose index is derived
from the given indices (typically just the index of the first argument).

Operators like sp-add are optimized for the specific number type of the chosen
ring, like arbitrary-precision integers for work over Z, or 32-bit integers for work
modulo small primes. The ring operations are separated into one marked section
of the source files. The rest of the code, including the main vector and matrix
operations, uses the ring operations as black boxes.

Writing Sheafhom 2.0 in Java was instructive in this regard. Almost everything
in Java is object-oriented, so—if the ring was to be changeable at all—we were
forced to implement elements of the ring as instances of a class. It was a small
step to package the vector index together with the ring element. We defined
an abstract class SparseElt holding index and value, and concrete subclasses

Sheafhom: Software for Sparse Integer Matrices 317

to handle values and arithmetic in specific rings. To use memory efficiently, we
had to introduce two classes representing Z, one for 32-bit ints and one for the
arbitrary-precision BigInteger. We wrote our own code to convert the sum or
product of two ints to a BigInteger when necessary. It was a relief to come back
to Lisp, which switches from small to large integers automatically.

In Sheafhom 2.1, a sparse-elt over Z is a cons (an ordered pair) holding the
index and value as its two elements. By contrast, a sparse-elt mod 2 could be
implemented as a single non-negative 32-bit integer i, standing for index i and
value 1. We would need a convention for occasionally passing around elements of
index i and value 0; since that convention could hardly fail to be ugly, we would
hide it under macros.

4.3. Vectors and Matrices. A sparse matrix is a data structure csparse that is
basically an array holding the columns of the matrix. Each column is a sparse-v,
essentially a singly-linked list. The list structure is flexible: columns grow in size
when fill-in occurs, and shrink when matrix entries cancel each other out. When
they shrink, the memory is reclaimed by the garbage collector.

A design decision in Sheafhom is that, above the lower levels, speed will be
less important than avoiding fill-in and integer explosion. We use heavy com-
putational algorithms like Markowitz sorting and LLL, even while we carefully
optimize the low-level routines.

4.4. The Macro with-splicer. Implementing sparse vectors as singly-linked
lists is flexible, as we have said, but it carries the usual risk of accesses taking
O(n) time. To find the sum a + b of sparse vectors a and b, we should run
exactly once through each vector. We also want to alter a destructively rather
than allocate the top-level conses from scratch; for instance, changing the first
non-zero entry of a to a different non-zero value should amount to changing only
the first cons. Sheafhom 2.1 includes a macro with-splicer as a mini-language
for this kind of surgery on lists. with-splicer iterates down a list and offers
read, insert, modify and delete operations for individual elements. The rest of
the iteration is not disturbed. The macro also offers splicing commands to add
and remove larger chunks.

Here is an example using with-splicer. The function sqrt-if-real deletes
elements of arglist unless they are non-negative real numbers, in which case
they are overwritten with their square root.

(defun sqrt-if-real (arglist)
(with-splicer arglist
(loop until (splicer-endp) do
(let ((x (splicer-read)))
(cond ((and (realp x) (>= x 0))

318 Mark McConnell

(splicer-modify (sqrt x))
(splicer-fwd))

(t
(splicer-delete))))))

arglist)

(sqrt-if-real (list -1 4 9 ’a -81 144))

⇒ (2.0 3.0 12.0)

5. History

Sheafhom 1.x was developed in 1993–99 in Common Lisp. It was also ported
to Macaulay 2, an elegant computer algebra system for commutative ring theory
and algebraic geometry written by Dan Grayson and Mike Stillman [9]. Sheaf-
hom 2.0 was written in 2001–2004 in Java and released for Bob MacPherson’s
birthday conference in October 2004. The system moved back to Common Lisp
for Sheafhom 2.1, which was released in March 2005.

As the name suggests, Sheafhom was originally about sheaves. Sheafhom 1.x
allowed one to construct sheaves of Q-vector spaces, and complexes of sheaves,
on topological spaces that could be expressed in finite terms. The spaces included
simplicial complexes, regular cell complexes, and the skeleta of various combina-
torial spaces. In effect, Sheafhom 1.x worked in the derived category of complexes
of sheaves on these topological spaces. Toric varieties were a prominent example:
the system computed their intersection cohomology in arbitrary perversity, as
well as perverse sheaves and morphisms between these objects.

6. Quotients modulo the Dictionary

We now move to a tutorial session illustrating Sheafhom’s capabilities. The
entertaining article [14] looks at the free group on the letters A through Z modulo
equivalence of words that have the same pronunciation in French. For instance,
soie = soi implies e = 1. The authors prove the quotient is trivial.

Let’s solve a related problem: find the quotient of the free abelian group on
A through Z by the relations W = 0, where W runs through a complete English
dictionary. If the quotient is too boring, we can also try subsets of the dictionary.

We’ll use the dictionary at [10], a Lisp-related site with several enjoyable pro-
gramming puzzles. In this dictionary, there are no hyphens or other punctuation
marks, just the letters A through Z. Words of length one are excluded because
they make combinatorial problems like this one too easy.

Sheafhom: Software for Sparse Integer Matrices 319

We load the words into a list for flexibility. We find there are 173528 words (is
it a coincidence that

√
3 = 1.7320508?) We examine the first few words and the

100,000-th.

CL-USER(17): (defconstant +words+
(let ((result ’()))
(with-open-file (stream "WORD.LST")
(loop
(let ((symbol (read stream nil)))
(if (null symbol)

(return (nreverse result))
(push (symbol-name symbol) result)))))))

+WORDS+
CL-USER(18): +words+
("AA" "AAH" "AAHED" "AAHING" "AAHS" "AAL" "AALII" "AALIIS" "AALS"
"AARDVARK" ...)

CL-USER(19): (length +words+)
173528
CL-USER(20): (nth 100000 +words+)
"NONJURY"

What’s the range of word lengths?

CL-USER(21): (remove-duplicates (sort (mapcar #’length +words+) #’<))
(2 3 4 5 6 7 8 9 10 11 ...)

While we’re at it, what is the longest word?

CL-USER(22): (last *)
(28)
CL-USER(23): (remove-if-not #’(lambda (w) (= (length w) 28)) +words+)
("ETHYLENEDIAMINETETRAACETATES")

ANTIDISESTABLISHMENTARIANISM also has 28 letters, but isn’t in this dic-
tionary for some reason.

Let’s return to the problem on free abelian groups. We’ll create a 26× 173528
matrix with one column for each word. The column for DAD, written horizontally,
is 100 20 . . . 0, standing for one A and two D’s.

Here is a utility for converting A through Z to the row indices 0 through 25.

CL-USER(24): (char-code #\A) ;; what is ASCII A?
65
CL-USER(25): (defun az-to-int (ch)

"Converts ASCII A to 0, B to 1, ..., Z to 25."
(- (char-code ch) 65))

320 Mark McConnell

The next function takes a list of words and returns the matrix. (make-csparse--
zero m n) creates an m× n matrix of zeros. (csparse-incf A i j) adds 1 to
the aij entry of matrix A.

CL-USER(26): (defun az-list-to-csparse (words)
(let ((result (make-csparse-zero 26 (length words)))

(j 0))
(dolist (word words result)
(map nil #’(lambda (ch)

(csparse-incf result (az-to-int ch) j))
word)

(incf j))))

Let’s apply this to the whole dictionary.

CL-USER(27): (compile ’az-to-int) ;; to speed things up
CL-USER(28): (compile ’az-list-to-csparse)
CL-USER(29): (defvar words-all (az-list-to-csparse +words+))
WORDS-ALL ;; after a little while
CL-USER(30): words-all
[CSPARSE 26 by 173528]

Finally, we find the Smith normal form (SNF) of the matrix.

CL-USER(31): (let ((*show-stats* t))
(make-snf words-all nil nil t))

[SNF 26 by 173528, [twenty-six units] [zero 0s]]

The last line says the SNF has nothing but twenty-six units (±1) down the
diagonal. This proves

Theorem 1. The free abelian group on A through Z modulo the dictionary is
trivial.

When *show-stats* is true (t), make-snf pops up a line graph showing how
the pattern of sparsity changed during the computation. The graph shows that
the matrix started with 27.8% of its entries non-zero. The sparsity decreased
slightly while the first 20 of the 26 rows were being reduced, then increased till
the end.

As we’ve suggested, the trivial group is boring. What is the quotient of
A through Z modulo the two-letter words? The quotient will be at least Z/2Z
for parity reasons: no word with an odd number of letters can be equivalent to
0. But are there other invariants?

CL-USER(32): (remove-if-not #’(lambda (w) (= (length w) 2)) +words+)
("AA" "AB" "AD" "AE" "AG" "AH" "AI" "AL" "AM" "AN" ...)
CL-USER(33): (length *)
96

Sheafhom: Software for Sparse Integer Matrices 321

CL-USER(34): (az-list-to-csparse **)
[CSPARSE 26 by 96]

Setting *show-csw* true generates a movie of how the sparsity pattern changes
as the SNF is computed. csw stands for csparse window.

CL-USER(35): (let ((*show-csw* t))
(make-snf * nil nil t))

[SNF 26 by 96, [twenty-one units] -2 [four 0s]]

The torsion coefficient 2 (up to sign) is the one we predicted. But the matrix has
rank 22. Hence there are four linearly independent words that are not combina-
tions of two-letter words. The quotient is Z4 ⊕ (Z/2Z).

What about four-letter words?

CL-USER(36): (remove-if-not #’(lambda (w) (= (length w) 4)) +words+)
("AAHS" "AALS" "ABAS" "ABBA" "ABBE" "ABED" "ABET" "ABLE" "ABLY" "ABOS"
...)

CL-USER(37): (az-list-to-csparse *)
[CSPARSE 26 by 3919]
CL-USER(38): (make-snf * nil nil t)
[SNF 26 by 3919, [twenty-five units] 4 [zero 0s]]

We have torsion of order 4, again for parity reasons. But that is all we have: the
quotient by four-letter words is Z/4Z, as small as possible.

What about lengths greater than or equal to some cut-off value? The same
methods show that the quotient by words of length 20 or more is trivial. But for
length 21 or more, the quotient is Z.

CL-USER(39): (remove-if-not #’(lambda (w) (>= (length w) 21)) +words+)
("ACETYLCHOLINESTERASES" "ADRENOCORTICOSTEROIDS"
"ADRENOCORTICOTROPHINS" "ANTHROPOMORPHIZATIONS"
"ANTIAUTHORITARIANISMS" "ANTIFERROMAGNETICALLY"
"BUCKMINSTERFULLERENES" "CARBOXYMETHYLCELLULOSE"
"CARBOXYMETHYLCELLULOSES" "CLINICOPATHOLOGICALLY" ...)

CL-USER(40): (make-snf (az-list-to-csparse *) t nil t)
[SNF 26 by 118, [twenty-five units] [one 0]]

The function shh::coker-section picks out a generator for the quotient by
choosing a section for the quotient map.

CL-USER(41): (shh2::coker-section *)

The result is a column vector with all entries 0 except for a 1 standing for the
letter Q. We’ve proved that CARBOXYMETHYLQCELLULOSE is not a word.

322 Mark McConnell

References

[1] Ash, A., Gunnells, P., and McConnell, M. Cohomology of congruence subgroups of SL(4,Z).
J. Number Theory 94, 1 (2002), 181–212.

[2] Ash, A., Gunnells, P., and McConnell, M. Cohomology of congruence subgroups of
SL(4,Z) II. Submitted for publication.

[3] Ash, A. and McConnell, M. Doubly cuspidal cohomology for principal congruence subgroups
of GL(3,Z). Math. Comput. 59, 200 (Oct. 1992), 673–688.

[4] Barski, C. Lisperati. Tutorial available at http://www.lisperati.com

[5] Cohen, H. A Course in Computational Algebraic Number Theory (Springer Grad. Texts in
Math. 138). Springer-Verlag, Berlin/Heidelberg, 1993.

[6] Duff, I. S., Erisman, M., and Reid, J. K. Direct Methods for Sparse Matrices (in Monographs
on Numerical Analysis). Clarendon Press, Oxford, 1989.

[7] Dumas, J.-G., Saunders, B. D., and Villard, G. On efficient sparse integer matrix Smith
normal form computations. J. Symb. Comput. 32 (2001), 71–100.

[8] Golub, G. H. and Van Loan, C. F. Matrix Computations, 3rd ed. Johns Hopkins Univ.
Press, Baltimore, 1996.

[9] Grayson, D. and Stillman, M. Macaulay 2. Computer algebra system available at
http://www.math.uiuc.edu/Macaulay2/

[10] http://www.itasoftware.com/careers/puzzles/WORD.LST

[11] Leitão, A. M. Linj. Computer language available at http://www.evaluator.pt

[12] http://www.lispwire.com

[13] McConnell, M. http://www.geocities.com/mmcconnell17704/math.html
[14] Mestre, J.-F., Schoof, R., Washington, L., and Zagier, D. Quotients Homophones des

Groupes Libres: Homophonic Quotients of Free Groups, J. Exper. Math. 2, 3 (1993), 153–
155.

[15] Pomerance, C. and Smith, J. W. Reduction of huge, sparse matrices over a finite field via
created catastrophes. J. Exper. Math. 1 (1992), 90–94.

[16] Seibel, P. Practical Common Lisp. Apress, 2005. Complete text online at
http://www.gigamonkeys.com/book

[17] Teitelbaum, J. Euclid’s algorithm and the Lanczos method over finite fields. Math. Comput.
67, 224 (1998), 1665–1678.

[18] Wright, D. http://www.math.okstate.edu/ wrightd/numthry/rsa129.html#answer

Mark McConnell
WANDL, Inc.
E-mail: mmcconnell17704@yahoo.com

