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1. Introduction

Relying on Brosnan’s theory of Steenrod operations [1], Merkurjev [10] has
given a wide-ranging construction of characteristic classes with values in the Chow
ring, satisfying so-called degree formulas. In this paper, we give what we view as
a somewhat more conceptual treatment of both Brosnan’s Steenrod operations
and Merkurjev’s degree formulas, relying on our theory of algebraic cobordism [7]
(see also the earlier preprints [8, 9]). As algebraic cobordism requires resolution
of singularities, our approach is limited to characteristic zero.

Briefly, the outline of our construction is as follows: Milnor [11] noted that
the dual of the reduced mod-p Steenrod algebra in topology is closely related to
the endomorphism algebra of the additive formal group law over Fp. Algebraic
cobordism also has a close connection to formal group laws: algebraic cobor-
dism is the universal oriented Borel-Moore homology theory on Schk, to each
oriented Borel-Moore homology theory A on Schk is associated a formal group
law FA(u, v) ∈ A∗(k)[[u, v]], and the formal group law for algebraic cobordism is
the universal one. In addition, the theory given by the Chow groups of cycles
modulo rational equivalence is the universal theory with additive formal group
law. Relying on a twisting construction, this yields that each automorphism τ
of the additive formal group law over a graded Fp-algebra R yields a natural
transformation of the theory CH∗ ⊗ R to the “twisted” theory CH∗ ⊗ R(τ); the
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mod-p Steenrod operations are then given as the coefficients of the transformation
resulting from the automorphism,

t 7→ t +
∑

n≥1

bntp
n
,

over the polynomial algebra Fp[b1, b2, . . .], deg(bn) = pn−1. One gets for free the
naturality of the Steenrod operations with respect to projective push-forward and
a Riemann-Roch formula for the behavior under pull-back by an l.c.i. morphism,
as well as a product formula for the total Steenrod operation, analogous to the
classical Cartan relation.

For the degree formulas, we consider a canonical integral lifting of the mod-p
Steenrod operations, yielding a natural transformation of theories

S(p) : Ω∗ → CH∗[b1, b2, . . .](b),

S(p) =
∑

R S
(p)
R bR. The naturality of the Steenrod operations with respect to

push-forward yield a divisibility property of the S
(p)
R , giving interesting Z-valued

characteristic classes sR := S
(p)
R /p on smooth projective k-schemes, for each index

R 6= 0. The product formula for S(p), combined with the generalized degree
formula for algebraic cobordism, yields the degree formulas of Merkurjev for the
classes sR.

I would like to thank the referee for his commments and suggestions and Lizhen
Ji for organizing this volume. I would also like to extend my heartfelt thanks to
Bob MacPherson for giving mathematical inspiration and support over many
years.

2. Oriented theories

Let Schk denote the category of separated schemes of finite type over k. We
recall the setting of an oriented Borel-Moore theory from [7, Definition 5.1.3];
we fix a field k and let pt = Spec k. For a full subcategory V of Schk, we let
V ′ denote the category with the same objects as V, but with morphisms the
projective morphisms. For us, an l.c.i. morphism is a morphism f : Y → X in
Schk that admits a factorization f = p ◦ i, with i : Y → P a regular embedding
in Schk and p : P → X a smooth, quasi-projective morphism over k.

Given a rank n locally free sheaf E on X, let q : P(E) → X denote the projective
bundle of rank one quotients of E , with tautological quotient invertible sheaf
q∗E → O(1)E . We let O(1)E denote the line bundle on P(E) with sheaf of sections
O(1)E .
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Two morphisms f : X → Z, g : Y → Z in Schk are called Tor-independent if
for each triple of points x ∈ X, y ∈ Y , z ∈ Z with f(x) = g(y) = z,

TorOZ,z
p (OX,x,OY,y) = 0

for p > 0.

We call a functor F : Sch′k → Ab∗ additive if F (∅) = 0 and the canonical map
F (X)⊕ F (Y ) → F (X

∐
Y ) is an isomorphism for all X, Y in V.

Definition 2.1. An oriented Borel-Moore homology theory A on Schk is given
by

(D1). An additive functor

A∗ : Sch′k → Ab∗ , X 7→ A∗(X).

(D2). For each l.c.i. morphism f : Y → X in Schk of relative dimension d, a
homomorphism of graded groups

f∗ : A∗(X) → A∗+d(Y ).

(D3). An element 1 ∈ A0(pt) and, for each pair (X, Y ) in Schk, a bilinear
graded pairing:

A∗(X)⊗A∗(Y ) → A∗(X ×k Y )
u⊗ v 7→ u× v,

called the external product, which is associative, commutative and admits
1 as unit element.

These satisfy

(BM1). One has Id∗X = IdA∗(X) for any X ∈ Schk. Moreover, given composable
l.c.i. morphisms f : Y → X and g : Z → Y in Schk of pure relative
dimension, one has (f ◦ g)∗ = g∗ ◦ f∗.

(BM2). Let f : X → Z and g : Y → Z be morphisms in Schk. Suppose that
f and g are Tor-independent, that f is projective and that g is an l.c.i.
morphism, giving the cartesian square

W
g′

//

f ′
²²

X

f

²²

Y g
// Z.

Note that f ′ is projective and g′ is an l.c.i. morphism. Then g∗f∗ = f ′∗g′∗.
(BM3). Let f : X ′ → X in Schk and g : Y ′ → Y be morphisms in Schk. If f and

g are projective, then for u′ ∈ A∗(X ′) and v′ ∈ A∗(Y ′) one has

(f × g)∗(u′ × v′) = f∗(u′)× g∗(v′).
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If f and g are l.c.i. morphisms, then for u ∈ A∗(X) and v ∈ A∗(Y ) one
has

(f × g)∗(u× v) = f∗(u)× g∗(v)
(PB). For L → Y a line bundle on Y ∈ Schk with zero-section s : Y → L, define

the operator
c̃1(L) : A∗(Y ) → A∗−1(Y )

by c̃1(L)(η) = s∗(s∗(η)). Let E be a rank n+1 locally free coherent sheaf
on X ∈ Schk, with projective bundle q : P(E) → X. For i = 0, . . . , n, let

ξ(i) : A∗+i−n(X) → A∗(P(E))

be the composition of q∗ : A∗+i−n(X) → A∗+i(P(E)) followed by c̃1(O(1)E)i :
A∗+i(P(E)) → A∗(P(E)). Then the homomorphism

Σn−1
i=0 ξ(i) : ⊕n

i=0A∗+i−n(X) → A∗(P(E))

is an isomorphism.
(H). Let E → X be a vector bundle of rank r over X ∈ Schk, and let p : V →

X be an E-torsor (for the Zariski topology). Then p∗ : A∗(X) → A∗+r(V )
is an isomorphism.

(CD). For integers r,N > 0, let W = PN ×k . . . ×k PN (r factors), and let
pi : W → PN be the ith projection. Let X0, . . . , XN be the standard ho-
mogeneous coordinations on PN , let n1, . . . , nr be non-negative integers,
and let i : E → W be the subscheme defined by

∏r
i=1 p∗i (XN )ni = 0.

Then i∗ : A∗(E) → A∗(W ) is injective.

Remarks 2.2. (1) Let Sm/k ⊂ Schk denote the full sub-category of smooth
quasi-projective k-schemes. An oriented cohomology theory A∗ on Sm/k in the
sense of [7, Definition 1.1.2] is just an oriented Borel-Moore homology theory A∗,
only with Schk replaced everywhere by Sm/k, the fiber product W in (BM2) is
required to be in Sm/k and the axiom (CD) omitted (cf. [7, Proposition. 5.2.1]).
The grading is reindexed:

A∗(X) := Adim X−∗(X).

A∗(X) becomes a graded ring, with product a ∪ b := δ∗(a × b), δ : X → X ×X
the diagonal, and unit 1X := p∗X(1), pX : X → pt the structure morphism. For a
line bunde L → X, let c1(L) = c̃1(L)(1X) ∈ A1(X), then

c̃1(L)(a) = c1(L) ∪ a

for all a ∈ A∗(X).

(2) Let f : Y → X be a morphism in Schk, with X ∈ Sm/k. Then (f, id) :
Y → X × Y is a regular embedding; the pairing

Am(X)⊗An(Y ) → An−m(Y )

a⊗ b 7→ (f, id)∗(a× b)
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makes A∗(Y ) a graded A∗(X)-module (with A−n(Y ) in degree n).

(3) Let f : Y → X be a projective morphism, L → X a line bundle, s : X → L,
s′ : Y → f∗L the zero sections. Applying (BM2) to the cartesian Tor-independent
square

Y
f

//

s′
²²

X

s

²²

f∗L
f̃

// L

gives the projection formula for the operator c̃1(L):

c̃1(L) ◦ f∗ = f∗ ◦ c̃1(f∗L).

(4) For X ∈ Schk, let CHn(X) be the Chow group of dimension n algebraic
cycles on X modulo rational equivalence, and let CH∗(X) := ⊕nCHn(X). The
Chow groups functor X 7→ CH∗(X) is an oriented Borel-Moore homology theory
on Schk.

(5) In case we need to emphasize the particular theory, we will write c̃A
1 (L) for

the first Chern class operator c̃1(L) : A∗(X) → A∗−1(X).

One very useful consequence of the axioms is

Lemma 2.3. Let A be an oriented Borel-Moore homology theory on Schk, X ∈
Schk, L → X a line bundle with sheaf of sections L. Let s : X → L a section
such that the induced map ×s : OX → L is injective, and let i : D → X be the
Cartier divisor defined by s = 0. Then

c̃1(L) = i∗i∗.

Proof. Let s0 : X → L be the zero section. We first show that

s∗0 = s∗ : A∗(L) → A∗−1(X).

Indeed, we have the map s(t) : X × A1 → L defined by s(t) = ts + (1 − t)s0,
where A1 = Spec k[t]. Letting i0, i1 : X → X × A1 be the sections with value
0,1, respectively, it follows from the homotopy property (H) that i∗0 = i∗1, hence
s∗0 = s∗, as claimed.

Now consider the cartesian square

D
i //

i
²²

X

s0

²²

X s
// L
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By our assumption that ×s is injective, this square is Tor-independent. Clearly
s0 is projective and s is an l.c.i.morphism, hence by (BM2)

s∗s0∗ = i∗i∗.

Since s∗ = s∗0, this shows that i∗i∗ = c̃1(L), as desired. ¤

The next result will be useful in proving the Whitney product formula for
Chern classes of vector bundles.

Proposition 2.4. Let X be in Schk, and let D1, . . . , Dn be effective Cartier
divisors on X such that for each j = 1, . . . , n,

TorOX
1 (⊗j−1

i=1ODi ,ODj ) = 0.

Suppose in addition that ∩n
i=1Di = ∅. Then

n∏

i=1

c̃1(OX(Di)) = 0

as an operator on A∗(X).

Proof. The hypothesis on the vanishing of Tor1 implies that D1 ∩ . . . ∩ Dj is a
Cartier divisor on D1 ∩ . . .∩Dj−1 for all j = 1, . . . , n. Let ij : D1 ∩ . . .∩Dj → X
be the inclusion. By Lemma 2.3 and induction, it follows that

j∏

i=1

c̃1(OX(Di))(A∗(X)) ⊂ ij∗(A∗(D1 ∩ . . . ∩Dj)).

for all j. Since A∗(∅) = 0, this proves the result. ¤

For X ∈ Schk, we say that A∗(X) is generated by quasi-projective elements if
A∗(X) is generated (as a group) by elements of the form f∗(a), for f : Y → X
projective, Y ∈ Schk quasi-projective and a ∈ A∗(Y ). This is the case if, for
example, X is itself quasi-projective.

Corollary 2.5. Take X ∈ Schk for k an infinite field, and let A be an oriented
Borel-Moore homology theory on Schk. Suppose A∗(X) is generated by quasi-
projective elements. Then for each a ∈ A∗(X), there is an integer N such that,
for all line bundles L1, . . . , Lr on X with r > N ,

∏r
i=1 c̃1(Li)(a) = 0.

Proof. Since A∗(X) is generated by quasi-projective elements, the projection for-
mula of Remark 2.2(4) allows us to assume that X is quasi-projective. We may
therefore apply Jouanolou’s trick [5]: there is a vector bundle torsor X ′ → X
with X ′ affine. By (H), we may replace X with X ′, and assume from the start
that X = Spec A. We will show that in this case, we may take N = dim X.
Since k is infinite, there are sections si of Li, i = 1, . . . , r such that s1, . . . sj form
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a regular sequence in A for all j = 1, . . . N and s1, . . . , sN+1 generates the unit
ideal. The result thus follows from Proposition 2.4. ¤

3. Algebraic cobordism

In [7], we (that is, the author and Fabien Morel) construct the theory of alge-
braic cobordism, Ω∗, and prove most of the desired properties. In [7, Sections 5
and 6], we construct pull-back maps for l.c.i.-moprhisms and show that Ω∗ is an
oriented Borel-Moore homology theory on Schk. We give a rough sketch of the
construction here.

For X ∈ Schk, Ωn(X) is generated (as an abelian group) by cobordism cycles
(f : Y → X;L1, . . . , Lr), where f is a projective morphism, Y ∈ Sm/k is irre-
ducible of dimension n + r over k and the Li are line bundles on Y . We identify
two cobordism cycles if they are isomorphic over X or if one reorders the Li. One
imposes two relations:

(1) (f : Y → X;L1, . . . , Lr) = 0 if there exists a smooth morphism π : Y →
Z, line bundles M1, . . . , Mr on Z with Li

∼= π∗Mi for i = 1, . . . , s ≤ r and
dimk Z < s.

(2) If s : Y → L is a section with smooth divisor i : D → Y on Y , then we
identify (f : Y → X;L1, . . . , Lr, L) = (f ◦ i : D → X; i∗L1, . . . , i

∗Lr).

We denote the graded group so defined by Ω∗(X). One defines the Chern class
operators c̃1(L) for L a line bundle on X by

c̃1(L)((f : Y → X;L1, . . . , Lr)) := (f : Y → X;L1, . . . , Lr, f
∗L).

For a projective morphism g : X → X ′, define

g∗(f : Y → X;L1, . . . , Lr) := (g ◦ f : Y → X ′;L1, . . . , Lr)

One has as well an evident pull-back for smooth morphisms and an evident ex-
ternal product. Thus we have the basic data we need to define an oriented Borel-
Moore weak homology theory on Schk (except for pull-back for l.c.i.-morphisms).

The second relation gives as a special case the relation of naive cobordism,
namely: Let p : W → X × P1 be projective with W ∈ Sm/k, and with p2 ◦ p
smooth over a neighborhood of {0,∞}. Let L1, . . . , Lr be line bundles on W , and
let i0 : W0 → W , i∞ : W∞ → W be the inclusions of the fibers over 0,∞. Then

(p ◦ i0 : W0 → X, i∗0L1, . . . , i
∗
0Lr) = (p ◦ i∞ : W∞ → X, i∗∞L1, . . . , i

∗
∞Lr)

in Ω∗(X). Contrary to the purely topological theory of complex cobordism, the
relations (1) and (2) do not suffice to define Ω∗. One needs to impose the formal
group law.
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Recall that a (commutative, rank one) formal group law over a commutative
ring R is a power series F (u, v) ∈ R[[u, v]] satisfying the formal relations of
identity, commutativity and associativity:

(1) F (u, 0) = F (0, u) = u.
(2) F (u, v) = F (v, u)
(3) F (F (u, v), w) = F (u, F (v, w)).

There is a universal formal group law

FL(u, v) ∈ L[[u, v]];

the coefficient ring of the universal group law L is the Lazard ring. L is con-
structed in the obvious way: start with the polynomial ring Z[{Aij , i, j ≥ 1}],
and form the power series

F̃ (u, v) := u + v +
∑

i,j≥1

Aiju
ivj .

The relation (1) is already satisfied; relations (2) and (3) give polynomial relations
on the Aij and L is the quotient of Z[{Aij}] by these relations. Letting aij be
the image of Aij in L, the universal formal group law is FL(u, v) := u + v +∑

i,j≥1 aiju
ivj . We grade L by giving aij degree i + j − 1. If we give u and v

degrees −1, this gives FL(u, v) total degree −1.

To construct Ω∗, we take the functor L∗ ⊗Z Ω∗ and impose the relations:

FL(c̃1(L), c̃1(M))(f : Y → X;L1, . . . , Lr)

= c̃1(L⊗M)(f : Y → X;L1, . . . , Lr)

for each pair of line bundles L,M on X.

One shows that Ω∗(X) is generated by the elementary cobordism cycles f :
Y → X; in particular, Ω∗(X) is generated by quasi-projective elements for all
X ∈ Schk.

The construction of the pull-back for l.c.i.-morphisms is fairly technical, and
is the main task of [7, Section 6]. A main result of [7] (cf. [7, Theorem 7.1.3]) is

Theorem 3.1. Assume k admits resolution of singularities.

(1) Algebraic cobordism, X 7→ Ω∗(X), is the universal oriented Borel-Moore
homology theory on Schk.

(2) Algebraic cobordism, considered as an oriented cohomology theory on Sm/k,
is the universal oriented cohomology theory on Sm/k.
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4. Formal group laws

As mentioned in [7, Sections 1 and 5], each oriented Borel-Moore homology
theory A has a formal group law FA(u, v) ∈ A∗(k)[[u, v]], which gives the identity
of operators

FA(c̃A
1 (L), c̃A

1 (M)) = c̃A
1 (L⊗M)

for each pair of line bundles L,M on X ∈ Schk such that A∗(X) is generated by
quasi-projective elements. For this identity to be meaningful, one needs to know
that the (commuting) operators c̃A

1 (L) are locally nilpotent on A∗(X), which
follows from Corollary 2.5. The existence of FA follows from two applications of
the projective bundle formula (PB), which gives

A∗(P∞ × P∞) : = lim←
n,m

A∗(Pn × Pm)

∼= lim←
n,m

A∗(k)[u, v]/(un+1, vm+1)

= A∗(k)[[u, v]],

the isomorphism in the second line defined by sending auivj , a ∈ A∗(k), to
c1(OPn×Pm(i, j)) ∪ p∗(a), where

OPn×Pm(i, j) := p∗1OPn(i)⊗ p∗2OPm(j)

and p : Pn×Pm → pt is the structure morphism. Clearly the elements c1(OPn×Pm

(1, 1)) ∈ A1(Pn × Pm) define an element c1(O(1, 1)) in the inverse limit, so there
is a uniquely defined power series FA(u, v) ∈ A∗(k)[[u, v]] with

c1(O(1, 1)) = FA(c1(O(1, 0)), c1(O(0, 1))).

If X ∈ Schk is affine, then every pair of line bundles L,M on X comes by
pull-back via a map f : X → Pn × Pm, with L ∼= f∗(O(1, 0)), M ∼= f∗(O(0, 1)),
which gives us the identity of operators

c̃1(L⊗M) = FA(c̃1(L), c̃1(M))

by using the A∗(Pn×Pm)-module structure on A∗(X) induced by f . Jouanolou’s
trick extends this to quasi-projective X, which in turn yields the same identity
for X with A∗(X) generated by quasi-projective elements by using the projection
formula for c̃1(L) (Remark 2.2(4)).

For each theory A there is therefore a canonical graded ring homomorphism

φA : L∗ → A∗(k)

with φA(FL) = FA. One main result of [7] is the identification of FΩ with FL:

Theorem 4.1 ([7, Theorem 4.3.7]). For a field k of characteristic zero, the ho-
momorphism φΩ : L∗ → Ω∗(k) is an isomorphism.
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The well-known additivity of the first Chern class in the Chow ring means that
FCH is the additive group

FCH(u, v) = u + v.

Let φ+ : L→ Z be the homomorphism classifying the additive group law and let
Ω+∗ = Ω∗⊗LZ. By the universal property of Ω∗, we have the canonical morphism
of oriented Borel-Morel theories

ψCH : Ω+ → CH.

Theorem 4.2 ([7, Theorem 7.1.4]). ψCH : Ω+ → CH is an isomorphism, that is,
CH is the universal oriented theory on Schk with additive formal group law.

5. Chern classes

We recall the construction of Chern classes and inverse Todd classes.

Let A∗ be an oriented Borel-Moore homology theory on Schk. For simplicity,
we assume that A∗(X) is generated by quasi-projective elements for all X ∈ Schk.
Using the axiom (PB), Grothendieck’s construction [2] allows us to define, for each
vector bundle E → X, the total Chern class operator

c̃∗(E) =
rnk E∑

i=0

c̃i(E),

with c̃i(E) : An(X) → An−i(X) satisfying

(0) Given vector bundles E → X and F → X on X ∈ V one has

c̃i(E) ◦ c̃j(F ) = c̃j(F ) ◦ c̃i(E)

for any (i, j).
(1) For any line bundle L, c̃1(L) agrees with the one given in axiom (PB) of

definition 2.1, applied to A∗.
(2) For any l.c.i. morphism Y → X ∈ Schk, and any vector bundle E → X

over X one has

c̃i(f∗E) ◦ f∗ = f∗ ◦ c̃i(E).

(3) If 0 → E′ → E → E′′ → 0 is an exact sequence of vector bundles over X,
then for each integer n ≥ 0 one has the following equation in End(A∗(X)):

c̃n(E) =
n∑

i=0

c̃i(E′) c̃n−i(E′′).

(4) For any projective morphism Y → X in Schk and any vector bundle
E → X over X, one has

f∗ ◦ c̃i(f∗E) = c̃i(E) ◦ f∗.
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Moreover, the Chern class operators are characterized by the properties (0)-(3).

Proof. For the construction, let E → X be a vector bundle of rank r, α an element
of An(X), O(1) the tautological quotient line bundle on P(E), q : P(E) → X
the structure morphism. By (PB) there are unique elements αi ∈ An−i(X),
i = 1, . . . , r, such that

c̃1(O(1))r(q∗α) +
r∑

i=1

(−1)ic̃1(O(1))r−i(q∗(αi)) = 0

Setting c̃i(E)(α) := αi defines the operators c̃i(E). The properties (0), (1), (2)
and (4) follow easily from the axioms for an oriented Borel-Moore homology
theory, as does the fact that (0)-(3) characterize the operators.

Grothendieck’s construction of Chern classes in [2] uses the additivity of the
first Chern class of line bundles with respect to tensor product, while we have
only a formal group law. Because of this, we give a sketch of the proof of (3)
here.

Let c̃∗(E) denote the total Chern class operator
∑

i c̃i(E). The proof of (3)
uses the following lemma:

Lemma 5.1. Let X be in Schk, D1, . . . , Dn effective Cartier divisors on X
satisfying the Tor1-vanishing condition of Proposition 2.4, and with ∩n

i=1Di = ∅.
Let L1, . . . , Ln be line bundles on X, and let Mi = Li ⊗ OX(Di), i = 1, . . . , n.
Then

n∏

i=1

(c̃1(Mi)− c̃1(Li)) = 0

as an operator on A∗(X).

Proof. We use the formal group law FA(u, v) = u + v +
∑

p,q≥1 apqu
pvq. Mi =

Li ⊗OX(Di), so

c̃1(Mi) = FA(c̃1(Li), c̃1(OX(Di)))

= c̃1(Li) + c̃1(OX(Di)) +
∑

p,q≥1

apq c̃1(Li)pc̃1(OX(Di))q.

Letting g(u, v) =
∑

p,q≥1 apqu
pvq−1, we thus have

c̃1(Mi)− c̃1(Li) = c̃1(OX(Di)) · g(c̃1(Li), c̃1(OX(Di))).

Since all the operators c̃1(?) commute, the result is a consequence of Proposi-
tion 2.4. ¤

With these results, the proof of (3) follows the line of argument used by
Grothendieck in the case of additive c1.
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Let Fl(E′) → X, Fl(E′′) → X be the respective full flag varieties. By the
projective bundle formula, the pullback map A∗(X) → A∗+N (Fl(E′) × Fl(E′′))
is injective, so we may assume that E admits a filtration by subbundles

0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ En

with Ei of rank i for each i, and with E′ = Er, E′′ = E/Er for some r. Let
Spl(E•) → X be the affine-space bundle of splittings of this filtration; by the
homotopy axiom (H), we may replace X with Spl(E•). Thus, we may assume
that E′ and E′′ are both a direct sum of line bundles, and E = E′ ⊕ E′′. This
reduces us to showing: Let L1, . . . , Ln be line bundles on X. Then

c̃∗(⊕r
i=1Li) =

r∏

i=1

(1 + c̃1(Li)),

i.e., that c̃p(⊕n
i=1Li) is the pth symmetric function in the operators c̃1(L1), . . . ,

c̃1(Ln).

For this, let q : P→ X be the projective space bundle

P := ProjOX
(Sym∗(⊕r

i=1Li)),

with tautological quotient q∗(⊕r
i=1Li) → O(1). The composition Li → ⊕r

i=1Li →
O(1) defines the section si : OP → O(1) ⊗ L−1

i ; let Di be the divisor of si. If
the line bundles are all trivialized on some open U ⊂ X, then the 1-sections in
L1, . . . , Lr define the homogeneous coordinates X1, . . . , Xr on P = Pr−1

U , and Di is
the divisor of Xi. Thus the Di are all Cartier divisors, and D1, . . . , Dr satisfy the
conditions of Proposition 2.4. As O(1) ∼= Li ⊗OX(Di), it follows by Lemma 5.1
that

n∏

i=1

(c̃1(O(1))− c̃1(Li)) = 0.

From the uniqueness of the relation defining the Chern class c̃p(⊕n
i=1Li), this

implies that c̃p(⊕n
i=1Li) is the pth symmetric function in the operators c̃1(L1), . . . ,

c̃1(Ln), exactly as desired.

¤

The Chern class operators yield “fomal inverse Todd classes” as follows:

Lemma 5.2. Let A∗ be an oriented Borel-Moore homology theory on Schk and
let τ = (τi) ∈ Π∞i=0Ai(k), with τ0 = 1. Suppose that A∗(X) is generated by quasi-
projective elements for all X ∈ Schk. Then one can define in a unique way, for
each X ∈ Schk and each vector bundle E on X, an endomorphism (of degree
zero)

Td−1
τ (E) : A∗(X) → A∗(X)

such that the following holds:
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(0) Given vector bundles E → X and F → X one has

Td−1
τ (E) ◦ Td−1

τ (F ) = Td−1
τ (F ) ◦ Td−1

τ (E).

(1) For a line bundle L one has:

Td−1
τ (L) =

∞∑

i=0

c̃1(L)i τi.

(2) For any l.c.i. morphism Y → X in Schk, and any vector bundle E → X
over X one has

Td−1
τ (f∗E) ◦ f∗ = f∗ ◦ Td−1

τ (E).

(3) If 0 → E′ → E → E′′ → 0 is an exact sequence of vector bundles over X,
then one has:

Td−1
τ (E) = Td−1

τ (E′) ◦ Td−1
τ (E′′).

(4) For any projective morphism Y → X in Schk and any vector bundle
E → X over X, one has

f∗ ◦ Td−1
τ (f∗E) = Td−1

τ (E) ◦ f∗.

Proof. Once we have the Chern class operators c̃p(E), the construction is just an
exercise in symmetric functions. Let Z[t] be the graded polynomial algebra over
Z with generators t1, t2, . . ., where tn has degree n. We set t0 = 1. Introduce new
variables ξ1, ξ2, . . . of degree −1, and let Z[t][ξ1, ξ2, . . . , ξm] be the bi-graded ex-
tended polynomial ring, that is, we allow infinite sums of the form

∑∞
n=0 Qn(t, ξ),

where each Qn is a (usual) polynomial in the ti and ξj , homogeneous of degree n
in the ti.

Let Z[t][ξ1, ξ2, . . .] be the inverse limit

Z[t][ξ1, ξ2, . . .] := lim←
m

Z[t][ξ1, ξ2, . . . , ξm]

via the maps Z[t][ξ1, ξ2, . . . , ξm] → Z[t][ξ1, ξ2, . . . , ξm−1] sending ξm to zero. The
element ∞∏

i=1

∞∑

j=0

tjξ
j
i

is in Z[t][ξ1, ξ2, . . .], has total degree 0 and is symmetric with respect to the ξ-
variables. Thus, letting σ1(ξ), σ2(ξ), . . . be the elementary symmetric functions,
with σm(ξ) thus having degree −m, there are unique polynomials

Pn(t1, . . . , tn;σ1, . . . , σn) ∈ Z[t1, . . . , tn, σ1, . . . , σn]

of total degree 0 and of degree n in t such that
∞∏

i=1

∞∑

j=0

tjξ
j
i =

∑
n

Pn(t1, . . . , tn;σ1(ξ), . . . , σn(ξ)).
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For a vector bundle E → X, define the formal operator Td−1
τ (E) by

Td−1
τ (E) :=

∞∑

n=0

Pn(τ1, . . . , τn; c̃1(E), . . . , c̃n(E)).

Note that, if E is a sum of line bundles, E = ⊕r
i=1Li, then c̃p(E) = σp(c̃1(L1), . . . ,

c̃1(Lr)). This and the splitting principle shows that E 7→ Td−1
τ (E) is (formally)

multiplicative in exact sequences; Corollary 2.5 thus implies that, for each a ∈
A∗(X), there is an N such that Pn(τ1, . . . , τn; c̃1(E), . . . , c̃n(E))(a) = 0 for n >
N . Thus Td−1

τ (E) makes sense as an operator of degree zero on A∗(X) and
E 7→ Td−1

τ (E) is multiplicative (as an operator) in exact sequences.

The properties listed in the statement of the lemma follow from the analogous
properties of the total Chern class operators c̃∗(E), the splitting principle and
the multiplicative property of Td−1

τ . ¤

For X ∈ Sm/k and E → X a vector bundle, we write ci(E) for c̃i(E)(1X) and
td−1

τ (E) for Td−1
τ (E)(1X).

6. Twisting a theory

Let A∗ be an oriented Borel-Moore homology theory on Schk and choose ele-
ments τ = (τi) ∈ Π∞i=0Ai(k), with τ0 = 1. We form the twisted theory A

(τ)
∗ with

A
(τ)
∗ (X) = A∗(X) for each X, with the same push-forward maps f∗ and external

product ×, but with the pull-back f∗(τ) (for f : Y → X an l.c.i. morphism) defined
by

f∗(τ)(x) := Td−1
τ (Nf )(f∗(x)).

Here Nf ∈ K0(Y ) is the formal normal bundle of f : if we factor f : Y → X as a
regular embedding i : Y → P followed by a smooth morphism q : P → X, then

Nf := Ni − i∗Tq,

where Tq is the dual of the sheaf of relative Kähler differentials ΩP/X .

A direct calculation verifies:

Lemma 6.1. A
(τ)
∗ is an oriented Borel-Moore homology theory on Schk. The

first Chern class operator for this theory, c̃A(τ)

1 , is given by

c̃A(τ)

1 (L) = (Td−1
τ )A(L) ◦ c̃A

1 (L).

Remark 6.2. If we restrict to Sm/k, all the morphisms are l.c.i.-morphisms, and
Td−1(E) is cup product with td−1(E). This allows us twist A by leaving the
pull-back maps the same, and altering the projective push-forward f∗ by

f τ
∗ (x) := f∗(x ∪ td−1

τ (Nf ))
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This defines the twisted theory Aτ on Sm/k. The maps

∪td−1(TX) : A(τ)(X) → Aτ (X)

define an isomorphism of oriented cohomology theories. Note also that cτ
1(L) is

the inverse τ -Todd class of L,
∑

i τic1(L)i.

Panin [12] has proved a very general version of the Grothendieck Riemann-Roch
theorem, in the setting of oriented cohomology theories (with some additional
axioms). The initial data is a map of the cohomology theories

ch : A → B

underlying two oriented cohomology theories A and B, that is ch(X) : A(X) →
B(X) is a ring homomorphism for each X ∈ Sm/k, commuting with pull-back,
but not necessarily commuting with projective push-forward. Noting that c1(L)
is defined using both pull-back and push-forward, one can (at least partially)
measure the failure of ch to commute with push-forward by comparing ch(cA

1 (L))
with cB

1 (L). If one does this in B(P∞) = B(k)[[t], t = cB
1 (O(1)), one has the

inverse Todd genus

Td−1
ch (t) :=

ch(cA
1 (O(1))

t
.

Suppose that the constant term of Td−1
ch (t) is 1 (one can handle the case of

constant term a unit as well, but we omit this). Writing Td−1
ch (t) = 1+

∑
i≥1 τit

i,
τi ∈ B(k), one has the twisted theory Bτ . Since Bτ and B have the same pull-
back maps, we can consider ch as a map of cohomology theories

ch : A → Bτ .

Panin’s Riemann-Roch theorem can be interpreted in this language as stating
that ch : A → Bτ is a map of oriented cohomology theories, i.e., ch intertwines
the push-forward maps for A and for Bτ . The explicit form of the push-forward
maps for Bτ in terms of the inverse Todd class of the virtual normal bundle of
a map f : Y → X (which is the usual Todd class of the virtual tangent bundle
TY − f∗TX) recovers the Riemann-Roch theorem in its usual form:

f∗(ch(x) ∪ td(TY − f∗TX)) = ch(f∗x).

In words: Once the theory B is twisted so that ch commutes with push-forward
by the zero-section Pn → OPn(1) (for all n), ch automatically commutes with all
projective push-forward maps.

7. Steenrod operations

We construct the Steenrod operations by applying the twisting operation to a
polynomial extension of CH∗ ⊗ Fp.
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Fix a prime p and let b
(p)
1 , b

(p)
2 , . . . be indeterminates, with b

(p)
n having degree

pn − 1; we set b
(p)
0 := 1. Let Fp[b(p)] be the polynomial ring on the b

(p)
1 , b

(p)
2 , . . .

and set

C̄H∗ := CH∗ ⊗Z Fp

C̄H[b(p)]∗ := CH∗ ⊗Z Fp[b(p)].

Form the twisted theory C̄H[b(p)](b
(p))

∗ , i.e., we take τpn−1 = b
(p)
n and τi = 0 if i

is not of the form pn− 1. The universal property of Ω∗ gives us the morphism of
oriented Borel-Moore homology theories

S̃(p) : Ω∗ → C̄H[b(p)](b
(p))

∗ .

Proposition 7.1. The map S̃(p) descends to a morphism of oriented Borel-Moore
homology theories

S̄(p) : C̄H∗ → C̄H[b(p)](b
(p))

∗ .

Proof. Since CH∗ is the universal additive theory, we need only check that the
formal group law for C̄H[b(p)](b

(p))
∗ is additive. By Lemma 6.1, the first Chern

class for the twisted theory c̃
(b(p))
1 is given by

c̃
(b(p))
1 (L) =

∞∑

n=0

c̃CH
1 (L)pn

b(p)
n mod p.

Since c̃CH
1 (L⊗M) = c̃CH

1 (L) + c̃CH
1 (M), we have

c̃
(b(p))
1 (L⊗M) = c̃

(b(p))
1 (L) + c̃

(b(p))
1 (M)

yielding the additive group law for C̄H[b(p)](b
(p))

∗ . ¤

We omit the p from the notation for the rest of this section. Let R :=
(r1, r2, . . . rn) be a sequence of non-negative integers. Let bR :=

∏
bri
i , |R| :=∑

i ri(pi − 1) = deg(bR). We can thus write S̄ : CH∗ → C̄H[b](b)∗ as

S̄ =
∑

R

S̄R · bR : CH∗ → C̄H[b](b)∗ .

Similarly, for a vector bundle E → X, we have the formal inverse Todd class
Td−1

(b)(E). We view Td−1
(b)(E) as a “twisted total Chern class endomorphism”,

written as

Td−1
(b)(E) :=

∑

R

c̃R(E)bR;

c̃R(E) : CH∗ → CH∗−|R|.
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We record the principal properties of the map S̄ and the maps S̄R; these
properties all follow immediately from the fact that S̄ is a morphism of oriented
Borel-Moore homology theories.

(7.1)

(1) For each R, S̄R : C̄H∗ → C̄H∗−R is an natural transformation of functors
Sch′k → Ab, i.e., for each X ∈ Schk, S̄R(X) : C̄H∗(X) → C̄H∗−R(X) is
additive, and the maps S̄R(X) commute with the pushforward maps f∗
for f : X → Y projective.

(2) Let f : Y → X be a l.c.i. morphism. Then

S̄ ◦ f∗ = Td−1
(b)(Nf ) ◦ f∗ ◦ S̄

(3) For classes x ∈ C̄H∗(X), y ∈ C̄H∗(Y ),

S̄(x× y) = S̄(x)× S̄(y) ∈ C̄H[b](b)∗ (X × Y ).

These properties yield the following formula for S̄R:

Proposition 7.2. Let Z ⊂ X be a subvariety of some X ∈ Schk, let Z̃ → Z be
a resolution of singularities and let f : Z̃ → X be the evident morphism. Then

S̄R(1 · Z) = f∗(cR(−TZ̃)).

Proof. Let p : Z̃ → pt be the structure morphism. 1 · Z is clearly f∗(1Z̃). Also,
S̄R(pt) = 0 for all R 6= ∅ by reasons of degree, i.e., S̄(pt) = id. Thus

S̄(1 · Z) = S̄(f∗(p∗(1)))

= f∗(S̄(p∗(1)))

= f∗(Td−1
(b)(Np)(p∗(S̄(1))))

= f∗(Td−1
(b)(Np)(1Z̃))

= f∗(td−1
(b)(−TZ̃)).

Taking the coefficient of bR finishes the proof. ¤

This last proposition completely describes the operations S̄R; by basic proper-
ties of Brosnan’s Steenrod operations outlined in [1, Section 8], this also shows
that they coincide with the Steenrod operations defined by Brosnan. Of course,
Brosnan’s operations have the advantage that they are defined in arbitrary char-
acteristic.
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8. Characteristic numbers

An integral lifting of the construction of the last section gives rise to interesting
characteristic numbers.

For p : X → pt smooth and projective of dimension d, we set [X] := p∗(1X) ∈
Ωd(k). By [7, Lemma 2.5.11], Ωd(k) is generated by the classes [X].

Fix a prime p, let bn = b
(p)
n , etc. Form the twisted theory CH∗[b](b), giving us

the morphism of oriented Borel-Moore theories on Schk,

S : Ω∗ → CH[b](b)∗ ,

which we may write as S =
∑

R SR · bR.

Since we are using integral coefficients rather than mod p coefficients, the
map S will not descend to CH∗, however, the fact that it does modulo p has as
consequence:

Lemma 8.1. Let Ω>0(k) be the ideal of Ω∗(k) generated by elements of degree
> 0. For all R 6= ∅, SR(Ω>0(k)) is contained in pCH[b](b)∗ (k).

Proof. Since Ω∗(k) = L and CH∗(k) = Ω∗(k) ⊗L Z, Ω>0(k) is the kernel of the
canonical map Ω∗(k) → CH∗(k) = Z. Since S mod p factors through CH∗, the
result follows. ¤

Using 1 ∈ CH0(k) as a generator, we have the canonical identification of
CH[b](b)∗ (k) with the polynomial ring Z[b1, b2, . . .]. Thus, setting sR := (SR/p),
we have for each R 6= ∅ the well-defined homorphism

sR : Ω|R|(k) → Z.

Explicitly, Lemma 8.1 shows that, for each R 6= ∅, and each smooth projective X
of dimension |R| over k, p|deg(cR(−TX)), and sR is the unique homomorphism
with

sR([X]) =
1
p
· deg(cR(−TX)).

The proof of these statements follows by a computation similar to that used in
the proof of Proposition 7.2, and the fact that Ω∗(k) is generated by the classes
[X]. We write sR(X) for sR([X]).

The characteristic numbers sR have a nice primitivity property, modulo a
certain ideal. For a k-scheme X of finite type over k, we let I(X) denote the
ideal in Z generated by the field extension degrees [k(x) : k], as x runs over the
closed points of X. If X is projective, I(X) is just the image of CH0(X) under
pushforward pX∗ : CH0(X) → CH0(pt) = Z.
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Lemma 8.2. Let X = Y × Z be a product of smooth projective varieties Y and
Z over k, with dimY > 0 and dimZ > 0. Then for all R 6= ∅, sR(X) ≡ 0
mod I(Z).

Proof. Since S is a morphism of oriented Borel-Moore homology theories, S has
the same formal properties (7.1) as S̄, in particular

S([X]) = S([Y × Z])

= S([Y ]× [Z])

= S([Y ])× S([Z])

Thus

sR(X) =
1
p
SR([X])

=
∑

R′+R′′=R
|R′|=dim Y, |R′′|=dim Z

1
p
SR′([Y ]) · SR′′([Z])

=
∑

R′+R′′=R
|R′|=dim Y, |R′′|=dim Z

sR′(Y ) · SR′′(Z).

But SR′′(Z) is the degree of the zero-cycle cR′′(−TZ) and sR′(Y ) is an integer, so
the last sum is 0 mod I(Z). ¤

9. Degree formulas

Using the generalized degree formula of [7, Section 4.4], it is easy to show that
the characteristic numbers sR satisfy a “degree formula”. We fix a characteristic
zero base field k and a prime number p. To emphasize the dependence on the
choice of p, we write sRp(X) for sR(X) and |Rp| for |R|.
Theorem 9.1. Let f : Y → X be a k-morphism of smooth projective varieties
over k. Let R = (r1, . . . , rn) be a sequence of non-negative integers with |Rp| =
dimX = dim Y . Then

sRp(Y ) ≡ deg f · sRp(X) mod I(X).

Proof. It follows from the generalized degree formula [7, Theorem 4.4.7] that
there are smooth projective k-schemes Z̃i, morphisms fi : Z̃i → X and elements
αi ∈ Ω∗(k), i = 1, . . . , m, such that

(1) Z̃i → fi(Z̃i) is birational.
(2) dim Z̃i < dimX
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(3) f∗(1Y ) = deg f · 1X +
∑m

i=1 αi · fi∗(1Z̃i
).

Pushing forward the last identity to Ω∗(k) gives

[Y ] = deg f · [X] +
∑

i

αi · [Z̃i].

Since dim Z̃i < dimX, it follows that αi is in the ideal Ω∗>0(k) for each i. As
Ωd(k) is generated by the classes [W ], with W smooth and projective over k and
dimW = d, it follows that each αi is a sum

αi =
∑

j

nij [Wij ]

with Wij smooth and projective over k, dimWij > 0, and the nij are integers.

If dim Z̃i > 0, then it follows from Lemma 8.2 that sRp(αi·[Z̃i]) ≡ 0 mod I(Z̃i).
Since we have the morphism Z̃i → X, I(Z̃i) ⊂ I(X). Thus

sRp(Y ) ≡ deg f · sRp(X) +
∑

i

′
sRp(αi · [Z̃i]) mod I(X)

where
∑′

i means the sum over all i such that dim Z̃i = 0.

In case dim Z̃i = 0, it follows from (1) that fi : Z̃i → fi(Z̃i) is an isomorphism,
and fi thus identifies Z̃i with a closed point zi of X. It thus follows that [Z̃i] =
[zi] = [k(zi) : k] · 1 ∈ Ω0(k) = Z (cf. [7, Theorem 2.5.12] ).

Thus
sRp(αi · [Z̃i]) = [k(zi) : k] · sRp(αi) ≡ 0 mod I(X),

and we have
sRp(Y ) ≡ deg f · sRp(X) mod I(X)

as desired. ¤

Note that the ideal I(X) is a birational invariant for X smooth and projective
over k; indeed, if U ⊂ X is open and dense, the map z0(U) → CH0(X) is
surjective, from which the birational invariance follows easily. The birational
invariance of sRp(X) mod I(X) follows from the degree formula:

Corollary 9.2. Let X and X ′ be smooth projective varieties over k which are
birational as k-schemes. Then

sRp(X) ≡ sRp(X ′) mod I(X) = I(X ′)

for all R.

Proof. Using resolution of singularities, we can assume that there is a projective
birational morphism f : X ′ → X; since deg f = 1, the result follows from the
degree formula. ¤
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10. Applications

The application of degree formulas to showing “non-congruences” of correspon-
dences was first noticed by Rost [13] in his work on generic splitting varieties,
related to the proof of Bloch-Kato conjecture. Merkurjev gives a number of
further applications in [10]; we give a quick sketch of Rost’s basic idea (as formu-
lated in Merkurjev’s paper) and a few of the notable applications here, refering
the interested reader to Merkurjev’s paper for further examples.

The reader can find a treatment of Rost’s applications to generic splitting
varieties in [6].

To make the arguments work, we need to assume k has characteristic zero;
Merkurjev’s treatment avoids this restriction.

Fix a prime p, and let νp denote the p-adic valuation. For each smooth pro-
jective X over k, let nX be the positive generator of I(X). Note that psRp(X) =
SRp([X]) = deg cRp(−TX), hence psRp(X) ≡ 0 mod I(X).

The basic principle is

Proposition 10.1 (Theorem 7.2 of [10]). Fix a prime p. Let X be a smooth
projective variety of dimension d and suppose there is an index R such that
sRp(X) 6≡ 0 mod I(X). Let Y be a second smooth projective variety and let
γ ∈ CHd(X × Y ) be a correspondence. Suppose that degX γ is prime to p and
that νp(nY ) ≥ νp(nX). Then

(1) dimY ≥ dimX
(2) If dimY = dim X, then sRp([Y ]) 6≡ 0 mod I(Y ), νp(nY ) = νp(nX) and

there is an irreducible component Z of γ with degY Z prime to p.

Proof. We follow Merkurjev’s argument. We first prove (2). Since degX γ is
prime to p there is some irreducible component Z of γ with degX Z prime to p,
so we may assume γ = 1 · Z. Take a resolution of singularities Z̃ → Z, giving us
the diagram

Z̃
f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ g

ÂÂ
??

??
??

??

Y X

with deg g prime to p. The degree formula applied to g shows that sRp(Z̃) 6≡ 0
mod I(X) hence

sRp(Z̃) 6≡ 0 mod I(Y ).

Applying the degree formula to f yields deg f · sRp(Y ) 6≡ 0 mod I(Y ). As
psRp(Y ) ≡ 0 mod I(X), deg f must be prime to p and sRp(Y ) 6≡ 0 mod I(Y ).
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Since Z gives correspondences from Y to X and from X to Y of degree prime to
p, we have νp(nX) = νp(nY ), proving (2).

For (1), suppose that dimY < dimX, let d = dim X − dimY and replace Y
with Y × Pd, γ with γ × 0; this leaves nY and degX γ unchanged. Clearly each
irreducible component Z of γ has degree 0 over Y , contradicting (2). ¤
Corollary 10.2 (Corollary 7.3 of [10]). Let X be a smooth projective variety.
Suppose there is an index R such that sRp(X) 6≡ 0 mod I(X). If Y is a smooth
projective variety over k with νp(nY ) ≥ νp(νX) and dimY < dimX, then there
does not exist any rational map f : X → Y .

Proof. The graph of a rational map f : X → Y gives a correspondence γ of degree
1 over X, contradicting (1) of Proposition 10.1. ¤

Merkurjev notes that the proposition and its corollary imply two interesting
results on the splitting of quadratic forms by the function field of quadrics. For
the reader’s amusement, we include the statements and arguments here.

Let R be the sequence which is all zeros except for a 1 in the nth spot. We
let d = pn − 1 and set sd := sRp , Sd := SRp . In fact, the characteristic class cRp

corresponds to the Newton polynomial Nd :=
∑

i ξ
d. For arbitrary d, we have

the characteristic class c(d) associated to Nd, and this class is additive:

c(d)(E ⊕ F ) = c(d)(E)⊕ c(d)(F ).

Of course, only for d = pn− 1 is the value Sd(X) := deg c(d)(−TX) divisible by p.
The additivity of the class c(d) makes for easy computations (and also gives an
easy proof of the indecomposablility Lemma 8.2). For instance

Lemma 10.3. Let X be a hypersurface of prime degree p in Pd+1, d = pn − 1.
Then sd(X) = pd − d− 2. If p|nX , then sd(X) 6≡ 0 mod I(X).

Proof. Let i : X → Pd+1 be the inclusion. We have the exact sequence

0 → TX → i∗TPd+1 → OX(p) → 0

Applying c(d), and using the identity [TPn ] = (n + 1)[OPn(1)]− 1 in K0(Pn) and
the additivity of c(d) gives

c(d)(−TX) = c(d)(OX(p))− (d + 1) · c(d)(OX(1)).

For a line bundle L, c(d) = c1(L)d, so, letting h be the hyperplane class in CH1(X),

Sd(X) = deg(ph)d − (d + 1) deg hd = pd+1 − (d + 2)p

since hd has degree p. Thus

sd(X) =
1
p
Sd(X) = pd − d− 2.
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Since sd(X) is therefore congruent to -1 mod p, the proof is complete. ¤

Here are two applications to quadratic forms.

Proposition 10.4 (Hoffmann [3, Theorem 1]). Let X1 and X2 be anisotropic
quadrics over a field F . If dimX1 ≥ 2n− 1 and X2 is isotropic over F (X1), then
dimX2 ≥ 2n − 1.

Proof. Our argument requires F to have characteristic zero. X2 being isotropic
over F (X1) means X2 has an F (X1)-rational point, which is the same as saying
there is a rational map f : X1 99K X2. By replacing X1 with a general linear
section, we may assume that dim X1 = 2n − 1. Since X1 and X2 are anisotropic,
Springer’s theorem [14] implies nX1 = nX2 = 2.

Taking p = 2, d = 2n − 1, Lemma 10.3 tells us that sd(X1) 6≡ 0 mod I(X1).
Since nX1 = nX2 , we may apply Corollary 10.2 to show that dimX2 ≥ 2n−1. ¤

Proposition 10.5 (Izhboldin [4, Theorem 0.6]). Let X1 and X2 be anisotropic
quadrics over a field F . If dimX1 ≥ 2n − 1 = dim X2 and X2 is isotropic over
F (X1), then X1 is isotropic over F (X2).

Proof. We assume as before that F has characteristic zero. As in the previous
proposition, we may replace X1 with a general linear section and so can assume
that dimX1 = 2n − 1. If X2 is isotropic over F (X1), we have a rational map
X1 99K X2, i.e., a correspondence on X1 ×X2 of degree 1 over X1. Since nX1 =
nX2 = 2 and s2n−1(X1) ≡ 1 mod 2, Proposition 10.1(2) implies that X1 has a
0-cycle of odd degree over F (X2). By Springer’s theorem [14], X1 is isotropic
over F (X2). ¤
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