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Motivic Decomposition and Intersection
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Alessio Corti and Masaki Hanamura

This paper is a continuation of [CH], where we formulated the motivic analogue
of the decomposition theorem in [BBD]. The decomposition theorem says, if X, S
are quasi-projective complex algebraic varieties with X smooth, and p : X → S
is a projective map, then the direct image of the constant sheaf Rp∗QX is a
direct sum of intersection complexes (of local systems on smooth locally closed
subvarieties of S) with shifts. The motivic analogue is a conjectural statement
that the decomposition be lifted to a decomposition in a suitably defined motivic
category. In [CH] we defined the category of Chow motives over S, and showed
that the existence of the motivic decomposition in this category is a consequence
of the conjectures of Grothendieck and of Bloch-Beilinson-Murre.

If the map p : X → S is a resolution of singularities, one of the direct sum-
mands of Rp∗QX is the intersection complex ICS = ICS(Q) of S. The motivic
decomposition has a direct summand corresponding to the intersection complex.
We will call it the motivic intersection complex of S. The Chow group of this
object we call the intersection Chow group of S, and denote it by ICHr(S).

The content of this paper is as follows.

(1) In §3 we give an account of this theory, under the conjectures of Grothendieck
and of Bloch-Beilinson-Murre. The definition of intersection Chow group ICHr(S)
of a quasi-projective variety S rests on the existence of the motivic decomposition
for a desingularization p : X → S. The group ICHr(S) is a canonical subquotient
of the Chow group CHr(X). We then derive a formula (3.9) for the intersec-
tion Chow group in terms of the Chow groups of X and of the exceptional loci
of p. These Chow groups have filtrations denoted F •

S , which appear in the for-
mula. The filtration has to do with the perverse Leray filtration on objects in
the motivic category, which is defined using the motivic decomposition.
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(2) In §4 we give an unconditional definition of intersection Chow group. Here
“unconditional” means independent of any conjectures. For this we take the
formula mentioned above, and turn it into the definition. We need to define
the filtrations F •

S on Chow groups, without assuming the existence of motivic
decomposition. This can be done, using cohomology realizations, as Shuji Saito
did for the case S = Spec k. We can show the intersection Chow group is well-
defined, independent of the choice of a resolution.

§4 was inspired by §3, but it is logically independent. We do not even need
the category of Chow motives in §4.

(3) There is an analogous formula for the intersection cohomology of S, in
terms of the cohomology of the exceptional loci of a desingularization, see (2.4).
This is discussed in §2.

In the summer of 1996 the second author had a chance to communicate the
present work to Bob MacPherson. On that occasion we had conversations on
the motivic analogue of the lifting theorem [BBFGK], which later developed into
[Ha-2]. We would like to take the present opportunity to thank Bob cordially for
these discussions and for his profound influence on our work. We are also grateful
to the referee for the useful suggestions on the manuscript.

Throughout this paper we consider quasi-projective varieties over k = C. The
Chow group of a quasi-projective variety X, tensored with Q, is denoted CH(X).

Let Db
c(S) = Db

c(S(C),Q) denote the derived category of sheaves of Q-vector
spaces on S(C) with cohomology sheaves bounded and constructible. The coho-
mology of X is always with Q-coefficients: H i(X) = H i(X,Q). For intersection
complex and perverse sheaves, we always take the middle perversity and Q as
coefficients: IH i(X) = IH i(X,Q). We refer to [GM-1], [BBD] and [Bo] for ex-
positions on intersection complexes and perverse sheaves; see [CH] for additional
information. Perv(S) denotes the category of perverse sheaves on S(C).

§1. Stratification of a projective map and the decomposition theo-
rem.

(1.1) Definition. Let S be an irreducible quasi-projective variety over C. An
algebraic Whitney stratification S = {Sα} of S is a filtration of S by closed sets

S = S0 ⊃ S1 ⊃ · · · ⊃ Sα ⊃ · · · ⊃ Sdim S

such that Sα−Sα+1 are smooth of codimension α (or empty) satisfying Whitney’s
conditions A and B (see [GM-2, Chap.I] for details).

Let X be a quasi-projective variety and p : X → S be a projective map.
p : X → S is a stratified map over S if there is a Whitney stratification Σ of
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X such that p is a stratified map with respect to Σ and S ([GM-2, p.42]). In
particular, p is a stratified fiber bundle over each stratum S0

α := Sα − Sα+1.

Let Xα = p−1(Sα), pα : Xα → Sα the induced map, and iα : Sα → S,
kα : Xα → X be the closed immersions. Let X0

α = p−1(S0
α) and p0

α : X0
α → S0

α

be the induced map. For α = 0, we will drop the subscript as follows: S0 =
S0

0 = S − S1, X0 = X0
0 = X − X1, and p0 = p0

0 : X0 → S0. We thus have a
commutative diagram:

X
kα←−−−Xα←↩X0

αyp
ypα

yp0
α

S
iα←−−−Sα←↩S0

α

Given a projective map p : X → S, there is a Whitney stratification S on S
over which p is stratified.

(1.2) Definition. Let X, S be quasi-projective varieties, with X smooth, and
p : X → S a projective map. Let S = {Sα} be a Whitney stratification of S over
which p is stratified.

A resolution of p : X → S over S is a collection {πα : X̃α → Xα} consisting
of smooth quasi-projective varieties X̃α and projective surjective maps πα, for
α ≥ 1.

Let ια = kα ◦ πα : X̃α → X and qα = pα ◦ πα : X̃α → Sα.

X̃α

↙
yπα

X ←↩ Xαyp
ypα

S ←↩ Sα

Given a projective map p : X → S with smooth X, stratified over S, there
exists a resolution over S.

Remark. We may require πα be desingularizations, rather than projective sur-
jective maps. For purposes of later sections, however, it is more convenient to
allow projective surjective maps.

The following is known as the decomposition theorem, [BBD]. In the statement,
pRip∗QX = pHiRp∗QX , where pHi is perverse cohomology, and ICSα(V) is the
intersection complex of a local system V.
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(1.3) Theorem. Let X be smooth and p : X → S a projective map, stratified
over S = {Sα}. Then there is a non-canonical direct sum decomposition

Rp∗QX =
⊕
i

pRip∗QX [−i]

and a unique direct sum decomposition
pRip∗QX =

⊕
α

ICSα(Vi
α)[dimSα] ,

where Vi
α is a local system on S0

α. One thus has a direct sum decomposition

Rp∗QX =
⊕
i,α

ICSα(Vi
α)[−i + dimSα] .

Remark. One has Vi
0 = Ri−dim Sp0∗QX0 .

(1.4) Proposition. Let X be smooth and p : X → S a projective map, stratified
over {Sα}. Keep the notation in (1.1) and (1.3).

(1) Let
k∗α : Rp∗QX → iα∗Rpα∗QXα

be the map induced by kα. (Specifically, it is the composition of the adjunction
map Rp∗QX → iα∗iα∗Rp∗QX and the base change isomorphism iα

∗Rp∗QX
∼=

Rpα∗k∗αQX = Rpα∗QXα.) Upon applying the functor pHi, one has a map
pHi(k∗α) : pRip∗QX → iα∗pRipα∗QXα .

The restriction of this to
⊕

Sβ⊂Sα
ICSβ

(Vi
β)[dimSβ],

⊕
Sβ⊂Sα

ICSβ
(Vi

β)[dimSβ] → iα∗pRipα∗QXα ,

is a split injection.

(2) Let
kα∗ : iα∗Rpα∗DXα [−2d] → Rp∗QX

be the map induced by kα. Here DXα is the dualizing complex of Xα; one has
DX = QX [2 dim X] and DXα = Rk!

αDX . Upon applying pHi, one has
pHi(kα∗) : iα∗pHi

(
Rpα∗DXα [−2d]

) → pRip∗QX .

Composition of this with the quotient map to
⊕

Sβ⊂Sα
ICSβ

(Vi
β)[dimSβ ],

pHi(kα∗) : iα∗pHi
(
Rpα∗DXα [−2d]

) → ⊕
Sβ⊂Sα

ICSβ
(Vi

β)[dimSβ ] ,

is a split surjection.

Proof. (1) Take a decomposition Rp∗QX =
⊕

ICSα(Vi
α)[−i + dimSα]. Ex-

amine the adjunction map on each summand to obtain the proof.
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(2) is dual to (1).

(1.5) Proposition. Let X be smooth and p : X → S a projective map, stratified
over {Sα}, and {πα : X̃α → Xα} its resolution over {Sα}. Keep the notation in
(1.2) and (1.3).

(1) Let ι∗α : Rp∗QX → iα∗Rqα∗QX̃α
be the map ια induces; applying pHi, one

has a map
pHi(ι∗α) : pRip∗QX → iα∗pRiqα∗QX̃α

.

The restriction of this map to the direct summand ICSα(Vi
α)[dimSα],

pHi(ι∗α) : ICSα(Vi
α)[dimSα] → iα∗pRiqα∗QX̃α

,

is a split injection.

(2) Let iα∗ : iα∗Rqα∗DX̃α
[−2d] → Rp∗QX be the map ια induces; applying pHi

one has
pHiια∗ : iα∗pHiRqα∗DX̃α

[−2d] → pRip∗QX .

The composition of this with the quotient map to ICSα(Vi
α)[dimSα],

pHi(ια∗) : iα∗pHiRp̃α∗DX̃α
[−2d] → ICSα(Vi

α)[dimSα] ,

is a split surjection.

Proof. (1) The maps X̃α → Xα → X induce the maps

Rp∗QX → iα∗Rpα∗QXα → iα∗Rqα∗QX̃α
.

Applying pHi, one has
pRip∗QX → iα∗pRipα∗QXα → iα∗pRiqα∗QX̃α

.

According to the theory of weights [BBD],[SaM], there is the category of mixed
perverse sheaves on S with the following properties.

(i) An object of the category has as an underlying structure a perverse sheaf
with weight filtration.

(ii) Pure perverse sheaves (objects with pure weight) form a semi-simple abelian
category. A pure perverse sheaf is a direct sum of ICS′α(Vα)[dimS′α], where (S′α)
is a stratification and Vα are local systems of pure weight on S′α − S′α+1.

(iii) Perverse sheaves of “geometric origin”, such as pRip∗QX are mixed per-
verse sheaves. Additionally, pRip∗QX and Riqα∗QX̃α

are of pure weight i, and
Ripα∗QXα is of weight ≤ i since pα is proper.

Taking GrW
i , one has maps of pure perverse sheaves

pRip∗QX
δ−−−→iα ∗GrW

i
pRipα∗QXα

γ−−−→iα ∗pRiqα∗QX̃α
.
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Our claim is the composition map γ ◦ δ, restricted to ICSα(Vi
α)[dimSα], is a split

injection. Since split injectivity and injectivity are equivalent in a semi-simple
abelian category, we will just say injective from now.

By Proposition (1.4), the restriction of δ, ICSα(Vi
α)[dimSα] → iα∗GrW

i
pRipα∗

QXα , is a split injection. Let

iα ∗GrW
i

pRipα∗QXα = ICSα(W)[dimSα]⊕ P

and
iα ∗pRiqα∗QX̃α

= ICSα(W′)[dimSα]⊕ P ′

be decompositions as in (ii), where W and W′ are local systems on an open set of
Sα, and P , P ′ are objects supported on a proper closed subset of Sα. The map
obtained from δ,

δ : ICSα(Vi
α)[dimSα] → ICSα(W)[dimSα] ,

is injective. So one has only to show the map obtained from γ,

γ : ICSα(W)[dimSα] → ICSα(W′)[dimSα] ,

is an injection. Since W 7→ ICSα(W)[dimSα] is an exact functor from local
systems to perverse sheaves, the injectivity is equivalent to the injectivity of the
corresponding map of local systems W → W′. To examine, look at the map
fiberwise. Letting (Xα)s = pα

−1(s) and (X̃α)s = qα
−1(s) for a general point

s ∈ S0
α, one must show

GrW
i H i−dim Sα((Xα)s) → H i−dim Sα((X̃α)s)

is an injection. This is [De, part II, Proposition 8.2.5].

(2) Dual to (1).

§2. Intersection cohomology of projective maps.

In this section X, S are quasi-projective varieties, X is smooth, and p : X → S
a projective map.

(2.1) Recall Db
c(S) is the bounded derived category of constructible sheaves.

There is the perverse t-structure on this, in particular the functors pτ≤ and pτ≥.
For simplicity, denote them by τ≤ and τ≥.

For the object Rp∗QX , Theorem (1.3) implies τ≤kRp∗QX is a subobject, and
non-canonically a direct summand. One thus has a filtration by subobjects.

This filtration induces a filtration on Ha(X), as follows. Let

F ν
SHa(X) := HomDb

c(S)(QS , τ≤−ν

(
Rp∗QX [a]

)
) ,
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it is a subspace of HomDb
c(S)(QS , Rp∗QX [a]) = Ha(X), with a non-canonical

splitting. The decreasing filtration F •
S on Ha(X) thus defined has the following

properties.

(1) F− dim S
S Ha(X) = Ha(X).

(2) For ν large enough, F ν
SHa(X) = 0.

(3) The graded pieces in the filtration are

Grν
FS

Ha(X) = F ν
S/F ν+1

S Ha(X) = Hom(QS , pRa−νp∗QX [ν]) .

If p is stratified over {Sα}, with the notation in Theorem (1.3) this is equal to

Hom(QS ,
⊕
α

ICSα(Va−ν
α )[dimSα][ν]) =

⊕
α

IHν+dim Sα(Sα,Va−ν
α ) .

(2.2) Assume p is stratified over {Sα}, and {πα : X̃α → Xα} its resolution over
{Sα}. For each α ≥ 1 the map ια induces maps

ι∗α : Ha(X) → Ha(X̃α)

and
ια ∗ : HBM

2 dim X−a(X̃α) → Ha(X) .

Here HBM∗ denotes Borel-Moore homology. Taking graded pieces for F •
S , one has

maps

ι∗α : Grν
FS

Ha(X) → Grν
FS

Ha(X̃α) and ια ∗ : Grν
FS

HBM
2 dim X−a(X̃α) → Grν

FS
Ha(X) .

The next Proposition follows from Proposition (1.5).

(2.3) Proposition. (1) The kernel of the map
∑

α≥1 ι∗α : Grν
FS

Ha(X) → ⊕
α≥1

Grν
FS

Ha(X̃α) is equal to IHν+dim S(S, Va−ν
0 ).

(2) The image of the map
∑

α≥1 ια∗ :
⊕

α≥1 Grν
FS

HBM
2 dim X−a(X̃α) → Grν

FS
Ha(X)

is equal to
⊕

α≥1 IHν+dim Sα(Sα,Va−ν
α ).

In the case p is birational, we can describe the intersection cohomology of S in
terms of the cohomology of X and {X̃α}, and the filtrations F •

S .

(2.4) Theorem. If p : X → S is a birational map, d = dim S,

IHa(S) =

⋂
α≥1(ι

∗
α)−1F a−d+1

S Ha(X̃α)
∑

α≥1 ια∗F a−d+1
S HBM

2d−a(X̃α)
.

We omit the proof, which is similar to the proof of an analogous formula for
the intersection Chow group, Theorem (3.9).
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§3. The intersection Chow group (under hypotheses).

(3.1) Let S be a quasi-projective variety over k = C. Denote by
(Smooth/k, Proj/S) the category of smooth quasi-projective varieties X equipped
with projective maps to S, p : X → S.

For X, Y in (Smooth/k, Proj/S), CHa(X ×S Y ) denotes the rational Chow
group of dimension a of the variety X×S Y . An element of this group is a relative
correspondence from X to Y .

If X, Y, Z are in (Smooth/k, Proj/S), with Y equi-dimensional, we have a
map, the composition of correspondences,

CHa(X ×S Y )⊗ CHb(Y ×S Z) → CHa+b−dim Y (X ×S Z)

which sends u ⊗ v to v ◦ u, see [CH] for the definition. The composition is
associative. In particular if X has connected components Xi,

⊕
i CHdim Xi

(X ×S

Xi) is a ring with the composition as multiplication. The identity element is the
class of the diagonal ∆X = id.

Let CHM(S) be the pseudo-abelian category of Chow motives over S, defined
in [CH]. It has the following properties.

(1) An object of CHM(S) is of the form

(X, r, P ) = (X/S, r, P )

where X is a smooth variety over k with a projective (not necessarily smooth)
map p : X → S, r ∈ Z, and if X has connected components Xi,

P ∈ ⊕
i

CHdim Xi
(X ×S Xi)

such that P ◦P = P . If (Y, s,Q) is another object, Yj the components of Y , then

Hom((X, r, P ), (Y, s,Q)) = Q ◦ (
⊕
j

CHdim Yj−s+r(X ×S Yj)) ◦ P .

Composition of morphisms is induced from the composition of relative correspon-
dences.

Denote by M = (X, r, P ) 7→ M(n) = (X, r + n, P ) the “Tate twist” functor.

(2) There is a functor h : (Smooth/k, Proj/S)opp → CHM(S), which sends
p : X → S to the object h(X/S) = (X/S, 0, id). Note h(X/S)(n) = (X/S, n, id).

If X and Y are objects of (Smooth/k, Proj/S) and f : X → Y is a map over
S, there corresponds a morphism

f∗ : h(Y/S) → h(X/S) .

If X, Y are equidimensional, there corresponds

f∗ : h(X/S) → h(Y/S)(dimY − dimX) .
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(3) There is a functor

CH0(S,−) : CHM(S) → V ectQ

(the target is the category of Q-vector spaces) such that CH0(S, (X, r, P ) ) =
CH0((X, r, P )) = P∗CHr(X).

Define CHt(S,−) : CHM(S) → V ectQ by CHt(S,K) = CHt(K) = CH0(K(t)).
Note CHr(h(X/S)) = CH0(h(X/S)(r)) = CHr(X).

(4) There is the realization functor

ρ : CHM(S) → Db
c(S)

such that on objects
(X, r, P ) 7→ P∗Rp∗QX [2r] .

Here P∗ := ρ(P ) ∈ EndDb
c(S)(Rp∗QX) is a projector, and P∗Rp∗QX is its image,

which exists since Rp∗QX is a direct sum of perverse sheaves with shifts.

(3.2) For p : X → S in (Smooth/k, Proj/S) and r ∈ Z, let
pH∗(X/S, r) :=

⊕
i

pRi+2rp∗QX ,

called the total perverse cohomology , a graded perverse sheaf (grading by i).
Denote the category of graded perverse sheaves by gr Perv(S). One has a map

HomCHM(S)((X/S, r, id), (Y/S, s, id) ) → Homgr Perv(S)(
pH∗(X/S, r), pH∗(Y/S, s) ) ,

obtained using the functor ρ and perverse cohomology. The image of this map
is denoted by Homgr Perv(S)(pH∗(X/S, r), pH∗(Y/S, s) )alg. It is proved in [CH]
that this group is closed under composition.

The pseudo-abelian category of Grothendieck motives over S, denoted by
M(S) has objects (X/S, r, p) where X/S is in (Smooth/k, Proj/S), and p ∈
End(pH∗(X/S, r) )alg is an idempotent. Morphisms are defined by

Hom((X, r, p), (Y, s, q)) = q ◦Hom(pH∗(X/S, r), pH∗(Y/S, s) )alg ◦ p .

There is a canonical full functor cano : CHM(S) → M(S) and a faithful real-
ization functor ρ : M(S) → gr Perv(S). The following diagram commutes.

CHM(S) cano−−−→ M(S)yρ
yρ

Db
c(S)

pH∗−−−→ gr Perv(S)

Here pH∗ =
⊕

i
pHi is the total perverse cohomology functor.

(3.3) Theorem. [CH, §7] Assume the conjecture of Grothendieck and the con-
jecture of Bloch-Beilinson-Murre (recalled later). Let p : X → S be as before. Let
{Sα} be a Whitney stratification of S over which p is stratified. Then:
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(1) There are local systems V
j
α on Sα−Sα+1, non-canonical direct sum decom-

position in CHM(S)
h(X/S) =

⊕
j,α

hj
α(X/S)

and isomorphisms

ρ(hj
α(X/S)) ∼= ICSα(Vj

α)[−j + dimSα]

in Db
c(S).

(2) For each i, the sum
⊕

j≤i, α hj
α(X/S) is a well-defined subobject of h(X/S)

(independent of the decomposition).

(3) The category M(S) is semi-simple abelian, and the functor ρ : M(S) →
Perv(S) is exact and faithful.

(4) For i ∈ Z, let CHM(S)i (resp. M(S)i) be the full subcategory of CHM(S)
(resp. M(S)) consisting of objects with realizations of pure perverse degree i.
Then the canonical functor cano : CHM(S)i → M(S)i is an equivalence of cate-
gories.

We recall the conjectures mentioned in the theorem.

1. Grothendieck’s Standard conjecture.

This concerns the functorial behavior of cycle classes in (singular or étale)
cohomology. It has two components, the Lefschetz type conjecture and the Hodge
type conjecture. For k = C, the latter holds true (Hodge index theorem). The
Lefschetz type conjecture itself consists of three statements, Conjecture (A), (B)
and (C). Conjecture (C) says: the Künneth components of the diagonal class of
a smooth projective variety are algebraic.

The standard conjecture implies the semi-simplicity of the category of pure
homological motives (Grothendieck).

2. Bloch-Beilinson-Murre conjecture.

This conjecture on the existence of a filtration on the Chow group is originally
due to S. Bloch, and studied by A. Beilinson, J.P. Murre, U. Jannsen, and Shuji
Saito among others.

A formulation due to Murre, which is closely related to the statement of the
above theorem, consists of the existence of an orthogonal decomposition to pro-
jectors of the diagonal class ∆X in CH(X × X). To be precise, the conjecture
states:

(A) Let X be a smooth projective variety. There exists a decomposition ∆X =∑
Πi to orthogonal projectors in the Chow ring such that the cohomology class
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of Πi is the Künneth component ∆(2 dimX − i, i). The decomposition is called
the Chow-Künneth decomposition.

(B) Πi with i = 0, · · · , r − 1 or i = 2d, · · · , 2r + 1 acts as zero on CHr(X).

(C) Put F 0 = CHr(X), F 1 = Ker Π2r, F 2 = Ker(Π2r−1|F 1), · · · ,
F r = Ker(Πr+1|F r−1),F r+1 = 0. This is independent of the choice of the decom-
position in (A).

(D) F 1 = CHr(X)hom, the homologically trivial part.

For the rest of this section, we assume the conjecture of Grothendieck
and the conjecture of Bloch-Beilinson-Murre.

(3.4) Let p : X → S be as above. Define a subobject pτ≤i of h(X/S)(r) by:
pτ≤i(h(X/S)(r) ) :=

⊕
j≤i+2r, α

hj
α(X/S)(r)

the sum over (j, α) with j ≤ i + 2r. This is a subobject with a non-canonical
splitting. pτ≤i gives an increasing filtration by subobjects. From now we write
τ≤i for pτ≤i. The subquotients are

τ≤i/τ≤i−1(h(X/S)(r) ) =
⊕
α

hi+2r
α (X/S)(r) .

This decomposition is uniquely determined, independent of {Sα} (this follows
from (3.3), (4) ).

Correspondingly CHr(X) = CH0(S, h(X/S)(r) ) has a decreasing filtration F •
S

defined by

F ν
S CHr(X) = CH0

(
S, τ≤−ν(h(X/S)(r))

) ⊂ CHr(X) .

Note F ν
S CHr(X) = CHr(X) for ν small enough, and F ν

S CHr(X) = 0 for ν large
enough. We conjecture CHr(X) = F− dim S

S CHr(X). The graded quotients are

Grν
FS

CHr(X) = CH0(S,
⊕
α

h2r−ν
α (X/S)(r) ) = CHr(S,

⊕
α

h2r−ν
α (X/S) ) .

Each piece CHr(S, h2r−ν
α (X/S) ) is a direct summand of Grν

FS
CHr(X), in partic-

ular a subgroup. Thus one can write

CHr(S, h2r−ν
α (X/S) ) = A/F ν+1

S

for a subgroup A ⊂ F ν
S . We write A = F ν+1

S +CHr(S, h2r−ν
α (X/S) ) with a slight

abuse of notation.

The filtration τ≤i is respected by morphisms in CHM(S), see [CH, Theorem
(7.4),(1)]. If u : h(X/S)(r) → h(Y/S)(s) is a morphism, there is a unique mor-
phism τ≤iu : τ≤ih(X/S)(r) → τ≤ih(Y/S)(s) such that the following diagram
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commutes.
h(X/S)(r) u−−−→ h(Y/S)(s)x

x
τ≤i h(X/S)(r)

τ≤iu−−−→τ≤i h(Y/S)(s)

Thus one has induced morphisms τ≤i/τ≤i−1h(X/S)(r) → τ≤i/τ≤i−1h(Y/S)(s).
This is the direct sum, for α, of morphisms hi+2r

α (X/S)(r) → hi+2s
α (Y/S)(s).

(3.5) Definition. Let X0 and S0 be smooth quasi-projective, and p0 : X0 → S0

be a smooth projective map. Let S be a quasi-projective variety and S0 → S an
open immersion.

Take a smooth variety X, an open immersion X0 → X and a projective map
p : X → S which extends p0. Let h(X/S) =

⊕
hj

α(X/S) be a decomposition as
in Theorem (3.3). Define the intersection Chow group of the higher direct image
Rip0∗QX0 to be

ICHr(S,Rip0
∗QX0) := CH0(S, hi+dim S

0 (X/S)(r) ) .

The group depends on p0 : X0 → S0, S and i. As we show below, it does not
depend on the choice of p : X → S. One should take Rip0∗QX0 as a notation; the
intersection Chow group is not determined by S and the local system Rip0∗QX0

alone.

(3.6) Proposition. (1) The object hj
0(X/S) is independent of the choice of

p : X → S, up to canonical isomorphism. Hence ICHr(S,Rip0∗QX0) is well-
defined.

(2) Let S1 ⊂ S0 be an open set, X1 = p−1(S1), and p1 : X1 → S1 the induced
map. Then one has a canonical isomorphism ICHr(S,Rip0∗QX0) = ICHr(S,Rip1∗
QX1).

Proof. (1) More precisely if p′ : X ′ → S is another extension of p0, there is
an isomorphism

ι(X, X ′) : hj
0(X/S) → hj

0(X
′/S) ;

if X ′′ → S is another such, the three isomorphisms satisfy the cocycle condition
ι(X, X ′′) = ι(X ′, X ′′)ι(X, X ′).

To prove this, one is reduced to the case where there is a map f : X ′ → X
over S, extending the identity on X0. Then f∗ : h(X/S) → h(X ′/S) induces an
isomorphism f∗ : hj

0(X/S) → hj
0(X

′/S).

(2) This is obvious.
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(3.7) Definition. Let S be an irreducible quasi-projective variety of dimension
d, and p : X → S its desingularization (proper birational map from a smooth
variety). Define the intersection Chow group by

ICHr(S) := CH0(S, hd
0(X/S) ) .

This is a special case of Definition (3.5),where one takes a smooth open set
S0 ⊂ S, p0 = id : X0 = S0 → S0, and i = 0. By Proposition (3.6), the
intersection Chow group is well-defined.

The map ια : X̃α → X induces maps ια
∗ : CHr(X) → CHr(X̃α) and ια ∗ :

CHdim X−r(X̃α) → CHr(X), thus also maps between the graded pieces

Grν
FS

CHdim X−r(X̃α)
ια∗−−−→Grν

FS
CHr(X) ια∗−−−→Grν

FS
CHr(X̃α) .

Taking the sum over α ≥ 1, one has maps
∑

α≥1

ι∗α : CHr(X)−−−→ ⊕
α≥1

CHr(X̃α) ,

∑

α≥1

ια∗ :
⊕
α≥1

CHdim X−r(X̃α) → CHr(X) ,

as well as the maps on graded pieces.

Proposition (1.5) and Theorem (3.3) imply:

(3.8)Proposition. (1) The kernel of the map
∑

α≥1 ι∗α : Grν
FS

CHr(X) →⊕
α≥1 Grν

FS
CHr(X̃α) is equal to CHr(h2r−ν

0 (X/S) ).

(2) The image of the map
∑

α≥1 ια∗ :
⊕

α≥1 Grν
FS

CHdim X−r(X̃α) →
Grν

FS
CHr(X) is equal to CHr(S,

⊕
α≥1 h2r−ν

α (X/S) ).

(3.8.1) Corollary. One has

ICHr(S,Rip0∗QX) = Ker[ Gr2r−i−dim S
FS

CHr(X) → ⊕
α≥1

Gr2r−i−dim S
FS

CHr(X̃α) ]

= Cok[
⊕
α≥1

Gr2r−i−dim S
FS

CHdim X−r(X̃α)

→ Gr2r−i−dim S
FS

CHr(X) ] .

(3.9) Theorem. If p : X → S is a birational map, d = dim S,

ICHr(S) =

⋂
α≥1(ι

∗
α)−1F 2r−d+1

S CHr(X̃α)
∑

α≥1 ια∗F 2r−d+1
S CHd−r(X̃α)

.
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Proof. The map
∑

α≥1 ι∗α : Grν
FS

CHr(X)−−−→⊕
α≥1 Grν

FS
CHr(X̃α) is in-

jective for ν 6= 2r − d, and has kernel equal to ICHr(S) if ν = 2r − d. The
map

∑
α≥1 ια∗ :

⊕
α≥1 Grν

FS
CHdim X−r(X̃α) → Grν

FS
CHr(X) is surjective for

ν 6= 2r − d and has image equal to CHr(S,
⊕

α≥1 hd
α(X/S) ) for ν = 2r − d. So

⋂

α≥1

(ι∗α)−1F 2r−d+1
S CHr(X̃α) = F 2r−d+1

S CHr(X) + ICHr(S)

and ∑

α≥1

ια∗F 2r−d+1
S CHd−r(X̃α) = F 2r−d+1

S CHr(X) ,

from which the claim follows.

We note some properties of the filtration F •
S .

(3.10) Proposition. Let X be smooth and p : X → S a projective map. Let
S ↪→ S′ be a closed immersion of quasi-projective varieties. Then the filtration
F •

S and F •
S′ on CHr(X) coincide.

(3.11) Proposition. Let X and Y be smooth varieties, projective over S, and
f : X → Y be a projective surjective map. Then:

(1) The injection f∗ : CHr(Y ) → CHr(X) is strictly compatible with the filtra-
tions FS, namely F ν

S CHr(Y ) = (f∗)−1F ν
S CHr(X).

(2) The surjection f∗ : CHs(X) → CHs(Y ) is strictly compatible with the
filtrations FS, namely f∗F ν

S CHr(X) = F ν
S CHr(Y ).

Proof. (1) Take a smooth subvariety X ′ ⊂ X such that the restriction f |X′ :
X ′ → Y is generically finite. Considering the composition of f∗ : CHr(Y ) →
CHr(X) with the restriction CHr(X) → CHr(X ′), one is reduced to the case
where f is generically finite.

In that case the map f∗ : h(Y/S) → h(X/S) has a left inverse (1/d)f∗ :
h(X/S) → h(Y/S), where d is the degree of p. Twisting and taking τ≤−ν , one
has

f∗ : τ≤−ν h(Y/S)(r) → τ≤−ν h(X/S)(r)

with left inverse (1/d)f∗. The claim follows.

(2) Similar to (1).

§4. Unconditional theory of the intersection Chow group.

(4.1) For a smooth projective variety X over k, Shuji Saito defined a filtration
F • on the Chow group CHr(X), [SaS-1, 2]. In a similar way, if X is a smooth
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variety with a projective map to S, one can define a filtration F •
S on the Chow

group of X.

Let S be a quasi-projective variety, and X a smooth variety with a projective
map p : X → S. For another smooth variety W with a projective map q :
W → S, an element Γ ∈ CHdim X−s(W ×S X) induces a map Γ∗ : CHr−s(W ) →
CHr(X), see [CH]. The cycle class of Γ in Borel-Moore homology gives a map
Γ∗ : Rq∗QW [−2s] → Rp∗QX ; passing to perverse cohomology one has a map (for
each ν)

pH2r−νΓ∗ : pH2r−2s−νRq∗QW → pH2r−νRp∗QX .

(Here pH∗ stands for perverse cohomology.)

We define a filtration F •
S on CHr(X) as follows. Let CHr(X) = F− dim S

S CHr(X).
Assume F ν

S has been defined. Define

F ν+1
S CHr(X) :=

∑
Image[Γ∗ : F ν

S CHr−s(W ) → CHr(X) ]

where the sum is over (q : W → S, Γ ∈ CHdim X−s(W ×S X) ) satisfying the
following condition: the map pH2r−νΓ∗ : pH2r−2s−νRq∗QW → pH2r−νRp∗QX is
zero. One can show:

(4.2) Proposition. The filtration F •
S on CHr(X) has the following properties.

(1) CHr(X) = F− dim S
S CHr(X). For any Γ ∈ CHdim X−s(W×SX), the induced

map Γ∗ : CHr−s(W ) → CHr(X) respects F •
S .

(2) If pH2r−νΓ∗ : pH2r−2s−νRq∗QW → pH2r−νRp∗QX is zero, then Γ∗ sends
F ν

S CHr−s(W ) to F ν+1
S CHr(X).

(3) The filtration is the smallest one with properties (1) and (2).

(4.3) Definition. Let S be an irreducible quasi-projective variety of dimension
d, and p : X → S a resolution of singularities. Take a Whitney stratification
{Sα} of S and resolutions X̃α → Xα so that (p, {X̃α → Xα}) is stratified over
{Sα}. Recall ια : X̃α → X are the induced maps, which give rise to maps
ια∗ : CHd−r(X̃α) → CHr(X) and ια

∗ : CHr(X) → CHr(X̃α).

Define the intersection Chow group as a subquotient of the Chow group of X
given by:

ICHr(S) :=

⋂
α≥1(ι

∗
α)−1F 2r−d+1

S CHr(X̃α)
∑

α≥1 ια∗F 2r−d+1
S CHd−r(X̃α)

.

(4.4) Theorem. ICHr(S) is well-defined (up to canonical isomorphism) inde-
pendent of the choice of a desingularization p : X → S, a stratification and a
resolution.
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(4.5) Proposition. Let X and Y be smooth varieties, projective over S, and
f : X → Y be a projective surjective map. Then:

(1) The injection f∗ : CHr(Y ) → CHr(X) is strictly compatible with the filtra-
tions FS, namely F ν

S CHr(Y ) = (f∗)−1F ν
S CHr(X).

(2) The surjection f∗ : CHs(X) → CHs(Y ) is strictly compatible with the
filtrations FS, namely f∗F ν

S CHr(X) = F ν
S CHr(Y ).

Proof. Take a smooth subvariety X ′ ⊂ X that maps generically finitely onto
Y . Let i : X ′ → X be the inclusion and f ′ := f ◦ i : X ′ → Y . For (1), suppose
α ∈ CHr(Y ) such that f∗α ∈ F ν

S CHr(X). Then f ′∗i∗f∗α = dα ∈ F ν
S CHr(Y )

(d = deg f ′) by the functoriality of FS with respect to pull-back and push-forward.
The proof of (2) is similar.

In the rest of this section we give the proof of Theorem (4.4).

The definition depends on X, S = {Sα} and {πα : X̃α → Xα}. Let

N =
⋂

α≥1
(ι∗α)−1F 2r−d+1

S CHr(X̃α) and D =
∑

α≥1

ια∗F 2r−d+1
S CHd−r(X̃α)

be the subgroups of CHr(X), which appear in (4.4). If (X ′, S′, π′α : X̃ ′
α → X ′

α) is
another choice, we have the similarly defined subgroups N ′, D′ of CHr(X ′). We
must show there is a canonical isomorphism N/D ∼= N ′/D′.

(I) Assume X = X ′, S = S′, and only (X̃α → Xα) differs. One may assume
there are projective surjective maps gα : X̃ ′

α → X̃α over Xα. Then (4.5) shows
N = N ′ and D = D′.

(II) Assume X = X ′ and S and S′ differ. One may assume S′ is a refinement
of S.

Let (p : X → S, {πα : X̃α → Xα}) be a resolution of p over S. Let Sα i be the
irreducible components of Sα, Xα i = p−1(Sα i), and X̃α i = q−1

α (Sα i).

We construct a resolution of p over S′ as follows. Let S′α j be the irreducible
components of S′α, for α ≥ 1. Let X ′

α j = p−1(S′α j).

If S′α j is an irreducible component of Sα, say S′α j = Sα i, let X̃ ′
α j = X̃α i. If

S′α j 6⊂ Sα let Sβ be such that S′α j ⊂ Sβ and S′α j 6⊂ Sβ+1. Take smooth X̃ ′
α j so

that there are a projective surjective map X̃ ′
α j → X ′

α j and a map g : X̃ ′
α j → X̃β
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over S, namely the following diagram commutes.

X̃ ′
α j

g−−−→X̃βy
y

X ′
α j−−−→Xβy

y
S′α j ↪→ Sβ

Let X̃ ′
α = qjX̃

′
α j , and π′α : X̃ ′

α → X ′
α the induced map.

We now show N = N ′. Clearly N ′ ⊂ N . The inclusion N ⊂ N ′ follows from
the existence of the maps g. Similarly one shows D = D′.

(III) Assume now X and X ′ are not equal. In view of the weak factorization
theorem of birational maps [AKMW], one may assume X ′ is the blow-up of X
along a smooth center.

Let µ : X ′ → X be the blow-up of a smooth center Z ⊂ X. Assume the maps
X ′ → X → S are stratified over S. Let D ⊂ N ⊂ CHr(X) and D′ ⊂ N ′ ⊂
CHr(X ′) be defined as above.

In the rest of this section we show: µ∗(N) ⊂ N ′, µ∗(N ′) ⊂ N , µ∗(D) ⊂ D′,
µ∗(D′) ⊂ D. Letting K = Ker µ∗, N ′ = N

⊕
(K ∩N ′), D′ = D

⊕
(K ∩D′), and

K ∩N ′ = K ∩D′. Hence

µ∗ : N/D
∼→ N ′/D′ .

(4.6) Let S be a quasi-projective variety, Z a smooth variety with a projective
map Z → S, and π : E → Z a Pn-bundle. Let ξ ∈ CH1(E) be the first Chern
class of OE(1). One has CHr(E) =

⊕
0≤i≤n CHr−i(Z) · ξi. One easily shows the

following proposition. (From now we will often not write ξi.)

Proposition. The above decomposition is compatible with the filtrations F •
S ,

namely
F •

S CHr(E) =
⊕

0≤i≤n
F •

S CHr−i(Z) .

(4.7) Let S be quasi-projective, X smooth, and p : X → S be a projective map.
We do not assume p is birational, although we are mainly interested in that case.
Let Z ⊂ X be a smooth subvariety and µ : X ′ → X be the blow-up of a smooth
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center Z ⊂ X. Let E be the exceptional divisor. One has a commutative diagram
with maps as labeled.

E
j−−−→X ′

yg
yµ

Z
i−−−→X

If c is the codimension of Z, g is a Pn-bundle with n = c− 1.

The kernel of the map g∗ : CHr−1(E) → CHr−n−1(Z) is a direct summand:

Ker g∗ =
⊕

0≤i≤n−1
CHr−1−i(Z) ⊂ CHr−1(E) =

⊕
0≤i≤n

CHr−1−i(Z) .

It has the filtration induced from F •
S on CHr−1(E). By Proposition (4.6),

F ν
S Ker g∗ =

⊕
0≤i≤n−1

F ν
S CHr−1−i(Z) ,

namely the filtration coincides with the one induced by FS on the Chow groups
of Z.

One has an isomorphism

Ker g∗ ⊕ CHr(X) ∼→ CHr(X ′) ,

which sends (α, x) to j∗α + ν∗x. Here j∗ is the restriction of j∗ : CHr−1(E) →
CHr(X ′).

The following proposition concerning the composition of j∗ with j∗ : CHr(X ′) →
CHr(E) will be used later.

(4.8) Proposition. The map j∗j∗ : Ker g∗ → CHr(E) is injective and strictly
compatible with the filtrations F •

S .

Proof. One has for α ∈ CHr−1(E)

j∗j∗(α) = −ξ · α .

So for α ∈ Ker g∗, α =
∑

0≤i≤n−1 g∗αi · ξi,

j∗j∗(
∑

0≤i≤n−1

g∗αi · ξi) =
∑

0≤i≤n−1

g∗αi · ξi+1 .

The claim follows using Proposition (4.6).

We now assume p : X → S is birational. We have maps µ∗ : CHr(X) →
CHr(X ′) and µ∗ : CHr(X ′) → CHr(X). One has µ∗µ∗ = id, Ker µ∗ = Ker g∗,
and CHr(X)⊕Ker g∗ ∼= CHr(X ′). Recall we have subgroups D ⊂ N ⊂ CHr(X)
and D′ ⊂ N ′ ⊂ CHr(X ′), defined using a stratification (Sα) over which p and
p′ = p ◦ µ are stratified. We may assume p(Z) is contained in S1.
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Let Xα = p−1(Sα) as before, and Xα i its irreducible components. For α ≥ 1
we have either

(a) Xα i 6⊂ Z, or (b) Xα i ⊂ Z.

Take a desingularization X̃α i → Xα i such that, in case (a), the map X̃α i → X

factors through X ′. Let X̃α = qX̃α i and πα : X̃α → Xα be the induced map.
This gives a resolution of p over (Sα).

To construct a resolution of p′ : X ′ → S, let X̃ ′
α = qX̃ ′

α i where

X̃ ′
α i =

{
X̃α i in case (a)
X̃α i ×Z E in case (b)

In case (b), X̃ ′
α i is a Pn-bundle over X̃α i. The natural maps X̃ ′

α → X ′
α =

(p′)−1(Sα) give a resolution. Denote by ι′α : X̃ ′
α → X ′ the induced maps. It is

now easy to show the following descriptions for N and N ′.

(4.9) Proposition. (1) One has

N =
⋂

type (a)

(ι∗α)−1F 2r−d+1
S CHr(X̃α i) ∩ (i∗)−1F 2r−d+1

S CHr(Z) .

Here the first intersection is over X̃α i of type (a). The restriction of ια : X̃α → X

to each component X̃α i is still denoted ια.

(2) Similarly,

N ′ =
⋂

type (a)

(ι′∗α)−1F 2r−d+1
S CHr(X̃α i) ∩ (j∗)−1F 2r−d+1

S CHr(E) .

Proof. (1) Let z ∈ CHr(X) be an element in the right hand side of the
equality, in particular i∗z ∈ F 2r−d+1

S CHr(Z). For a component Xα i of type (b),
it follows ι∗αz ∈ F 2r−d+1

S CHr(X̃α i). Thus z is in the left hand side.

To show the converse note that there is some Xα i, α ≥ 1, containing Z, so one
can take a smooth variety Z ′ which fits into the following commutative diagram

Z ′ f−−−→X̃α iyh
y

Z ↪→ Xα i

where h : Z ′ → Z is projective surjective. (Take Z ′ to be a desingularization of
a component of the fiber product.)
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Assume now z is in the left hand side. In particular for the above X̃α i, we have
ι∗αz ∈ F 2r−d+1

S CHr(X̃α i), so f∗ι∗αz ∈ F 2r−d+1
S CHr(Z ′). By Proposition (4.5) (1),

we have i∗z ∈ F 2r−d+1
S CHr(Z).

(2) Similar to (1).

(4.10) Proposition. (1) µ∗(N) ⊂ N ′. (2) µ∗(N ′) ⊂ N . (3) N ′ = N⊕(K∩N ′).

Proof. (1) Obvious.

(2) For z′ ∈ N ′,

i∗µ∗z′ = g∗i!z′

= g∗(c(E) · j∗x′)
where c(E) is the top Chern class of the excess bundle E, see [Fu]. The excess
bundle is the quotient of the pull-back of the normal bundle of Z by the normal
bundle of E: E = g∗NZX/NEX ′. Thus i∗µ∗z′ ∈ F 2r−d+1

S CHr(Z).

(3) Follows from (1), (2) and µ∗µ∗ = id on N .

Dually, one has the following propositions for the groups D and D′.

(4.11) Proposition. (1) One has

D =
∑

type (a)

ια ∗F 2r−d+1
S CHd−r(X̃α i) + i∗F 2r−d+1

S CHd−r(Z) .

The first sum is over X̃α i of type (a).

(2) D′ =
∑

type (a) ι′α ∗F 2r−d+1
S CHd−r(X̃α i) + j∗F 2r−d+1

S CHd−r(E) .

Proof. (1) To show the inclusion (⊂), note for a component of type (b), the
existence of the map X̃α i → Z implies: if α ∈ ια ∗F 2r−d+1

S CHd−r(X̃α i) then
α ∈ i∗F 2r−d+1

S CHd−r(Z).

For the other inclusion, take a component Xα i containing Z and consider the
diagram as in the proof of (4.9):

Z ′ f−−−→X̃α iyh
y

Z → Xα i
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If z ∈ F 2r−d+1
S CHd−r(Z), by (4.5)(2), there is z′ ∈ F 2r−d+1

S CHd−r(Z ′) such that
z = h∗z′. Thus

i∗z = ια ∗f∗z′ ∈ ια ∗F 2r−d+1
S CHd−r(X̃α i) .

(2) Similar to (1).

(4.12) Proposition. (1) µ∗(D′) ⊂ D. (2) µ∗(D) ⊂ D′. (3) D′ = D⊕ (K ∩D′).

Proof. (1) Obvious.

(2) For α ∈ F 2r−d+1
S CHd−r(Z),

µ∗i∗α = j∗(c(E) · g∗α) ∈ j∗F 2r−d+1
S CHd−r(E) .

(3) Follows from (1) and (2).

(4.13) Proposition. We have K ∩N ′ = K ∩D′. Thus µ∗ induces an isomor-
phism µ∗ : N/D

∼→ N ′/D′, the inverse being the map induced by µ∗.

Proof. By K ∼= Ker g∗, if z ∈ K then z = j∗w for an element w ∈ Ker g∗.
Assume further z ∈ K ∩N ′. Then by (4.9)

j∗z = j∗j∗w ∈ F 2r−d+1
S CHr(E) .

By Proposition (4.8), w ∈ F 2r−d+1
S CHr−1(E). Thus, using Proposition (4.12),

z ∈ K ∩D′.

(4.14) Let X be a quasi-projective variety, with a quasi-projective map p to S.
One can define a unique filtration F •

S on the Chow group CHs(X) satisfying the
following properties. The definition of the filtration and the verification of the
properties are similar to the case S = Spec k, which was carried out in [CH].

(1) CHr(X) = F− dim S
S CHr(X) and F ν

S CHr(X) = 0 for ν large enough.

(2) If f : X → Y be a projective map over S, f∗ : CHs(X) → CHs(Y ) respects
the filtrations F •

S . If in addition f is surjective, f∗ is strictly compatible with the
filtrations.

(3) If j : U ↪→ X is an open immersion, then j∗ : CHs(X) → CHs(U) is strictly
compatible with F •

S .

(4) If f : X → Y be an lci map of codimension d and f is over S, and

X ′−−−→Y ′
y

yg

X
f−−−→Y
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a Cartesian square where g : Y ′ → Y is a quasi-projective map, then the refined
Gysin map f ! : CHs(Y ′) → CHs−d(X ′) respects F •

S .

(4.15) Using the filtration (4.14), the group D ⊂ CHr(X) can be identified with

Image[(k1)∗ : F 2r−d+1
S CHd−r(X1) → CHd−r(X) ] ,

which is clearly independent of X̃1.
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