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Abstract: Let X be a smooth projective algebraic curve of genus > 1 over
and algebraically closed field k of characteristic p > 0. Denote by Bunn

(resp. Locn) the moduli stack of vector bundles of rank n on X (resp. the
moduli stack of vector bundles of rank n endowed with a connection). Let
also DBunn denote the sheaf of crystalline differential operators on Bunn

(cf. e.g. [3]). In this paper we construct an equivalence Φn between the
bounded derived category Db(M(OLoc0n

)) of quasi-coherent sheaves on some
open subset Loc0

n ⊂ Locn and the bounded derived category Db(M(D0
Bunn

))
of the category of modules over some localization D0

Bunn
of DBunn . We

show that this equivalence satisfies the Hecke eigen-value property in the
manner predicted by the geometric Langlands conjecture. In particular, for
any E ∈ Loc0

n we construct a ”Hecke eigen-module” AutE .
The main tools used in the construction are the Azumaya property of DBunn

(cf. [3]) and the geometry of the Hitchin integrable system. The functor Φn

is defined via a twisted version of the Fourier-Mukai transform.

1. Introduction

1.1. Geometric Langlands conjecture. Let X be a smooth projective curve
over C and let E be a local system of rank n on X. Let also Bunn denote the
moduli stack of rank n vector bundles on X.

The notion of an automorphic D-module with respect to E on X has been
defined by Beilinson and Drinfeld. For irreducible E the existence of such a D-
module has been shown by Frenkel, Gaitsgory and Vilonen (cf. [7], [8]; cf. also [6]
for a review of the subject and [9] for a recent perspective coming from physics).
Belinson and Drinfeld conjectured also the existence of a canonical equivalence
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(or “almost equivalence”, see [2] for details) between the derived category of
D-modules on Bunn and the derived category of quasi-coherent sheaves on the
(appropriately understood) moduli space Locn of local systems on X (under this
equivalence automorphic D-modules correspond to sky-scraper sheaves).

1.2. The case of characteristic p. The purpose of this paper is to partially
establish the above equivalence in a somewhat different (in fact, much easier)
context. Namely, we assume that X is defined over an algebraically closed field k
of characteristic p > 0. By D-modules in this situation we mean quasi-coherent
sheaves with a connection (i.e. we work with crystalline differential operators in
the terminology of [3] and we do not consider differential operators with divided
powers). In this case we define a certain dense open subset Loc0

n of Locn and
explain a very simple construction, which attaches to any E ∈ Loc0

n an automor-
phic D-module SE on Bunn. We also show that such a D-module is unique. As
a byproduct we establish the equivalence between the derived category of quasi-
coherent sheaves on Loc0

n and the derived category of a certain localization of the
category of D-modules on Bunn (this equivalence is given by a twisted version of
the Fourier-Mukai transform).

1.3. Azumaya algebras and the Hitchin system. The main tool in the con-
struction is the observation from [3] saying that for a variety Y over a field k as
above the sheaf DY of crystalline differential operators is an Azumaya algebra on
T ∗Y (1) – the cotangent bundle of the Frobenius twist of Y . In the case Y = Bunn
1 we consider the Hitchin map p : T ∗Bun(1)

n → ⊕n
i=0H

0(X(1),Ω⊗i
X(1)) and observe

that the Azumaya algebra DBunn splits on the generic fiber of p. We show that
every splitting as above gives rise to a rank n vector bundle E with connection
on X and that the corresponding splitting DBunn-module is automorphic with
respect to E .

Let us now describe the contents of this paper in more detail. In Section 2
we recall some facts about duality and Fourier-Mukai transforms on commutative
group-stacks and torosors over them following [1]. In Section 3 we recall the basic
facts about differential operators in characteristic p and generalize some of them
to the case of algebraic stacks (such a generalization is more or less straightfor-
ward but we couldn’t find it in the literature). In Section 4 we introduce the
Hitchin system and prove our main results about it; these results allow us to
establish a certain geometric Langlands-type equivalence of categories. In Sec-
tion 5 we prove that this equivalence of cateogries satisfies the Hecke eigen-value
property.

1Of course Bunn is not an algebraic variety. However, a generalization of the above result to
the case of ”good” algebraic stacks is rather straightforward – cf. Section 3.13.
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We believe that it should not be very difficult to generalize our constructions
to the case of an arbitrary reductive group G.

1.4. Acknowledgements. The idea of this paper emerged as a result of a con-
versation with T. Pantev at MSRI in the spring of 2002; we thank Tony for the
inspiration and MSRI for its hospitality. We also would like to thank D. Arinkin,
A. Beilinson, V. Drinfeld and D. Gaitsgory for useful discussions on the subject.
Most of this work was completed when both authors visited the Hebrew Univer-
sity of Jerusalem; we are grateful to this institution for its hospitality and very
warm atmosphere.

2. Fourier-Mukai transforms on commutative group stacks

The content of this section is mostly due to D. Arinkin (cf. [1]). We include
it for completeness. In what follows we fix an algebraically closed field k and an
irreducible scheme W of finite type over k. The word “scheme” (or “stack”) will
mean a scheme (stack) over W. For example BGm will denote the classifying
stack of Gm over W (that is to say W/Gm).

We refer the reader to [4] for the basic definition about group-stacks.

2.1. Coherent sheaves on gerbes. Let Y be stack which is locally of finite
type over W. Recall that a Gm-gerbe over a stack Y is a stack Ỹ endowed with
an action of BGm and with a map Ỹ → Y such that locally (in the smooth
topology) on Y one has Ỹ = Y ×BGm. In other words, Ỹ corresponds to a sheaf
of groupoids on Ysm endowed with the natural action of the sheaf Pic(Y)sm which
locally is simply transitive. The gerbe is called split if it is globally isomorphic to
Y × BGm. Let Db(Ỹ) denote the bounded derived category of coherent sheaves
on Ỹ.

Assume that Ỹ is split. Then the category Db(Ỹ) is equivalent to the bounded
derived category of coherent sheaves on Y endowed with a Gm-action; thus in
this case we have the natural decomposition

(2.1) Db(Ỹ) =
⊕

n∈Z
Db(Ỹ)n

of Db(Ỹ) according to characters of Gm. Each of the categories Db(Ỹ)n is equiv-
alent to Db(Y).

If Ỹ is not split we still have a decomposition of Db(Ỹ) into a direct sum as in
(2.1). This decomposition is defined as follows: let us denote by a the canonical
map BGm × Ỹ → Ỹ. Then F ∈ Db(Ỹ)n if and only if a∗F ∈ Db(BGm × Ỹ)n.
Note that for n = 0 the category Db(Ỹ)0 is still equivalent to Db(Y); however for
n 6= 0 this is no longer true.
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2.2. Azumaya algebras and modules over them. Let Y be a stack as above.
Recall that an Azumaya algebra A on Y is a coherent sheaf of algebras which is
locally in the smooth topology isomorphic to a matrix algebra (i.e. to the algebra
of endomorphisms of a vector bundle). It follows that A is a locally free sheaf on
Y. We denote its rank by rkA.

Given an Azumaya algebra A we say that a splitting of A is a vector bundle E
on Y and an isomorphism A ' End (E). If such a splitting exists we say that A
is split (or trivial). In general splittings of a given algebra A form an Gm-gerbe
YA in the smooth topology.

For an Azumaya algebra A we denote by Aop the opposite algebra (clearly,
it is again an Azumaya algebra). We also denote by M(A) the category of
coherent sheaves of A-modules. Every splitting of A gives rise to an equivalence
M(A) 'M(OY).

Let A and B be two Azumaya algebras on Y . By an equivalence of A and
B we mean a splitting of the algebra A ⊗ Bop. Such a splitting gives rise to an
equivalence of categories M(A) 'M(B). The category of equivalences between
A and B is equivalent to the category of equivalences between the Gm-gerbes YA
and YB.

Let Db(M(A)) denote the bounded derived category of sheaves of coherent
A-modules.

Lemma 2.3. The category Db(M(A)) is canonically equivalent to Db(YA)1.

This follows easily from the definitions (cf. [5] for a detailed proof).

2.4. Duality for commutative group-stacks. Let Y be a commutative group
stack which is locally of finite type over W. The dual stack Y∨ is the stack which
classifies extensions of commutative group-stacks

0 → Gm → X → Y → 0.

In other words Y∨ classifies 1-morphisms of commutative group stacks Y → BGm.
Note (this follows from the examples below) that if Y is algebraic then the stack
Y∨ need not be algebraic.

Examples.

1. Let Y = Z (that is W ×Z). Then it is clear that Y∨ = BGm. More generally,
if Y = Γ × W where Γ is a finitely generated abelian group then Y∨ = W/Γ∨
where Γ∨ = Hom(Γ,Gm).

2. Let Y = BGm. We claim that Y∨ = Z. Indeed, a group one-morphism
BGm → BGm by definition corresponds to a tensor functor αS : Pic(S) → Pic(S)
defined for every scheme S over W and satisfying some obvisous compatibility
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conditions (with respect to inverse images). We claim that there exists (unique)
n ∈ Z such that the above functors are canonically isomorphic to L 7→ L⊗n

(this establishes the desired isomorphism Y∨ = Z). Since the trivial bundle on
S is the identity object of Pic(S) it must go to itself under any tensor functor.
Thus, since Aut(OS) = Γ(S,O∗S) we see that any functor as above gives rise
to a group homomorphism ηS : Γ(S,O∗S) → Γ(S,O∗S). These homomorphisms
must be compatible with pull-backs, i.e. for any morphism f : S′ → S we
must have f∗ ◦ ηS = ηS′ ◦ f∗; in addition each ηS must be equal to identity on
Γ(W,O∗W) ⊂ Γ(S,O∗S). Moreover, it is easy to see that the above morphism
BGm → BGm is uniquely determined (i.e. up to canonical isomorphism) by all
ηS ’s (since every line bundle is locally isomorphic to the trivial bundle). In other
words, we see that a homomorphism BGm → BGm is given by a homomorphism
Gm → Gm of group-schemes over W. Since W was assumed irreducible, it is
easy to see that every such homomorphism is given by the formula t 7→ tn for
some n ∈ Z. Hence, for every S as above the homomorphism ηS is given by
ηS(f) = fn. This implies that the functor αS is canonically isomorphic to the
functor L 7→ Ln.

3. Let A be an abelian scheme over W. Then A∨ is isomorphic to the dual
abelian scheme in the usual sense.

4. Let now π : C → W be a smooth projective morphism of relative dimension one.
Assume also that all the geometric fibers of π are irreducible. In this case one can
form the Picard scheme of C over W which we shall denote by Pic(C/W) as well
as the corresponding Picard stack Pic(C/W). Both Pic(C/W) and Pic(C/W) have
infinitely many connected components naturally parametrised by Z; for any d ∈ Z
we shall denote by Picd(C/W) (resp. Picd(C/W)) the corresponding component.
We have the natural morphism κ : Pic(C/W) → Pic(C/W). Note that there
is no natural morphism in the opposite direction. Assume, however, that π
has a section s. Then we can use it to construct an identification Pic(C/W) '
Pic(C/W)/Gm (where the action of Gm on Pic(C/W) is trivial). Indeed, in this
case the scheme Pic(C/W) represents the functor sending a scheme S to the set
of isomorphism classes of the following data 2:

1) a morphism f : S →W;

2) a line bundle L on S ×
W
C;

3) a trivialization of (id×s)∗L.

Note that the data of 1 and 2 is the same a (one)-morphism S → Pic(C/W)
and forgetting 3 corresponds to taking the quotient by the trivial action of Gm.

2In section Section 4.6 we give a slightly different (but equivalent) definition of the functor
represented by Pic(C/W) which does not use a choice of a section s.
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Hence Pic(C/W) is a Gm-gerbe over Pic(C/W). Also every section s of π gives
to a morphism ηs : Pic(C/W) → Pic(C/W) such that the composition κ ◦ ηs =
id. However, it is easy to see that for a different choice of s we shall get a
different morphism ηs (though the functors given by 1,2,3 above are canonically
isomorphic).

Note also that a choice of s identifies all the schemes Picd(C/W) (for different
d). The same is true for all the stacks Picd(C/W).

The stack Pic(C/W) ×
W

Pic(C/W) is endowed with the natural Poincaré line

bundle P. Note that P is not a pull-back of any line on Pic(C/W) ×
W

Pic(C/W);

thus there is no natural Poincaré bundle on Pic(C/W) ×
W

Pic(C/W). This can

be seen in the following way. Assume that a section s of π is chosen as above.
Then we can use the morphism ηs discussed above to pull-back the Poincaré
bundle P to Pic(C/W) ×

W
Pic(C/W). We denote the resulting line bundle by

Ps. By the construction Ps is endowed with a natural Gm × Gm-action. It is
easy to see that this action takes the following form: each (t1, t2) ∈ Gm acts
on Ps|Picd1 (C/W)×

W
Picd2 (C/W) by td2

1 td1
2 . Hence the action is non-trivial (unless

d1 = d2 = 0).

It is easy to see that the line bundle P gives rise to an equivalence Y ' Y∨. In
more down-to-earth terms this equivalence can be seen as follows. Locally in the
smooth topology on W we can choose a section of C; such a choice gives rise to a
(local) isomorphism Pic(C/W) = Pic0(C/W)× Z× BGm. It is well known that
the abelian scheme Pic0(C/W) is self dual; also our duality interchanges Z and
BGm. Thus locally Y is self-dual and it is easy to see that this local equivalence
Y ' Y∨ does not depend on the choice of a local section of C made above (more
precisely, for any two choices there is a canonical isomorphism between the two
equivalences) and hence it can be glued to a global equivalence.

It is easy to see that we always have a natural 1-morphism Y → (Y∨)∨. We say
that Y is nice 3 if this morphism is an equivalence of categories. Note all the
stacks considered in examples 1-4 above are nice. We say that Y is very nice if
locally in smooth topology on W is is isomorphic to a finite product of stacks
considered in examples 1-3 above (note that the stack in example 4 is also very
nice). It is also clear that if Y is very nice then so is Y∨. For a very nice stalk
we let d(Y) denote the (relative over W) dimension of the corresponding abelian
scheme; more invariantly, one can say that d(Y) is equal to the sum of the relative
dimension of Y over W and the dimension of the group of automorphisms of any
k-point of Y. Clearly, one has d(Y) = d(Y∨).

3Arinkin in [1] calls it “good”; we prefer to use another word since we want to reserve the
word “good” for a different property.
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Remark. Note that the last equality does not hold if we replace d(Y) by
dim(Y/W): indeed the latter number is equal to 0 for Y = Z and to −1 for
Y = BGm.

The proof of the following lemma is left to the reader.

Lemma 2.5. Let

0 → Y1 → Y2 → Y3 → 0
be a short exact sequence of commutative group-stacks. Assume that any two of
the above stacks are nice. Then the third one is nice too.

Note that Lemma 2.5 may fail if ”nice” is replaced by ”very nice”.

2.6. Fourier-Mukai transform for group-stacks. Let Y be a very nice group
stack. By the definition we have a universal Gm-torsor on Y ×

W
Y∨ which gives

rise to a natural line bundle PY there. Let Db(Y) denote the bounded derived
category of coherent sheaves on Y. We define the Fourier-Mukai functor ΦY :
Db(Y) → Db(Y∨) by setting

Φ(F ) = (p2)∗(p∗1(F )⊗ PY).

Here we let p1 : Y×
W
Y∨ → Y and p2 : Y×

W
Y∨ → Y∨ denote the natural projections.

The following result is an easy corollary of the corresponding statement about
the Fourier-Mukai transform on abelian varieties.

Theorem 2.7. The composition ΦY∨◦ΦY is naturally isomorphic to (−1)∗[−d(Y)]
(here (−1) stands for the inverse morphism Y → Y). In particular, ΦY is an
equivalence of categories.

Remark. In [1] D. Arinkin claims that Theorem 2.7 actually holds for any nice
stack. However we do not know a proof of this statement.

2.8. Duality for torsors. Let now Y ′ be a torsor over a very nice group-stack
Y. Such a torsor gives rise to a canonical extension of group-stacks

0 → Y → Ỹ α→ Z→ 0

such that Y ′ ' α−1(1). We denote by Ỹ∨ the corresponding dual stack. It fits
into a short exact sequence

(2.2) 0 → BGm → Ỹ∨ → Y∨ → 0.

Note that since Ỹ ′ is smooth over W it follows that it splits locally in the smooth
topology on W. This implies that the stacks Ỹ and Ỹ∨ are automatically very
nice.
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In fact we claim that the converse to the last statement is also true, i.e. we
claim that any group-stack Ỹ∨ which fits into a short exact sequence as in (2.2)
comes from a torsor Y ′ as above. In other words we claim that any Gm-gerbe
over Y∨ with a commutative group structure is very nice. For this it is enough
to show that any sequence of the form (2.2) splits locally in the smooth topology
in W. Since the stacks Y∨ and BGm are nice it is obvious from (2.2) that Ỹ∨
is nice. Thus to check the spitting of (2.2) it is enough to check the splitting of
the dual sequence obtained by applying ∨ to all the terms. However, the latter
sequence takes the form

0 → Y → Ỹ → Z→ 0

which is obviously locally split.

In the future we shall need the following

Proposition 2.9. The Fourier-Mukai functor ΦỸ restricts to an equivalence

(2.3) ΦY ′ : Db(Y ′) −̃→ Db(Ỹ∨)1.

For the proof cf. [1].

2.10. Azumaya algebras with a group structure. Let now Y be any com-
mutative group stack over W. Let A be an Azumaya algebra on Y. As was
discussed before this algebra induces canonical Gm-gerbe YA over Y. We want
to investigate when this gerbe has a group structure. For this it is suufficient to
define a group structure on A. We now want to explain what this means.

Let m : Y ×
W
Y → Y, i : Y → Y and e : W → Y be respectively the mul-

tiplication morphism, the inversion morphism and the unit. We also denote by
p1, p2 : Y ×

W
Y → Y the two natural projections.

By a group structure on A we shall mean the following structure:

1) An equivalence between p∗1A⊗ p∗2A and m∗A;

2) Let now π1, π2, π3,m : Y ×
W
Y ×
W
Y → W denote the natural projections and

the multiplication morphism. Then from 1) one gets two equivalences between
π∗1A ⊗ π∗2A ⊗ π∗3A and m∗A. Our second piece of structure is an isomorphism
between these two equivalences.

This data must satisfy a cocycle condition (taking place on the 4th Cartesian
power of Y over W). The details can be found in [14].

The fact that the group structure on A induces a group structure on YA is
clear.
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3. Azumaya algebras and differential operators

3.1. Frobenius twist of a k-scheme. Let Y be a scheme over an algebraically
closed field k of characteristic p > 0. The Frobenius map of schemes Y → Y
is defined as identity on topological spaces, but the pull-back of functions is the
p-th power: Fr∗Y (f) = fp for f ∈ OY . The Frobenius twist Y (1) of Y is the
k-scheme that coincides with Y as a scheme (i.e. Y (1) = Y as a topological
space and OY (1) = OY as a sheaf of rings), but with a different k-structure:
a ·

(1)
f = a1/p · f, a ∈ k, f ∈ OY (1) . It makes Frobenius map into a map of

k-schemes FrY : Y → Y (1). Since FrY is a bijection on k-points, we will often
identify k-points of Y and Y (1). Also, since FrY is affine, we may identify sheaves
on Y with their direct images under FrY .

For a vector space V over k its Frobenius twist V (1) again has a natural struc-
ture of a vector space. Given two vector spaces V and W over k we say that a
map α : V → W is p-linear if it is additive and α(a · v) = apα(v) (for a ∈ k and
v ∈ V ). This is the same as a map V (1) → W . For every V as above we have a
natural isomorphism (V ∗)(1) ' (V (1))∗.

Let Y be a smooth variety over k. Then it is easy to see that we have canonical
isomorphisms

(TY )(1) ' T (Y (1)) and (T ∗Y )(1) ' T ∗(Y (1)).

We set T ∗,1Y = Y ×
Y (1)

(T ∗Y )(1). We have natural morphisms η : T ∗,1Y → Y

(corresponding to the projection on the first multiple) and ρ : T ∗,1Y → (T ∗Y )(1)

(corresponding the projection on the second multiple).

3.2. The sheaves DY and DY . In what follows Y denotes a smooth variety
over k. We let DY denote the quasi-coherent sheaf of algebras on Y generated
by OY and TY with the following relations:

(3.1) ∂ · f − f · ∂ = ∂(f) and ∂ · ∂′ − ∂′ · ∂ = [∂, ∂′]

where f ,∂ and ∂′ are local sections of OX and TX respectively.

The sheaf DX acts on OX . This action, however, is not faithful. For example
when Y = A1 (with coordinate y) the element

(
d
dy

)p
(which is non-zero in DY )

clearly kills every function.

For any vector field ∂ ∈ TY , the element ∂p ∈ DY acts on functions as another
vector field which one denotes ∂[p]. Then ι(∂) := ∂p − ∂[p] ∈ DY commutes with
functions. Since ι is p-linear we shall regard it as a linear map

ι : TY (1) → Fr∗DY .
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In particular, there exists canonical quasi-coherent sheaf of algebras DY on T ∗Y (1)

together with an isomorphism (π(1)
Y )∗DY ' Fr∗DY .

The following result is proved in [3]:

Theorem 3.3. (1) For every vector field ∂ defined on a Zariski open subset
U of Y the element ι(∂) is central in DU .

(2) The map ι induces an isomorphism of sheaves between O(T ∗Y )(1) and the

center of DY .
(3) DY is an Azumaya algebra on (T ∗Y )(1) of rank p2d where d = dim Y .

(4) The Azumaya algebra DY on T ∗Y (1) is non-trivial for every Y such that
dimY > 0.

Let us give a sketch of the proof of property (3) above since we are going
to need it in the future. First of all, it is easy to check that DY is a locally
free coherent sheaf of algebras on (T ∗Y )(1) of rank p2d. Moreover, there exists a
natural coherent sheaf (DY )T ∗,1Y on T ∗,1Y such that DY = η∗(DY )T ∗,1Y (recall
that η denotes the natural morphism T ∗,1Y → (T ∗Y )(1)). Indeed, to construct
(DY )T ∗,1Y is the same as to construct an action of the sheaf η∗OT ∗,1Y on DY .
Note that the sheaf of (commutative) algebras η∗OT ∗,1Y embeds naturally into
DY since as a sheaf of algebras it is (by the definition) generated by (FrY )∗(OY )
and O(T ∗Y )(1) . We now let it act on DY by right multiplication. It is clear that
the sheaf (DY )T ∗,1Y is locally free of rank pd on T ∗,1Y .

To prove that DY is actually an Azumaya algebra it is enough to show (cf.
[13]) that for some faithfully flat morphism ρ : Z → (T ∗Y )(1) the algebra ρ∗DY

is isomorphic to the algebra of endomorphisms of a vector bundle E on Z. Let
Z = T ∗,1Y and let ρ denote the natural morphism T ∗,1Y → (T ∗Y )(1). Set also
E = (DY )T ∗,1Y . Then ρ∗DY acts on (DY )T ∗,1Y by left multiplication. This action
commutes with the action of OT ∗,1Y since the latter came from right multipli-
cation in DY . Thus we get a homomorphism ρ∗DY → EndOT∗,1Y

((DY )T ∗,1Y ) of
coherent sheaves of algebras on T ∗,1Y . This homomorphism must be an embed-
ding on the level of fibers (since DY has no zero divisors). Since both algebras
have rank p2d it follows that this map is an isomorphism generically.

3.4. The “small” differential operators DX,0. The restriction of DY to any
closed subscheme Z of T ∗Y (1) gives an Azumaya algebra on Z. In particular, we
may take Z to be the zero section of T ∗Y (1). In this way we get the algebra DY,0

of small differential operators. This algebra is again generated by OY and TY
and to get its relations we must add the relation

∂p = ∂[p], ∂ ∈ TY

to (3.1).
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It is easy to see that DY,0 is the image of the canonical map DY → End kOY .
In fact, this gives an isomorpshism DY,0 ' End Y (1) OY which shows that the
Azumaya algebra DY,0 on Y (1) is canonically split.

3.5. p-curvature. The construction of the algebra DY is closely related to the
notion of p-curvature that we now recall. Let F be a DY -module which may
regard as a quasi-coherent sheaf on Y endowed with a flat connection. Let
also End (F) denote the sheaf of endomorphisms of F over OY . Then to ∇
we can canonically associate a section ψ∇ of End (F) ⊗ Fr∗Y (Ω1

Y (1)) which is
called the p-curvature of ∇. To do that let us note that the space of global
sections of End (F) ⊗ Fr∗Y (Ω1

Y (1)) is the same as the space of global sections of
(FrY )∗End (F)⊗Ω1

Y (1) . To construct an element in the latter we need to construct
an element ψ∇(∂) ∈ End (F) for each (locally defined) vector field ∂ so that the
assignment ∂ 7→ ψ∇(∂) is additive and satisfies

ψ∇(f∂) = fpψ∇(∂),

where f is any (locally defined) function on Y .

It is now clear that the assignment

ψ∇(∂) := ∇(∂)p −∇(∂[p])

satisfies all the above requirements.

We shall denote by M(DY ) the category of quasi-coherent sheaves of left DY -
modules on Y ; this category is equivalent to the category M(DY ) of quasi-
coherent sheaves of left DY -modules on T ∗Y (1)

.

3.6. Inverse image. Let π : Z → W be a morphism of smooth varieties over k.
We define the functor π! : M(DW ) → M(DZ) in the following way. 4 For any
object F ∈M(DW ) we set π!F to be equal to the pull-back of M in the sense of
quasi-coherent sheaves. In other words,

π!F = OZ ⊗
π•OW

π•F

where π• denotes the sheaf-theoretic pull-back. The sheaf TZ acts on π!F by
means of the Leibniz formula.

Here is a standard reformulation of this definition. Set DZ→W = π!DW . This
is a DZ-module on Z which also admits a canonical right action of the sheaf

4In fact, our definition differs from the standard definition (given usually in characteristic 0
case) by the shift by dim W − dim Z.
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π·DW which commutes with the left DZ-action. Then for every F ∈M(DW ) we
have

π!F = DZ→W ⊗
π•DW

π•F.

Let us reformulate this definition in terms of the algebras DZ and DW .

Let dπ : Z(1)×W (1)T ∗W (1) → T ∗Z(1) be (the Frobenius twist of) the differential
of π. On Z(1)×W (1) T ∗W (1) we get two Azumaya algebras: dπ∗(DZ) and pr∗(DW )
(where pr is the projection to the second factor).

Proposition 3.7. The Azumaya algebras dπ∗(DZ) and pr∗(DW ) are canonically
equivalent.

Proof. To prove the Proposition it suffices to construct a splitting for the Azu-
maya algebra A = dπ∗(DW )op ⊗ pr∗(DZ), i.e. to provide a vector bundle of rank√

rank(A) = pdim Z+dim W equipped with an action of A (a splitting module for
A).

Recall that we have the left DZ-module DZ→W endowed with a natural right
action of π•DW . Thus there exists a natural DZ £Dop

W -module DZ→W whose di-
rect image to T ∗Z(1) is identified with (FrZ)∗DZ→W . In fact it is clear that DZ→W

is supported on T ∗Z(1) ×W (1) T ∗W (1) ⊂ T ∗Z(1) × T ∗W (1). This follows from the
fact that the right action of the central subalgebra π•(OW (1)) ⊂ π•(OT ∗W (1)) ⊂
π•(DW ) coincides with the one factoring through the left action of OZ(1) ⊂ DZ .
Thus π∗(DW ) can be viewed as a quasi-coherent sheaf on T ∗Z(1) ×W (1) T ∗W (1)

equipped with an action of the Azumaya algebra pr∗1(DZ)⊗ pr∗2(DW )op.

Lemma 3.8. The sheaf π∗(DW ) is supported on the closed subscheme

Z(1) ×W (1) T ∗W (1) ⊂ T ∗Z(1) ×W (1) T ∗W (1)

(the graph of dπ). It is locally free of rank pdim(Z)+dim(W ) on this subscheme.

Note that it follows from Lemma 3.8 that DZ→W is a splitting module for A.
Thus Lemma 3.8 implies Proposition 3.7.

Proof. To check the first statement it suffices to see that if v is a vector field
on an open U ⊂ Z with constant horizontal component, i.e. dπ(v) = π∗(w) ∈
Γ(U, π∗TW ) for some vector field w on an open neighborhood of π(U) then the left
action of vp−v[p] on π∗(DW ) coincides with the right action of π•(wp−w[p]). This
follows from the fact that both operators commute with the action of OZ ⊂ DZ ,
and obviously coincide on the image of π•(DW ) → π∗(DW ).

To check the second assertion it is enough to see that the associated graded of
gr(π∗DW ) of π∗DW with respect to the standard filtration by the order of a differ-
ential operator is locally free of rank pdim(X)+dim(Y ) over gr(OX(1)×

Y (1)T
∗Y (1)) =
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OX(1)×
Y (1)T

∗Y (1) . However, the sheaf gr(π∗DW ) can be naturally identified with
the direct image of the sheaf OZ×

W
T ∗W under the Frobenius map Fr : Z×

W
T ∗W →

Z(1) ×
W (1)

T ∗W (1), which finishes the proof. ¤

¤

Let us now reformulate the definition of the inverse image functor using Propo-
sition 3.7. Namely, it follows from Proposition 3.7 that we have a natural equiv-
alence of categories M(dπ∗DZ) ' M(pr∗DW ). It is now easy to see that the
functor π! defined above is equal to the composition of the pullback functor
M(DW ) → M(pr∗DW ), the above equivalence, and the push-forward functor
M(dπ∗DZ) →M(DZ).

3.9. Direct image. Let π : Z → W be again a morphism of smooth varieties
over k. The usual definition of the direct image functor works also in our case.
However, we would like to use another definition in terms of the algebras DZ ,
DW . Namely, Proposition 3.7 yields as before a canonical equivalence between
the categories M(dπ∗DZ) and M(pr∗DW ). Composing this equivalence with
the pull-back functor M(DZ) → M(dπ∗DZ) on the left, and the push-forward
functor M(pr∗DW ) → M(DW ) on the right we get the functor of direct image
from M(DZ) to M(DW ).

3.10. The algebra DY,θ. A 1-form θ on Y (1) defines a section θ : Y (1) → T ∗Y (1).
We let DY,θ = θ∗(DY ) denote the pull-back of the Azumaya algebra DY under θ.

For example, for θ = 0 we recover the algebra DY,0 of small differential op-
erators which, as we have seen before, is canoncially split. More generally, the
category (more precisely, O×

Y (1)-gerbe) of splittings of DY,θ is canonically equiva-
lent to the category of line bundles on Y equipped with a flat connection whose
p-curvature equals Fr∗θ.

Let us denote the above gerbe by GY,θ. It follows from the above description
that GY,θ is functorial in (Y, θ).

Suppose that θ equals ω−C(ω) for a 1-form ω on Y (where C : Fr∗(Ω1
cl) → Ω1

Y (1)

is the Cartier operator, and where we omit from the notation the tautological
Frobenius-linear isomorphism between Γ(Y, Ω1) = Γ(Y (1),Ω1)), then θ is the p-
curvature of the connection d + ω on the trivial line bundle, so in this case the
choice of such a 1-form ω defines a splitting of the Azumaya algebra DY,θ.

Recall now that the cotangent bundle to any smooth variety is endowed with
a canonical one form (whose differential equals the canonical symplectic form).
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Proposition 3.11. Let θ be the canonical 1-form on T ∗Y (1). Then the Azumaya
algebra DT ∗Y,θ (of rank p4d) is canonically equivalent to the Azumaya algebra DY

(of rank 2d).

Proof. We apply Proposition 3.7 to the projection π : T ∗Y → Y . We get an equiv-
alence η∗DT ∗Y ∼ pr∗2(DY ) between the two Azumaya algebras on T ∗Y (1) ×Y (1)

T ∗Y (1); here η stands for the closed imbedding T ∗Y (1)×Y (1)T ∗Y (1) → T ∗(T ∗Y )(1),
and pr2 is the second projection. The section θ : T ∗Y (1) → T ∗(T ∗Y )(1) lands in
the image of η; moreover, we have θ = δ ◦ η, where δ : T ∗Y (1) → T ∗Y (1) ×Y (1)

T ∗Y (1) is the diagonal embedding.

Thus
DT ∗Y,θ = δ∗ι∗DT ∗Y ∼ δ∗ pr∗2(DY ) = DY ,

which finishes the proof. ¤

Corollary 3.12. Let f : Y1 → Y2 be a morphism of smooth algebraic varieties

over k. Let θi ∈ Γ(Y (1)
i ,Ω1

Y
(1)
i

) (where i = 1, 2). Assume that (f (1))∗θ2 = θ1.

Then the algebras DY1,θ1 and (f (1))∗DY2,θ2 are canonically equivalent.

3.13. Stack version. Let now Y is a smooth irreducible algebraic stack. Assume
that Y is good in the sense [2]; in other words we assume that dim T ∗Y = 2 dim Y
(in this case the stack T ∗Y is automatically equidimensional and irreducible).
We assume in addition that T ∗Y has an open-substack T ∗Y 0 which is a smooth
Deligne-Mumford stack.

Recall that when k has characteristic 0 and Y is as above one can define
canonical quasi-coherent sheaf of algebras DY (cf. [2], Chapter 1). More precisely,
we have the following data. Let f : S → Y be a smooth map from a scheme S to
Y . Then we can define a sheaf (DY )S of algebras on S (this sheaf is the sheaf-
theoretic pull-back of DY to S; note that this is not a sheaf of OS-modules).
In addition we can also define a DS-module (DY )]

S on S endowed with a right
action of (DY )S and with a morphism (DY )S → (DY )]

S of (DY )S-modules (this
is the pull-back of DY in the sense of O-modules). Both (DY )S and (DY )]

S must
be sheaves (which we denote by DY and D]

Y ) on the smooth site of Y and the
morphism DY → D]

Y must induce an isomorphism of global sections on any open
subset U ⊂ Y .

The definition of the above sheaves (when char(k) = 0)is as follows. Let D̃S ⊂
DS be the normalizer of the left ideal IS = DS ·T (S/Y ) (here T (S/Y ) stands for
the sheaf of vector fields on S which are vertical with respect to the morphism
f : S → Y ). Then (after [2]) we set (DY )S = D̃S/IS and (DY )]

S = DS/IS . Note
that that if Y is a scheme then (DY )]

S is nothing else but DS→Y . Also, it is clear
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that we have the natural identification

(3.2) (DY )S = EndDS
((DY )]

S).

Let us now turn to the case char(k) = p > 0. In this case we leave the definition
of (DY )]

S unchanged. However, it is easy to see that the definition of (DY )S has
to be modified (if we define (DY )S as in (3.2) then this algebra will contain the
center of DS which we don’t want to be there).

In fact we don’t know a good definition of (DY )S in this case. In other words
we don’t know how to define an algebra structure on the sheaf defined by the
collection of all the (DY )]

S . Instead we are going to proceed as follows.

Let as before let π : T ∗Y → Y denote the natural projection; let also π(1) :
T ∗Y (1) → Y (1) denote its Frobenius twist.

Lemma 3.14. (1) There exists a natural coherent sheaf of algebras DY on

T ∗Y (1) together with the natural isomorphism

π
(1)

∗ DY ' Fr∗DY .

(2) The restriction of DY to (T ∗Y 0)
(1)

is an Azumaya algebra on (T ∗Y 0)
(1)

.

In particular, under the above conditions it makes sense to speak about the
category of DY -modules.

Proof. First, let us construct a coherent sheaf of algebras DY on T ∗Y (1) whose
direct image to Y (1) coincides with Fr∗DY . To do that let us note the following.
Let f : S → Y be as above. Let us denote by (T ∗Y )S the orthogonal complement
of T (S/Y ) in T ∗S; this is a closed subscheme of T ∗S. We have a Cartesian square

(T ∗Y )S
f̃−−−−→ T ∗Y

(πY )S

y πY

y
S

f−−−−→ Y

In particular, the map f̃ : (T ∗Y )S → T ∗Y is a smooth covering. Also, given two
smooth maps f : S → Y and f ′ : S′ → Y together with a morphism β : S′ → S

(of schemes over Y ) we have a natural morphism β̃ : (T ∗Y )S′ → (T ∗Y )S of
schemes over T ∗Y . Thus in order to define the sheaf DY we need to define the
following data:

• A coherent sheaf of algebras (DY )S on (T ∗Y )(1)S for each S as above;

• An isomorphism (β̃(1))∗(DY )S ' (DY )S′ for every β as above.

This data must satisfy the standard ”cocycle” condition.
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Consider the DS-module (DY )]
S . We denote by (DY )]

S the corresponding DS-
module. We claim that it is supported on (T ∗Y (1)

)S . Indeed, the module (DY )]
S

is generated by one section 1 which is annihilated by any local section of T (S/Y ).
Hence (DY )]

S is also generated by the section 1 which is annihilated by any local
section of T (S/Y ); hence 1 is also annihilated by all their p-th powers. This
means that 1 is annihilated by any local section of T ∗(S/Y )(1). Since 1 is a
generator and since the sections of T (Y/S)(1) lie in the center of DS it follows
that any local section of T (Y/S)(1) acts by zero on (DY )]

S which means that it is
supported on (T ∗Y )(1)

S .

Define now
(DY )S = EndDS

((DY )]
S)op.

We have the natural isomorphism

((πY )(1)
S )∗(DY )S = (FrS)∗(DY )S

which follows immediately from (3.2) (in particular, this gives another definition
of (DY )S). The construction of the above data is straightforward.

Now we must show that the sheaf DY |(T ∗Y 0)(1) is an Azumaya algebra of rank
p2 dim Y . In other words, we have to show that for every S as above the algebra
((DY )S)|

(T ∗Y 0)
(1)
S

is an Azumaya algebra of rank p2 dim Y . Here (T ∗Y 0)S denotes

the preimage of T ∗Y 0 in (T ∗Y )S . In fact, we are going to show that this Azumaya
algebra is equivalent to DS |(T ∗Y 0)(1) . Indeed, consider again the sheaf (DY )]

S . By
the definition, it is endowed with a left action of DS |(T ∗Y )

(1)
S

and with a right

action of (DY )S . Since DS |(T ∗Y )
(1)
S

is an Azumaya algebra of rank p2 dim S the
required statement follows from the following

Lemma 3.15. The restriction of (DY )]
S to (T ∗Y 0)(1)S is locally free of rank

pdim Y +dim S .

Proof. It is enough to prove that gr((DY )]
S) restricted to (T ∗Y 0)(1)S is locally free

of rank pdim Y +dim S . However, we have the natural isomorphism

gr((DY )]
S) ' Fr∗(O(T ∗Y )S

)

which immediately implies what we need (since (T ∗Y 0)S is smooth). ¤

¤

In the sequel we are going to need the following lemma whose proof is explained
in [14].
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Lemma 3.16. Let θ be a one-form on a group stack Y (over a base W). Assume
that

(3.3) m∗θ = p∗1θ + p∗2θ.

Then the algebra DY,θ has a natural group structure.

4. D-modules on Bunn and the Hitchin fibration

In this section k is an arbitrary algebraically closed field and X is a smooth
projective irreducible curve over k of genus g > 1. For n > 0 we let Bunn denote
the moduli stack of rank n vector bundles on X. We denote by ΩX the canonical
sheaf of X; we shall also use the notation T ∗X for the corresponding geometric
object (i.e. the total space of the corresponding line bundle). We also denote by
iT ∗X the total space of Ω⊗i

X .

4.1. The Hitchin map. The stack T ∗Bunn parametrises pairs (F , A) where
F ∈ Bunn and A : F → F ⊗ ΩX is an arbitrary map. Let

Hitchn =
n⊕

i=1

H0(X, Ω⊗i
X ).

Define the map h : T ∗Bunn → Hitchn in the following way:

h : (F , A) 7→ (τ1(A), ..., τn(A)) := (tr(A), tr(Λ2A), ..., tr(ΛnA) = det A).

4.2. Spectral curves. Let χ : Hitchn × T ∗X → nT ∗X be the map sending the
point (τ1, ..., τn), ξ to ∑

(−1)iτi ⊗ ξn−i.

For (F , A) ∈ T ∗Bunn one can think of χ(h((F ,A))) as the characteristic polyno-
mial of A.

We let X̃ be the (scheme-theoretic) pre-image of the zero section in nT ∗X.
This is a closed subscheme of Hitchn × T ∗X which we shall call the total spectral
curve.

Let π : X̃ → Hitchn ×X be the natural morphism obtained by composing the
embedding X̃ ↪→ Hitchn× T ∗X with the natural projection Hitchn× T ∗X → X.
Then π is a finite flat morphism of degree n. We also denote by pr1 : X̃ → Hitchn

and pr2 : X̃ → T ∗X the corresponding projections.

Given a scheme S over k and an S-point τ of Hitchn we let X̃τ denote the
corresponding closed subscheme of S × T ∗X (obtained by base change from X̃).
In particular, if S = Spec k then X̃τ is a closed susbcheme of T ∗X which if flat
and finite of degree n over X.
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Proposition 4.3. There exists a non-empty open subset Hitch0
n of Hitchn over

which pr1 is smooth.

Let X̃0 = pr−1
1 (Hitch0

n). Let also θ = pr∗2 θX .

4.4. Fibers of the Hitchin map via line bundles on X̃. Let S a k-scheme
and let τ be an S-point of Hitch0

n. It is well-known that the fiber of h over
τ can be canonically identified with with the stack Pic(X̃τ ). Let us recall this
identification. Let L be a line bundle on X̃τ . The embedding X̃τ ⊂ S × T ∗X
gives rise to a map

a : L → L⊗ π∗(OS £ ΩX).

Then F = π∗L is a vector bundle on S ×X of rank n and the push-forward of
a gives rise to a Higgs field

A : F → F ⊗ ΩX .

In particular when τ is a k-point of Hitchn then h−1(τ) can be identified with
the stack Pic(X̃τ ).

Corollary 4.5. The stack T ∗Bun0
n can be naturally identified with Pic(X̃0/Hitch0

n).

Corollary 4.5 shows in particular that the automorphism group of every k-point
of T ∗Bun0

n is equal to Gm.

From now on we assume that k has characteristic p > 0.

4.6. The algebra DBunn. The stack Bunn is not good in the terminology of
Section 3.13. Therefore, we must explain what we mean by DBunn . We claim
that there exists a stack Bunn and a canonical morphism

κn : Bunn → Bunn

such that

1) Bunn is a Gm-gerbe over Bunn

2) Every connected component of Bunn is very good in the sense of Section 3.13.

It follows from the above that the stack T ∗Bunn is a Gm-gerbe over T ∗Bunn. We
define the algebra DBunn to be the pullback of DBunn

from T ∗Bunn.

Let us explain the construction of the stack Bunn. Let us define a functor

F : Schemes over k → Groupoids

in the following way. For any scheme S over k let us define the category F (S) in
the following way:

• Objects of F (S) are vector bundles on S ×X of rank n
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• Morphisms between two vector bundles F1 and F2 on S×X in the category
F (S) consist of isomorphism classes of pairs (L, ι) where L is a line bundle on S
and ι is an isomorphism between F1 and F2⊗p∗SL where pS : S×X → S denotes
the natural projection.

It is easy to see that a pair (L, ι) as above does not have any non-trivial au-
tomorphisms, hence looking at the isomorphism classes of such pairs is really a
harmless operation (any such isomorphism is unique).

We now define Bunn to be the sheafification of the functor F in the smooth
topology. It is easy to see that it satisfies all the above properties.

4.7. The stack Locn. Let Locn denote the stack parametrising ”de Rham lo-
cal systems of rank n” on X. In other words, for a test scheme S we define
Hom(S, Locn) to be the groupoid of all vector bundles E on S × X of rank n
endowed with a connection ∇ : E → E ⊗ pr∗X ΩX where prX : S ×X → X is the
natural projection.

We claim that there exists a natural map c : Locn → Hitch(1)
n . To construct it

let (F ,∇) be a point in Locn. Recall that to ∇ there corresponds the p-curvature
operator

ψ∇ : F → F ⊗ Fr∗XΩX(1)

which can also be regarded as a section of (FrX)∗(End (F))⊗Ω1
X(1) . Applying the

standard invariant polynomials to the first multiple as in Section 4.1 we obtain
a point of Hitch(1)

n which we set to be c((F ,∇)).

Let us note that the identification T ∗Bun0
n = Pic(X̃0/Hitch0

n) induces a group
structure on the former as a stack over Hitch0

n. Set now Loc0
n = c−1((Hitch0

n)(1)).

Lemma 4.8. Loc0
n has a natural structure of a (T ∗Bun0

n)(1) = (Pic(X̃0/Hitch0
n))(1)-

torsor (as a stack over (Hitch0
n)(1).

Proof. To prove Lemma 4.8 we are going to rephrase the definition of the stack
Loc0

n. Namely, we claim that an S-point of Loc0
n is the same as the following

data:

1) A morphism S → (Hitch0
n)(1);

2) A splitting of the pull-back of the algebra DX from T ∗X(1) to S ×
Hitch

(1)
n

X̃(1)

(note that we have a natural map S ×
Hitch

(1)
n

X̃(1) → T ∗X(1) coming from pr(1)2 :

X̃(1) → T ∗X(1)).
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We leave the verification of the fact that the above functor is indeed represented
by Loc0

n to the reader (note however, that we do not have such a simple description
of the whole stack Locn).

Now since the category of splittings of an Azumaya algebra on S ×
Hitch

(1)
n

X̃(1) is

a Picard category over the category of line bundles on S ×
Hitch

(1)
n

X̃(1) the statement

of Lemma 4.8 follows. ¤

4.9. The main result. The next theorem is the main result of this section. Let
us denote by D0

Bunn
the restriction of DBunn to (T ∗Bun0

n)(1).

Theorem 4.10. (1) The algebra D0
Bunn

has a natural group structure (with

respect to the above group structure on (T ∗Bun0
n)(1)).

(2) The Pic((X̃0)(1)/(Hitch0
n)(1))-torsor Loc0

n is canonically equivalent to the
dual torsor of YD0

Bunn
. In particular, we have a canonical equivalence of

derived categories Φn : Db(M(D0
Bunn

)) ' Db(M(OLoc0n
)).

Proof. We are going to give two different proofs (though they are based on the
same idea). The first one makes use of Corollary 3.12. The second proof is more
direct; it will be used in the next section.

4.11. First proof. Consider the addition map
(4.1)

a : X̃0 ×
Hitchn

Pic(X̃0/Hitch0
n) = X̃0 × T ∗Bun0

n → Pic(X̃0/Hitch0
n) = T ∗Bun0

n

We now claim the following (see section 4.16 for a proof):

Theorem 4.12. a∗θBunn = pr∗2 θX £ θBunn . In particular, the Azumaya algebras

(a(1))∗D0
Bunn

and (pr(1)
2 )∗DX £DBunn are equivalent.

Restricting the above equality to the product of X̃0 with the unit section in
Pic(X̃0/Hitch0

n) we get the following corollary:

Corollary 4.13. Consider the natural map κ : X̃0 → Pic(X̃0/Hitch0
n) = T ∗Bun0

n

sending a point x̃ ∈ X̃0 to the bundle Ox̃. Then we have

pr∗2 θX = κ∗θBunn .

In particular, the Azumaya algebras (κ(1))∗D0
Bunn

and (pr(1)2 )∗DX are canonically
equivalent. Thus also there is a canonical equivalence of Azumaya algebras

(4.2) (pr(1)
2 )∗DX ' (κ(1))∗D0

Bunn
.

Let us first explain how Theorem 4.12 implies Theorem 4.10.
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4.14. The group structure on D0
Bunn

: first construction. It is enough to
check that the form θ0

Bunn
:= θBunn |T ∗Bun0

n
satisfies the condition of Lemma 3.16.

For any d, d′ ∈ Z let us denote by md,d′ the addition map

Picd(X̃0/Hitch0
n)× Picd′(X̃0/Hitch0

n) → Picd+d′(X̃0/Hitch0
n).

It is enough to show that m∗
d,d′θ

0
Bunn

= θ0
Bunn

£ θ0
Bunn

for d large enough. So let
us assume that d > 2n2(g − 1). Let Yd denote the d-th Cartesian power of X̃0

over Hitch0
n. Let us also denote by κd : Yd → Picd(X̃0/Hitch0

n) the natural map
sending a point (x1, ..., xd) to O(x1 + ... + xd). Then Yd has an open subset on
which the map κd is dominant and smooth. Hence it is enough to show that

(κd × Id)∗m∗
d,d′θ

0
Bunn

= κ∗dθ
0
Bunn

£ θBun0
n
.

However, iterating the assertion of Theorem 4.12 d-times we see that the left
hand side is equal to

pr∗2 θX £ ... £ pr∗2 θX︸ ︷︷ ︸
d times

.

However, iterating the assertion of Corollary 4.13 we see that the latter form is
equal to κ∗dθBunn which finishes the proof.

4.15. Proof of Theorem 4.10(2). It is enough to construct a map (YD0
Bunn

)∨1 →
Loc0

n of Pic((X̃0)(1)/(Hitch0
n)(1))-torsors; here (YD0

Bunn
)∨1 denotes the preimage of

1 under the natural map (YD0
Bunn

)∨ → Z (cf. Section 2.8). Let us do that on the
level of k-points (the construction on the level of S-points is basically a word-
by-word repetition). A k-point of (YD0

Bunn
)∨ is a splitting of D0

Bunn
|(h(1))−1(τ)

compatible with the group structure for some τ ∈ (Hitch(1)
n )0. Restricting this

splitting to the image of X̃
(1)
τ in (h(1))−1(τ) = Pic(X̃(1)

τ ) and applying (4.2)
we get a splitting of DX |X̃(1)

τ
, i.e. a point of Loc0

n which lies in c−1(τ). This

clearly defines a morphism (YD0
Bunn

)∨ → Loc0
n. The fact that this is a map of

Pic((X̃0)(1)/(Hitch0
n)(1))-torsors is obvious from the definitions.

4.16. Proof of Theorem 4.12. Denote by H 5 the stack parametrising the
following data:

1) F1,F2 ∈ Bunn and x ∈ X;

2) An embedding F1 ⊂ F2 such that the quotient is a coherent sheaf of length
one concentrated at the point x.

5In the next section we are going to define stacks Hr for r = 1, ..., n; the stack H discussed
here will be denoted by H1 in the next section.
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Let us denote by q1 : H → X ×Bunn sending the above data to the pair (x,F1);
also we denote by q2 : H → Bunn the map sending the above data to F2.

It is easy to see that both q1 and q2 are smooth maps. Therefore, we have the
closed embeddings q∗1T

∗(X × Bunn) → T ∗H and q∗2T
∗Bunn → T ∗H. Set

Z = q∗1T
∗(X × Bunn) ∩ q∗2T

∗Bunn; Z0 = q∗1(T
∗X × T ∗Bun0

n) ∩ q∗2T
∗Bun0

n.

Clearly, we have the natural maps α1 : Z0 → T ∗X × T ∗Bun0
n and α2 : Z0 →

T ∗Bun0
n. We claim now that there is a natural isomorphism Z0 ' X̃0 ×

Hitchn

T ∗Bun0
n = X̃0 ×

Hitchn

Pic(X̃0 ×Hitch0
n) such that:

a) The map α1 is the Cartesian product of the map pr2 : X̃0 → T ∗X and the
identity map T ∗Bun0

n → T ∗Bun0
n;

b) The map α2 is equal to the addition map (4.1).

In order to construct such an isomorphism let us note that if ((x, ξ), (F1, A1),
(F2, A2)) lies in Z0 then (F1, A1) and (F2, A2) lie over the same point τ of Hitchn

since we have A1 = A2 outside of x ∈ X (this makes sense since F1 and F2 are
identified outside of x). This also implies that the embedding F1 ⊂ F2 comes
from the embedding L1 ⊂ L2 where Li (i = 1, 2) is the line bundle on X̃τ

corresponding to the pair (Fi, Ai). Since the quotient of L2 by L1 must be one-
dimensional it is actually equal to the skyscraper sheaf of a point x̃ ∈ X̃τ . It
is easy to see that we must have x̃ = (x, ξ); in particular, (x, ξ) ∈ X̃τ . Now
it is clear that sending the triple ((x, ξ), (F1, A1), (F2, A2)) to (x̃,L1) identifies
Z0 with X̃0 ×

Hitchn

Pic(X̃0 × Hitch0
n) and this identification satisfies a) and b)

formulated above.

Now we want to prove the statement of Theorem 4.12. From the above we see
that it is enough to show that α∗1(θX £θBunn) = α∗2(θBunn) on Z0. However, both
these forms coincide with the restriction of θH to Z0 which finishes the proof.

4.17. Second proof of Theorem 4.10. We want to give another proof of The-
orem 4.10 which does not use 1-forms. In fact we are going to give a different
proof of the second assertion of Theorem 4.12 which does not appeal to one-
forms and leave the details of the other parts of the proof to the reader. It is also
not difficult to check that the equivalence as in Theorem 4.10 constructed below
coincides with the one constructed above using 1-forms.

We need to establish an equivalence

(4.3) (a(1))∗D0
Bunn

' (pr(1)2 )∗DX £DBunn
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of Azumaya algebras on (X̃0)(1) ×
(Hitch0

n)tw
Pic((X̃0)(1)/(Hitch0

n)(1)). Recall that

the latter stack is identified with (T ∗Z0)(1) ⊂ T ∗H(1). It is clear that the
LHS of (4.3) is identified (dq

(1)
2 )∗D0

Bunn
and the RHS of (4.3) is identified with

(dq
(1)
1 )∗(DX £ DBunn). We claim now that both these algebras can be identi-

fied with the restriction of DH to (Z0)(1). This is an immediate corollary of
Proposition 3.7. ¤

Remark. Let S be any smooth k-variety. Then it is easy to see that a slight
generalization of the above construction gives an equivalence of categories

Φn,S : Db(D0
Bunn×S −mod)→̃Db(OLoc0n

£DS)−mod.

4.18. The modules AutE . Given (E ,∇) ∈ Loc0
n we shall denote by AutE the

corresponding D0
Bunn

-module. This module defines a splitting of D0
Bunn

on the
corresponding Hitchin fiber. Since this fiber is closed in T ∗Bunn it follows that
we may regard AutE as a DBunn-module (rather than D0

Bunn
-module). In the

next section we are going to show that AutE is a Hecke eigen-module (in the
sense explained in the next section).

5. The Hecke eigenvalue property

5.1. The Hecke correspondences. Let r be an integer such that 1 ≤ r ≤ n.
Denote by Hr the stack which classifies the following data:

1) A triple (F1,F2, x) ∈ Bunn × Bunn ×X

2) An embedding F1 ⊂ F2 such that the quotient is scheme-theoretically con-
centrated at x and has length r.

We denote
←
q r : Hr → Bunn ×X the map sending the above data to the pair

(F1, x). Similarly we let
→
q r : Hr :→ Bunn be the map sending the above data to

F2. It is well-known that the maps
→
q r,

←
q r (and thus the stack Hr) are smooth.

5.2. The Hecke functors. We denote by Hr the functor from the category
Db(M(DBunn)) to the category Db(M(DBunn×X)) defined by

Hr(M) = (
←
q r)∗

→
q

!

r(M).

It is easy to see that the functor Hr is in fact a functor between Db(M(DBunn))
and Db(M(DBunn×X)) as categories over Hitch(1)

n ; in particular, we may restrict
it to (Hitch0

n)(1). We shall denote the corresponding functor by H0
r .

On the other hand, for any number r as above we can define the functor
Tr : Db(Locn) → Db(M(OLocn £ DX)) as follows. Let E ∈ M(OLocn £ DX)
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denote the ”universal local system”. Let pr1 : Locn × X → Locn denote the
projection to the first multiple. Then (for every F ∈ Db(Locn)) we set6

Tr(F) = pr∗1F ⊗ ∧rE .

We denote by T0
r the corresponding functor from Db(Loc0

n) to Db(M(OLocn £
DX)).

5.3. The Hecke eigenvalue property. Here is the main result of this section.

Theorem 5.4. For n < p there is canonical isomorphism of functors

Φn,X ◦H0
r ' T0

r .

Remark. One can define the analog of the functors Tr for every finite-dimensional
representation of GL(n) (the functors Tr correspond to the wedge powers of the
standard representation). However we do not know how to define the analogs of
the functors Hr in this case (unlike the case when k has characteristic 0 where
such functors are well-known).

5.5. Proof of Theorem 5.4 for r = 1. Let P denote the universal D0
Bunn

£
OLoc0n

-module. The statement of Theorem 5.4 is equivalent to the existence of
an isomorphism

(5.1) 1H0
r(P) ' 2T0

r(P),

where the superscript on the left means that we apply the corresponding functor
either along the first or the second factor.

Let us now concentrate on the case r = 1 (we shall see later that the proof
in the general case is almost a word-by-word repetition of the proof for r = 1
but notationally it is a bit more complicated). Let Z, Z0 be as in the previous
section. Recall that Z0 ' T ∗Bun0

n ×
Hitch0

n

X̃0. We have the natural maps α1 :

Z0 → T ∗X × T ∗Bun0
n and α2 : Z0 → T ∗Bun0

n, where α1 is a closed embedding
and α2 is smooth. Also we have the natural equivalence of Azumaya algebras

(5.2) (α(1)
1 )∗(DX £D0

Bunn
) ' (α(1)

2 )∗(D0
Bunn

).

By the definition, in order to compute H1(M) for any D0
Bunn

-module M we just

need to look at (α(1)
2 )∗(M) and regard it as a DX £ D0

Bunn
-module using (5.2).

Let us apply it to the module P and recall the following:

1) The stack Loc0
n parametrises splittings of DBun0

n
compatible with the group

structure.

6Note that Tr lands indeed in Db(M(OLocn £DX)) since E is flat.
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2) The map α2 is the composition of the natural embedding κ : X̃0 →
Pic(X̃0/Hitch0

n) = T ∗Bun0
n and the addition map

Pic(X̃0/Hitch0
n) ×

Hitch0
n

Pic(X̃0/Hitch0
n) → Pic(X̃0/Hitch0

n).

3) The Azumaya algebra (κ(1))∗D0
Bunn

is naturally equivalent to (pr(1)2 )∗DX

(recall that pr2 denotes the natural map X̃ → T ∗X). Moreover, under this
equivalence the splitting (κ(1) × id)∗P of (κ(1))∗D0

Bunn
£ OLoc0n

goes over to the

splitting (pr(1)
2 × id)∗E of (pr(1)

2 )∗DX £OLoc0n
.

It follows now easily from 1,2,3 above that the DX £D0
Bunn

£OLoc0n
-module cor-

responding to (α(1)
2 )∗(P) via (5.2) is naturally isomorphic to E13 ⊗ P23 (where

the double superscript means that the sheaf in question is lifted from the corre-
sponding couple of multiples of T ∗X(1) × (T ∗Bun0

n)(1) × Loc0
n). This finishes the

proof.

5.6. Proof of Theorem 5.4 in the general case. Let us explain how to gen-
eralize this proof to arbitrary r. In fact we are only going to give a sketch of the
proof here, breaking it into several (simple) steps whose proofs we are going to
leave to the reader.

Let Symr(X̃0/Hitch0
n) denote the relative symmetric power of X̃ over Hitch0

n.
Alternatively, we can say that an S-point of Symr(X̃0/Hitch0

n) is the same as a
morphism S → Hitch0

n and a zero-dimensional subscheme X̃0 ×
Hitch0

n

S which is flat

over S and has length r over any closed point of S. Also we define Hilbr(X̃0/X×
Hitch0

n) to be the closed subscheme of Symr(X̃0/Hitch0
n) whose S-points consist

of the following data:

1) A morphism S → X ×Hitch0
n

2)A zero-dimensional subscheme X̃0 ×
X×Hitch0

n

S which is flat over S and has

length r over any closed point of S.

The proof of the following lemma is left to the reader.

Lemma 5.7. (1) The scheme Hilbr(X̃0/X ×Hitch0
n) is flat and finite of de-

gree
(
n
r

)
over X ×Hitch0

n.

(2) There exists a natural map η : Hilbr(X̃0/X × Hitch0
n) → T ∗X satisfying

the following property: let τ be a k-point of Hitch0
n and let x ∈ X(k) be

such that X̃τ is unramified over x. Let also T ⊂ X̃τ be any collection of r

points of X̃τ lying over x (which naturally defines a point in Hilbr(X̃0/X×
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Hitch0
n). Then

η(T ) =
∑

x̃∈T
x̃

where the summation on the right is taken inside T ∗xX.

Let now τ be an S-point of Hitch0
n and let L be a line bundle on X̃τ . Denote by

L(r) its r-th symmetric power restricted to Hilbr(X̃τ/X×S) (the latter is defined
as the base change of Hilbr(X̃0/X ×Hitch0

n) to S). Let ηS : Hilbr(X̃τ/X ×S) →
T ∗X × S be the corresponding base change of η multiplied by idS .

Set now EL to be the direct image of L under the natural map X̃τ → T ∗X×S.
Let us think of EL as an S-point of T ∗Bun0

n, i.e. we want to think of it as a vector
bundle of rank n on X × S together with a Higgs field

A : EL → EL ⊗ (ΩX £OS).

We denote by Λr(EL) the r-th exterior power of EL endowed with a Higgs field
Λr(A) defined by

Λr(A)(e1 ∧ ... ∧ er) = A(e1) ∧ e2 ∧ ... ∧ er + ... + e1 ∧ e2 ∧ ... ∧ er−1 ∧A(er).

Note that Λr(EL) can again be considered as a sheaf on T ∗X × S.

Lemma 5.8. We have the natural isomorphism

(ηS)∗L(r) = Λr(EL).

Define now

Zr = (
←
q r)

∗(T ∗Bunn × T ∗X) ∩ (
→
q r)

∗(T ∗Bunn) ⊂ T ∗Hr;

Z0
r = (

←
q r)

∗(T ∗Bun0
n × T ∗X) ∩ (

→
q r)

∗(T ∗Bun0
n).

We claim that Z0
r can be canonically identified with Pic(X̃0/Hitch0

n) × Hilbr

(X̃0/X ×Hitch0
n). Note that the latter scheme can be identified with the scheme

classifying 5-tuples (τ,L1,L2, x, ι) where τ is an (S)-point of Hitch0
n, L1,L2 are

two line bundles on X̃τ , x is a point of X and ι is an embedding L1 → L2

such that the corresponding ideal sheaf in O
X̃τ

defines a subscheme of length
r lying in the preimage of x. Under this identification the isomorphism Z0

r '
Pic(X̃0/Hitch0

n)×Hilbr(X̃0/X)×Hitch0
n satisfies the following properties:

1) The natural map←−α : Z0
r → T ∗Bunn×T ∗X sends (τ,L1,L2, x, ι) to (L1, η(T ))

where T is the corresponding point of Hilbr(X̃0/X ×Hitch0
n).

2) The natural map −→α : Z0
r → T ∗Bunn sends the above 5-tuple to L2.

The proof of this claim is identical to the proof of the corresponding statement
for r = 1 discussed in Section 4.16.

Now the rest of the proof of Theorem 5.4 is the same as in Section 5.5
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5.9. Hecke eigen-modules. Let now E be any k-point of Loc0
n and let AutE be

the corresponding D-module on Bunn considered in Section 4.18. We now claim
that AutE is a ”Hecke eigen-module” in the following sense:

Theorem 5.10. For any r = 1, ..., n there is a canonical isomorphism

Hr(AutE) ' AutE £Λr(E).

The proof is immediate from Theorem 5.4
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