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Abstract: We give a proof that the geometrichomology theory for finiteCW-
complexes defined by Baum and Douglas is isomorphic to Kaspdfeawamnology.

The proof is a simplification of more elaborate arguments which deal with the geo-
metric formulation ofequivariantK-homology theory.

1. INTRODUCTION

K-homology theory, the homology theory which is dual to Atiyah-Hirzebrieh
theory, may be defined abstractly using the Bott spectrum and standard contructions in
homotopy theory. Atiyah [Ati70] pointed out the relevance to index theory of a concrete
definition of K-homology. Following his suggestions, detailed analytic definitioris-of
homology were provided by Brown, Douglas and Fillmore [BDF77] and by Kasparov
[Kas75], and these works are now foundational papers in opdfatoeory. At about the
same time, Baum and Douglas [BD82] introduced a geometric definitigrhmimology
(using manifolds, bordisms, and so on) in connection with work on the Riemann-Roch
problem [BFM75, BFM79]. Baum and Douglas defined a very simple and natural map
from their geometric theory to analyti€¢-homology, and this map turns out to be an
isomorphism. The combined efforts of various mathematicians in the early 1980’s pro-
duced a proof of this, but a detailed account of the matter was never published. This is
despite the fact that over the years the isomorphism has grown in importance, thanks to
its connection with the Baum-Connes conjecture [BCH94]. The purpose of this note is
to present, after a twenty five year gap, a detailed proof of the isomorphism from geo-
metricK-homology to analyti-homology. (See [Jak98, Jak00] for a related approach
to the problem of defining homology theories dual to multiplicative cohomology theo-
ries like K-theory.) The proof is a spin-off from our work on equivarig&homology
theory, which will be reported upon in a future paper, where we shall prove that for a dis-
crete, countable grou@, geometric equivariarit-homology is isomorphic to analytic
equivariantK-homology on the category of proper, finite CW-complexes.
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With admiration and affection we dedicate this paper to Robert MacPherson. A con-
versation between the first-named author and Bob MacPherson at IHES in 1978 was
crucial to the eventual formulation of geometkiehomology.

2. REVIEW OF ANALYTIC K-HOMOLOGY

In this section we shall review Kasparov’s definition of analj¢éibomology, and list
those facts about it that we shall need in the sequel. For further details the reader is
referred to the monograph [HROO] on the subject.

Throughout this section we shall be working with locally compact, second countable
topological spaces. I is such a space then we shall denote(yZ) the (separable)
C*-algebra of continuous, complex-valued functionsZzowhich vanish at infinity.

If X andY are operators on a Hilbert space, then the notaXienY will signify the
equality of X andY modulo the compact operators.

Definition 2.1. Let A be a separablé*-algebra. An (ungradedjredholm modul@ver
A is given by the following data:

(a) a separable Hilbert spa¢g
(b) arepresentatiop: A — B(H) of A as bounded operators &h and
(c) an operatoF onH such that for alla € A,

(FF—1)p(a)~0, (F—F)p(a)~0, Fp(a)~p(a)F.

The representatiopis not required to be non-degenerate in any way. Ingaand even
the Hilbert spacé, are allowed to be zero.

Roughly speaking, Kasparovis-homology groups are assembled from homotopy
classes of Fredholm modules over= Cy(Z). However it is necessary to equip these
Fredholm modules with a modest amount of extra structure.

Definition 2.2. Letp € {0,1,2,...} and letA be a separabl€*-algebra. Ap-graded
Fredholm module is a Fredholm modulH, p, F), as above, with the following addi-
tional structure:

(a) The Hilbert spaceH is equipped with &./2-gradingH = H* @& H™ in such a
way that for eactu € A, the operatop(a) is even-graded, while the operators
odd-graded.

(b) There are odd-graded operatefs. . ., e, on H such that

Ej:_e;,k, g].Z:—L gigj+ e =0 (i #j),

and such thak and eaclp(a) commute with eacla;.

1The term p-multigraded’ is used in [HROO].
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Of course, ifp = 0 then part (b) of the definition does not apply.

Definition 2.3. Let (H, p, F) and(H’, p’, F’) bep-graded Fredholm modules ovar A
unitary equivalencéetween them is a grading-degree zero unitary isomorptisid —
H’ which intertwines the representationandp’, the operators andF’, and the grading
operators; ande;.

Definition 2.4. Suppose thatH, p, F;) is a family of p-graded Fredholm modules pa-
rameterized by € [0, 1], in which the representatiqn the Hilbert spacél and its grad-
ing structures remain constant but the oper&toraries witht. If the functiont — Fy

is norm continuous, then we say that the family definesarator homotopypetween
the p-graded Fredholm modulg®, H, Fy) and(p, H, F1), and that the two Fredholm
modules ar®perator homotopic

There is a natural notion dfirect sunmfor Fredholm modules: one takes the direct sum
of the Hilbert spaces, of the representations, and of the opefatbtezero moduldas
zero Hilbert space, zero representation, and zero operator.

Now we can give Kasparov’s definition &homology.

Definition 2.5. Letp € {0,1,2,...} and letA be a separabl€*-algebra. The&Kas-
parov K-homology groufK—P(A) is the abelian group with one generatef for each
unitary equivalence class pfgraded Fredholm modules ovarand with the following
relations:

(a) if xo andx; are operator homotopie-graded Fredholm modules theg] = [x¢] in
K~P(A), and

(b) if xp andx; are any twap-graded Fredholm modules theq & x1] = [xo] + [x1]in
KP(A).

Definition 2.6. A p-graded Fredholm module is said todegeneraté the equivalences
modulo compact operators listed in item (c) of Definition 2.1 are actually equalities.

It is easy to see that a degeneratgraded Fredholm module determines the zero
element oK™P(A).

Lemma 2.7. Let (H, p, F) be ap-graded Fredholm module. Assume that there exists a
self-adjoint, odd-graded involutiob: H — H which commutes with the action Afand

with the multigrading operators;, and which anticommutes with Then the Fredholm
module(H, p, F) represents the zero elementofP (A).

Proof. The pathFy = coqt)F + sin(t)E gives an operator homotopy frofto the
degenerate operatér O

It follows from the lemma that the additive inverse of tkehomology class repre-
sented by(H, p, F) is the class of H°PP, p, —F), whereH®PP denoteH with the grading
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reversed. This is because the involutigh) ) on H @& HOPP satisfies the hypotheses of

the lemma, applied to the Fredholm modute® HOPP, p & p, F @ —F). It follows that

every class irK P(A) is represented by a single Fredholm module, and that two mod-
ules represent the same class if and only if, up to isomorphism, they become operator
homotopic after adding degenerate modules.

If (H, p, F) is ap-graded Fredholm modul®, then we may construct from it@+2)-
graded Fredholm moduléi’, p’, F’) over A by means of the formulas

H =H&H p'=p@dp, F=FaF

along with the grading operators

g=¢@¢g (G=1,...p), €py1= <_OI(I)) and ep2 = (OIlOI> .
1
Definition 2.8. Theformal periodicity map
KP(A) = K- PH(A)
is the homomorphism of Kasparov groups induced from this construction.

The periodicity map can be reversed by compressirig & 2) graded Fredholm
module to thet-1 eigenspace of the involutionie,1e,2. We obtain an isomorphism

K™P(A) = K*(pﬂ)(A).

As a result there are really only two genuinely distikehomology groupsK®' and
K°dd as follows:

Definition 2.9. Let us denote byk®'(A) andK°%(A) the groupsk®(A) andK—T(A)
respectively, or more canonically, the direct limits

ev T —2k odd I —(14+2k)
K (A)_Il?mK (A) and K (A)_Il?mK (A)

under the above periodicity maps.

Definition 2.10. If Z is a second countabfdpcally compact space, andAf = Cy(Z),

then we shall writeK,(Z) in place ofK™P(A). These are th&asparovK-homology
groupsof the space. If (X,Y) is a second countable, locally compact pair, and i

the differenceX \ Y, then we define relativk-homology groups by

Kp(X,Y) =K_,(Z).
We shall define periodic group&,, ;oqq( X, Y) similarly.

Kasparov's main theorem concerning these objects is then as follows:

2This assumption is required at several points in Kasparov’s theory, which is designsepfmable
C*-algebras.
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Theorem 2.11. There are natural transformations
0: Kp(X,Y) = Kp_1(Y)

(connecting homomorphisms) which are compatible with the formal periodicity isomor-
phisms and which give Kasparé+homology the structure of 4/2-graded homology
theory on the category of compact metrizable paksY). On the subcategory of finite
CW-complexes Kasparak-homology is isomorphic to topologickFhomology — the
homology theory associated to the Bott spectrum. O

3. DIRAC-TYPE OPERATORS

We continue to follow the monograph [HROO].

Definition 3.1. Let M be a smooth, second countable finite dimensional manifold (pos-
sibly with non-empty boundary) and I&t be a smooth, Euclidean vector bundle over
M. A p-graded Dirac structur@n'V is a smoothZ/2-graded, Hermitian vector bundle
S overM together with the following data:
(a) An R-linear morphism of vector bundles

V — End(S)

which associates to each vectoe V, a skew-adjoint, odd-graded endomorphism
u — v -uof Sy in such a way that

veveou = —|v)u.
(b) A family of skew-adjoint, odd-graded endomorphises. .., ¢, of S such that
g = —¢j, sjzz =1, &g +ee=0 (i#7),
and such that eacljy commutes with each operatar— v - u.

Usually M will be a Riemannian manifold and we will také = TM.. In this case we
shall callS ap-graded Dirac bundle oM.

Definition 3.2. Let M be a Riemannian manifold which is equipped witlp-graded
Dirac structure, with Dirac bundl&. We shall call an odd-graded, symmetric, order one
linear partial differential operatdD acting on the sections & a Dirac operatorif it
commutes with the operatotsg, and if

D, flu = gradf - u,
for every smooth functioion M and every section of S.
Every Dirac bundle on a Riemannian manifold admits a Dirac operator, and the dif-
ference of two Dirac operators on a single Dirac burkdie an endomorphism .

A p-graded Dirac operatd on a Riemannian manifolil without boundary defines
in a natural way a clag®] € K,(M). The general construction is a little involved, and
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we refer the reader to [HROOQ] for details, but whehis closed there is a very simple
description of D]:

Theorem 3.3. LetM be a closed (i.e. compact without boundary) Riemannian manifold
and letD be a Dirac operator on g-graded Dirac bundleS. LetH = L?(M, S) be

the Hilbert space of square-integrable sectionsSpand letp be the representation of
C(M) onH by pointwise multiplication operators. Let

F=D(I+D?) 2.
The triple(p, H, F) is ap-graded Fredholm module fok = C(M). O

To describe further properties of the clasfie$ we need to introduce the following
boundary operation on Dirac bundles:

Definition 3.4. Let S be ap-graded Dirac bundle on a Riemannian manifdidwith
boundaryoM. If e; denotes the outward pointing unit normal vector field on the bound-
ary manifoldoM then the formula

X:u— (=1)%%e; - gqu
defines an automorphism of the restrictionSafio 0M which is even, self-adjoint, and
satisfiesX? = 1. The operatoX commutes with multiplication. — Y - u by tangent
vectorsY orthogonal teey, and also with the multigrading operatars . . ., ¢p. The+1

eigenbundle foX is a (p — 1)-graded Dirac bundfeon 9M, which we shall call the
boundaryof the Dirac bundles.

The following theorem summarizes facts proved in Chapters 10 and 11 of [HROO].

Theorem 3.5. To each Dirac operatoD on ap-graded Dirac bundle over a smooth
manifold without boundary there is associated a cld3s< K,,(M) with the following
properties:

(i) The clas§D] depends only on the Dirac bundle, not on the choice of the operator
D.

(i) If M, is an open subset a1 ,, and if D is a Dirac operator onM; obtained by
restricting a Dirac operatoD; on M5, then[D>] maps to[D;] under the homo-
morphismK,(M;) — K,(My).

(i) Let M be the interior of a Riemannian manifol with boundarydM, and letS
be ap-graded Dirac bundle oM. LetD be a Dirac operator orM associated to
S and letDpm be a Dirac operator oroM associated to the boundary 8f The
connecting homomorphism

0: Kp(M) = Kp_1(0M)
in KasparovK-homology takes the clag® ] to the clasgD gal:
0[Dml = [Daml € Kp—1(0M).

*The multigrading operators are obtained frem. . ., ¢, by shifting indices downwards.
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O

We shall need one additional fact about Dirac operators which concerns the structure
of operators on fiber bundles. Suppose thais a closed Riemannian manifold and
that P is a principal bundle oveM whose structure group is a compact Lie grdeip
Suppose thal is a closed Riemannian manifold on whi@hacts by isometries. We can
then form the manifold = P x g N. Its tangent bundld@Z fits into an exact sequence
of vector bundles ovez,

0 A% Tz ™M 0,

wherert denotes the projection mapping frafrto M and whereV denotes the “vertical
tangent bundleV = P x g TN. If we choose a splitting of the sequence then we obtain
an isomorphism

(3.2) TZ=Varn'TM,
which equipsZ with a Riemannian metric.

Now suppose thaty, is ap-graded Dirac bundle foM and thatSy is a0-graded
Dirac bundle forN. Let us also suppose that there is an actiotcadn Sy which is
compatible with the action o6 on N. We can then form the bundl, = P xg SN
over Z, and from it the graded tensor prodgi = Sy&m*Sym. Using the direct sum
decomposition (3.1) this becomesg-@raded Dirac bundle faZ, with the tangent vector
v@w € V@ TM acting as the operatod1 + 18w on Sy &m*Sy.

We can now form the clag® 7| € K,,(Z) associated to a Dirac operator on the Dirac
bundleS&m* Sy, and using the projection mappimg Z — M we obtain a class

7T>n<[]:)Z] S Kp(M)
The following proposition relates, [D 7] to the clas§Dp] of a Dirac operator for the
Dirac bundleSy, on M.

Proposition 3.6. Assume that there existd@aequivariant Dirac operator for the Dirac
bundleSn, onN whose kernel is the one-dimensional trivial representatiol,dpanned
by an even-graded section $f. Then

m.[D 2] = Dl € Kp(M).

Proof. Let us consider first the special case in which the principal buRdketrivial:
P = G x M (in this case we might as well take = {e}). Then of cours& = N x M.
We can take the Dirac operatbr; to be

DZ = DN®I + I@DM,

whereDy is a Dirac operator for the Dirac bundieon N with one-dimensional kernel,
as in the statement of the proposition. Now the Hilbert space on wbiglacts is the
tensor product

L2(N x M, SN®Sm) = LA(N, SN)BLA(M, Sp).
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If we split the first factor.2(N, Sn ), as ketDy) plus its orthogonal complement, then
we obtain a corresponding direct sum decompositiogN x M, Sn&Sm). The
operatoffrz formed fromD z, as in Theorem 3.3, respects this direct sum decomposition,
as does the action af(M). We therefore obtain a decomposition of the Fredholm
module representin§D 7] as a direct sum of two Fredholm modules. The first acts
on keDn) ® L?(M, Sm) = L%(M, Syp) and is isomorphic to the Fredholm module
representingDp]. The second represents the zero elemer,dfM). This follows
from Lemma 2.7, since if is the partial isometry part @, in the polar decomposition,
and ify is the grading operator d?(M, Sa), then the odd-graded involution

E=T&y

on the Hilbert space kéP)-&L%(M, Syp) commutes with the action &(M), and with
the grading operators, and anticommutes witAz.

The proof of the general case is similar. To begin, the Hilbert space on Whidcts
is naturally isomorphic to the fixed point space

G
LN, SNELA (P, S )|

Denote byf)M a G-equivariant linear partial differential operator 8nacting on sec-
tions of *Sa4, Which is obtained as follows. Select a finite coverMfby open sets
U; over which the bundI@ is trivial, and fix isomorphisms tG x U; over these open
sets. Use the isomorphisms to define operaﬁgrsn ! [LW;] € P which act asD in
the U; direction and act as the identity in tliedirection. Select also a smooth partition

of unity {02} which is subordinate to the cover. Then deﬂDeby averaging the sum

> cr,D oj over the action oG. Having constructe® 4, we obtain a Dirac operator for
Sm&Sv by the formula

Dz =Dn® 1+ 18D
From here the argument used in the special case may be apptieatim O

Remark 3.7. By using some machinery the preceding result can be conceptualized and
generalized as follows. I6 is a compact group and is a C*-algebra equipped with

an action ofG (for exampleA = C(N)), then there is a natural notion 6fequivariant
Fredholm module, from which we may define equivarigftomology groupigp(A).

In the commutative case these give equivariant grd(ﬁ)é\l). Now if P is a principal
G-bundle overM, as above, then by elaborating on the construction of the Kasparov
product (which we shall not actually use anywhere in this paper) we obtain a pairing

KS(N) @ Kp(M) =2 Kpp(Z)
One can compute that the cld$3y] ® [D] is mapped tdDz]. Next, the map which
collapsesN to a point induces a homomorphism frdﬁg(N) to the coefficient group
Kg(pt), which is the representation ring &. From a representation @ and the
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principal bundleP we obtain by induction a vector bundle on the spateWe therefore
obtain a map

e: K§(N) —=KO(M) .

Finally, the groupk,,(M) is a module over the ring°(M) by the cap product between
homology and cohomology. We obtain a diagram

KS(N) @ Kp(M) —> Kpp(2)

= im

KO(M) @ Kp(M) —= Kp(M).

Proposition 3.6 follows from the assertion that this diagram commutes (in the special
case where the collapse map sefidsto 1 € R(G)). The commutativity of the diagram

is a simple exercise with the Kasparov product, but it is beyond the scope of the present
article.

We conclude this section by introducing a specific Dirac operator to which we shall
apply Proposition 3.6. In order to fix notation we begin with the following definition:

Definition 3.8. Let V be a Euclidean vector space. Tdwmmplex Clifford algebrdor V is
the universal complex-algebra CIiff V) equipped with afR-linear inclusion ofV, and
subject to the relations® = —|[v||%>- 1 forv € V. If {es, ..., en} is an orthonormal basis
for V, then the algebra CIifV) is linearly spanned by th2™ monomialse;, - - - ¢j,_,
wherej; < --- < jr and0 < k < n. We introduce an inner product on CIi¥f) by
deeming these monomials to be orthonormal.

The algebra CIiffV) is Z/2-graded: the monomial;, - - - e;, is even or odd-graded,
according a% is even or odd.

Definition 3.9. Let N be an even-dimensional, Riemannian manifold and let (OT\f)

be the complex vector bundle dhwhose fibers are the complexified Clifford algebras
of the fibers of the tangent bundle bBf. The bundle CIliffTN) has a naturad-graded
Dirac bundle structure (tangent vectors act by Clifford multiplication on the left).

If N is oriented, and ifeq,...,en}is a local, oriented, orthonormal frame, then the
operator ofright-multiplicaton by the product
o=1iz €1 --en

is an even-graded, self-adjoint involution of the bundle CIi¥) which commutes with
the Dirac bundle structure.

Definition 3.10. Denote by CIifﬁj(TN) the+1-eigenbundle of the involutioa. This is
a0-graded Dirac bundle in its own right.
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We wish to compute the index of a Dirac operator associated to this Dirac bundle,
at least in the case of a spheke= S™. To do so, we use the standard isomorphism
between CIiff TN) and the complexified exterior algebra bung\¢ T*N = A¢ TN,
which associates to the Clifford monomég| - - - e;, the differential forme;, A---Ae;, .
Under this correspondence, the oper&lor d + d* on forms becomes a Dirac operator
for the Dirac bundle CIiffTN). So the kernel oD is the space of harmonic forms on
N. Using the fact that the involutiom exchanges thé andn-forms onN we obtain the
following result.

Proposition 3.11. Let N be an even-dimensional, round sphere (oriented as the bound-
ary of the ball). There is a Dirac operator fdzliff 1 (TN) which is equivariant for the

natural action of the special orthogonal group, and whose kernel is the one-dimensional
trivial representation, and is generated by an even-graded sectiatifbf (TN). O
2

Remark 3.12. For general oriented Riemannian manifolds the index of the Dirac
operator for Cliffi (TN) is the average of the Euler characteristic and the signature.

2
Indeed the direct sum of Cli%‘f(TN) with the opposite of the bundle complementary
to Cliff%(TN) in Cliff (TN) is the Dirac bundle associated to the signature operator of
Atiyah and Singer.

4. SPIN®-STRUCTURES

We shall define Spifastructures using the notion of Dirac bundle that was introduced
in the last section.

Definition 4.1. Denote byC,, the complex Clifford algebra faR™, generated by the
standard basis elemends, . .., e, of R™

Let M be a smooth manifold and |&t be a rankp Euclidean vector bundle over
M. If eq,...,en is alocal orthonormal frame fdr, defined over an open skt C M,
then the trivial bundl&l x C,, overlU with fiber C,, may be given the structure of @n
graded Dirac bundle fov|y: Clifford multiplication by an elemeng; of the frame ideft
multiplication by thejth generator ofC,,, and thep-multigrading operatorsy, ..., ¢,
for the bundle areight multiplication by the same generators.

Definition 4.2. Let M be a smooth manifold and 1&f be ap-dimensional Euclidean
vector bundle oveM. A complex spinor bundl#or V is ap-multigraded Dirac bundle

Sv which is locally isomorphic to the trivial bundle with fibét,, the Clifford mul-
tiplication being determined from some local orthonormal frame, as above. We shall
call a bundleV equipped with a complex spinor bundle a Spugctor bundle If M is

a smooth manifold (possibly with boundary) then by a Sgtructureon M we shall
mean a pair consisting of a Riemannian metricvdrand a complex spinor bundfay

for TM.
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Remark 4.3. A spinor bundle determines an orientation\gfas follows. If{fy, ..., f,}
is a local orthonormal frame fov, then the endomorphism of the spinor bun8ig
determined by the formula

Wi ()PP f e equ

is plus or minus the identity (heiau is theZ,/2-grading degree of the sectia). If the
endomorphism is-I then we deem the frame to be oriented; if iti§ then we deem it
to be oppositely oriented.

Example 4.4. Let V7 andV, be Euclidean vector bundles & equipped with spinor
bundlesS; andS,. Using the well-known Clifford algebra isomorphisy,, 8C,,, =
Cp, +p, the graded tensor produgt®S, becomes a spinor bundle fi & V5. It defines
thedirect sumSpirf-structure orv; @ V.

Remark 4.5. The definition of Spifi-structure can be rephrased in the language of prin-
cipal bundles, as follows. The group Spij is the closed subgroup of the unitary group
of C, whose Lie algebra is th&-linear span of the elementse;, for i # j. The
group Spiri(n) is the closed subgroup of the unitary groug®f which is generated by
Spin(n) and the complex numbers of modulus one. The group‘$pinacts by inner
automorphisms on th&-linear subspace df,, spanned by the elementg and in this
way we obtain a homomorphism from Sgfn) into GL(n, R) (in factintoO(n)). Now

if M is a smooth manifold, and ® is a reduction to Spii{n) of the principal bundle

of tangent frames, then the reduction determines a Riemannian meth€, @amd the
bundle

S =P Xgpirt (n) Cn

is a spinor bundle oM (here Spifi(n) acts onC,, by left multiplication). ThusP
determines a Spfiastructure. Conversely, every Spiatructure arises in this way (up to
isomorphism).

Definition 4.6. Let M™ be a smooth manifold, without boundary, equipped with a Spin
structure. We shall denote liyl] € K;,(M) theK-homology class of any Dirac operator
onS. This is theK-homologyfundamental clasef the Spirf-manifold M.

If M is a smooth manifold with boundary then of course a Riemannian metric on
M restricts to one on the interidvl, and also to one on the bounda¥l. A spinor
bundle$S for M restricts to a spinor bundle dvl, and the boundary &, as described
in Definition 3.4, is a spinor bundle f@aM. The following result is a consequence of
Theorem 3.5.

Theorem 4.7. If M is the interior of ann-dimensionalSpirf-manifold with boundary,
and if we equip the boundary manifoddM with the inducedSpint-structure, then the
K-homology boundary map

0: Kn(M) = Kn—1(0M)
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takes the fundamental classhf to the fundamental class oM;
0[M] = [oM] € K,,_1(0M).
O

Definition 4.8. Let M be a smooth manifold equipped with a Spstructure. The
oppositeSpirt-structure is defined by changing the action of the multigrading operator
¢1 by a sign.

Definition 4.9. Let M be a smooth manifold. Two Sgirstructures oM areconcordant
if there is a Spifi-structure on0, 1] x M for which the induced Spfastructure on the
boundaryM UM is one of the given Spiistructures on one copy &, and the opposite
of the other given structure on the other copywf

In Chapter 11 of [HRO0Q], the following result is proved.

Theorem 4.10. ConcordantSpin©-structures onM determine the same fundamental
class inK-homology. O

In the case of even-dimensional manifolds the following simplified description of
Spirt-structures will be useful for us.

Definition 4.11. Let M™ be a smooth, even-dimensional manifold.re&lucedSpirt-
structureon M consists of a Riemannian metric diand a Dirac bundlI§ (Z/2-graded,
but with non-grading structure) whose fiber dimensio2 ts. We shall callS areduced
spinor bundle

If n is even then the complex Clifford algelts, is isomorphic to the matrix algebra
M,y (C), and hence has a unique representa¥igrof dimension2z . The operator
y=1i%er - en

providesV;, with aZ/2-grading. IfS is a reduced spinor bundle, as in the definition,
then the tensor produ@®V,, is a spinor bundle in the sense of Definition 4.2, and
conversely every spinor bundle in the sense of Definition 4.2 is of this form. If we
temporarily denote byMJeq € Ko(M) the K-homology class of the Dirac operator
on the reduced spinor bundfe then under the periodicity magy(M) — K, (M) the
fundamental clasBV]eq maps tojM].

We conclude this section by comparing reduced spinor bundles with the Dirac bundles
Cliff ; (TN) that we introduced in Section 3.
2

LetN be an even-dimensional, oriented Riemannian manifold, and assume it admits a
Spirt-structure, with reduced spinor bundleAs we noted above, the complex Clifford
algebra of a Euclidean vector space of dimensios 2k is isomorphic to the algebra
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of complex2® x 2% matrices. It follows by counting dimensions that the natural map
Cliff (TN) — End(S) is an isomorphism. Hence there is an isomorphism

CIiff (TN) = S&S*
compatible with the left and right actions by Clifford multiplication.

Proposition 4.12. Let S be a reduced spinor bundle fo¢ and denote bg* the even-
graded part of its dual. There is an isomorphism of Dirac bundles

Cliff 1 (TN) =S @ S*.

Proof. The reduced spinor bundle determines a full spinor bundl@fowhich in turn
determines the orientation &1, as described earlier. Having fixed this orientation,
the operatory acts as+1 on S, and—1 on S_. So the proposition follows from the
isomorphism CIiff TN) = S&S*. O

5. REVIEW OF GEOMETRIC K-HOMOLOGY

Definition 5.1. Let X be a paracompact Hausdorff space and'lbe a closed subspace
of X. A K-cyclefor the pair(X,Y) is a triple(M, E, ¢) consisting of:

(i) A smooth, compact manifol (possibly with boundary), equipped with a Spin
structure.
(i) A smooth, Hermitian vector bundieon M.
(iii) A continuous magb: M — X such thatp[oM] C Y.

Remark 5.2. The manifoldM need not be connected. Moreover the componentd of
may have differing dimensions.

Two K-cycles arasomorphidf there are compatible isomorphisms of all of the above
three components in the definition Kfcycle (this includes an isomorphism of spinor
bundles). Following [BD82] we are going to construct an abelian group from sets of
isomorphism classes of cycles so as to obtain “geomekiibbmology groups for the
pair (X,Y). In order to define the relations in these groups we need to introduce several
kinds of operations and relations involvikgcycles.

Definition 5.3. If (M, E,¢) and(M',E’, ¢’) are twoK-cycles for(X,Y), then their
disjoint unionis theK-cycle (M UM’ EUE’, ¢ U ¢').

Definition 5.4. If (M, E, ¢) is aK-cycle for (X,Y), then itsoppositeis the K-cycle
(—M, E, ¢), where—M denotes the manifold! equipped with the opposite Spin
structure.

Definition 5.5. A bordismof K-cycles for the paifX, Y) consists of the following data:

(i) A smooth, compact manifold, equipped with a Sphastructure.
(i) A smooth, Hermitian vector bundfeoverL.
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(iif) A continuous magb: L — X.
(iv) A smooth mapf: 9L — R for which +1 are regular values, and for whih[f~"
1,11 CY.

To understand the definition, it is best to consider the case Wwher@. In this case it
follows from condition (iv) that the seff—1, 1] is empty, and therefore the boundary of
L is divided byf into two componentsM . = f~1(+1, +o00) andM_ = ' (—o0, —1).
We therefore obtain twi-cycles(M, Fiap, , @Im, ) and(M_, Fim_, @lm_ ), and we
shall say that the first isordantto the opposite of the second.

In the case wher® is non-empty the sets | = f~'[+1,+00) andM_ = !
(—oo, —1] are manifolds with boundary, and we obtain, as before Kagycles(M ,,
Fim, , @Im, ) and(M_, Flpm_, @Im_ ), but now for the paifX, Y). Once again we shall
say that the first is bordant to the opposite of the second.

The purpose of the functiofhin Definition 5.5 is to provide a notion of bordism for
manifolds with boundary without having to introduce manifolds with corners. Bordism
is an equivalence relation.

We have one more operation &acycles to introduce. LeM be a Spifi-manifold
and letW be a Spifi-vector bundle oveM. Denote byl the trivial, rank-one real
vector bundle. The direct sud¥ @ 1is a Spirf-vector bundle, and moreover the total
space of this bundle may be equipped with a Sgimucture in a canonical way, up to
concordance. This is because its tangent bundle fits into an exact sequence

0— T Wa1l —=TWa 1) — 7" [TM] —— 0,

wherem is the projection fromW & 1 onto M, so that, upon choosing a splitting, (or
equivalently, choosing a Riemannian metric on the mani¥&ld 1 which is compatible
with the above sequence) we have a direct sum decomposition

TWel =nWelen[TM].
Different splittings result in concordant Sfistructures.

Let us now denote by the unit sphere bundle of the bundi¥ ¢ 1. SinceZ is
the boundary of the disk bundle, we may equip it with a natural Sgiructure by first
restricting the given Spfastructure on total space ¥ & 1 to the disk bundle, and then
taking the boundary of this Sgirstructure to obtain a Spgirstructure on the sphere
bundle.

Definition 5.6. Let (M, E, ¢) be aK-cycle for(X,Y) and letW be a Spifi-vector bun-
dle overM with even-dimensional fibers. Let be the sphere bundle & ¢ 1, as
above. The vertical tangent bundle Hthas a natural Spfastructure (one applies the
boundary construction of Definition 3.4 to the pullbackwfe 1 to Z). Denote bySy
the corresponding reduced spinor bundle and let Sy, , . In other words, definé to
be the dual of the even-graded part of #h&-graded bundl&.,.. The modificationof
(M, E, ¢) associated tdV is theK-cycle (Z, F ® w*E, ¢ o 7).
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We are now ready to define the Baum-Douglas geomkthomology groups.

Definition 5.7. Denote byK%°™M X Y) the set of equivalence classeskotycles over
(X,Y), for the equivalence relation generated by the following relations:

@) If (M,Eq,¢) and(M, E,, ) are twoK-cycles with the same Sgirmanifold M
and mapp: M — X, then
(MUM,E1UE2, ¢ U D) ~ (M, Eq @ E2 ).
@iy If (Mq,Eq,¢1) and(M,, E,, ¢») are bordank-cycles then

(M1, E1, &1) ~ (M2, B2, d2).
(i) If (M,E,d) is aK-cycle, and ifW is an even-dimensional Sgivector bundle
over M, then
(M,E,¢) ~ (Z,F® TE, d o 7),
where(Z,F ® *E, ¢ o 7) is the modification of M, E, ¢) given in Defintion 5.6.

The setk9€°™(X,Y) is in fact an abelian group. The addition operation is given by
disjoint union,
[M1, E1, &1] + [M2, B2, d2] = M7 UM2, E1 UE2, &1 U d2l,
and the additive inverse of a cycle is obtained by reversing the" Sgincture:
—[M,E, ¢l = [-M, E, d].

The neutral element is represented by the empty manifold, or any cycle bordant to the
empty manifold.

Definition 5.8. Denote byK&;*"(X,Y) and K35 ™X,Y) the subgroups of the group
K9eoM(X Y) composed of equivalence classesketycles (M, E, ¢) for which every
connected component dfl is even dimensional and odd dimensional, respectively.

The groupsKg\f?':dd(X, Y) are functorial in(X, Y), and they satisfy weak excision: if

U is an open subset &f whose closure is in the interior of, then

geom ~ 1geom
Kev /odd X\ UL YA L) = Ko oqq(X, Y.

There is moreover a “homology sequence”
K&OY) —— K&FX) — K&X, Y)

| |

Kodd (X, Y) = Kogq (X) <—— Kggq 1Y)

(where as usual we defin€;°"Y) = K&°"Y, ), and so on). The boundary maps
take aK-cycle (M, E, ¢) for (X,Y) to the boundary cycl€oM, Elam, dlam) for Y (it

is easily verified that this definition is compatible with the equivalence relation used
to define the geometrik-homology groups). The composition of any two successive
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arrows is zero. However it is not obvious that the sequence is exact. For the special case
of finite CW-pairs this exactness will follow from the main theorem of the paper, which
identifies geometri&-homology with KasparoK-homology.

6. NATURAL TRANSFORMATION AND FORMULATION OF THE MAIN THEOREM

Now let (X,Y) be a pair of compact and metrizable spaces. We associate to each
K-cycle (M, E, ¢) for (X,Y) a class(M, E, ) in KasparovK-homology, as follows.
Denote byM° the interior ofM, which is an open Spfamanifold. The Spif-structure
on M determines a spinor bundfeon M° by restriction, and of course the complex
vector bundlet also restricts taVI°. The tensor produ ® E is a Dirac bundle over
M°, and if Dg is an associated Dirac operator, then we can form the class

[Del € Kn(M®)

(heren is the dimension oM). The mapp: M — X restricts to a proper map froml°
into X \ Y, and we can therefore form the class

$.[Del € Kn(X,Y).
Theorem 6.1. The correspondendéV, E, ¢) — ¢.[Dgl] determines a functorial map

He Kg\?%]dd(X»Y) — Kev/odd(X, Y)

which is compatible with boundary maps in geometric and anakdfimmology.

Proof. The only thing to check is that the correspondence is compatible with the rela-
tions in Definition 5.7 which generate the equivalence relation on cycles used to define
geometrick-homology. Once this is done, functoriality will be clear from the construc-
tion of (M, E, ¢) and compatibility with boundary maps will follow from Theorem 3.5.

Compatibility with relation (i) from Definition 5.7 is straightforward. Compatibility
with relation (ii) follows from Theorem 3.5. So the proof reduces to showing that the
correspondence is compatible with the relation (iii) of vector bundle modification.

Let (M, E, d) be aK-cycle for (X,Y) and letn = dim(M) (by working with one
component ofM at a time we can assume that dimt) is well-defined). LetW be a
Spirf-vector bundle oveM of even fiber dimensio@k. Let Sy, be the spinor bundle
for M, and letSy, be thereducedspinor bundle for the vertical tangent bundle of the
sphere bundle:: Z — M. Form the tensor product

SZ = Sv®7[* [S]\A]

This is neither a fully multigraded spinor bundle #mor a reduced spinor bundle, but
something in between. D is a Dirac operator fof z then the clas§D 7] € K (Z) is
the image of th&-homology fundamental clasg] € K,,;2x(Z) under the periodicity
isomorphismK,, ok (Z) = Ky (Z). Similarly, if Dz rgre is @ Dirac operator for the
tensor product bundig; ® F ® r*E, then the clasfD 7 ro el € Kn(Z) is the image of
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theK-homology class of the modificatid®, F @ w*E, ¢ ») of the cycle(M, E, ¢) under
the same periodicity isomorphism.

To prove compatibility with the relation (iii) in the definition of geomet&ichomology
we need to show thaD 7 re ] is equal to the clasm el € Kn(M). But writing

Sz®F®TE =[Sy ® AQT" [Sm ® B,
we see that this follows from Propositions 3.6, 3.11 and 4.12. O

We can now state the main theorem in this paper.

Theorem 6.2. If (X,Y) is a finite CW-pair then the homomorphism

He Kgssrgdd(XvY) — Kev/odd(X, Y)

is an isomorphism.

The proof will be carried out in the remaining sections.

7. OUTLINE OF THE PROOF

We wish to prove that iX is a finite CW complex, then the homomorphisms

M Kgﬁ?'f;dd(x) — Kev/odd(X)

are isomorphisms. What makes this tricky is that we don't yet know that geonietric
homology is a homology theory. To get around this problem we are going to define a
“technical” homology theorkey ,o44( X, Y) Which fits into a commuting diagram

kev/odd(X» Y) = Kev/odd(X»Y)
X /
geom
Kev/ odd(X’ Y)

in which the horizontal arrow is a natural transformation between homology theories.
Having done so, the proof will be completed in two steps:

(a) We shall check that wheKX is a point andY is empty, the horizontal arrow is an
isomophism. It will follow that the horizontal arrow is an isomorphism for every
finite CW pair (X,Y).

(b) We shall prove that for every finit€W pair (X, Y), the map in the diagram from

Kev,odd X, Y) to K&, (X, Y) is surjective.

It is clear that (a) and (b) together will imply that all the arrows in the diagram are
isomorphisms, for every finit€W pair (X, Y).

The reader who is acquainted with the definitiorKefiomology starting from the Bott
spectrum will see that our definition &f, ,4qq(X, Y) is extremely close to the spectrum
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definition of K-homology. However the definition which is presented in the next section
is not designed with this in mind.

8. DEFINITION OF THE TECHNICAL GROUP

Fix a modelK for the Oth space of the Bott spectrum, e x BU. We shall use the
following features of this space:

(a) If X is a pointed finiteCW complex, then there is a natural isomorphism
KO(X, %) = X, KI*

between the relative Atiyah-Hirzebrudhtheory groupk®(X, ) and the set of ho-
motopy classes of maps froMinto K. Herex is the base point ok and [X, K]
denotes the set of homotopy classes of basepoint-preserving maps (redalidtzat
base-pointed space).

(b) There is a basepoint-preserving map K A K — K which induces the operation
of tensor product (the ring structure) &9(X).

Example 8.1. We could takeK to be the space of all Fredholm operators on a separable,
infinite-dimensional Hilbert spackl (the Fredholm operators are topologized by the
operator-norm topology). The isomorphism (a) is described in [Ati67]. For later use we
note that the set of connected component&dé isomorphic toZ, the isomorphism
being given by the Fredholm index.

Definition 8.2. Let S2 be the standar@-sphere, equipped with its standard Sgstruc-
ture as the boundary of the ball B*. Denote byp: S — K a basepoint-preserving
map which, under the isomorphisis?, K]+ = K°(R?) = K°(S2, %), corresponds to the
difference[S* ] —[1]. HereS*_is the dual of the positive part of the reduced spinor bundle
on the2-sphere (which is the one-point compactificatiorRa), and1 is the trivial line
bundle.

Remark 8.3. Note thatS*, is a line bundle, so that the differen{&,] — [1] has virtual
dimension zero.

Now, we are going to construct the “technical” homology grokigs oqq(X, Y) using
the spacéK, the mapB, and the notion oframed bordismwhich we briefly review.

Definition 8.4. A framed manifoldis a smooth, compact manifol™ with a given
stable trivializatiofl of its tangent bundle:

koTM=kaon

We shall identify two stable trivializations if they are stably homotopic (that is, homo-
topic after forming the direct sum with the identity map on an additional trivial sum-
mand). Thus a framed manifold is a smooth, compact manifold together with a stable
homotopy class of stable trivializations of its tangent bundle.

“In this definition we are using or k to denote the triviateal vector bundle of rank or k, respectively.
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Definition 8.5. If (X,Y) is any paracompact and Hausdorff pair then we shall denote
by QF (X,Y) then-th framed bordism group of the pdiX,Y). ThusQF (X,Y) is the

set of all bordism classes of maps from framed manifoldsXytmapping the manifold
boundaries intdr. Compare Definition 5.5 or [Sto68]. Note that the boundary of a
framed manifoldM is itself a framed manifold in a natural way: starting from a stable
trivialization

kdTM=kodn
we use an inward pointing normal vector field @ to obtain a stable trivialization

kelaToM =ken.

We use the inward pointing normal to agree with orientation conventions established
earlier.

We can now define our “technical” homology theasy, /oq4q(X, Y). For a finiteCW
pair (X,Y) and an integen, form a direct system of abelian groups

QFX XK, YxK) = QF L(XxK, Y xK) = QF 4(XxK,YxK) — -

as follows. Given a cyclé: M — X x K for QF ,, (X x K, Y x K), the composition

f
MxS2 P X v Kx KX K

is acycle forQf _,, ,(XxK,YxK). This defines the map froff ,, (X xK, Y x K)
to QF

2k (X X K, Y x K) which appears in the directed system.

Definition 8.6. Denote byke, /04d(X, Y) the direct limit of the above directed system,
for n even/odd.

Since Qf is itself a homology theory (on finit€ W pairs), and since direct limits
preserve exact sequences, it is clear khas a homology theory.

The mapB from key /odd(X, Y) into Kg\‘f?'gdd(x, Y) which appears in Section 7 is de-
fined as follows (for notational simplicity we will only describe the construction for the
absolute groupkey /qd(X), Not the relative groups). M is a framed manifold then the
framingk & TM = k @& n determines a Spfrstructure otM. A mapM — X x K
determines a magp: M — X and aK-theory class foM, which we may represent as a

difference[E ] — [E,] for some vector bundles; andE,. A map
Bn: QF (X x K) — KZOM(X)

is defined by associating to the bordism clasd/bf- X x K the difference oK-cycles
(M, Eq, ) — (M, Eo, d). It follows from part (i) of Definition 5.7 that th&-homology
class of this difference does not depend on the choide @ndE; to represent th&-

theory class oM. It follows from part (ii) of the definition that th&-homology class



20 Paul Baum, Nigel Higson, and Thomas Schick

only depends on the bordism class of the méap— X x K. Finally, it follows from part
(iii) of the definition that the diagram

OF (X x K) — 2> K3 X)

| -

O (X x K) — KIX)

is commutative (on the right is the periodicity isomorphism described in Section 2).
Sincep is compatible with the direct limit procedure using whicy /,44(X) is obtained
from the framed bordism groups, we obtain maps

P kev/odd(X) - Kgff?rgdd(x)

as required.

9. PROOF OF THEMAIN THEOREM

9.1. Proof of (a). We wish to show that the maps: k. (pt) — K, (pt) are isomor-
phisms forn = 0 andn = 1. If W is any (base-pointed) topological space then by the
Pontrjagin-Thom isomorphism [Pon42, Pon59, Tho54tttreframed bordism group of
W is isomorphic to thenth stable homotopy group of: QF (W) = =3 (W). Accord-

ing to Bott periodicity, [Bot577] the second loop space &f has the homotopy type of
K. In fact the map

A1
2 AR L RAK ™K

induces a homotopy equivalente~ QZK. This, and the fact that the flip majg A
S? — S? A S?is homotopic to the identity map, imply that the evident maps

lim 7o 2k (K) — lim 75,1, (K)

are isomorphisms. The first direct limit is formed by associating to afnap+2< — K
the composition

Sz/\SnJFZKﬂ)SZ/\KL)K,

and the second direct limit is formed using a similar procedure, starting with maps from
sn2k+2i into S A K. To verify the assertion, view the second direct limit as the limit
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of the array

S S S
4 b 4 b 4 b
7'(6(8 /\K)Hﬂg(s /\K)Hﬂ]o(s /\K)H
S S S
2 b 2 b 2 b
T4(S* ANK) — 114(S* AK) —— m3(S“ AK) —— - - -
S S S
7(K) 74(K) ———> 716(K) —

in which the vertical maps are suspension3dyand the horizontal maps are induced
from suspension b§?, followed by composition wittb: S AK — K defined by
Al
SLAK > KAK ™K.

The first direct limit is then the direct limit of the bottom row, and the required isomor-
phism follows from these facts:

(i) If x € 72 (SP AK), and if s(x) = 0, thenb(x) = 0.
(i) If x € o (SPAK) for somej > 0, and ifx = b(y), for somey € m_»(STAK),
thenx = s(z), for somez € my_>(SP 2 AK).

Item (i) is an immediate consequence of the definition of the tafis for item (i), if
x = b(y), thenx can be written as a composition

SZ/\SZksz\y)SZ/\SZj/\Kﬁ)SZj/\K.

Writing S asS?—2 A S2, and using the fact that the flip & A S? is homotopic to the
identity, we can write this composition as

VAN ) TA1ADb .
SZASK2ZH G2 A2 A2 AR S G2ZASI2AK

This is clearly in the image of the map
Now
kn(pt) = lim OF 5, (K) = lim 73 51 (K) = lim 721c(K) = 70 (K).
As a result we obtain the isomorphisms
kn(pt) = 70 (K) = KO(R™)

which implies thatke,(pt) = Z andkqgqg(pt) = 0. It follows immediately that the map
o kodd(pt) — Kogd(pt) is an isomorphism, since both domain and range are zero. In the
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even case the map
ko(pt) = o(K) — Ko(pt) = Z
sends a Fredholm operatbto the index ofT. This map is an isomorphism.

9.2. Proof of (b). We wish to prove that the makwy /odd(X, Y) — Kg\f?’;‘dd(X,Y) is
surjective. The image of this map consists precisely of the equivalence claskes of
cycles (N, F, ) for which N is a framed Spifrmanifold. So we must prove that if
(M, E, ¢) is anyK-cycle for (X,Y), then there is an equivalektcycle (N, F,1) for

which N is a framed Spifrmanifold.

To do this, choose a smooth real vector bund]evith even-dimensional fibers, such
thatTM @ V is trivializable, and fix an isomorphism

™MoV =ngk.

The trivial bundlen @ k has a canonical Spirstructure, and the above isomorphism and
the following lemma therefore define a Spistructure orv.

Lemma 9.1. Let V and W be real, orthogonal vector bundles over the same space
Assume that andVaeW are equipped witlspint-structures. There is 8pinf-structure
on W whose direct sum with the giv&pirt-structure onV is the giverSpirf-structure
onvVoWw.

Proof. Let Sy be a (non-reduced) spinor bundle fgrand letSvqw be the same for
V @ W. Denote bySyy the bundle of fiberwise linear mags, — Svaw which graded-
commute with the Clifford action oV and which graded-commute with the action of
the firstk multigrading operatorsy, . .., ex, Wherek = rank(V). The bundleW acts
on Svgw, as do the remaining multigrading operators. By compositidhand the
remaining multigrading operators also act$ . A local consideration shows that we
obtain a (non-reduced) spinor bundle #&f, and that it has the required property with
respect to direct sum. O

The vector bundle modification of the-cycle (M, E, ¢) by V is aK-cycle whose
manifold is framed, as required.

10. APPENDIX: THE REAL CASE

In this appendix we briefly discuss the changes needed to prove the result analogous
to Theorem 6.2 irKO-homology.

Kasparov's theory readily adapts to the real case. A real Hilbert space can be viewed
as a complex Hilbert space equipped with a conjugate-linear isometric involution. A
real C*-algebra is the same thing as a comp{&xalgebra equipped with a conjugate
linear involutivex-automorphism (which, unlike the-operation, preserves the order of
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products). By including these complex-conjugation operators, the definitions of Sec-
tion 2 extend immediately to the real case. The only difference is that in the real case
the counterpart of the formal periodicity m&pP — K~ P*+2) does not exist. However
the four-fold composition of this map is compatible with real structures, and defines a
real formal periodicity magkO P — KO~ **8), The results of Section 3 carry over
without change, except that the bundle C%I(er) is a real Dirac bundle only when the

dimension ofN is a multiple of4. Our discussion of Spfnstructures in Section 4 is
designed to carry over to the real case just by replacing complex Clifford algebras with
real Clifford algebras; reduced real spinor bundles exist in dimensions which are multi-
ples of8. The geometric definition df-homology is based on Spin-manifolds—the real
counterparts of Spfamanifolds—and the real counterpart of Theorem 6.2 is now easy
to formulate. The only really new aspect of the proof is that a more careful treatment of
part (a) is required. The argument given above shows that

koo(pt) = mo(KO) = KOO(R™M).

Under these isomorphisms, the miegy(pt) — KO™(pt) corresponds to the mapO°
(R™) — KOn(pt) which takes &-theory clasx to the index of the Dirac operator on
R™ twisted byx. The fact that this map is an isomorphism is another formulation of Bott
Periodicity (compare [Ati68]).
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