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On the Equivalence of Geometric and Analytic K-Homology

Paul Baum, Nigel Higson, and Thomas Schick

Abstract: We give a proof that the geometricK-homology theory for finiteCW-
complexes defined by Baum and Douglas is isomorphic to Kasparov’sK-homology.
The proof is a simplification of more elaborate arguments which deal with the geo-
metric formulation ofequivariantK-homology theory.

1. INTRODUCTION

K-homology theory, the homology theory which is dual to Atiyah-HirzebruchK-
theory, may be defined abstractly using the Bott spectrum and standard contructions in
homotopy theory. Atiyah [Ati70] pointed out the relevance to index theory of a concrete
definition ofK-homology. Following his suggestions, detailed analytic definitions ofK-
homology were provided by Brown, Douglas and Fillmore [BDF77] and by Kasparov
[Kas75], and these works are now foundational papers in operatorK-theory. At about the
same time, Baum and Douglas [BD82] introduced a geometric definition ofK-homology
(using manifolds, bordisms, and so on) in connection with work on the Riemann-Roch
problem [BFM75, BFM79]. Baum and Douglas defined a very simple and natural map
from their geometric theory to analyticK-homology, and this map turns out to be an
isomorphism. The combined efforts of various mathematicians in the early 1980’s pro-
duced a proof of this, but a detailed account of the matter was never published. This is
despite the fact that over the years the isomorphism has grown in importance, thanks to
its connection with the Baum-Connes conjecture [BCH94]. The purpose of this note is
to present, after a twenty five year gap, a detailed proof of the isomorphism from geo-
metricK-homology to analyticK-homology. (See [Jak98, Jak00] for a related approach
to the problem of defining homology theories dual to multiplicative cohomology theo-
ries likeK-theory.) The proof is a spin-off from our work on equivariantK-homology
theory, which will be reported upon in a future paper, where we shall prove that for a dis-
crete, countable groupG, geometric equivariantK-homology is isomorphic to analytic
equivariantK-homology on the category of proper, finiteG-CW-complexes.
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With admiration and affection we dedicate this paper to Robert MacPherson. A con-
versation between the first-named author and Bob MacPherson at IHES in 1978 was
crucial to the eventual formulation of geometricK-homology.

2. REVIEW OF ANALYTIC K-HOMOLOGY

In this section we shall review Kasparov’s definition of analyticK-homology, and list
those facts about it that we shall need in the sequel. For further details the reader is
referred to the monograph [HR00] on the subject.

Throughout this section we shall be working with locally compact, second countable
topological spaces. IfZ is such a space then we shall denote byC0(Z) the (separable)
C∗-algebra of continuous, complex-valued functions onZ which vanish at infinity.

If X andY are operators on a Hilbert space, then the notationX ∼ Y will signify the
equality ofX andY modulo the compact operators.

Definition 2.1. Let A be a separableC∗-algebra. An (ungraded)Fredholm moduleover
A is given by the following data:

(a) a separable Hilbert spaceH,
(b) a representationρ : A → B(H) of A as bounded operators onH, and
(c) an operatorF onH such that for alla ∈ A,

(F2 − 1)ρ(a) ∼ 0, (F − F∗)ρ(a) ∼ 0, Fρ(a) ∼ ρ(a)F.

The representationρ is not required to be non-degenerate in any way. In factρ, and even
the Hilbert spaceH, are allowed to be zero.

Roughly speaking, Kasparov’sK-homology groups are assembled from homotopy
classes of Fredholm modules overA = C0(Z). However it is necessary to equip these
Fredholm modules with a modest amount of extra structure.

Definition 2.2. Let p ∈ {0, 1, 2, . . . } and letA be a separableC∗-algebra. Ap-graded1

Fredholm module is a Fredholm module(H, ρ, F), as above, with the following addi-
tional structure:

(a) The Hilbert spaceH is equipped with aZ/2-gradingH = H+ ⊕ H− in such a
way that for eacha ∈ A, the operatorρ(a) is even-graded, while the operatorF is
odd-graded.

(b) There are odd-graded operatorsε1, . . . , εp onH such that

εj = −ε∗j , ε2
j = −1, εiεj + εjεi = 0 (i 6= j),

and such thatF and eachρ(a) commute with eachεj.

1The term ‘p-multigraded’ is used in [HR00].
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Of course, ifp = 0 then part (b) of the definition does not apply.

Definition 2.3. Let (H, ρ, F) and(H ′, ρ ′, F ′) bep-graded Fredholm modules overA. A
unitary equivalencebetween them is a grading-degree zero unitary isomorphismU : H →
H ′ which intertwines the representationsρ andρ ′, the operatorsF andF ′, and the grading
operatorsεj andε ′j.

Definition 2.4. Suppose that(H, ρ, Ft) is a family ofp-graded Fredholm modules pa-
rameterized byt ∈ [0, 1], in which the representationρ, the Hilbert spaceH and its grad-
ing structures remain constant but the operatorFt varies witht. If the functiont 7→ Ft

is norm continuous, then we say that the family defines anoperator homotopybetween
the p-graded Fredholm modules(ρ,H, F0) and (ρ,H, F1), and that the two Fredholm
modules areoperator homotopic.

There is a natural notion ofdirect sumfor Fredholm modules: one takes the direct sum
of the Hilbert spaces, of the representations, and of the operatorsF. Thezero modulehas
zero Hilbert space, zero representation, and zero operator.

Now we can give Kasparov’s definition ofK-homology.

Definition 2.5. Let p ∈ {0, 1, 2, . . . } and letA be a separableC∗-algebra. TheKas-
parovK-homology groupK−p(A) is the abelian group with one generator[x] for each
unitary equivalence class ofp-graded Fredholm modules overA and with the following
relations:

(a) if x0 andx1 are operator homotopicp-graded Fredholm modules then[x0] = [x1] in
K−p(A), and

(b) if x0 andx1 are any twop-graded Fredholm modules then[x0⊕ x1] = [x0] + [x1] in
K−p(A).

Definition 2.6. A p-graded Fredholm module is said to bedegenerateif the equivalences
modulo compact operators listed in item (c) of Definition 2.1 are actually equalities.

It is easy to see that a degeneratep-graded Fredholm module determines the zero
element ofK−p(A).

Lemma 2.7. Let (H, ρ, F) be ap-graded Fredholm module. Assume that there exists a
self-adjoint, odd-graded involutionE : H → H which commutes with the action ofA and
with the multigrading operatorsεj, and which anticommutes withF. Then the Fredholm
module(H, ρ, F) represents the zero element ofK−p(A).

Proof. The pathFt = cos(t)F + sin(t)E gives an operator homotopy fromF to the
degenerate operatorE. ¤

It follows from the lemma that the additive inverse of theK-homology class repre-
sented by(H, ρ, F) is the class of(Hopp, ρ, −F), whereHopp denotesH with the grading
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reversed. This is because the involution
(

0 1
1 0

)
on H ⊕ Hopp satisfies the hypotheses of

the lemma, applied to the Fredholm module(H ⊕Hopp, ρ ⊕ ρ, F ⊕ −F). It follows that
every class inK−p(A) is represented by a single Fredholm module, and that two mod-
ules represent the same class if and only if, up to isomorphism, they become operator
homotopic after adding degenerate modules.

If (H, ρ, F) is ap-graded Fredholm moduleA, then we may construct from it a(p+2)-
graded Fredholm module(H ′, ρ ′, F ′) overA by means of the formulas

H ′ = H⊕Hopp, ρ ′ = ρ⊕ ρ, F ′ = F⊕ F,

along with the grading operators

εj = εj ⊕ εj (j = 1, . . . p), εp+1 =

(
0 I

−I 0

)
and εp+2 =

(
0 iI

iI 0

)
.

Definition 2.8. Theformal periodicity map

K−p(A) −→ K−(p+2)(A)

is the homomorphism of Kasparov groups induced from this construction.

The periodicity map can be reversed by compressing a(p + 2) graded Fredholm
module to the+1 eigenspace of the involution−iεp+1εp+2. We obtain an isomorphism

K−p(A) ∼= K−(p+2)(A).

As a result there are really only two genuinely distinctK-homology groups,Kev and
Kodd, as follows:

Definition 2.9. Let us denote byKev(A) andKodd(A) the groupsK0(A) andK−1(A)
respectively, or more canonically, the direct limits

Kev(A) = lim−→
k

K−2k(A) and Kodd(A) = lim−→
k

K−(1+2k)(A)

under the above periodicity maps.

Definition 2.10. If Z is a second countable,2 locally compact space, and ifA = C0(Z),
then we shall writeKp(Z) in place ofK−p(A). These are theKasparovK-homology
groupsof the spaceZ. If (X, Y) is a second countable, locally compact pair, and ifZ is
the differenceX \ Y, then we define relativeK-homology groups by

Kp(X, Y) = K−p(Z).

We shall define periodic groupsKev/ odd(X, Y) similarly.

Kasparov’s main theorem concerning these objects is then as follows:

2This assumption is required at several points in Kasparov’s theory, which is designed forseparable
C∗-algebras.
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Theorem 2.11.There are natural transformations

∂ : Kp(X, Y) −→ Kp−1(Y)

(connecting homomorphisms) which are compatible with the formal periodicity isomor-
phisms and which give KasparovK-homology the structure of aZ/2-graded homology
theory on the category of compact metrizable pairs(X, Y). On the subcategory of finite
CW-complexes KasparovK-homology is isomorphic to topologicalK-homology — the
homology theory associated to the Bott spectrum. ¤

3. DIRAC-TYPE OPERATORS

We continue to follow the monograph [HR00].

Definition 3.1. Let M be a smooth, second countable finite dimensional manifold (pos-
sibly with non-empty boundary) and letV be a smooth, Euclidean vector bundle over
M. A p-graded Dirac structureonV is a smooth,Z/2-graded, Hermitian vector bundle
S overM together with the following data:

(a) An R-linear morphism of vector bundles

V → End(S)

which associates to each vectorv ∈ Vx a skew-adjoint, odd-graded endomorphism
u 7→ v · u of Sx in such a way that

v · v · u = −‖v‖2u.

(b) A family of skew-adjoint, odd-graded endomorphismsε1, . . . , εp of S such that

εj = −ε∗j , ε2
j = −1, εiεj + εjεi = 0 (i 6= j),

and such that eachεj commutes with each operatoru 7→ v · u.

UsuallyM will be a Riemannian manifold and we will takeV = TM. In this case we
shall callS ap-graded Dirac bundle onM.

Definition 3.2. Let M be a Riemannian manifold which is equipped with ap-graded
Dirac structure, with Dirac bundleS. We shall call an odd-graded, symmetric, order one
linear partial differential operatorD acting on the sections ofS a Dirac operator if it
commutes with the operatorsεj, and if

[D, f]u = gradf · u,

for every smooth functionf onM and every sectionu of S.

Every Dirac bundle on a Riemannian manifold admits a Dirac operator, and the dif-
ference of two Dirac operators on a single Dirac bundleS is an endomorphism ofS.

A p-graded Dirac operatorD on a Riemannian manifoldM without boundary defines
in a natural way a class[D] ∈ Kp(M). The general construction is a little involved, and



6 Paul Baum, Nigel Higson, and Thomas Schick

we refer the reader to [HR00] for details, but whenM is closed there is a very simple
description of[D]:

Theorem 3.3. LetM be a closed (i.e. compact without boundary) Riemannian manifold
and letD be a Dirac operator on ap-graded Dirac bundleS. Let H = L2(M,S) be
the Hilbert space of square-integrable sections ofS, and letρ be the representation of
C(M) onH by pointwise multiplication operators. Let

F = D(I + D2)− 1
2 .

The triple(ρ,H, F) is ap-graded Fredholm module forA = C(M). ¤

To describe further properties of the classes[D] we need to introduce the following
boundary operation on Dirac bundles:

Definition 3.4. Let S be ap-graded Dirac bundle on a Riemannian manifoldM with
boundary∂M. If e1 denotes the outward pointing unit normal vector field on the bound-
ary manifold∂M then the formula

X : u 7→ (−1)∂ue1 · ε1u

defines an automorphism of the restriction ofS to ∂M which is even, self-adjoint, and
satisfiesX2 = 1. The operatorX commutes with multiplicationu 7→ Y · u by tangent
vectorsY orthogonal toe1, and also with the multigrading operatorsε2, . . . , εp. The+1

eigenbundle forX is a (p − 1)-graded Dirac bundle3 on ∂M, which we shall call the
boundaryof the Dirac bundleS.

The following theorem summarizes facts proved in Chapters 10 and 11 of [HR00].

Theorem 3.5. To each Dirac operatorD on a p-graded Dirac bundle over a smooth
manifold without boundary there is associated a class[D] ∈ Kp(M) with the following
properties:

(i) The class[D] depends only on the Dirac bundle, not on the choice of the operator
D.

(ii) If M1 is an open subset ofM2, and ifD1 is a Dirac operator onM1 obtained by
restricting a Dirac operatorD2 on M2, then[D2] maps to[D1] under the homo-
morphismKp(M2) → Kp(M1).

(iii) Let M be the interior of a Riemannian manifoldM with boundary∂M, and letS
be ap-graded Dirac bundle onM. LetD be a Dirac operator onM associated to
S and letD∂M be a Dirac operator on∂M associated to the boundary ofS. The
connecting homomorphism

∂ : Kp(M) → Kp−1(∂M)

in KasparovK-homology takes the class[DM] to the class[D∂M]:

∂[DM] = [D∂M] ∈ Kp−1(∂M).

3The multigrading operators are obtained fromε2, . . . , εp by shifting indices downwards.
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¤

We shall need one additional fact about Dirac operators which concerns the structure
of operators on fiber bundles. Suppose thatM is a closed Riemannian manifold and
that P is a principal bundle overM whose structure group is a compact Lie groupG.
Suppose thatN is a closed Riemannian manifold on whichG acts by isometries. We can
then form the manifoldZ = P ×G N. Its tangent bundleTZ fits into an exact sequence
of vector bundles overZ,

0 // V // TZ // π∗TM // 0 ,

whereπ denotes the projection mapping fromZ to M and whereV denotes the “vertical
tangent bundle”V = P ×G TN. If we choose a splitting of the sequence then we obtain
an isomorphism

(3.1) TZ ∼= V ⊕ π∗TM,

which equipsZ with a Riemannian metric.

Now suppose thatSM is a p-graded Dirac bundle forM and thatSN is a 0-graded
Dirac bundle forN. Let us also suppose that there is an action ofG on SN which is
compatible with the action ofG on N. We can then form the bundleSV = P ×G SN

overZ, and from it the graded tensor productSZ = SV⊗̂π∗SM. Using the direct sum
decomposition (3.1) this becomes ap-graded Dirac bundle forZ, with the tangent vector
v⊕w ∈ V ⊕ π∗TM acting as the operatorv⊗̂1 + 1⊗̂w onSV⊗̂π∗SM.

We can now form the class[DZ] ∈ Kp(Z) associated to a Dirac operator on the Dirac
bundleSV⊗̂π∗SM, and using the projection mappingπ : Z → M we obtain a class

π∗[DZ] ∈ Kp(M).

The following proposition relatesπ∗[DZ] to the class[DM] of a Dirac operator for the
Dirac bundleSM onM.

Proposition 3.6. Assume that there exists aG-equivariant Dirac operator for the Dirac
bundleSN onN whose kernel is the one-dimensional trivial representation ofG, spanned
by an even-graded section ofSN. Then

π∗[DZ] = [DM] ∈ Kp(M).

Proof. Let us consider first the special case in which the principal bundleP is trivial:
P = G×M (in this case we might as well takeG = {e}). Then of courseZ = N×M.
We can take the Dirac operatorDZ to be

DZ = DN⊗̂I + I⊗̂DM,

whereDN is a Dirac operator for the Dirac bundleS onN with one-dimensional kernel,
as in the statement of the proposition. Now the Hilbert space on whichDZ acts is the
tensor product

L2(N×M,SN⊗̂SM) = L2(N,SN)⊗̂L2(M,SM).
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If we split the first factor,L2(N,SN), as ker(DN) plus its orthogonal complement, then
we obtain a corresponding direct sum decomposition ofL2(N × M,SN⊗̂SM). The
operatorFZ formed fromDZ, as in Theorem 3.3, respects this direct sum decomposition,
as does the action ofC(M). We therefore obtain a decomposition of the Fredholm
module representing[DZ] as a direct sum of two Fredholm modules. The first acts
on ker(DN) ⊗ L2(M,SM) ∼= L2(M,SM) and is isomorphic to the Fredholm module
representing[DM]. The second represents the zero element ofKp(M). This follows
from Lemma 2.7, since ifT is the partial isometry part ofDN in the polar decomposition,
and ifγ is the grading operator onL2(M,SM), then the odd-graded involution

E = T⊗̂γ

on the Hilbert space ker(D)⊥⊗̂L2(M,SM) commutes with the action ofC(M), and with
the grading operatorsεj, and anticommutes withFZ.

The proof of the general case is similar. To begin, the Hilbert space on whichDZ acts
is naturally isomorphic to the fixed point space

[
L2(N,SN)⊗̂L2(P, π∗SM)

]G
.

Denote byD̃M a G-equivariant linear partial differential operator onP, acting on sec-
tions of π∗SM, which is obtained as follows. Select a finite cover ofM by open sets
Uj over which the bundleP is trivial, and fix isomorphisms toG × Uj over these open
sets. Use the isomorphisms to define operatorsD̃j on π−1[Uj] ⊆ P which act asD in
theUj direction and act as the identity in theG-direction. Select also a smooth partition
of unity {σ2

j } which is subordinate to the cover. Then defineD̃ by averaging the sum∑
σjD̃jσj over the action ofG. Having constructed̃DM, we obtain a Dirac operator for

SM⊗̂SV by the formula

DZ = DN ⊗ I + I⊗̂D̃M.

From here the argument used in the special case may be appliedverbatim. ¤

Remark 3.7. By using some machinery the preceding result can be conceptualized and
generalized as follows. IfG is a compact group andA is aC∗-algebra equipped with
an action ofG (for exampleA = C(N)), then there is a natural notion ofG-equivariant
Fredholm module, from which we may define equivariantK-homology groupsK−p

G (A).
In the commutative case these give equivariant groupsKG

p (N). Now if P is a principal
G-bundle overM, as above, then by elaborating on the construction of the Kasparov
product (which we shall not actually use anywhere in this paper) we obtain a pairing

KG
0 (N)⊗ Kp(M)

µP // Kp(Z)

One can compute that the class[DM] ⊗ [D] is mapped to[DZ]. Next, the map which
collapsesN to a point induces a homomorphism fromKG

0 (N) to the coefficient group
KG

0 (pt), which is the representation ring ofG. From a representation ofG and the
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principal bundleP we obtain by induction a vector bundle on the spaceM. We therefore
obtain a map

ε : KG
0 (N) // K0(M) .

Finally, the groupKp(M) is a module over the ringK0(M) by the cap product between
homology and cohomology. We obtain a diagram

KG
0 (N)⊗ Kp(M)

µP //

ε⊗1
²²

Kp(Z)

π∗
²²

K0(M)⊗ Kp(M) ∩
// Kp(M).

Proposition 3.6 follows from the assertion that this diagram commutes (in the special
case where the collapse map sends[D] to 1 ∈ R(G)). The commutativity of the diagram
is a simple exercise with the Kasparov product, but it is beyond the scope of the present
article.

We conclude this section by introducing a specific Dirac operator to which we shall
apply Proposition 3.6. In order to fix notation we begin with the following definition:

Definition 3.8. LetV be a Euclidean vector space. Thecomplex Clifford algebrafor V is
the universal complex∗-algebra Cliff(V) equipped with anR-linear inclusion ofV , and
subject to the relationsv2 = −‖v‖2 ·1 for v ∈ V . If {e1, . . . , en} is an orthonormal basis
for V , then the algebra Cliff(V) is linearly spanned by the2n monomialsej1 · · · ejk ,
wherej1 < · · · < jk and0 ≤ k ≤ n. We introduce an inner product on Cliff(V) by
deeming these monomials to be orthonormal.

The algebra Cliff(V) is Z/2-graded: the monomialej1 · · · ejk is even or odd-graded,
according ask is even or odd.

Definition 3.9. Let N be an even-dimensional, Riemannian manifold and let Cliff(TN)
be the complex vector bundle onN whose fibers are the complexified Clifford algebras
of the fibers of the tangent bundle ofN. The bundle Cliff(TN) has a natural0-graded
Dirac bundle structure (tangent vectors act by Clifford multiplication on the left).

If N is oriented, and if{e1, . . . , en} is a local, oriented, orthonormal frame, then the
operator ofright-multiplicaton by the product

σ = i
n
2 e1 · · · en

is an even-graded, self-adjoint involution of the bundle Cliff(TN) which commutes with
the Dirac bundle structure.

Definition 3.10. Denote by Cliff1
2
(TN) the+1-eigenbundle of the involutionσ. This is

a0-graded Dirac bundle in its own right.
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We wish to compute the index of a Dirac operator associated to this Dirac bundle,
at least in the case of a sphereN = Sn. To do so, we use the standard isomorphism
between Cliff(TN) and the complexified exterior algebra bundle

∧∗
C T∗N ∼=

∧∗
C TN,

which associates to the Clifford monomialej1 · · · ejk the differential formej1 ∧· · ·∧ejk .
Under this correspondence, the operatorD = d+d∗ on forms becomes a Dirac operator
for the Dirac bundle Cliff(TN). So the kernel ofD is the space of harmonic forms on
N. Using the fact that the involutionσ exchanges the0 andn-forms onN we obtain the
following result.

Proposition 3.11. LetN be an even-dimensional, round sphere (oriented as the bound-
ary of the ball). There is a Dirac operator forCliff 1

2
(TN) which is equivariant for the

natural action of the special orthogonal group, and whose kernel is the one-dimensional
trivial representation, and is generated by an even-graded section ofCliff 1

2
(TN). ¤

Remark 3.12. For general oriented Riemannian manifoldsN, the index of the Dirac
operator for Cliff1

2
(TN) is the average of the Euler characteristic and the signature.

Indeed the direct sum of Cliff1
2
(TN) with the opposite of the bundle complementary

to Cliff 1
2
(TN) in Cliff (TN) is the Dirac bundle associated to the signature operator of

Atiyah and Singer.

4. SPINc-STRUCTURES

We shall define Spinc-structures using the notion of Dirac bundle that was introduced
in the last section.

Definition 4.1. Denote byCn the complex Clifford algebra forRn, generated by the
standard basis elementse1, . . . , en of Rn.

Let M be a smooth manifold and letV be a rankp Euclidean vector bundle over
M. If e1, . . . , en is a local orthonormal frame forV , defined over an open setU ⊆ M,
then the trivial bundleU×Cn overU with fiberCn may be given the structure of anp-
graded Dirac bundle forV |U: Clifford multiplication by an elementej of the frame isleft
multiplication by thejth generator ofCp, and thep-multigrading operatorsε1, . . . , εp

for the bundle areright multiplication by the same generators.

Definition 4.2. Let M be a smooth manifold and letV be ap-dimensional Euclidean
vector bundle overM. A complex spinor bundlefor V is ap-multigraded Dirac bundle
SV which is locally isomorphic to the trivial bundle with fiberCp, the Clifford mul-
tiplication being determined from some local orthonormal frame, as above. We shall
call a bundleV equipped with a complex spinor bundle a Spinc-vector bundle. If M is
a smooth manifold (possibly with boundary) then by a Spinc-structureon M we shall
mean a pair consisting of a Riemannian metric onM and a complex spinor bundleSM

for TM.
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Remark 4.3. A spinor bundle determines an orientation ofV , as follows. If{f1, . . . , fp}

is a local orthonormal frame forV , then the endomorphism of the spinor bundleSV

determined by the formula

u 7→ (−1)p+(p−1)∂uf1 · · · fp · εp · · · ε1u

is plus or minus the identity (here∂u is theZ/2-grading degree of the sectionu). If the
endomorphism is+I then we deem the frame to be oriented; if it is−I then we deem it
to be oppositely oriented.

Example 4.4. Let V1 andV2 be Euclidean vector bundles onM equipped with spinor
bundlesS1 andS2. Using the well-known Clifford algebra isomorphismCp1

⊗̂Cp2
∼=

Cp1+p2
the graded tensor productS1⊗̂S2 becomes a spinor bundle forV1⊕V2. It defines

thedirect sumSpinc-structure onV1 ⊕ V2.

Remark 4.5. The definition of Spinc-structure can be rephrased in the language of prin-
cipal bundles, as follows. The group Spin(n) is the closed subgroup of the unitary group
of Cn whose Lie algebra is theR-linear span of the elementseiej, for i 6= j. The
group Spinc(n) is the closed subgroup of the unitary group ofCn which is generated by
Spin(n) and the complex numbers of modulus one. The group Spinc(n) acts by inner
automorphisms on theR-linear subspace ofCn spanned by the elementsej, and in this
way we obtain a homomorphism from Spinc(n) into GL(n,R) (in fact intoO(n)). Now
if M is a smooth manifold, and ifP is a reduction to Spinc(n) of the principal bundle
of tangent frames, then the reduction determines a Riemannian metric onM, and the
bundle

S = P ×Spinc(n) Cn

is a spinor bundle onM (here Spinc(n) acts onCn by left multiplication). ThusP
determines a Spinc-structure. Conversely, every Spinc-structure arises in this way (up to
isomorphism).

Definition 4.6. LetMn be a smooth manifold, without boundary, equipped with a Spinc-
structure. We shall denote by[M] ∈ Kn(M) theK-homology class of any Dirac operator
onS. This is theK-homologyfundamental classof the Spinc-manifoldM.

If M is a smooth manifold with boundary then of course a Riemannian metric on
M restricts to one on the interiorM, and also to one on the boundary∂M. A spinor
bundleS for M restricts to a spinor bundle onM, and the boundary ofS, as described
in Definition 3.4, is a spinor bundle for∂M. The following result is a consequence of
Theorem 3.5.

Theorem 4.7. If M is the interior of ann-dimensionalSpinc-manifold with boundary,
and if we equip the boundary manifold∂M with the inducedSpinc-structure, then the
K-homology boundary map

∂ : Kn(M) → Kn−1(∂M)
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takes the fundamental class ofM to the fundamental class of∂M:

∂[M] = [∂M] ∈ Kn−1(∂M).

¤

Definition 4.8. Let M be a smooth manifold equipped with a Spinc-structure. The
oppositeSpinc-structure is defined by changing the action of the multigrading operator
ε1 by a sign.

Definition 4.9. LetM be a smooth manifold. Two Spinc-structures onM areconcordant
if there is a Spinc-structure on[0, 1] ×M for which the induced Spinc-structure on the
boundaryM∪M is one of the given Spinc structures on one copy ofM, and the opposite
of the other given structure on the other copy ofM.

In Chapter 11 of [HR00], the following result is proved.

Theorem 4.10. ConcordantSpinc-structures onM determine the same fundamental
class inK-homology. ¤

In the case of even-dimensional manifolds the following simplified description of
Spinc-structures will be useful for us.

Definition 4.11. Let Mn be a smooth, even-dimensional manifold. AreducedSpinc-
structureonM consists of a Riemannian metric onM and a Dirac bundleS (Z/2-graded,
but with non-grading structure) whose fiber dimension is2

n
2 . We shall callS a reduced

spinor bundle.

If n is even then the complex Clifford algebraCn is isomorphic to the matrix algebra
M

2
n
2
(C), and hence has a unique representationVn of dimension2

n
2 . The operator

γ = i
n
2 e1 · · · en

providesVn with a Z/2-grading. IfS is a reduced spinor bundle, as in the definition,
then the tensor productS⊗̂Vn is a spinor bundle in the sense of Definition 4.2, and
conversely every spinor bundle in the sense of Definition 4.2 is of this form. If we
temporarily denote by[M]red ∈ K0(M) the K-homology class of the Dirac operator
on the reduced spinor bundleS, then under the periodicity mapK0(M) → Kn(M) the
fundamental class[M]red maps to[M].

We conclude this section by comparing reduced spinor bundles with the Dirac bundles
Cliff 1

2
(TN) that we introduced in Section 3.

Let N be an even-dimensional, oriented Riemannian manifold, and assume it admits a
Spinc-structure, with reduced spinor bundleS. As we noted above, the complex Clifford
algebra of a Euclidean vector space of dimensionn = 2k is isomorphic to the algebra
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of complex2k × 2k matrices. It follows by counting dimensions that the natural map
Cliff (TN) → End(S) is an isomorphism. Hence there is an isomorphism

Cliff (TN) ∼= S⊗̂S∗

compatible with the left and right actions by Clifford multiplication.

Proposition 4.12. Let S be a reduced spinor bundle forN and denote byS∗+ the even-
graded part of its dual. There is an isomorphism of Dirac bundles

Cliff 1
2
(TN) ∼= S⊗ S∗+.

Proof. The reduced spinor bundle determines a full spinor bundle forM, which in turn
determines the orientation ofM, as described earlier. Having fixed this orientation,
the operatorγ acts as+1 on S+ and−1 on S−. So the proposition follows from the
isomorphism Cliff(TN) ∼= S⊗̂S∗. ¤

5. REVIEW OF GEOMETRIC K-HOMOLOGY

Definition 5.1. Let X be a paracompact Hausdorff space and letY be a closed subspace
of X. A K-cyclefor the pair(X, Y) is a triple(M,E, φ) consisting of:

(i) A smooth, compact manifoldM (possibly with boundary), equipped with a Spinc-
structure.

(ii) A smooth, Hermitian vector bundleE onM.
(iii) A continuous mapφ : M → X such thatφ[∂M] ⊆ Y.

Remark 5.2. The manifoldM need not be connected. Moreover the components ofM

may have differing dimensions.

Two K-cycles areisomorphicif there are compatible isomorphisms of all of the above
three components in the definition ofK-cycle (this includes an isomorphism of spinor
bundles). Following [BD82] we are going to construct an abelian group from sets of
isomorphism classes of cycles so as to obtain “geometric”K-homology groups for the
pair (X, Y). In order to define the relations in these groups we need to introduce several
kinds of operations and relations involvingK-cycles.

Definition 5.3. If (M,E, φ) and (M ′, E ′, φ ′) are twoK-cycles for(X, Y), then their
disjoint unionis theK-cycle(M ∪M ′, E ∪ E ′, φ ∪ φ ′).

Definition 5.4. If (M,E, φ) is a K-cycle for (X, Y), then itsoppositeis the K-cycle
(−M,E, φ), where−M denotes the manifoldM equipped with the opposite Spinc-
structure.

Definition 5.5. A bordismof K-cycles for the pair(X, Y) consists of the following data:

(i) A smooth, compact manifoldL, equipped with a Spinc-structure.
(ii) A smooth, Hermitian vector bundleF overL.
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(iii) A continuous mapΦ : L → X.
(iv) A smooth mapf : ∂L → R for which±1 are regular values, and for whichΦ[f−1

[−1, 1]] ⊆ Y.

To understand the definition, it is best to consider the case whereY = ∅. In this case it
follows from condition (iv) that the setf[−1, 1] is empty, and therefore the boundary of
L is divided byf into two components:M+ = f−1(+1,+∞) andM− = f−1(−∞,−1).
We therefore obtain twoK-cycles(M+, F|M+ ,Φ|M+) and(M−, F|M− ,Φ|M−), and we
shall say that the first isbordantto the opposite of the second.

In the case whereY is non-empty the setsM+ = f−1[+1,+∞) andM− = f−1

(−∞,−1] are manifolds with boundary, and we obtain, as before twoK-cycles(M+,

F|M+ ,Φ|M+) and(M−, F|M− ,Φ|M−), but now for the pair(X, Y). Once again we shall
say that the first is bordant to the opposite of the second.

The purpose of the functionf in Definition 5.5 is to provide a notion of bordism for
manifolds with boundary without having to introduce manifolds with corners. Bordism
is an equivalence relation.

We have one more operation onK-cycles to introduce. LetM be a Spinc-manifold
and letW be a Spinc-vector bundle overM. Denote by1 the trivial, rank-one real
vector bundle. The direct sumW ⊕ 1 is a Spinc-vector bundle, and moreover the total
space of this bundle may be equipped with a Spinc structure in a canonical way, up to
concordance. This is because its tangent bundle fits into an exact sequence

0 // π∗[W ⊕ 1] // T(W ⊕ 1) // π∗[TM] // 0,

whereπ is the projection fromW ⊕ 1 ontoM, so that, upon choosing a splitting, (or
equivalently, choosing a Riemannian metric on the manifoldW⊕1 which is compatible
with the above sequence) we have a direct sum decomposition

T(W ⊕ 1) ∼= π∗[W ⊕ 1]⊕ π∗[TM].

Different splittings result in concordant Spinc-structures.

Let us now denote byZ the unit sphere bundle of the bundleW ⊕ 1. SinceZ is
the boundary of the disk bundle, we may equip it with a natural Spinc-structure by first
restricting the given Spinc-structure on total space ofW⊕1 to the disk bundle, and then
taking the boundary of this Spinc-structure to obtain a Spinc-structure on the sphere
bundle.

Definition 5.6. Let (M,E, φ) be aK-cycle for(X, Y) and letW be a Spinc-vector bun-
dle overM with even-dimensional fibers. LetZ be the sphere bundle ofW ⊕ 1, as
above. The vertical tangent bundle ofZ has a natural Spinc-structure (one applies the
boundary construction of Definition 3.4 to the pullback ofW ⊕ 1 to Z). Denote bySV

the corresponding reduced spinor bundle and letF = S∗V,+. In other words, defineF to
be the dual of the even-graded part of theZ/2-graded bundleSV . Themodificationof
(M,E, φ) associated toW is theK-cycle(Z, F⊗ π∗E,φ ◦ π).
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We are now ready to define the Baum-Douglas geometricK-homology groups.

Definition 5.7. Denote byKgeom(X, Y) the set of equivalence classes ofK-cycles over
(X, Y), for the equivalence relation generated by the following relations:

(i) If (M,E1, φ) and(M,E2, φ) are twoK-cycles with the same Spinc-manifoldM

and mapφ : M → X, then

(M ∪M,E1 ∪ E2, φ ∪ φ) ∼ (M,E1 ⊕ E2, φ).

(ii) If (M1, E1, φ1) and(M2, E2, φ2) are bordantK-cycles then

(M1, E1, φ1) ∼ (M2, E2, φ2).

(iii) If (M,E, φ) is a K-cycle, and ifW is an even-dimensional Spinc-vector bundle
overM, then

(M,E, φ) ∼ (Z, F⊗ π∗E,φ ◦ π),

where(Z, F⊗ π∗E,φ ◦ π) is the modification of(M,E, φ) given in Defintion 5.6.

The setKgeom(X, Y) is in fact an abelian group. The addition operation is given by
disjoint union,

[M1, E1, φ1] + [M2, E2, φ2] = [M1 ∪M2, E1 ∪ E2, φ1 ∪ φ2],

and the additive inverse of a cycle is obtained by reversing the Spinc-structure:

−[M,E, φ] = [−M,E, φ].

The neutral element is represented by the empty manifold, or any cycle bordant to the
empty manifold.

Definition 5.8. Denote byK
geom
ev (X, Y) and K

geom
odd (X, Y) the subgroups of the group

Kgeom(X, Y) composed of equivalence classes ofK-cycles(M,E, φ) for which every
connected component ofM is even dimensional and odd dimensional, respectively.

The groupsKgeom
ev/ odd(X, Y) are functorial in(X, Y), and they satisfy weak excision: if

U is an open subset ofY whose closure is in the interior ofY, then

K
geom
ev/ odd(X \ U, Y \ U) ∼= K

geom
ev/ odd(X, Y).

There is moreover a “homology sequence”

K
geom
ev (Y) // K

geom
ev (X) // K

geom
ev (X, Y)

²²
K

geom
odd (X, Y)

OO

K
geom
odd (X)oo K

geom
odd (Y)oo

(where as usual we defineKgeom
ev (Y) = K

geom
ev (Y, ∅), and so on). The boundary maps

take aK-cycle (M,E, φ) for (X, Y) to the boundary cycle(∂M,E|∂M, φ|∂M) for Y (it
is easily verified that this definition is compatible with the equivalence relation used
to define the geometricK-homology groups). The composition of any two successive
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arrows is zero. However it is not obvious that the sequence is exact. For the special case
of finite CW-pairs this exactness will follow from the main theorem of the paper, which
identifies geometricK-homology with KasparovK-homology.

6. NATURAL TRANSFORMATION AND FORMULATION OF THE MAIN THEOREM

Now let (X, Y) be a pair of compact and metrizable spaces. We associate to each
K-cycle (M,E, φ) for (X, Y) a class〈M,E, φ〉 in KasparovK-homology, as follows.
Denote byM◦ the interior ofM, which is an open Spinc-manifold. The Spinc-structure
on M determines a spinor bundleS on M◦ by restriction, and of course the complex
vector bundleE also restricts toM◦. The tensor productS ⊗ E is a Dirac bundle over
M◦, and ifDE is an associated Dirac operator, then we can form the class

[DE] ∈ Kn(M◦)

(heren is the dimension ofM). The mapφ : M → X restricts to a proper map fromM◦
into X \ Y, and we can therefore form the class

φ∗[DE] ∈ Kn(X, Y).

Theorem 6.1. The correspondence(M,E, φ) 7→ φ∗[DE] determines a functorial map

µ : K
geom
ev/ odd(X, Y) → Kev/ odd(X, Y)

which is compatible with boundary maps in geometric and analyticK-homology.

Proof. The only thing to check is that the correspondence is compatible with the rela-
tions in Definition 5.7 which generate the equivalence relation on cycles used to define
geometricK-homology. Once this is done, functoriality will be clear from the construc-
tion of 〈M,E, φ〉 and compatibility with boundary maps will follow from Theorem 3.5.

Compatibility with relation (i) from Definition 5.7 is straightforward. Compatibility
with relation (ii) follows from Theorem 3.5. So the proof reduces to showing that the
correspondence is compatible with the relation (iii) of vector bundle modification.

Let (M,E, φ) be aK-cycle for (X, Y) and letn = dim(M) (by working with one
component ofM at a time we can assume that dim(M) is well-defined). LetW be a
Spinc-vector bundle overM of even fiber dimension2k. Let SM be the spinor bundle
for M, and letSV be thereducedspinor bundle for the vertical tangent bundle of the
sphere bundleπ : Z → M. Form the tensor product

SZ = SV⊗̂π∗[SM].

This is neither a fully multigraded spinor bundle forZ nor a reduced spinor bundle, but
something in between. IfDZ is a Dirac operator forSZ then the class[DZ] ∈ Kn(Z) is
the image of theK-homology fundamental class[Z] ∈ Kn+2k(Z) under the periodicity
isomorphismKn+2k(Z) ∼= Kn(Z). Similarly, if DZ,F⊗π∗E is a Dirac operator for the
tensor product bundleSZ⊗ F⊗π∗E, then the class[DZ,F⊗π∗E] ∈ Kn(Z) is the image of
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theK-homology class of the modification(Z, F⊗π∗E,φZ) of the cycle(M,E, φ) under
the same periodicity isomorphism.

To prove compatibility with the relation (iii) in the definition of geometricK-homology
we need to show that[DZ,F⊗π∗E] is equal to the class[DM,E] ∈ Kn(M). But writing

SZ ⊗ F⊗ π∗E ∼= [SV ⊗ F]⊗̂π∗[SM ⊗ E],

we see that this follows from Propositions 3.6, 3.11 and 4.12. ¤

We can now state the main theorem in this paper.

Theorem 6.2. If (X, Y) is a finiteCW-pair then the homomorphism

µ : K
geom
ev/ odd(X, Y) → Kev/ odd(X, Y)

is an isomorphism.

The proof will be carried out in the remaining sections.

7. OUTLINE OF THE PROOF

We wish to prove that ifX is a finiteCW complex, then the homomorphisms

µ : K
geom
ev/ odd(X) → Kev/ odd(X)

are isomorphisms. What makes this tricky is that we don’t yet know that geometricK-
homology is a homology theory. To get around this problem we are going to define a
“technical” homology theorykev/ odd(X, Y) which fits into a commuting diagram

kev/ odd(X, Y) α //

β ''PPPPPPPPPPP
Kev/ odd(X, Y)

K
geom
ev/ odd(X, Y)

µ

77nnnnnnnnnnnn

in which the horizontal arrow is a natural transformation between homology theories.
Having done so, the proof will be completed in two steps:

(a) We shall check that whenX is a point andY is empty, the horizontal arrow is an
isomophism. It will follow that the horizontal arrow is an isomorphism for every
finite CW pair (X, Y).

(b) We shall prove that for every finiteCW pair (X, Y), the map in the diagram from
kev/ odd(X, Y) to K

geom
ev/ odd(X, Y) is surjective.

It is clear that (a) and (b) together will imply that all the arrows in the diagram are
isomorphisms, for every finiteCW pair (X, Y).

The reader who is acquainted with the definition ofK-homology starting from the Bott
spectrum will see that our definition ofkev/ odd(X, Y) is extremely close to the spectrum
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definition ofK-homology. However the definition which is presented in the next section
is not designed with this in mind.

8. DEFINITION OF THE TECHNICAL GROUP

Fix a modelK for the0th space of the Bott spectrum, e.g.Z× BU. We shall use the
following features of this space:

(a) If X is a pointed finiteCW complex, then there is a natural isomorphism

K0(X, ∗) ∼= [X,K]+

between the relative Atiyah-HirzebruchK-theory groupK0(X, ∗) and the set of ho-
motopy classes of maps fromX into K. Here∗ is the base point ofX and[X,K]+

denotes the set of homotopy classes of basepoint-preserving maps (recall thatK is a
base-pointed space).

(b) There is a basepoint-preserving mapm : K ∧ K → K which induces the operation
of tensor product (the ring structure) onK0(X).

Example 8.1.We could takeK to be the space of all Fredholm operators on a separable,
infinite-dimensional Hilbert spaceH (the Fredholm operators are topologized by the
operator-norm topology). The isomorphism (a) is described in [Ati67]. For later use we
note that the set of connected components ofK is isomorphic toZ, the isomorphism
being given by the Fredholm index.

Definition 8.2. Let S2 be the standard2-sphere, equipped with its standard Spinc struc-
ture as the boundary of the ball inR3. Denote byβ : S2 → K a basepoint-preserving
map which, under the isomorphism[S2,K]+ ∼= K0(R2) = K0(S2, ∗), corresponds to the
difference[S∗+]−[1]. HereS∗+ is the dual of the positive part of the reduced spinor bundle
on the2-sphere (which is the one-point compactification ofR2), and1 is the trivial line
bundle.

Remark 8.3. Note thatS∗+ is a line bundle, so that the difference[S∗+] − [1] has virtual
dimension zero.

Now, we are going to construct the “technical” homology groupskev/ odd(X, Y) using
the spaceK, the mapβ, and the notion offramed bordism, which we briefly review.

Definition 8.4. A framed manifoldis a smooth, compact manifoldMn with a given
stable trivialization4 of its tangent bundle:

k ⊕ TM ∼= k ⊕ n

We shall identify two stable trivializations if they are stably homotopic (that is, homo-
topic after forming the direct sum with the identity map on an additional trivial sum-
mand). Thus a framed manifold is a smooth, compact manifold together with a stable
homotopy class of stable trivializations of its tangent bundle.

4In this definition we are usingn or k to denote the trivialreal vector bundle of rankn or k, respectively.
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Definition 8.5. If (X, Y) is any paracompact and Hausdorff pair then we shall denote
by ΩF

n(X, Y) then-th framed bordism group of the pair(X, Y). ThusΩF
n(X, Y) is the

set of all bordism classes of maps from framed manifolds intoX, mapping the manifold
boundaries intoY. Compare Definition 5.5 or [Sto68]. Note that the boundary of a
framed manifoldM is itself a framed manifold in a natural way: starting from a stable
trivialization

k ⊕ TM ∼= k ⊕ n

we use an inward pointing normal vector field on∂M to obtain a stable trivialization

k ⊕ 1⊕ T∂M ∼= k ⊕ n.

We use the inward pointing normal to agree with orientation conventions established
earlier.

We can now define our “technical” homology theorykev/ odd(X, Y). For a finiteCW

pair (X, Y) and an integern, form a direct system of abelian groups

ΩF
n(X×K, Y ×K) → ΩF

n+2(X×K, Y ×K) → ΩF
n+4(X×K, Y ×K) → · · ·

as follows. Given a cyclef : M → X×K for ΩF
n+2k(X×K, Y ×K), the composition

M× S2
f×β // X×K×K 1×m // X×K

is a cycle forΩF
n+2k+2(X×K, Y×K). This defines the map fromΩF

n+2k(X×K, Y×K)

to ΩF
n+2k+2(X×K, Y ×K) which appears in the directed system.

Definition 8.6. Denote bykev/ odd(X, Y) the direct limit of the above directed system,
for n even/odd.

SinceΩF∗ is itself a homology theory (on finiteCW pairs), and since direct limits
preserve exact sequences, it is clear thatk∗ is a homology theory.

The mapβ from kev/ odd(X, Y) into K
geom
ev/ odd(X, Y) which appears in Section 7 is de-

fined as follows (for notational simplicity we will only describe the construction for the
absolute groupskev/ odd(X), not the relative groups). IfM is a framed manifold then the
framing k ⊕ TM ∼= k ⊕ n determines a Spinc-structure onM. A mapM → X × K
determines a mapφ : M → X and aK-theory class forM, which we may represent as a
difference[E1] − [E2] for some vector bundlesE1 andE2. A map

βn : ΩF
n(X×K) → Kgeom

n (X)

is defined by associating to the bordism class ofM → X×K the difference ofK-cycles
(M,E1, φ) − (M,E2, φ). It follows from part (i) of Definition 5.7 that theK-homology
class of this difference does not depend on the choice ofE1 andE2 to represent theK-
theory class onM. It follows from part (ii) of the definition that theK-homology class
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only depends on the bordism class of the mapM → X×K. Finally, it follows from part
(iii) of the definition that the diagram

ΩF
n(X×K)

²²

βn // K
geom
n (X)

=

²²
ΩF

n+2(X×K)
βn+2

// K
geom
n+2 (X)

is commutative (on the right is the periodicity isomorphism described in Section 2).
Sinceβ is compatible with the direct limit procedure using whichkev/odd(X) is obtained
from the framed bordism groups, we obtain maps

β : kev/ odd(X) → K
geom
ev/ odd(X)

as required.

9. PROOF OF THEMAIN THEOREM

9.1. Proof of (a). We wish to show that the mapsα : kn(pt) → Kn(pt) are isomor-
phisms forn = 0 andn = 1. If W is any (base-pointed) topological space then by the
Pontrjagin-Thom isomorphism [Pon42, Pon59, Tho54] thenth framed bordism group of
W is isomorphic to thenth stable homotopy group ofW: ΩF

n(W) ∼= πS
n(W). Accord-

ing to Bott periodicity, [Bot57,?] the second loop space ofK has the homotopy type of
K. In fact the map

S2 ∧K
β∧1 // K∧K m // K

induces a homotopy equivalenceK ∼ Ω2K. This, and the fact that the flip mapS2 ∧

S2 → S2 ∧ S2 is homotopic to the identity map, imply that the evident maps

lim−→ πn+2k(K) → lim−→ πS
n+2k(K)

are isomorphisms. The first direct limit is formed by associating to a mapf : Sn+2k → K
the composition

S2 ∧ Sn+2k
1∧f // S2 ∧K

m // K,

and the second direct limit is formed using a similar procedure, starting with maps from
Sn+2k+2j into S2j ∧K. To verify the assertion, view the second direct limit as the limit
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of the array

...
...

...

π6(S
4 ∧K)

s

OO

b // π8(S
4 ∧K)

s

OO

b // π10(S
4 ∧K)

s

OO

b // . . .

π4(S
2 ∧K)

s

OO

b // π6(S
2 ∧K)

s

OO

b // π8(S
2 ∧K)

s

OO

b // . . .

π2(K)

s

OO

b // π4(K)

s

OO

b // π6(K)

s

OO

b // . . .

in which the vertical maps are suspension byS2 and the horizontal maps are induced
from suspension byS2, followed by composition withb : S2 ∧K→ K defined by

S2 ∧K
β∧1 // K∧K m // K .

The first direct limit is then the direct limit of the bottom row, and the required isomor-
phism follows from these facts:

(i) If x ∈ π2k(S2j ∧K), and ifs(x) = 0, thenb(x) = 0.
(ii) If x ∈ π2k(S2j∧K) for somej > 0, and ifx = b(y), for somey ∈ π2k−2(S

2j∧K),
thenx = s(z), for somez ∈ π2k−2(S

2j−2 ∧K).

Item (i) is an immediate consequence of the definition of the mapb. As for item (ii), if
x = b(y), thenx can be written as a composition

S2 ∧ S2k−2
1∧y // S2 ∧ S2j ∧K

1∧b // S2j ∧K .

Writing S2j asS2j−2 ∧ S2, and using the fact that the flip onS2 ∧ S2 is homotopic to the
identity, we can write this composition as

S2 ∧ S2k−2
1∧y // S2 ∧ S2j−2 ∧ S2 ∧K

1∧1∧b// S2 ∧ S2j−2 ∧K .

This is clearly in the image of the maps.

Now

kn(pt) = lim−→ ΩF
n+2k(K) ∼= lim−→ πS

n+2k(K) ∼= lim−→ πn+2k(K) ∼= πn(K).

As a result we obtain the isomorphisms

kn(pt) ∼= πn(K) ∼= K0(Rn)

which implies thatkev(pt) ∼= Z andkodd(pt) = 0. It follows immediately that the map
α : kodd(pt) → Kodd(pt) is an isomorphism, since both domain and range are zero. In the
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even case the map
k0(pt) ∼= π0(K) → K0(pt) ∼= Z

sends a Fredholm operatorT to the index ofT . This map is an isomorphism.

9.2. Proof of (b). We wish to prove that the mapkev/ odd(X, Y) → K
geom
ev/ odd(X, Y) is

surjective. The image of this map consists precisely of the equivalence classes ofK-
cycles(N, F,ψ) for which N is a framed Spinc-manifold. So we must prove that if
(M,E, φ) is anyK-cycle for (X, Y), then there is an equivalentK-cycle (N, F,ψ) for
whichN is a framed Spinc-manifold.

To do this, choose a smooth real vector bundleV , with even-dimensional fibers, such
thatTM⊕ V is trivializable, and fix an isomorphism

TM⊕ V ∼= n⊕ k.

The trivial bundlen⊕k has a canonical Spinc-structure, and the above isomorphism and
the following lemma therefore define a Spinc-structure onV .

Lemma 9.1. Let V andW be real, orthogonal vector bundles over the same spaceX.
Assume thatV andV⊕W are equipped withSpinc-structures. There is aSpinc-structure
onW whose direct sum with the givenSpinc-structure onV is the givenSpinc-structure
onV ⊕W.

Proof. Let SV be a (non-reduced) spinor bundle forV and letSV⊕W be the same for
V ⊕W. Denote bySW the bundle of fiberwise linear mapsSV → SV⊕W which graded-
commute with the Clifford action ofV and which graded-commute with the action of
the firstk multigrading operatorsε1, . . . , εk, wherek = rank(V). The bundleW acts
on SV⊕W , as do the remaining multigrading operators. By composition,W and the
remaining multigrading operators also act onSW . A local consideration shows that we
obtain a (non-reduced) spinor bundle forW, and that it has the required property with
respect to direct sum. ¤

The vector bundle modification of theK-cycle (M,E, φ) by V is a K-cycle whose
manifold is framed, as required.

10. APPENDIX: THE REAL CASE

In this appendix we briefly discuss the changes needed to prove the result analogous
to Theorem 6.2 inKO-homology.

Kasparov’s theory readily adapts to the real case. A real Hilbert space can be viewed
as a complex Hilbert space equipped with a conjugate-linear isometric involution. A
real C∗-algebra is the same thing as a complexC∗-algebra equipped with a conjugate
linear involutive∗-automorphism (which, unlike the∗-operation, preserves the order of
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products). By including these complex-conjugation operators, the definitions of Sec-
tion 2 extend immediately to the real case. The only difference is that in the real case
the counterpart of the formal periodicity mapK−p → K−(p+2) does not exist. However
the four-fold composition of this map is compatible with real structures, and defines a
real formal periodicity mapKO−p → KO−(p+8). The results of Section 3 carry over
without change, except that the bundle Cliff1

2
(TN) is a real Dirac bundle only when the

dimension ofN is a multiple of4. Our discussion of Spinc structures in Section 4 is
designed to carry over to the real case just by replacing complex Clifford algebras with
real Clifford algebras; reduced real spinor bundles exist in dimensions which are multi-
ples of8. The geometric definition ofK-homology is based on Spin-manifolds—the real
counterparts of Spinc-manifolds—and the real counterpart of Theorem 6.2 is now easy
to formulate. The only really new aspect of the proof is that a more careful treatment of
part (a) is required. The argument given above shows that

ko0(pt) ∼= π0(KO) ∼= KO0(Rn).

Under these isomorphisms, the mapko0(pt) → KOn(pt) corresponds to the mapKO0

(Rn) → KOn(pt) which takes aK-theory classx to the index of the Dirac operator on
Rn twisted byx. The fact that this map is an isomorphism is another formulation of Bott
Periodicity (compare [Ati68]).
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Sci, Publ, Math.,(45):101-145, 1975. P.Baum, W.Fulton, and

[BFM79] R.Macpherson. Riemann-Roch and topological K theory for singular varieties.Acta Math.,
143(3-4):155-192, 1979.

[Bot57] R.Bott.The stable homotopy of the classical groups,Proc.Nat.Acad.Sci, U.S.A.,43:933-935, 1957.
[HR00] N.Higson and J.Roe,Analytic K-homology,Oxford Mathematical Monographs. Oxford University

Press, Oxford, 2000, Oxford Science Publications.
[Jak98] M.Jakob. A bordism-type description of homology.Manuscripta Math., 96(1):67-80, 1998.
[Jak00] M.Jakob. An alternative approach to homology, InUne d́egustatum topologique [Topological

morsels]:homotopy theory in the Swiss Alps(Arolla, 1999), volume 265 ofContemp.Math., pages
87-97. Amer Math.Soc., Providence, RI, 2000.



24 Paul Baum, Nigel Higson, and Thomas Schick

[Kas75] G.G.Kasparov. Topological invariants of elliptic operators I: K-homology.Math.USSR Izvestija,
9:751-792, 1975.

[Pon42] L.Pontrjagin. Mappings of the three-dimensional sphere into an n-dimensional complex.
C.R.(Doklady)Acad Sci.URSS(N.S), 34:35-37, 1942.

[Pon59] L.S.Pontryagin. Smooth manifolds and their applications in homotopy theory. InAmerican Mathe-
matical Society Translations, Ser 2, Vol.11, pages 1-114. American Mathematical Society, Providence.
R.L., 1959.

[Sto68] R.E:Stong.Noes on cobordism theory. Mathematical notes. Princeton Unibersity Press, Princeton,
N.J., 1968.

[Tho54] R.Thom. Quelques propriét́es globales des variét́es diff́erentiables.Comment Math.Helv.,28:17-
86, 1954.

Paul Baum
Department of Mathematics
Penn State University
University Park, PA 16802
E-mail: baum@math.psu.edu

Nigel Higson
Department of Mathematics
Penn State University
University Park, PA 16802
E-mail: higson@math.psu.edu

Thomas Schick
Mathematisches Institut
Georg-August-Universität Göttingen
Bunsenstr. 3, D-37073 G̈ottingen, Germany
E-mail: schick@uni-math.gwdg.de


