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Abstract: Given a compact complex algebraic variety with an effective
action of a finite group G, and a class α ∈ H2(G,U(1)), we introduce an
orbifold elliptic genus with discrete torsion α, denoted Ellαorb(X, G, q, y).
We give an interpretation of this genus in terms of the chiral de Rham
complex attached to the orbifold [X/G]. If X is Calabi-Yau and G preserves
the volume form, Ellαorb(X, G, q, y) is a weak Jacobi form. We also obtain
a formula for the generating function of the elliptic genera of symmetric
products with discrete torsion.

1. Introduction

The two-variable elliptic genus (see for example [Kri]) of a compact complex
manifold X is a generating function

(1.1) Ell(X, y, q) =
∑

m,l

c(m, l)qmyl

which captures important topological information about X. For appropriate
values of y and q, Ell(X, y, q) specializes to the L, Â, and χy genera respectively.
Mathematically, the elliptic genus can be defined as follows. For a holomorphic
vector bundle V on X and a formal variable t, let

Symt V = 1 + tV + t2 Sym2 V + t3 Sym3 V + · ∈ K0(X)[[t]]

and
ΛtV = 1 + tV + t2Λ2V + t3Λ3V + · ∈ K0(X)[[t]]
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Let TX , T ∗X denote the holomorphic tangent and cotangent bundles respectively,
and

(1.2) Ell(X, q, y) = y−
dimX

2 ⊗n≥1 (Λ−yqn−1T ∗X ⊗ Λ−y−1qnTX ⊗ SqnT ∗X ⊗ SqnTX)

viewed as an element of K0(X)[[q]][[y±
1
2 ]]. Then

Ell(X, q, y) = χ(Ell(X, q, y)).

In physics, Ell(X, q, y) is part of the partition function of a two-dimensional
conformal field theory with target X (cf. [EOTY]).

In this paper, we will say that X is Calabi-Yau if KX is trivial - this is of
course weaker than the usual mathematical Calabi-Yau condition, but agrees with
the physics terminology. When X is Calabi-Yau, Ell(X, q, y) has nice modular
properties. Let H denote the upper half plane. A weak Jacobi form of weight
k ∈ Z and index r ∈ 1

2Z is a holomorphic function on H × C satisfying the
transformation property

φ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)ke2πi rcz2

cτ+d φ(τ, z),
(

a b
c d

)
∈ SL(2,Z)

φ(τ, z + mτ + n) = (−1)2r(m+n)e−2πir(m2τ+2mz)φ(τ, z), (m,n) ∈ Z2

that in addition has a Fourier expansion
∑

l,m cm,ly
lqm with nonnegative m (see

[EZ]), where q = e2πiτ , y = e2πiz. It is shown in [BL, Gri] that if X is Calabi-Yau
then Ell(X, q, y) is a weak Jacobi form of weight 0 and index dim(X)/2.

In [BL1], the authors introduced a notion of orbifold elliptic genus Ell(X, G, q, y)
attached to the global quotient orbifold [X/G], where X is a smooth compact
complex manifold, and G ∈ Aut(X) is a finite group (see also [DLiM] for general
reduced orbifolds). A mathematical definition of this genus is given in section 2.1.
Roughly, Ell(X, G, q, y) is obtained by adding the contributions of Euler charac-
teristics of bundles analogous to 1.2 over the various fixed-point sets Xg, g ∈ G
of the G–action on X. Furthermore, for each g ∈ G, the contribution takes
into account the eigenvalues of g on TX|Xg . It is also shown in [BL1] that if X
is Calabi-Yau, and G preserves the volume form, then Ell(X, G, q, y) is a weak
Jacobi form of weight 0 and index dim(X)/2.

It was observed in [BL] that the ordinary elliptic genus Ell(X, y, q) can be
interpreted in terms of an object called the chiral de Rham complex, denoted
Ωch

X . The latter is a sheaf of vertex superalgebras attached to any smooth com-
plex manifold X, introduced in [MSV] (for a brief discussion of vertex algebras,
see section 3.1). The sheaf Ωch

X has an increasing filtration F •Ωch
X , and also a

compatible bigrading by two operators L0, J0. One can therefore describe the
associated graded sheaf grF Ωch

X in terms of the bigraded components. One finds
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that Supertrace(qL0yJ0 ,Ωch
X ) is the sheaf 1.2 above. It follows from this observa-

tion that

Ell(X, y, q) = Supertrace(qL0yJ0−dim(X)/2,H∗(X, Ωch
X ))

It is believed that H∗(X, Ωch
X ) captures some of the information of the two-

dimensional quantum field theory on X mentioned above. Ωch
X also carries a

differential QBRST ∈ End(Ωch
X ), Q2

BRST = 0 (which is why it is called a com-
plex). The ”de Rham” part of the name comes from the fact that the complex
(Ωch

X , QBRST ) is quasiisomorphic to the holomorphic de Rham complex (ΩdR, ∂).

In [FS], the construction of Ωch
X was extended to orbifolds (another construction

of the chiral de Rham complex for orbifolds was obtained independently by A.
Vaintrob). For each g ∈ G, one introduces sheaves Ωch,g

X supported on Xg, which
are modules over Ωch

X . Each Ωch,g
X carries a canonical C(g)–equivariant structure,

where C(g) denotes the centralizer of g in G. The sheaves Ωch,g
X allow one to

interpret some of the ”stringy” geometric invariants of the orbifold [X/G]. In
particular, it is shown in [FS] that

(1.3) Ell(X, G, q, y) = Supertrace(qL0yJ0−dim(X)/2,
⊕

[g]

H∗(X, Ωch,g
X )C(g))

and

(1.4)
⊕

[g]

H∗(Ωch,g
X , QBRST )C(g) ∼=

⊕

[g]

H∗
dR(Xg/C(g),C)

where [g] denotes a set of representatives for the conjugacy classes in G. The
object on the right in 1.4, with an appropriate grading and ring structure is
called the Chen-Ruan cohomology of [X/G] (see [CR]). The isomorphism 1.4 is
an isomorphism of graded vector-spaces.

We now come to discrete torsion. This term was introduced in the physics
literature to refer to the discovery (see [Va1, Va2]) that an orbifold quantum field
theory on [X/G] could be ”twisted” by a cocycle α ∈ H2(G,U(1)). In terms of
physics, the path integral can be written as a sum of contributions from sectors
parametrized by commuting pairs of elements (g, h) in G×G, and the contribu-
tion from the (g, h)–sector is multiplied by the phase δ(g, h) = α(g, h)/α(h, g).
This modification produces a consistent physical theory and leads to α–twisted
invariants of the orbifold [X/G]. For a mathematical discussion of various as-
pects of discrete torsion see [AF, R, Ka]. In this paper, we build on the results
in [BL1, FS] to give a mathematical treatment of orbifold elliptic genera with
discrete torsion Ellα(X, G, q, y). One way to define this object along the lines of
[BL1] is to multiply each contribution in the sum 2.3 by the appropriate phase
δ(g, h). From the point of view of the chiral de Rham complex, this definition can
be cast in a manner somewhat closer to the original physics approach as follows.
Recall that in 1.3 one uses the C(g)–equivariant structure on Ωch,g

X to project
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on the C(g)–invariant part of H∗(X, Ωch,g
X ). A cocycle α ∈ H2(G,U(1)) induces

characters αg : C(g) 7→ U(1) by αg(h) = δ(g, h). The character αg allows us to
twist the C(g) equivariant structure, and taking invariants with respect to this
twisted structure projects on a different subspace. We can therefore define

(1.5) Ellα(X, G, q, y) = Supertrace(qL0yJ0−dim(X)/2,
⊕

[g]

H∗(X, Ωch,g
X )C(g)α)

where C(g)α indicates that the twisted action is being used. We show that if X
is Calabi-Yau, Ellα(X, G, q, y) is a Jacobi form of weight 0 and index dim(X)/2.
We also show that there is an isomorphism of graded vector spaces

⊕

[g]

H∗(Ωch,g
X , QBRST )C(g)α ∼=

⊕

[g]

H∗
dR(Xg/C(g),Lα

g )

where the object on the right denotes the α–twisted Chen-Ruan cohomology of
[X/G] valued in the collection of local systems Lα

g , introduced in [R].

An important example of discrete torsion arises in the case of symmetric prod-
ucts (see [Di]). SN , the symmetric group on N letters, acts on the hyperplane
in RN given by the equation x1 + · · · + xN = 0. This yields an embedding
SN ↪→ O(N − 1). Pulling back the double cover Pin(N − 1) 7→ O(N − 1) yields
a central extension of SN by Z/2Z, which we denote ŜN - i.e.

(1.6) 1 7→ Z/2Z 7→ ŜN 7→ SN 7→ 1

The extension 1.6 is non-split for N ≥ 4, and therefore yields a non-zero class
α ∈ H2(SN ,Z/2Z), which via the inclusion Z/2Z ↪→ U(1) can be pushed into
H2(SN , U(1)).

The orbifold elliptic genera of symmetric products can be arranged into remark-
able generating functions. It was proved in [BL1] following a physics derivation
in [DMVV] that

∑

N∈Z+

pNEllorb(XN , SN , y, q) =
∏

n,m,`≥0

(1− pnqmy`)−c(nm,`).

where the c(m, l)’s are as in 1.1. In section 4.2 we obtain a generalization of this
formula with discrete torsion given by α above, which was originally obtained by
Dijkgraaf ([Di]) in the physics literature.

Acknowledgements: This project originally began with Lev Borisov. We
would like to thank him for many valuable conversations. During the course of
this work the second author was supported by NSF grant DMS−0401619.
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2. Orbifold elliptic genera

2.1. The orbifold elliptic genus. Let X be a complex manifold on which a
finite group G acts effectively via holomorphic transformations. Let Xh will be
the fixed point set of h ∈ G and Xg,h = Xg ∩Xh(g, h ∈ G). Let

(2.1) TX|Xh = ⊕λ(h)∈Q∩[0,1)Vλ.

where the bundle Vλ on Xh is determined by the requirement that h acts on
Vλ via multiplication by e2πiλ(h). For a connected component of Xh (which
by abuse of notation we also will denote Xh), the fermionic shift is defined as
F (h,Xh ⊆ X) =

∑
λ λ(h) (cf. [Z], [BD]). Let us consider the bundle:

Vh,Xh⊆X := ⊗k≥1

[
(Λ•yqk−1V

∗
0 )⊗ (Λ•y−1qkV0)⊗ (Sym•

qkV ∗
0 )⊗ (Sym•

qkV0)⊗
(2.2)
⊗[⊗λ6=0(Λ•yqk−1+λ(h)V

∗
λ )⊗ (Λ•

y−1qk−λ(h)Vλ)⊗ (Sym•
qk−1+λ(h)V

∗
λ )⊗ (Sym•

qk−λ(h)Vλ)
]]

Definition 2.1. The orbifold elliptic genus of a G-manifold X is the function on
H ×C given by:

Ellorb(X, G, q, y) := y−dim/X/2
∑

[g],Xg

yF (g,Xg⊆X) 1
|C(g)|

∑

h∈C(h)

L(h, Vg,Xg⊆X)

where the summation in the first sum is over all conjugacy classes in G and
connected components Xg of an element g ∈ [g], C(g) is the centralizer of g ∈ G
and

L(h, Vg,Xg⊆X) =
∑

i

(−1)itr(h,H i(Vg,Xg⊆X))

is the holomorphic Lefschetz number.

Using the holomorphic Lefschetz fixed-point formula ([AS]) one can rewrite
this definition as follows.

Theorem 2.1. [BL1] Let TX|Xg,h = ⊕Wλ and let xλ be the collection of Chern
roots of Wλ. Let

θ(z, τ) = q
1
8 (2sinπz)

l=∞∏

l=1

(1− ql)
l=∞∏

l=1

(1− qle2πiz)(1− qle−2πiz)

where q = e2πiτ be the Jacobi’s theta function and let

Φ(g, h, λ, z, τ, x) =
θ( x

2πi + λ(g)− τλ(h)− z)
θ( x

2πi + λ(g)− τλ(h))
e2πizλ(h).

Then:

(2.3) Ellorb(X, G, z, τ) =
1
|G|

∑

gh=hg

∏

λ(g)=λ(h)=0

xλ

∏

λ

Φ(g, h, λ, z, τ, xλ)[Xg,h].
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The orbifold elliptic genus so defined specializes for q = 0 to

Ellorb(X, G, 0, y) = y−dimXχ−y(X, G)

where
χy(X, G) =

∑

[g],Xg

yF (g,Xg⊂X)
∑
p,q

(−1)qdimHp,q(Xg)C(g)

On the other hand χy(X, G) is the value of the orbifold E-function

E(u, v, G) =
∑

[g],Xg

(uv)F (g,Xg⊂X)
∑
p,q

dimHp,q(Xg)C(g)upvq

for u = y, v = −1. In paticular Ellorb(X, G, 0, 1) coincides with the orbifold Euler
characteristic: eorb(X, G) = 1

|G|
∑

fg=gf e(Xf,g).

2.2. Discrete torsion.

Definition 2.2. Let α ∈ H2(G,U(1)), and define

δ(g, h) =
α(g, h)
α(h, g)

The orbifold elliptic genus with discrete torsion α, written Ellαorb(X, G, q, y), is
defined as
(2.4)

Ellαorb(X, G, q, y) := y−dimX/2
∑

[g],Xg

yF (g,Xg⊆X) 1
|C(g)|

∑

h∈C(h)

δ(g, h)L(h, Vg,Xg⊆X).

As above, using the holomorphic Lefschetz fixed-point formula this can be rewrit-
ten as

Ellαorb(X, G; y, q) =
1
|G|

∑

gh=hg

δ(g, h)
∏

λ(g)=λ(h)=0

xλ

∏

λ

Φ(g, h, λ, z, τ, xλ)[Xg,h].

Such twisted elliptic genus has specialization properties similar to the case
α = 0. Using Dolbeault cohomology corresponding to the inner local systems Lα

defined by α (cf. [R]) one can define twisted E-function:

Eα(u, v, G) =
∑

[g],Xg

(uv)F (g,Xg⊂X)
∑
p,q

dimHp,q(Xg, Lα)C(g)upvq

which for u = 1, v = −1 yields:

eα(X, G) =
1
|G|

∑

fg=gf

δ(f.g)e(Xf,g)

The elliptic genus 2.4 satisfies:

Ellα(0, y, G) = y
dimX

2 Eα(y,−1, G)
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We proceed to investigate the modularity properties of this twisted orbifold
elliptic genus.

2.2.1. Jacobi forms. Let H denote the upper half plane. A weak Jacobi form of
weight k ∈ Z and index r ∈ 1

2Z is a function onH×C satisfying the transformation
property

φ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)ke2πi rcz2

cτ+d φ(τ, z),
(

a b
c d

)
∈ SL(2,Z)

φ(τ, z + mτ + n) = (−1)2r(m+n)e−2πir(m2τ+2mz)φ(τ, z), (m,n) ∈ Z2

and has a Fourier expansion
∑

l,m cm,ly
lqm with nonnegative m. Equivalently,

we can say that a Jacobi form is an automorphic form for the Jacobi group
ΓJ = SL(2,Z)n Z2 generated by the four transformations:

(z, τ) → (z + 1, τ), (z, τ) → (z + τ, τ), (z, τ) → (z, τ + 1), (z, τ) → (
z

τ
,−1

τ
).

Theorem 2.2. Let X be a compact complex manifold of dimension d such that
KX is trivial, G a finite group acting effectively on X, and α ∈ H2(G,U(1)). Let
n denote the order of G in Aut(H0(X, KX)). Then Ellαorb(X, G) is a weak Jacobi
form of weight 0 and index d/2 with respect to subgroup of the Jacobi group ΓJ

generated by transformations

(z, τ) → (z + n, τ), (z, τ) → (z + nτ, τ), (z, τ) → (z, τ + 1), (z, τ) → (
z

τ
,−1

τ
).

In particular, if the action preserves holomorphic volume then Ellorb(X, G) is a
weak Jacobi form of weight 0 and index d/2 for the full Jacobi group.

Proof. We use the notation Ellαorb(X, G, z, τ) rather than Ellα(X, G, q, y) to em-
phasize the dependence on τ and z. It is shown in [BL1] that

Φ(g, h, λ, z + 1, τ, x) = −e2πiλ(h) · Φ(g, h, λ, z, τ, x)

which implies that∏

λ

Φ(g, h, λ, z + n, τ, xλ)[Xg,h] = (−1)dne2nπi
P

λ(h)
∏

λ

Φ(g, h, λ, z, τ, xλ)[Xg,h]

Now, n
∑

λ(h) ∈ Z by the assumption that hn acts trivially on H0(X, KX). Thus

Ellαorb(X, G, z + n, τ) = (−1)dnEllαorb(X, G, z, τ).

The following formulas are also obtained in [BL1]:

(2.5) Φ(g, h, λ, z, τ + 1, x) = Φ(gh−1, h, λ, z, τ, x)

(2.6) Φ(g, h, λ, z + nτ, τ, x) = (−1)ne−2πinz−πin2τenx+2πinλ(g) · Φ(g, h, λ, z, τ, x)

(2.7) Φ(g, h, λ,
z

τ
, −1

τ
,
x

τ
) = e

πiz2

τ
− zx

τ · Φ(h, g−1, λ, z, τ, x).
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Equation 2.5 and δ(g, h) = δ(gh−1, h) imply that

Ellαorb(X, G, z, τ + 1) = Ellαorb(X, G, z, τ).

Equation 2.6 implies that

Ellαorb(X, G, z + nτ, τ) = (−1)dne−2πidnz−πidn2τEllαorb(X, G, z, τ)

In order to see how

(2.8) Ellαorb(X, G, z/τ,−1/τ) = e
πidz2

τ Ellαorb(X, G, z, τ)

follows, we write
∏

λ(g)=λ(h)=0

xλ

∏

λ

Φ(g, h, λ, z, τ, xλ) =
∑

kλ

Q(g, h, z, τ)xλ
kλ

where kλ are multiindices and xλ are the corresponding monomials. We thus
obtain,

∏

λ(g)=λ(h)=0

xλ

τ

∏

λ

Φ(g, h, λ,
z

τ
,
−1
τ

,
xλ

τ
) =

∑

kλ

(
1
τ
)deg(kλ)Q(g, h,

z

τ
,
−1
τ

)xλ
kλ

whereas 2.7 implies that

∏

λ(g)=λ(h)=0

xλ

τ

∏

λ

Φ(g, h, λ,
z

τ
,
−1
τ

,
xλ

τ
) = e

πidz2

τ

∏

λ(g)=λ(h)=0

xλ

τ

∏

λ

Φ(h, g−1, λ, z, τ, x)

= τ−dim(Xg,h)
∑

kλ

Q(h, g−1, z, τ)xλ
kλ

Thus for multiindices kλ such that deg(kλ) = dim(Xg,h), we find

Qk(g, h,
z

τ
,
−1
τ

) = Qk(h, g−1, z, τ)

Finally, δ(g, h) = δ(h, g−1) ensures that 2.8 holds. ¤

3. Discrete torsion and the chiral de Rham complex

Let X be a smooth complex algebraic variety, and G a finite group acting
effectively on X. In this section, we briefly review the construction of the chiral
de Rham complex of an orbifold introduced in [FS]. Another construction of this
object was obtained independently by A. Vaintrob.
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3.1. Vertex algebras and twisted modules. In this section we will use the
language of vertex superalgebras, their modules, and twisted modules. For an
introduction to vertex algebras and their modules [FLM, K, FB], and for back-
ground on twisted modules, see [FFR, D, DLM, FS].

We recall that a conformal vertex superalgebra is a Z+–graded super vector
space

V =
∞⊕

n=0

Vn,

Vn = V 0
n ⊕ V 1

n

together with a vacuum vector |0〉 ∈ V 0
0 , an even translation operator T of degree

1, a conformal vector ω ∈ V 0
2 and an even linear map

Y : V → EndV [[z±1]],

A 7→ Y (A, z) =
∑

n∈Z
A(n)z

−n−1.

These data must satisfy certain axioms (see [FLM, K, FB]). In what follows we
will denote the collection of such data simply by V , and the parity of an element
A ∈ V homogeneous with respect to the Z/2Z grading by p(A).

A vector superspace M is called a V –module if it is equipped with an even
linear map

Y M : V → EndM [[z±1]],

A 7→ Y M (A, z) =
∑

n∈Z
AM

(n)z
−n−1

such that for any v ∈ M we have AM
(n)v = 0 for large enough n. This operation

must satisfy the following axioms:

• Y M (|0〉, z) = IdM ;
• For any v ∈ M and homogeneous A,B ∈ V there exists an element

fv ∈ M [[z, w]][z−1, w−1, (z − w)−1]

such that the formal power series

Y M (A, z)Y M (B,w)v, (−1)p(A)p(B)Y M (B,w)Y M (A, z)v, and

YM (Y (A, z − w)B,w)v

are expansions of fv in M((z))((w)), M((w))((z)) and M((w))((z − w)),
respectively.
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The power series Y M (A, z) are called vertex operators. We write the vertex
operator corresponding to ω as

Y M (ω, z) =
∑

n∈Z
LM

n z−n−2,

where LM
n are linear operators on V generating the Virasoro algebra. Following

[D], we call M admissible if LM
0 acts semi-simply with integral eigenvalues.

Now let σV be a conformal automorphism of V , i.e., an even automorphism
of the underlying vector superspace preserving all of the above structures (so in
particular σV (ω) = ω). We will assume that σV has finite order m > 1. A vector
space Mσ is called a σV –twisted V –module (or simply twisted module) if it is
equipped with an even linear map

Y Mσ
: V → EndMσ[[z±

1
m ]],

A 7→ Y Mσ
(A, z

1
m ) =

∑

n∈ 1
m
Z
AMσ

(n) z−n−1

such that for any v ∈ Mσ we have AMσ

(n) v = 0 for large enough n. Please note that

we use the notation Y Mσ
(A, z

1
m ) rather than Y Mσ

(A, z) in the twisted setting.
This operation must satisfy the following axioms (see [FFR, D, DLM, Li, FS]):

• Y Mσ
(|0〉, z 1

m ) = IdMσ ;
• For any v ∈ Mσ and homogeneous A,B ∈ V , there exists an element

fv ∈ Mσ[[z
1
m , w

1
m ]][z−

1
m , w−

1
m , (z − w)−1]

such that the formal power series

Y Mσ
(A, z

1
m )Y Mσ

(B,w
1
m )v, (−1)p(A)p(B)Y Mσ

(B,w
1
m )Y Mσ

(A, z
1
m )v, and

Y Mσ
(Y (A, z − w)B,w

1
m )v

are expansions of fv in Mσ((z
1
m ))((w

1
m )), Mσ((w

1
m ))((z

1
m )) and

Mσ((w
1
m ))((z − w)), respectively.

• If A ∈ V is such that σV (A) = e
2πik

m A, then AMσ

(n) = 0 unless n ∈ k
m + Z.

The series Y Mσ
(A, z) are called twisted vertex operators. In particular, the

Fourier coefficients of the twisted vertex operator

Y Mσ
(ω, z

1
m ) =

∑

n∈Z
LMσ

n z−n−2,

generate an action of the Virasoro algebra on Mσ.
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3.2. The chiral de Rham complex of an orbifold. For g ∈ G, let Xg denote
the fixed-point set of g, and denote by

ig : Xg ↪→ X

the inclusion map of Xg into X. The following results were obtained in [FS].

• For each g ∈ G, there exists a sheaf Ωch,g
X supported on Xg. When g = 1,

this is a sheaf of vertex superalgebras, originally introduced in [MSV],
and called the chiral de Rham complex. We denote it simply by Ωch

X .
Being a sheaf of vertex superalgebras means that for each open U ∈ X,
Ωch

X (U) is a vertex superalgebra.
• Let g, h ∈ G, and let g′ = hgh−1. There exist isomorphisms of sheaves

(3.1) Rh
g,hgh−1 : Ωch,g

X 7→ h∗Ωch,hgh−1

X

satisfying
Rk

g′,g′′ ◦Rh
g,g′ = Rkh

g,g′′

where k ∈ G and g′′ = khgh−1k−1.
• When g 6= 1, Ωch,g

X is a sheaf of g–twisted modules, meaning that for each
g–invariant U , Ωch,g

X (U) is a g–twisted Ωch
X (U)–module. This structure

induces a corresponding twisted module structure on H∗(X, Ωch,g
X ).

• Ωch,g
X carries a bigrading by two operators Lg

0, J
g
0 . This bigrading induces

a bigrading on H∗(X, Ωch,g
X ).

• Ωch,g
X carries a differential Qg, such that (Qg)2 = 0. Furthermore, there

exists an inclusion of the de Rham complex of Xg

ig∗(ΩdR(Xg, d)) ↪→ (Ωch,g
X , Qg)

which is a quasiisomorphism. This implies in particular that

H∗(Ωch,g
X , Qg) ∼= H∗

dR(Xg,C)

3.1 implies that C(g), the centralizer of g, acts on (Ωch,g
X , Qg), and there-

fore on its hypercohomology. This gives an isomorphism

H∗(Ωch,g
X , Qg)C(g) ∼= H∗

dR(X,C)C(g) ∼= H∗
dR(Xg/C(g),C)

We therefore have

(3.2)
⊕

[g]

H∗(Ωch,g
X , Qg)C(g) ∼=

⊕

[g]

H∗
dR(Xg/C(g),C)

The right-hand side is isomorphic as a vector space to the Chen-Ruan
orbifold cohomology of [X/G]. Furthermore, the operators Jg

0 acting on
Ωch,g

X , induce a gradation on the left which coincides with the Chen-Ruan
gradation shifted by the fermionic shift (see [CR, Z]). 3.2 is therefore an
isomorphism of graded vector spaces.
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• There exists an increasing exhaustive filtration on Ωch,g
X

(3.3) F 0Ωch,g
X ⊂ F 1Ωch,g

X ⊂ F 2Ωch,g
X ⊂ · · · .

Let Ωch,g
X denote the restriction of Ωch,g

X to Xg, which inhertis a filtra-
tion from 3.3. The bigrading operators Jg

0 , Lg
0 are compatible with 3.3,

and so the associated graded grF (Ωch,g
X ) can be described in terms of its

decomposition into eigenbundles for Jg
0 , Lg

0. We have:

(3.4) grF (Ωch,g
X ) =

⊗

k≥1

(
Λ•yqk−1V

∗
0 ⊗ Λ•y−1qkV0 ⊗ Sym•

qk V ∗
0 ⊗ Sym•

qk V0⊗

⊗

λ6=0

(Λ•
yqk−1+λ(g)V

∗
λ ⊗ Λ•

y−1qk−λ(g)Vλ ⊗ Sym•
qk−1+λ(g) V ∗

λ ⊗ Sym•
qk−λ(g) Vλ)


 .

where
TX|Xg =

⊕
Vλ.

If we now form

Horb(X, G) =
⊕

[g]

H∗(X, Ωch,g
X )C(g)

then as shown in [FS]

Ellorb(X, G, q, y) = Supertrace(qL0yJ0−dim(X)/2,Horb(X, G)).

3.2.1. Adding discrete torsion to the chiral de Rham complex. In this section we
show how to incorporate discrete torsion in the above setup. Suppose that Y
is a G–manifold, and W a G–equivariant sheaf on Y . This means that for each
g ∈ G, we are given an isomorphism

Tg : W 7→ g∗W

such that
TgTh = Tgh

Suppose now that χ : G 7→ C× is a character of G. Then

T ′g = χ(g)Tg

is a new G equivariant structure on W .

We apply this observation to the sheaves Ωch,g
X and C(g) rather than G. A

class α ∈ H2(G,U(1)) yields characters

αg : C(g) 7→ U(1)

defined by αg(h) = δ(g, h). We can now twist the C(g)–equivariant structure
on Ωch,g

X described above, given by the Rh
g,g′ , to obtain a new C(g)–equivariant
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structure, denoted C(g)α.The following theorem is an immediate consequence of
the above discussion.

Theorem 3.1. i)

H∗(Ωch
X , QBRST )C(g)α ∼= H∗

dR(Xg/C(g),Lα
g )

where the right-hand side is the de Rham cohomology of [Xg/C(g)] with values
in the orbifold local system Lα

g described in [R]. Thus we have an isomorphism
of graded vector spaces

⊕

[g]

H∗(Ωch
X , QBRST )C(g)α ∼= H∗

orb,α([X/G],C)

where the right-hand side is the α–twisted Chen-Ruan cohomology of [X/G] (see
[R]).
ii) Let

Hα
orb(X, G) =

⊕

[g]

H∗(X, Ωch,g
X )C(g)

α

Then
Ellαorb(X, G, q, y) = Supertrace(qL0yJ0−dim(X)/2,Hα

orb(X, G))

4. Symmetric products and discrete torsion

4.1. The spin double cover of SN . We begin by reviewing discrete torsion for
the symmetric group following [Di].

Let SN denote the symmetric group on N letters. It is well-known (see eg.
[Kar]) that for N ≥ 4

(4.1) H2(SN , U(1)) ∼= Z2.

which implies that for N ≥ 4, there is a unique non-trivial central extension of
the permutation group

(4.2) 1 → Z2 → ŜN → SN → 1.

The extension ŜN can be constructed as follows. SN acts on the hyperplane
in RN given by

x1 + · · ·xN = 0

preserving the standard inner product. This yields an embedding

SN ↪→ O(N − 1).

Now, O(N−1) has a double cover Pin(N−1). Pulling back this central extension
to SN yields ŜN . We call the latter the spin double cover of SN .



1230 Anatoly Libgober and Matthew Szczesny

In terms of generators and relations, ŜN can be described as follows. It is gen-
erated by elements 1, z, t̂1, · · · , t̂N−1, where z is central, subject to the relations:

z2=1,

t̂2i=z,

t̂it̂i+1t̂i=̂ti+1t̂it̂i+1,(4.3)

t̂it̂j=z t̂j t̂i, j > i + 1.

The map ŜN 7→ SN amounts to sending t̂i to the transposition ti interchanging
the ith and i + 1st letters, and sending z to 1. We can think of z as being −1.

4.2. Generating functions. Suppose that the elliptic genus of X is given by

(4.4) Ell(X; q, y) =
∑

m,`

c(m, `)qmy`

As shown in [BL1, DMVV], the generating function of the orbifold elliptic genera
of the symmetric products is

(4.5) Z(p, q, y) =
∑

N≥0

pNEllorb(XN , SN , q, y) =
∏

n>0, m,`

(1− pnqmy`)−c(nm,`)

In this section, we obtain a formula for the generating function of elliptic genera
of symmetric products with discrete torsion. Let

(4.6) Zα(p, q, y) =
∑

N≥0

pNEllαorb(X
N , SN , q, y)
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and let

Z++(p, q, y)=
∏

n>0, m,l≥0

(
1 + p2nqm− 1

2 y`
)c(n(2m−1),`)

(
1− p2n−1qmy`

)c((2n−1)m,`)

Z+−(p, q, y)=
∏

n>0, m,l≥0

(
1− p2nqm− 1

2 y`
)c(n(2m−1),`)

(
1− p2n−1qmy`

)c((2n−1)m,`)

Z−+(p, q, y)=
∏

n>0, m,l≥0

(
1 + p2nqmy`

)c(2nm,`)

(
1− p2n−1qmy`

)c((2n−1)m,`)

Z−−(p, q, y)=−
∏

n>0, m,l≥0

(
1− p2nqmy`

)c(2nm,`)

(
1− p2n−1qmy`

)c((2n−1)m,`)
(4.7)

Theorem 4.1.

(4.8) Zα(p, q, y) =
1
2

(Z++ + Z+− + Z−+ + Z−−) .

We begin by recalling a variation on Lemma 4.5 from [BL1]

Lemma 4.1. Let V = V0⊕V1 be a super vector space, and A and B two commut-
ing operators acting semisimply on V and preserving the parity decomposition of
V . Assume furthermore that B only has non-negative eigenvalues in 1

2Z, and that
the bigraded pieces Vm,l = {v ∈ V |Av = lv, Bv = mv} are finite-dimensional. Let
d(m, l) = sdim(Vm,l), where sdim denotes superdimension. Define the superdi-
mension of V with respect to A,B to be the series

χ(V )(y, q) = Supertrace(V, yAqB) = tr(V0, y
AqB)−tr(V1, y

AqB) =
∑

m,l

d(m, l)qmyl

Let SymNV denote the N th supersymmetric product of V . The operators A and
B act on SymNV , and

∑

N

pN Supertrace(SymNV, yAqB) =
∏

m,l

1
(1− pqmyl)d(m,l)

where the right hand side is expanded in a power series in q and p.

Let ΛNV denote the Nth supersymmetric wedge product of V . Since ΛNV is
isomorphic to SymNV , where V denotes V with its parity reversed (or directly
from the argument in the proof of lemma 4.5 in [BL1]), we obtain the following:
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Corollary 4.1. Let V be as in Lemma 4.1. Then
∑

N

pN Supertrace(ΛNV, yAqB) =
∏

m,l

(1− pqmyl)d(m,l)

Proof. (Of Theorem 4.1)
Let SN denote the symmetric group on N letters. We recall that conjugacy classes
in SN are parametrized by partitions of N . The conjugacy class of an element
g ∈ SN is therefore uniquely determined by the numbers aj of j–cycles in the
cycle decomposition of g. Recall moreover that the centralizer of an element with
cycle type [g] = (1)a1(2)a2 · · · (k)ak is

k∏

i=1

Sai n (Z/iZ)ai

where the Z/iZ act by powers of the i–cycles and Sai permutes the i–cycles among
themselves.

Let cj ∈ Sj be a j–cycle, and denote Ωch,cj

Xj simply by Ωch,j
Xj . Recall that this

is a sheaf on Xj supported on X diagonally embedded, whose fibers are twisted
modules over the chiral de Rham vertex algebra. Let H[g] = H∗(XN ,Ωch,g

XN ) and
Hj = H∗(Xj ,Ωch,j

Xj ), viewed as a super vector space where the parity is given by
the sum of the cohomology index and the fermionic charge grading. Furthermore,
introduce the operator D which acts on Hj by multiplication by −j dim(X)/2.
We have

Ωch,g
XN = £k

j=1(Ω
ch,j
Xj )£aj

and so by the Kunneth formula

H[g] =
k⊗

j=1

H⊗aj

j

We have
∑

N

pNEllαorb(X
N , SN , q, y) =

∑

N

pN
∑

[g]∈SN

Supertrace(qL0yJ0+D,HC(g)α

[g] )

where the subscript on C(g)α indicates that invariants are being taken with re-
spect to the α-twisted action of C(g). If h ∈ C(g), and Th denotes the operator of
h acting on H[g] untwisted by α, then the α–twisted action is given by δ(g, h)Th.
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As explained in for instance [Di], the value δ(g, h) depends on the parity of g
and h, where the latter is given by

p(g) =
k∑

j=1

(j − 1)aj mod 2

=
k∑

j=1, j even

aj mod 2

C(g) is generated by transpositions τ(j)ab interchanging two cycles of length j,
as well as the j–cycles cj in the cycle decomposition of g (we use the short-hand
notation cj ∈ g). The result is as follows:

(4.9) δ(g, τ(j)ab) = (−1)j−1

and if cj ∈ g, then

(4.10) δ(g, cj) =
{

1, if j is odd,
(−1)p(g)−1 if j is even

It follows from 4.9 and 4.10 that

HC(g)α

[g] =
k⊗

j=1 even

Symaj (HZ/jZα

j )⊗
k⊗

j=1 odd

Λaj (HZ/jZα

j )

The space HZ/jZα will depend on how α twists the Z/jZ–action. For j even,
there is only one possibility, and

HZ/jZα

j = HZ/jZ
j

When j is odd, let

H+
j = HZ/jZα

j , when [g] is odd

H−j = HZ/jZα

j , when [g] is even

It was shown in [BL1] that with H = HZ/jZ
j or H+

j

Supertrace(qL0yJ0+D,H) =
1
j

j−1∑

r=0

Ell(X, q
1
j ξr, y)

=
1
j

∑

m,l

(
j−1∑

r=0

ξmr)q
m
j yl

=
∑

m,l

c(mj, l)ylqm.(4.11)
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where ξ = exp(2πi/j). Similarly, using the holomorphic Lefschetz fixed-point
formula, one finds

Supertrace(qL0yJ0+D,H−j ) =
1
j

j−1∑

r=0

(−1)rEll(X, q
1
j ξr, y)

=
1
j

∑

m,l

(
j−1∑

r=0

(−1)mξmr)q
m
j yl

=
∑

m,l

c((m− 1
2
)j, l)ylqm− 1

2 .(4.12)

Let
S =

⊗

j odd

Sympj HZ/jZ

and let

Λ+ ∈
⊗

j even

ΛpjH+
j(4.13)

Λ− ∈
⊗

j even

ΛpjH−j(4.14)

denote the subspaces corresponding to permutations of odd (resp. even) parity.
We have that

∑

N

pNEllαorb(X
N , Sn, q, y) = Supertrace(qL0yJ0+D,S

⊗
Λ+)

+ Supertrace(qL0yJ0+D,S
⊗

Λ−)

The result now follows from Lemma 4.1, Corollary 4.1, and the observation that

Supertrace(qL0yJ0+D,Λ+) =
1
2

Supertrace(qL0yJ0+D,
⊗

j even

ΛpjH+
j )

− 1
2

Supertrace(qL0yJ0+D,
⊗

j even

Λ−pjH+
j )

and

Supertrace(qL0yJ0+D,Λ−) =
1
2

Supertrace(qL0yJ0+D,
⊗

j even

ΛpjH−j )

+
1
2

Supertrace(qL0yJ0+D,
⊗

j even

Λ−pjH−j ).

¤
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Remark. There is an equivariant version of the theorem 4.1 which is also a
twisted form of the product formula for the generating functions for the wreath
products (conjectured in [WZ] and proven in [BL1] Remark 4.6. p.341). Let X
and G be as above and let

(4.15) Ell(X, G; q, y) =
∑

m,`

cG(m, `)qmy`

The wreath product G oSN (consisting of pairs ((g1, ..., gN );σ), gi ∈ G, σ ∈ SN

with multiplication: ((g1, ..., gN );σ1) · ((h1, ..., hN );σ2) = ((g1 · hσ−1
1 (1), ..., gN ·

hσ−1
1 (N));σ1σ2) acts on the symmetric products XN . The nontrivial class in

H2(SN , U(1)) can be pulled back to the class in H2(GoSN , U(1)) which we denote
again as α. Then the generating function Zα(X, G, p, q, y) =

∑
N≥0 pNEllαorb(X

N ,

GoSN , q, y) is given by the theorem 4.1 with the coefficients c(m, l) in the formulas
4.6 being replaced by cG(m, l) from 4.15
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