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Abstract: Consider an algebraic action of a connected complex reductive
algebraic group on a complex polarized projective variety. In this paper,
we first introduce the nilpotent quotient, the quotient of the polarized pro-
jective variety by a maximal unipotent subgroup. Then, we introduce and
investigate three induced actions: one by the reductive group, one by a Borel
subgroup, and one by a maximal torus, respectively. Our main result is that
there are natural correspondences among quotients of these three actions. In
the end, we mention a possible application to the moduli spaces of parabolic
bundles over algebraic curves for further research.

1. Introduction and Statements of Results

Let G × X → X be an algebraic action of a connected complex reductive
algebraic group G on an arbitrary complex projective variety X. Let L be a very
ample line bundle over X. We assume that L admits a G-linearization1 .

Under these assumptions, we will introduce three other actions and study
relations among their quotients.

To this end, we fix a Borel subgroup B of G, the unipotent radical U of B,
and a maximal torus H of G such that B = HU . We also fix a compact form K
of G such that T = K ∩H is the compact torus of H. Let t∗ be the linear dual
of t = Lie(T ) and t∗+ be the closed Weyl chamber in t∗ which is positive with
respect to B.

Received September 22, 2005.
1This is automatically satisfied if X is normal.
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1.1. Nilpotent quotient. Our first theorem is that there exists a canonically de-
fined quotient by the unipotent group U .

Theorem 1.1.1. There is a uniquely defined Zariski open subset Xss
U (L) of X,

which solely depends on L but not on the linearization of L, such that Xss
U (Ln) =

Xss
U (L) for all n > 0 and the quotient Xss

U (L) → Xss
U (L)//U exists. Furthermore,

on the quotient variety Xss
U (L)//U the maximal torus H naturally acts.

1.2. Three actions. The three actions that we mentioned earlier are:

(1) the induced torus action

H ×Xss
U (L)//U → Xss

U (L)//U ;

(2) the induced diagonal action

G× (X ×G/B) → (X ×G/B);

(3) and the induced Borel subgroup action

B ×X → X.

To explain the natural correspondences among quotients of these three actions,
we will start with a parameter space, a rational polytope ∆, for these quotients.

1.3. A parameter space for quotients. Let Λ = Hom(T, U(1)) be the weight lattice
of T and Λ+ = Λ∩t∗+. (Here, as usual, we will identify Λ with a subgroup of t∗ by
identifying the weight λ with the functional dλ/(2πi).) Let (t∗+)reg be the set of
regular points of t∗+, that is, the set of points outside the walls of Weyl chamber.

Choose a K-invariant Hermitian form on the space of global sections of L
and let Φ : X → k∗ be the associated moment map2 where k∗ is the linear dual
of k = Lie(K). Let ∆ = Φ(X) ∩ t∗+. This is a rational convex polytope (see
Mumford’s Appendix to [19]. See also [16] for the case of symplectic manifolds).
Set

∆reg = ∆ ∩ (t∗+)reg.

For any rational point χ
n ∈ ∆reg with χ ∈ Λ+ and n ∈ N, we will associate a

quotient for each of the above three actions as follows.

1.4. The first group action. For a sufficiently divisible positive integer n, Ln de-
scends to a very ample line bundle OXss

U //U (n) over Xss
U //U on which H acts

linearly. Let OXss
U //U (n, χ) be the linearization on OXss

U //U (n) shifted by the

2Φ is the restriction of the corresponding moment map on the projective space P(H0(X, L)∗).
Hence it makes sense even if X is singular.
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character −χ (see §3.3 for the precise definition). We will denote the correspond-
ing locus of H-semistable points by (Xss

U (L)//U)ss
H (n, χ). This leads to our first

(GIT) quotient

(Xss
U (L)//U)ss

H (n, χ) → (Xss
U (L)//U)ss

H (n, χ)//H.

1.5. The second group action. Let C−χ be the one-dimensional B-module with
character −χ and Lχ = G ×B C−χ be the corresponding linearized ample line
bundle over G/B. Then Ln ⊗ Lχ becomes a linearized ample line bundle over
X ×G/B. This gives rise to our second (GIT) quotient

(X ×G/B)ss
G (Ln ⊗ Lχ) → (X ×G/B)ss

G (Ln ⊗ Lχ)//G.

1.6. The third group action. Define a morphism

ιB : X → X ×G/B, ιB : x → (x, [B]), ∀x ∈ X.

Set Xss
B (n, χ) = i−1

B (iB(X) ∩ (X × G/B)ss(Ln ⊗ Lχ)) ⊂ X. Then, we will show
(Theorem 5.2.1) that Xss

B (n, χ) is B-invariant, Zariski open, and admits a cate-
gorical quotient by the Borel subgroup B

Xss
B (n, χ) → Xss

B (n, χ)//B.

1.7. The correspondences. Here comes our second main theorem.

Theorem 1.7.1. For every rational point χ
n in ∆reg

3, there exists a quotient
variety for each of the three actions listed as follows:

(Xss
U (L)//U)ss

H (n, χ)//H,

(X ×G/B)ss
G (Ln ⊗ Lχ)//G,

Xss
B (n, χ)//B.

Moreover, these quotients as projective varieties are all naturally isomorphic to
each other.

Here we mention that these correspondences hold over an arbitrary ground
field of characteristic zero. Working over the field of complex numbers is only
for the interpretation of the polytope ∆ in terms of moment map. But the use
of moment map, although convenient and adding some symplectic flavors to the
work, can be completely avoided. For example, to avoid the use of moment map
in this introduction, we could have simply used the moment-map-free descriptions
of the rational points of ∆ as in Equation (1) of §3.2.

3Here we indicate that the rational points of ∆ that are not regular will have to be treated
separately as they are related to homogeneous spaces G/P where P is a parabolic subgroup
strictly containing B. See §7 for details.
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2. The quotient of X by the unipotent subgroup U

2.1. U -invariants of the section algebra. Since the line bundle L is G-linearized,
we have that H0(X, L) is a G-module, so is its linear dual V = H0(X, L)∗. Since
L is very ample, a choice of a basis of H0(X, L)∗ will equivariantly embed X into
the projective space P(V ).

Consider the N-graded section algebra

R =
⊕

d≥0

Rd =
⊕

d≥0

H0(X, Ld)

on which G, hence U , acts linearly. Let

RU =
⊕

d≥0

RU
d =

⊕

d≥0

H0(X, Ld)U

be the subalgebra of U -invariant sections with the induced grading by N. Then,
RU is finitely generated. To see this, let

S =
⊕

d≥0

Sd =
⊕

d≥0

H0(P(V ),OP(V )(d))

be the polynomial algebra. Let

π : S → R

be the restriction homomorphism. Then R is a finite S-module. Hence R is
finitely generated. Then by [10], RU is finitely generated as well. (I thank Michel
Brion for pointing out the reference [10].)

2.2. The unipotent quotient. Here comes our main definition.

Definition 2.2.1. The quotient of X by the unipotent group U with respect to
the linearization L is defined to be Proj(RU ).

2.3. Proof of Theorem 1.1.1. Set

Xss
U (L) = {x ∈ X|∃ d > 0, s ∈ RU

d , s(x) 6= 0}.
Then there is a quotient map

Xss
U (L) → Proj(RU ),

locally induced from the inclusions RU ⊂ R over affine patches s(x) 6= 0. Hence
we will also denote Proj(RU ) by Xss

U (L)//U .

The equality Xss
U (Ln) = Xss

U (L) for all n > 0 follows immediately from the
definition.

To show that Xss
U (L) is independent of the linearization of L, note that if we

change the linearization of L, then the corresponding G-linear actions on the
section algebra R only differ by shifting a character of G. Since the character is
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trivial when restricted to U , the action of U on R remains unchanged. Therefore
RU , hence also Xss

U (L), only depends on the underlying line bundle L but not
the linearization.

The maximal torus H obviously acts linearly on RU . Hence it acts on the
quotient Proj(RU ) = Xss

U (L)//U .

This complete the proof of Theorem 1.1.1.

Remark 2.3.1. The unipotent quotient Xss
U (L)//U in general does depend on

the choice of the underlying line bundle L. We will justify this assertion in §8.2.

Remark 2.3.2. It would be nice if Xss
U (L) → Proj(RU ) is a categorical quotient

(see Theorem 0.5 of [18] for the definition of categorical quotient). We are not
able to prove this although we believe this is true. It is worth mentioning that
the rest of the quotients considered in this paper are all categorical. We also
expect that the unipotent quotient Proj(RU ) should admit other interpretations
and bear interesting applications.

2.4. A theorem of Guillemin and Sjamaar. By Guillemin and Sjamaar ([11]), the
unipotently semistable locus Xss

U (L) admits the following description:

Theorem 2.4.1. (Theorem 4.2, [11])

Xss
U (L) = {x ∈ X|Φ(B · x) ∩ t∗+ 6= ∅}.

We will not use this result, except in Example 2.5 below.

2.5. An example. Consider the diagonal action of G = SL(2,C) on (P1)n. Let B
be the subgroup of upper triangular matrixes and U be the unipotent radical.

We represent a point of P1 by
[

a
b

]
. Then U fixes the point

[
1
0

]
and

P1 \
[

1

0

]

is a single U -orbit on which U acts freely.

We will identify the linear dual of the Lie algebra of SU(2) = SO(3) with
R3. Using a coadjoint orbit, we will realize P1 as the unit sphere S2 in R3.
Under this identification, the moment map is simply the inclusion: S2 ⊂ R3. Let
p = S2 ∩ t∗+. Then S2 is the coajoint orbit through −p. Under the identification
G/B = K/T = S2 (cf. the paragraph around Equation (1) of [11]), we have
[B] = [T ] = −p. Hence −p is fixed by the action of B. It follows that −p is

[
1
0

]
.

Then p, as the only other fixed point of the maximal torus, must be
[

0

1

]
.

Let di (1 ≤ i ≤ n) be some positive integers and let L be the ample line bundle
⊗iO(di) over (P1)n. Then the induced moment map Φ is simply

∑
i diΦi where



1136 Yi Hu

Φi is the following composition map: the projection of (P1)n to the ith factor
followed by the inclusion S2 ⊂ R3.

Assume that dn is sufficiently large relative to other di (1 ≤ i ≤ n− 1). Then
by applying Guillemin-Sjamaar’s Theorem (Theorem 2.4.1), it is straightforward
to check that [

a1 · · · an−1 an

b1 · · · bn−1 bn

]
∈ Xss

U (L) ⇐⇒ bn 6= 0.

We will represent an arbitrary point of Xss
U (L) by

[ · · · ai1 · · · air · · · an

· · · 1 · · · 1 · · · 1

]

where the dotted columns are all
[

1
0

]
. Such a representation is obviously unique.

Now define a morphism
φ : Xss

U (L) → (P1)n−1

by [ · · · ai1 · · · air · · · an

· · · 1 · · · 1 · · · 1

]
→

[ · · · ai1 − ai2 · · · air − an · · ·
· · · 1 · · · 1 · · ·

]
,

where the dotted columns stay the same, that is, are all
[

1

0

]
. (The column

[
an

1

]

is deleted by the map φ.) Then one checks easily that φ is surjective and U -
equivariant where U acts on the image (P1)n−1 trivially.

To see that φ sends distinct orbits to distinct points, suppose that we have

φ(
[ · · · ai1 · · · air · · · an

· · · 1 · · · 1 · · · 1

]
) = φ(

[ · · · bi1 · · · bir′ · · · bn

· · · 1 · · · 1 · · · 1

]
).

Then we must have r = r′ and

aij − aij+1 = bij − bij+1 , 1 ≤ j ≤ r

where we set air+1 = an and bir+1 = bn. This implies that

bij − aij = bij+1 − aij+1 , 1 ≤ j ≤ r.

Set x = bij − aij for any 1 ≤ j ≤ r, and let

u =
(

1 x
0 1

)
.

Then [ · · · bi1 · · · bir · · · bn

· · · 1 · · · 1 · · · 1

]
= u ·

[ · · · ai1 · · · air · · · an

· · · 1 · · · 1 · · · 1

]
.

That is, φ : (P1)n \
[

1 · · · 1
0 · · · 0

]
→ (P1)n−1 is a quotient map and (P1)n−1 parameter-

izes the U -orbits on Xss
U (L).

Similarly, for every 1 ≤ i ≤ n, by assuming that di is sufficiently large relative
to the rest, we will get[

a1 · · · an−1 an

b1 · · · bn−1 bn

]
∈ Xss

U (L) ⇐⇒ bi 6= 0
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and its quotient by U can also be identified with (P1)n−1.

3. Quotients of Xss
U (L)//U by H

The maximal torus H acts on Xss
U (L)//U = Proj(RU ) via the induced linear

action on RU . We now study the H-quotients on Xss
U (L)//U .

3.1. RU as H-modules. The algebra R is also (N× Λ+)-graded:

R =
⊕

d,τ

Rd,τ

where Rd,τ is the isotypical G-submodule of Rd of highest weight τ .

The algebra of U -invariant, RU , inherits an N× Λ+-grading

RU =
⊕

d∈N,τ∈Λ+

RU
d,τ .

The maximal torus H acts on RU , having RU
d,τ as the weightspace with weight τ .

3.2. The parameter space ∆, revisited. The rational points of the polytope ∆
can be determined purely algebraically as follows (see Mumford’s appendix to
[19] and Brion’s paper [4]): For any τ ∈ Λ+, d ∈ N,

τ

d
∈ ∆ ⇐⇒ Rd,τ 6= 0

Alternatively, let ∆Q denote the set of rational points in ∆, then we have

(1) ∆Q = { τ

d
| Rd,τ 6= 0 }.

3.3. Shifting the linearization. For any χ
n ∈ ∆reg, we can shift the H-action on

Ln by the character −χ. In terms of the action on the section algebra of Ln, the
new linear action of H is defined as follows: H acts on the weighspace Rnd,τ with
weight τ − dχ for all d and τ . We will denote the new H-linearized line bundle
by Ln[χ]4. It is worth mentioning that the shifting does not affect the U -action
on the section algebra of Ln because any character is trivial when restricted to
U . But it obviously does affect the H-action on the section algebra of Ln and
hence also the B-action on the section algebra of Ln.

For Ln with n sufficiently divisible, it descends to a very ample line bundle
OXss

U //U (n) over Xss
U //U with an induced linear action by the maximal torus H.

Likewise, the linearized line bundle Ln[χ] also descends to a H-linearized line

4A remark on notations: the character between the brackets, e.g., Ln[χ], always indicates a
shifting of a linear action. However, Lχ is the line bundle over the flag variety G/B and has
nothing to do with shifting of linearization.



1138 Yi Hu

bundle over Xss
U //U , which we will denote by OXss

U //U (n, χ). In terms of linear
actions on the section algebra, H acts on RU

dn,τ with weight τ − dχ.

Denote the section algebra of Ln by

R(n) =
⊕

d≥0

Rnd =
⊕

d≥0

H0(X, Lnd).

Then we will use R
H[χ]
(n) and R

B[χ]
(n) to denote the H and B-invariants of R(n) under

the (−χ)-shifting, respectively.

3.4. H-Quotients of Xss
U //U .

Theorem 3.4.1. With respect to the linearized ample line bundle OXss
U //U (n, χ),

the GIT quotients (Xss
U (L)//U)ss

H (n, χ)//H is

Proj((RU
(n))

H[χ]) = Proj(
⊕

d

RU
nd,dχ).

Proof. By the (original) induced H-action on OXss
U //U (n) , we have that RU

(n)

decomposes into a direct sum of H-submodules

RU
(n) =

⊕

d,τ

RU
nd,τ .

Under the (−χ)-shifted linear action, H acts on the weighspace RU
nd,τ with weight

τ − dχ, hence we obtain

(RU
(n))

H[χ] =
⊕

d

RU
nd,dχ.

The statement of the theorem then follows readily. ¤

Remark 3.4.2. For sufficiently divisible n, nΦ(X) ∩ t∗+ is an integral polytope.
Hence by Atiyah’s version of the Atiyah-Guillemin-Sternberg convexity theorem
([2]), we expect that under a suitable H-equivariant projective embedding of
Xss

U //U , the image of the induced H-moment map on Xss
U //U should precisely

be nΦ(X) ∩ t∗+.

4. Quotients of X ×G/B by G

In this section, we will basically recollect some known results that will be useful
for our purposes.
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4.1. Moment maps on G/B and coadjoint orbits. Recall (see, e.g., [11]) that for
any χ ∈ Λ∩(t∗+)reg, let C−χ be the one-dimensional B-module with character −χ,
then Lχ = G×BC−χ is a G-linearized ample line bundle over G/B. The curvature
from ωχ (with respect to the G-invariant Hermitian metric on Lχ defined by the
usual norm on C) is Kähler.

For χ
n ∈ ∆reg, we will consider the Kähler manifold

(G/B,ωχ
n
)

where ωχ
n

= 1
nωχ. The induced moment map is found by composing the maps

G/B → K/T → t∗

where the first map is the inverse of the diffeomorphism K/T → G/B induced
by the inclusion and the second map is defined by

[kT ] → k · (−χ

n
).

In fact, this gives rise to a symplectomorphism from (G/B,ωχ
n
) to the coadjoint

orbit through −χ
n , O−χ

n
.

4.2. The shifting trick and GIT quotients. Let Ō−χ
n

denote the symplectic mani-
fold obtained from the symplectic manifold O−χ

n
by replacing its symplectic form

ωχ
n

by −ωχ
n
. Then the product symplectic manifold X × Ō−χ

n
admits a moment

map
Φ̃ : X × Ō−χ

n
→ k∗

defined by the formula
Φ̃(x, q) = Φ(x)− q.

Now the set Φ̃−1(0) becomes identified with the set Φ−1(O−χ
n
) and we obtain the

following identifications

Φ̃−1(0)/K = Φ−1(O−χ
n
)/K = Φ−1(−χ

n
)/K−χ

n

where K−χ
n

is the isotropy subgroup of K at −χ
n . The above is the so-called

shifting trick (between the symplectic reduction at a general coadjoint orbit O−χ
n

and the symplectic reduction at the origin).

The following theorem was formulated in Theorem 2.2.4 of [6]. It basically
follows from Mumford’s Appendix to [19] and Theorem 8.3 of [18].

Theorem 4.2.1. Let (X×G/B)ss
G (Ln⊗Lχ) be the semistable locus in X×G/B

with respect to the G-linearized line bundle Ln ⊗ Lχ. Then we have a natural
homeomorphism from Φ−1(O−χ

n
)/K to (X ×G/B)ss(L(χ

n))//G.
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Remark 4.2.2. It follows from Theorem 8.3 of [18] that when χ
n ∈ ∆reg is a

regular value of the moment map Φ, (X×G/B)ss
G (Ln⊗Lχ) consists of only stable

points, hence the quotient (X × G/B)ss(L(χ
n))//G has at worst finite quotient

singularities in this case.

5. Quotients of X by B

5.1. The Zariski open subset Xss
B (n, χ). Recall from §1.6 that we have the mor-

phism
ιB : X → X ×G/B, ιB : x → (x, [B]), ∀x ∈ X.

This embeds X into X × G/B as the fiber over the base point [B] ∈ G/B. (It
is easy to see the morphism ιB induces a bijection between the set of B-orbits
on X and the set of G-orbits on X ×G/B. Hence it is simply natural to expect
B-quotients on X should correspond to G-quotients on X ×G/B.)

As before, we have χ
n ∈ ∆reg with χ ∈ Λ+ and n ∈ N. Set

Xss
B (n, χ) = {x ∈ X|(x, [B]) ∈ (X ×G/B)ss

G (Ln ⊗ Lχ)}.
That is,

Xss
B (n, χ) = i−1

B (iB(X) ∩ (X ×G/B)ss
G (Ln ⊗ Lχ)).

Clearly, Xss
B (n, χ) is B-invariant and Zariski open in X.

5.2. The quotient Xss
B (n, χ)//B. Denote the GIT quotient

(X ×G/B)ss
G (Ln ⊗ Lχ)//G

by Qn,χ and let
φ : (X ×G/B)ss

G (Ln ⊗ Lχ) → Qn,χ

be the quotient map. We then have the composition map

φ ◦ ιB : Xss
B (n, χ) → (X ×G/B)ss

G (Ln ⊗ Lχ) → Qn,χ.

Theorem 5.2.1. The morphism φ ◦ ιB : Xss
B (n, χ) → Qn,χ is a categorical

quotient5 for the B-action.

Proof. Let ψ : Xss
B (n, χ) → Z be any B-morphism where B acts trivially on Z.

Then, one checks that the map

ψ′ : (X ×G/B)ss
G (Ln ⊗ Lχ) → Z

(x, g[B]) → ψ(g−1 · x)
is a G-morphism with respect to the trivial G-action on Z. Clearly,

ψ = ψ′ ◦ iB.

5For the definition of a categorical quotient, see Definition 0.5 of [18].
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But
(X ×G/B)ss

G (Ln ⊗ Lχ) → Qn,χ

is categorical, hence we have a commutative diagram

(X ×G/B)ss
G (Ln ⊗ Lχ)

ψ′−−−−→ Z

φ

y id

y
Qn,χ

χ−−−−→ Z.

This diagram extends to

Xss
B (n, χ) iB−−−−→ (X ×G/B)ss

G (Ln ⊗ Lχ)
ψ′−−−−→ Z

φ

y id

y
Qn,χ

χ−−−−→ Z

which gives rise to the desired diagram

Xss
B (n, χ)

ψ−−−−→ Z

φ◦ιB
y id

y
Qn,χ

χ−−−−→ Z.

¤

Because of this theorem, we may also denote Qn,χ by Xss
B (n, χ)//B.

Lemma 5.2.2. (Guillemin-Sjamaar, [11]) There is an isomorphism of vector
spaces

ρ : H0(X ×G/B,Ld ⊗ Ldχ)G → H0(X, Ld)U
dχ.

Proof.
ρ : H0(X ×G/B,Ld ⊗ Ldχ)G → H0(X, Ld)U

dχ

is defined as follows. For any s̃ ∈ H0(X × G/B,Ld ⊗ Ldχ)G, then s = ρ(s̃) ∈
H0(X, Ld)U is defined by

s(x)⊗ 1 = s̃(x, [B]),∀x ∈ X.

One checks that so-defined s is U -invariant and transforms according to dχ under
the action of the maximal torus H. Conversely, a section s ∈ H0(X, Ld)U can
be extended in a unique way to a section in H0(X × G/B,Ld ⊗ Ldχ)G by the
formula

s̃(x, g[B]) = g(s(g−1x)⊗ 1),∀x ∈ X, g ∈ G.

¤
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Theorem 5.2.3. We have

Xss
B (n, χ) = {x ∈ X|∃d > 0, s ∈ H0(X, Lnd)B[χ], s(x) 6= 0}.

In particular, the B-quotient Xss
B (n, χ)//B is isomorphic to Proj(RB[χ]

(n) ).

Proof. By Lemma 5.2.2 (replace the line bundle L by Ln in the lemma), we obtain
an isomorphism

ρ : H0(X ×G/B,Lnd ⊗ Ldχ)G → H0(X, Lnd)U
dχ.

Since (X ×G/B)ss
G (Ln ⊗ Lχ) equals to

{(x, g[B])|∃d > 0, s̃ ∈ H0(X ×G/B,Lnd ⊗ Ldχ)G, s̃(x, g[B]) 6= 0},
one checks from the definition of Xss

B (n, χ) that

Xss
B (n, χ) = {x ∈ X|∃d > 0, s ∈ H0(X, Lnd)U

dχ, s(x) 6= 0}.
Now observe that H0(X, Lnd)U

dχ = RU
nd,dχ is precisely the subset of B-invariants

of Rnd under the (−χ)-shifting, that is,

(2) RU
nd,dχ = (RU

nd)
H[χ] = R

B[χ]
nd = H0(X, Lnd)B[χ].

This shows that

Xss
B (n, χ) = {x ∈ X|∃d > 0, s ∈ H0(X, Lnd)B[χ], s(x) 6= 0}.

To show the last statement, note that the B-quotient Xss
B (n, χ) → Qn,χ is

identified with the G-quotient

(X ×G/B)ss
G (Ln ⊗ Lχ)//G.

From the above, we have that
⊕

d

H0(X ×G/B,Lnd ⊗ Ldχ)G =
⊕

d

R
B[χ]
nd = R

B[χ]
(n) .

Because (X ×G/B)ss
G (Ln ⊗ Lχ)//G is isomorphic to

Proj(
⊕

d

H0(X ×G/B,Lnd ⊗ Ldχ)G),

we obtain that the B-quotient Qn,χ is isomorphic to Proj(RB[χ]
(n) ). ¤

We isolate the following identity from Equation (2) in the proof of the above
theorem.

Corollary 5.2.4. R
B[χ]
(n) = (RU

(n))
H[χ].
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6. Proof of Theorem 1.7.1

For χ
n ∈ ∆reg, the existences of the three quotients

(Xss
U (L)//U)ss

H (n, χ)//H,

(X ×G/B)ss
G (Ln ⊗ Lχ)//G,

Xss
B (n, χ)//B,

are proved in §§3, 4, 5, respectively.

That Xss
B (n, χ)//B is isomorphic to (X ×G/B)ss

G (Ln⊗Lχ)//G is contained in
Theorem 5.2.1.

To show that Xss
B (n, χ)//B is isomorphic to (Xss

U (L)//U)ss
H (n, χ)//H, note that

by Theorem 5.2.3, Xss
B (n, χ)//B is isomorphic to Proj(RB[χ]

(n) ). By Corollary 5.2.4,

it is isomorphic to Proj((RU
(n))

H[χ]). Now it follows from Theorem 3.4.1 that it is
isomorphic to (Xss

U (L)//U)ss
H (n, χ)//H.

7. Singular rational points of ∆ and G/P .

7.1. The action G× (X ×G/P ) → (X ×G/P ). For a rational point χ
n ∈ ∆ that

lies on a wall of the Weyl chamber, the character χ ∈ Λ+ determines a parabolic
subgroup P strictly containing B:

P = {g ∈ G| lim
t→0

χ(t)gχ(t)−1 exists}.

Let C−χ be the one-dimensional P -module with the character −χ. Then L′χ =
G×P C−χ is a G-linearized ample line bundle over G/P .

To extend the correspondences of Theorem 1.7.1 to this case, we can simply
replace the second action by the diagonal action

G× (X ×G/P ) → (X ×G/P ).

7.2. Extensions of some results of §5. Lemma 5.2.2, with basically the same proof
([11]), now reads: we have an isomorphism of vector spaces

(3) H0(X ×G/P, Ld ⊗ L′dχ)G → H0(X, Ld)U
dχ

where L′dχ = (L′χ)d.

Equation (2) in the proof of Theorem 5.2.3 remains true without any change.

Since the G-quotient (X ×G/P )ss
G (Ln ⊗ L′χ)//G is isomorphic to

Proj(
⊕

d

H0(X ×G/P, Lnd ⊗ L′dχ)G),
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by Equation (3) of this section and Equation (2) in the proof of Theorem 5.2.3,
we will obtain the following.

7.3. The correspondences.

Theorem 7.3.1. The G-quotient (X × G/P )ss
G (Ln ⊗ L′χ)//G, the B-quotient

Proj(RB[χ]
(n) ), and the H-quotient Proj((RU

(n))
H[χ]) are isomorphic to each other.

Remark 7.3.2. The case when χ = 0 is worth mentioning. In this case, the
parabolic subgroup is G so that G/P is a point, hence (X×G/P )ss

G (Ln⊗L′χ)//G
is just the G-quotient Xss

G (L)//G. The fact that the G-quotient Xss
G (L)//G, the

B-quotient Proj(RB[0]
(n) ) and the H-quotient Proj((RU

(n))
H[0]) are all isomorphic

can also be seen by observing that

RG
(n) = R

B[0]
(n) = (RU

(n))
H[0].

Replacing B by P in §5.1, we will obtain a P -invariant Zariski open subset
Xss

P (n, χ) of X. Then a proof almost exactly the same as that of Theorem 5.2.1
will yield the following (details are left to the reader).

Theorem 7.3.3. The morphism

Xss
P (n, χ) → (X ×G/P )ss

G (Ln ⊗ L′χ) → (X ×G/P )ss
G (Ln ⊗ L′χ)//G

is a categorical quotient for the P -action on X.

8. Concluding remarks

8.1. Singularities of the unipotent quotient. We know little about the singularities
of the unipotent quotient Xss

U (L)//U . However, the correspondences of Theorem
1.7.1 shed some lights on it.

When χ
n ∈ ∆reg is a regular value of the moment map Φ, by Remark 4.2.2, the

G-quotient
(X ×G/B)ss

G (Ln ⊗ Lχ)//G

is an orbifold, that is, it has at worst finite quotient singularities. By Theorem
1.7.1, the same hold for the corresponding H-quotient

(Xss
U (L)//U)ss

H (n, χ)//H.

This indicates that the Zariski open subset (Xss
U (L)//U)ss(n, χ) of the unipotent

quotient Xss
U (L)//U has at worst finite quotient singularities, and this holds for

all almost all rational points χ
n ∈ ∆. The variety Xss

U (L)//U and its applications
call for further investigation.
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8.2. More on Example 2.5. For the line bundle L = ⊗iO(di) over (P1)n with dn

sufficiently large relative to other di (1 ≤ i ≤ n− 1), we have that the unipotent
quotient is isomorphic to (P1)n−1. Note that in this case the homogeneous space
G/B is isomorphic to P1. One checks that the three actions in this case are the
following diagonal actions

H × (P1)n−1 → (P1)n−1,

G× (P1)n+1 → (P1)n+1,

B × (P1)n → (P1)n.

For any χ
m ∈ ∆reg, the corresponding quotient of the first action is a toric variety6,

hence so is the corresponding quotient of the second action by Theorem 1.7.1.
This implies that the G-linearized line bundle Lm ⊗ Lχ over (P1)n+1, with dn

sufficiently large relative to the rest, is a very special one, because for a general
ample G-linearized line bundle over (P1)n+1 (n ≥ 4), we know that the corre-
sponding GIT quotient is not toric. For example, when n = 4, with respect to
the G-linearized line bundle ⊗5

i=1O(1), the GIT quotient of (P1)4+1 is isomorphic
to the blowup of P2 along 4 general points which is not toric. By our main corre-
spondences, this implies that for the line bundle ⊗n

i=1O(di) with general positive
integers di (1 ≤ i ≤ n), the corresponding unipotent quotient of (P1)n can not
be toric variety. In particular, it is not isomorphic to the unipotent quotient
(P1)n−1. This justifies the assertion of Remark 2.3.1 that the unipotent quotient
Xss

U (L)//U , in general, depends on the choice of the underlying line bundle L.

It is an interesting problem to (explicitly) determine Xss
U (L) and Xss

U (L)//U
for general choices of di(1 ≤ i ≤ n).

Finally, we mention that the GIT quotients of the second action here can be
interpreted as moduli spaces of spacial polygons ([13]). We do not know whether
the other two admit natural geometric explanations.

8.3. Related and further works. There are a number of papers (e.g., [7], [8], [9],
[21]) that study quotients of unipotent group actions or quotients of general
algebraic group actions to which this paper is related.

There are some moduli spaces that may be constructed as quotients of Borel
subgroups. For example, the moduli spaces of vector bundles over smooth alge-
braic curves with complete parabolic structures are naturally quotients by Borel
subgroups (see page 545 of [3]. For partial parabolic structures, one should use
parabolic subgroups instead). Via a shifting trick similar to that of §4.2, these
moduli spaces are constructed as quotients by reductive groups by Mehta and
Sashadri in [17]. Our work here indicates that they may also be constructed as
quotients by torus actions. This would use certain unipotent quotients. Thus it

6 GIT quotients of a projective toric variety by a subtorus are again projective toric varieties
([14]).
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would be an interesting problem to see what these unipotent quotients are and
whether they admit interesting moduli interpretations.

When Xss
G (L) = Xs

G(L) (cf. Remark 7.3.2), Brion proposed the following:
through (orbifold) fiber bundle and toric flips, we may relate the quotient Xss

G (L)//G
by the reductive group G to a quotient of Xss

U (L)//U by the maximal torus H.
This would give an alternative way to study the topology of a general GIT quo-
tient (cf. [15]). Some related works around this area may be found in [1] and
[5].

After receiving the preliminary version of this paper, Brion mentioned to me
that he was also convinced that the results here hold. Part of his idea appeared
in L. Pillons’ thesis [20].
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ford’s appendix to Ness’s paper ([19]), Brion’s paper on moment map images
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ful correspondences, comments and corrections. I am also very grateful to the
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