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Abstract: Let X be a subscheme of a reduced scheme Y. Then Y has a
flat degeneration to the normal cone CxY of X, and this degeneration plays
a key step in Fulton and MacPherson’s “basic construction” in intersection
theory. The intersection product has a canonical refinement as a sum over the
components of CxY, for X and Y depending on the given intersection problem.
The cone CxY is usually not reduced, which leads to the appearance of
multiplicities in intersection formulae.

We describe a variant of this degeneration, due essentially to Samuel, Rees,
and Nagata, in which Y flatly degenerates to the “balanced” normal cone
CxY. This space is reduced, and has a natural map onto the reduction
(CxY)req of CxY. The multiplicity of a component now appears as the
degree of this map. Hence intersection theory can be studied using only re-
duced schemes. Moreover, since the map CxY — (CxY)req may wrap several
components of CxY around one component of CxY, writing the intersection
product as a sum over the components of CxY gives a further canonical
refinement.

In the case that X is a Cartier divisor in a projective scheme Y, we describe
the balanced normal cone in homotopy-theoretic terms, and prove a useful
upper bound on the Hilbert function of CxY.
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1. INTRODUCTION

1.1. Normal cones and balanced normal cones. Let R be a commutative
Noetherian ring with unit — indeed, all rings encountered this paper will have
these properties — and let I be an ideal. For r € R, define q(r) as the largest
n such that r € I™, or oo if there is no largest n (e.g. if r = 0). Then the
associated graded ring is defined as

gR:=EP {r:q(r) =n} /{r:qr) =n+1}

neN

One of its virtues is that it has a map not only to, but from, R/I. (Whereas R
doesn’t naturally have a map from R/I.) Moreover, the map R/I — grR is an
inclusion (as the n = 0 summand).

Following Samuel (our reference is Rees’ book [Re]), define q(r) := limp_,0 q(1™)
/M, the homogenization of the filtration q. Samuel proved that this limit exists.
Nagata and Rees showed that it is rational-valued with bounded denominator.
Rees gave a formula for q, using Rees algebras, which we recall in section 2 in the
cases we need. Nagata proved that @ — q is bounded [Re, theorem 4.21], which
implies that

gR:=EP (r:q(r)>n} / {r:q(r) >n}
neQ

is again Noetherian [Re, lemma 2.46]. Note that this grading is by Q, not (usually)
by N.
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Ezxample 1. Let R = F[x], I = (x?). (Throughout the paper F denotes
an arbitrary field.) Then q(x™) = [n/2], and grR = F[i(o],ym]/b_cz),
where the subscripts indicate the degrees. Whereas q(x™) = n/2, and
grR = F[x(1/2)], or F[)Z“/Z),ym]/()_cz —y) written for comparison.

We urge the reader to check the details of this example, as examples 2
and 4 build upon this one.

The following intuition seems to be useful. In grR in the example above, x is
“rushed” into the degree O piece (rather than waiting until degree 1/2 where it
“belongs”), and by degree 0 standards its square (which has ¢ = 1) vanishes. It
is this premature appearance of x that leads to its nilpotency in gr R.

Proposition 1. (1) There is a flat degeneration of R to grR.
(2) grR has no nilpotents.

(3) There is a flat degeneration of R to grR.

(4) There are natural maps grR < grRo = R/1.

(5) There are natural maps gt R < gF Rp = R/V/1.

(6) If R® is the homogeneous coordinate ring of a projective scheme over a
field F = R®, and 1 is graded, then the degeneration of R to grR is locally
free. If R is also reduced, then the degeneration of R to gr R is also locally
free.

4
5
6

Recall that a family is locally free if its coordinate ring is not only torsion free
over the base (in this case F[t]), but actually free.

Proof. We start with the second claim. Let 0 # ¥ € gF R, be nilpotent, so ¥™ = 0.
Then q(r™M) > Mn. Hence q(r) > n, a contradiction.

Then the first and third claims use the Rees algebras (which will reappear in
section 6)

Pt {rar)=n P t ™ {r:air) = /N

nez nez
inside R[t,t~'] to provide the flat families [Ei, sec. 6.5]. Here N is the least
common (or any other) multiple of the denominators occurring in q.

The fourth claim is obvious. For the fifth, we need to compute gr Ry = R/{r :
q(r) > 0}. Then

{r:q(r) >0} ={r:3M, q(+™) > 0} = VL.
If R® is the coordinate ring of a projective variety over F, then (1) each of its

graded pieces are finite-dimensional and (2) n3e D = {0}. With these, we can lift
an F-basis of grR to an F[t]-basis of the coordinate ring of the first family. For

the second family, we need O;POIJ' = {0}, namely that R is reduced. O
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Much of this paper is concerned with the natural map grR — grR, which we
take up in the next section.

Young algebraic geometers are strictly indoctrinated to regard killing nilpo-
tents as a bad habit; information is being thrown away. To allay their suspicions,
we emphasize that grR is not just grR mod its nilpotents (though as we shall
see, it contains that as a subring). If R and I are graded so that one can speak of
Hilbert functions, then R, grR,grR all have the same Hilbert function, whereas
gr R modulo its nilpotents will have a smaller Hilbert function (unless it had no
nilpotents). In this sense, the information usually recorded in nilpotents is just
showing up in a different way.

Since the denominators in q are bounded, one may be tempted to clear them
by rescaling the grading. This seems to carry no benefit, and only serves to make
the map grR — grR no longer graded.

If V = Spec R and W = Spec R/I, then the space Spec gr R is called the normal
cone Cy/V. We christen the space SpecgF R the balanced normal cone Cy/V,
where the term “balanced” is chosen to evoke the idea that the grading is carefully
weighted to avoid creating nilpotents.

Much as in the case of ordinary normal cones, it is not hard to define balanced
normal cones for arbitrary pairs of schemes W C V where V is reduced. As all
our examples are Specs or Projs, we defer the details of globalization to section
5. As a bonus, we define in that section the “balanced blowup” along W in the
case V is of finite type.

In a future paper [AK], we will generalize the construction from this paper to
a construction that completes essentially any one-parameter family of reduced
schemes, the case studied in this paper being the family giving the degeneration
to the normal cone.

1.2. The maps grR — grR and CyV — CwV. Since gr R has no nilpotents,
the kernel of 3 : gr R — grR is plainly at least the nilpotents.

Proposition 2. The kernel of p : gr R — grR is exactly the nilpotent elements
in grR. If gr R has no nilpotents, then f is an isomorphism (and otherwise not).

Proof. We need the calculation

1
q(r) >n < dm,q(r) >n—|—a & IM >0, q(r™) > Mn.

Let T denote the image of v in grRy). If B(¥) = 0, then q(r) > q(r), so
IM > 0,q(rM) > Mq(r). Hence (¥)M = 0. So the kernel is exactly the nilpotents.
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If gr R has no nilpotents, then there does not exist ¥ € gr Ry, \ {0} with #™ = 0.
So q(r™) is not more than Mn; indeed q(r™) = Mn for all M. Hence q(r) =n,
and q = q. Thus gr = gr naturally.

Since gr R has no nilpotents, gr R can only be isomorphic to it if it too has no
nilpotents. O

We now switch over to the geometric point of view, in which we map from the
balanced normal cone to the ordinary one. The above proposition tells us that
the map CywV — CwV factors as CwV = (CwV)reqa — CwV, where (CwV)red
denotes the reduction of CwV. So (CwV)req serves as an intermediary when

trying to compare the spaces CywV and CywV. This motivates our looking at
Chow groups, since Ae(CwV) = Ae((CwV)red).

Theorem 1. Let W be a closed subscheme of V, where V is reduced. The induced
map B : CwV — CwV is proper, with finite fibers. Assume now that V is of
finite type over a field. Then the two maps CwV —(CwV)red, (CwV)reda — CwV
induce the same Chow class in Ae((CwV)red)-

(We expect that the field hypothesis on V is largely unnecessary; it is used to
ensure that some normalizations are finite.)

Note that these two Chow classes are induced on (CywV)req in very different
ways, as we go over in section 6. The inclusion (CywV)req < CwV defines a class
by taking the sum of the top-dimensional components weighted by the lengths of
the local rings on the target. Whereas the surjection CyV —(CwV)req defines
a class by taking the sum of the top-dimensional components weighted by the
degree of the map over those components.

Ezxample 2. Let V be the line with coordinate x, and W the doubled ori-
gin (defined by x* = 0). Then Cy/\V is the doubled line, whereas CyV
is just the ordinary line; see example 1 for these calculations. The map
CwV —(CwV)rea— CwV is the squaring map from the line to the (re-
duction of the doubled) line.

It can happen that Cy/V has more components than Cy/V, not because a
component collapses (since we know there are finite fibers), but because several
components of Cy/V cover the same component of CyyV. When this happens,
we get a refinement of the multiplicities in the fundamental class of Cw/V; the
multiplicity of a component F C Cy/V is the sum over those components F C Cy/V
whose image is F, of the degree of the map F — F.

Ezample 3. Let R = Fla,bl/(a? — b?), so V := SpecR is the union of
two lines. Let I = (b), so W is a double point at the origin. CyV is a
trivial line bundle over W, q(a) = 0, q(a) = 1, and grR = R. The map
CwV — CwV maps the two lines onto the reduction of Cy/V.
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In this way, the fundamental class of Cw/V is a sum of the two (equal)
Chow classes induced by the lines in Cy/V.

To prove theorem 1, we need a number of basic results about balanced normal
cones, which will come in section 2. The proof itself will come in section 6;
essentially, what is shown is that the sheaves associated to CywV and CyV define
the same element in K-homology (the Grothendieck group of formal differences
of coherent sheaves, not just vector bundles) of a certain thickening of CywV,
and this is enough. (An earlier version of this paper had a much more difficult
argument based on blowups.)

1.3. The “basic construction” in intersection theory. We recall the basic
construction from [FM].

Let XY be an inclusion (soon, a regular embedding), and V — Y a mor-
phism. Let W be the pullback, so we have a square

W—V

U
X =Y

Now replace each of the big schemes (Y and V) by the normal cones to the
subschemes. This allows us to reverse the horizontal arrows, replacing inclusions
by epimorphisms.

W« CywV

l 1
X « CxY

This is no longer a pullback diagram; we only have a map from CwV to the
actual pullback N. Hence Cy/V defines a Chow class on N. While it is not hard
to check that the map CywV — N is an inclusion, this property doesn’t seem to
play any role in the construction, and will not hold in our variation below.

For purposes of intersection theory, it turns out to be useful to require that
X <Y be a regular embedding, i.e. that CxY be a vector bundle. This is because
Fulton and MacPherson’s goal is to define a Chow class down on W (not up on
N), which they call the “refined intersection product” of X and V. (It can be
thought of as a cap product, where the regular embedding X — Y plays the role
of the cobordism class and the map V — Y that of the bordism class.) This is
done using a Thom-Gysin isomorphism A4(N) = A,_4(W), which holds if N is a
vector bundle of some dimension d. That in turn is guaranteed if CxY is a vector
bundle, motivating that condition. This completes the basic construction.

How do things change in what we will call the balanced basic construction,
where we instead use balanced normal cones?
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First, we will require that V is reduced, in order to apply theorem 1. This
is not a particularly stringent assumption from the point of view of intersection
theory, where any Chow class of a nonreduced subscheme is naturally a sum of
classes of reduced subschemes.

As before, by passing to the cones we can reverse the horizontal arrows. How-
ever, these reversed maps are no longer epimorphisms — they only hit the reduc-
tions (thanks to the last part of proposition 1).

W Wred “ éwv

Lol L
X Xred “«— CxY

If we assume that X is smooth and XY is a regular embedding, then CxY is
reduced (as it is a vector bundle over something reduced). Hence CxY = CxY,
and the pullback to W is again N.

However, even in this case, W and Cy/V are typically not reduced. So CywV,
which is reduced, is something new. It too maps (though usually not injectively)
to the pullback bundle N, and this map factors as CwV = (CwV)req = Nyeq — N.

Theorem 2. Assume that X — Y is a reqular embedding, and V — Y a morphism,
with V reduced. Let W be the pullback of X,V — Y.

Then Fulton and MacPherson’s refined intersection product X-Ve A*(W),
usually calculated with CwV, can be calculated equally well with CywV.

Proof. Since the map CwV — N factors through B : CywV — CwV, theorem 1
implies that CywV and CywV induce the same Chow class on N. Il

Example 4. Let Y,V be affine lines with coordinates y, v, let X be the origin
in Y, and let V — Y be the squaring map y = v2. Then W is the doubled
origin in V, defined by v? = 0.

In ordinary intersection theory, the normal cones CwV, CxY and the
pullback N are all trivial line bundles, over W, X, W respectively. The
map CwV — N is an isomorphism, inducing the fundamental class on W,
which is the twice the class of the reduced point Wi.eq.

In the balanced basic construction, the balanced normal cone Cy/V is
the trivial line bundle over W4, and the map CwV — N is the squaring
map, rather than an isomorphism. One calculates this on the algebra side,
where the diagram above is

Fv]/(v?) - F = Flv( 2]
T T T

Here the parenthesized subscripts indicate the degree in these graded rings.
In the graded map on the right, y — v2. The pushout Fun(N,q) of that
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right square is obviously F[y], so this squaring map is the one CyyV — Nyeq
claimed above, inducing twice the fundamental Chow class of Nyeq. The
Gysin map then takes that to twice the fundamental class of the reduced
point Wieq, as predicted by theorem 2.

Because the space Cy/V can have more components than Cy/V, as in example
3, we can refine Fulton and MacPherson’s “refined intersection products” further
as a sum over the components of Cy/V.

Example 5. The further refinement in example 3 only reflected the fact
that V itself was reducible. The example below, which we shall compute
in section 3, shows the refinement can be nontrivial even when V is irre-
ducible.

Let Y = SpecFla, b], X the a-axis, and V the v
nodal cubic curve b? = a?(a + 1). Their in-
tersection X NV =: W is a double point at
the origin (the node of the cubic) and a re- R X
duced point at (—1,0). The map from Cw/V
to the pullback W x A! of the (trivial) nor-
mal bundle CxY is an isomorphism, inducing
the fundamental Chow class on W x A! and
thereby on W.

In this case, the Chow ring calculation (on the projective plane) gives 3
times the class of a point. The refined intersection product just calculated
splits this as 3 =24 1, from the double point and single point.

To compute the balanced normal cone Cyy/V, present V = Spec R using
R = Fla,b,cl/(c — a(a + 1),b? — ac,b?(a + 1) — ¢?). Then c? € (b)?,
so q(c) is plainly at least 1. As we will be able to compute later (using
proposition 4), in fact q(a) =0, q(c) =1, and

grR=Fla,b,c]/{ala+ 1), ac,b?(a+1) —cz>
=Fla,b,cl/({(a+1,¢)N{a,b—c)N{a,b+c)).

So CyX is an isolated line union a pair of intersecting lines, and the sum
of these components further refines the intersection calculation as 3 =
T+(141).

Unlike R and gr R, this ring gr R is not generated over F by two elements.

It would be interesting to find the branch locus of the map CwV —(CwV)red
in genuine intersection theory examples, and see what that and more refined
degeneracy loci mean for enumerative questions. It would also be interesting
to see how the monodromy group of the branched cover relates to the “Galois
group” of the enumerative problem [Hr].
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We now outline the rest of the paper. In section 2 we describe Rees’ formula for
q and give the basic results about gr R. When gr R is reduced, then gr R = gr R; we
present a number of examples to show some possible reasons that gr R £ grR. In
section 3 we study the intersection of a variety in affine space with a hyperplane,
and geometrically describe the normal cone (and under certain conditions, the
balanced normal cone) as flat limits. In section 4 we introduce the ring gr R with
which to further study gr R in the case that I is principal, and we compute several
examples. Finally, in section 6 we prove theorem 1.

1.4. Acknowledgements. It is a pleasure to thank Valery Alexeev, Tom Graber,
Mark Gross, Joseph Gubeladze, Craig Huneke, Bernd Sturmfels, and Ravi Vakil.
The anonymous referee was extremely helpful and their input greatly improved
this paper. I give special thanks to Bernard Teissier for sharing with me his
unpublished manuscript [LJT].

Many examples in this paper were worked out with the help of the computer
algebra system Macaulay 2 [M2].

2. PROPERTIES OF gr

2.1. Rees’ formula for q. In this section R is a ring without nilpotents. (And
commutative, Noetherian, and with unit, as per our standing assumptions.)

Assume to begin with that R is an integrally closed domain, and I = (b) is a
principal ideal for b a nonzerodivisor. Let Dy,..., Dy be the components of I's
vanishing set, and v; the corresponding valuations.

Then for all n, we have q(r) > n & r € (b™) = v;(r) > nvi(b); contrapos-
itively,

qr) < miin \\:((l:))

The same bound follows for q. Rees’ theorem, in this special case, says that q is
actually given by this formula.

Ezample 6. Let P be a lattice polytope, and R the homogeneous coordinate
ring of the projective toric variety X = Xp, which has a basis given by
lattice points in dilations of P. Let b be the degree 1 element corresponding
to some lattice point p € P. Then the valuations {vi} in the formula for @
correspond to the facets of P not containing p. If o is any lattice point in
P and r the corresponding ring element, then vi(r) is the distance of o to
the 1 facet, measured in lattice units.

Let f : P — R denote the continuous piecewise-linear function measuring
the distance of q to a far wall of P along the straight line connecting p
and q; it takes the value 1 at p, 0 on all facets F not containing p, and
varies linearly on the cone from p to F. Then if r € R is a basis element
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corresponding to a lattice point p € P, we have q(r) = f(p). (More
generally, if v € R is a basis element corresponding to a lattice point o in
the k-fold dilation kP of P, we have q(r) = kf(o/k).) An example is in
figure 1.

The ring gr R is the homogeneous coordinate ring of a union of projective
toric varieties, whose components are (weighted) cones on the facets of
P not containing p. This reducibility arises from the fact that in the
associated graded, the product of two basis elements can be zero, which
happens if and only if when projecting away from p the corresponding
points in P do not project to a common facet.

14-1/3 13 1/3

P P P

FIGURE 1. A lattice polytope, the valuation q (and its level sets)
evaluated on the generators, and the polyhedral complex arising
from gr R.

More general reduced torus-equivariant degenerations of toric varieties
were studied in [Al].

If R is not integrally closed, the valuations {vi{} may not be simply associated
to divisors. For example, let R = F[x,yl/(xy), and I = (x +y?). Then I vanishes
at the origin, to order 1 if one approaches along the x-axis and order 2 if one
approaches along the y-axis. Hence “the order of vanishing at the origin” is not
well-defined. But the same formula can be made to work by restricting divisorial
valuations from the integral closure of R in R[b™']. (This integral closure will
show up in a different guise in section 4.)

It is easy to generalize to the case I = (b) for b a zero divisor:

vi (1)

(D) if v does vanish on them

0 if 1 doesn’t vanish on all the components that b does
miny

where the valuations are pulled back from the quotient ring R/ann(b).

There is a further generalization of this formula, which we won’t need, to the
case that I is not principal; it uses the blowup algebra to reduce to the principal
case. One interesting aspect of this is that if Spec R or Spec R/I are singular along
Spec R/1, then the exceptional locus in the blowup may have more components
than Spec R/I does itself, and we need them for Rees’ formula.
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Lemma 1 (Samuel). Let R = @nenRn be a graded Noetherian ring. Then R is
finitely generated as an algebra over Ry.

Proof. Let r1,...,1x be homogeneous generators of the augmentation ideal R..
Let T be a homogeneous element of positive degree. Then r = } ; ciry for some
homogeneous (ci) with degci < degr. By induction, these ci are polynomials in
the (r;) with coefficients from Rp. Hence 1 is such a polynomial too.

By the direct sum assumption, every element of R is a sum of such rs and an
element of Rp. O

Proposition 3. Let I = (b) be a principal ideal in a ring R.

o The multiplication map b- : gr Ry — grRiz1 is always onto.

e The multiplication map b-: gr Ry — grRiq is 1: 1 for all large 1i.

e The multiplication map b- : 8T Ry — 8T Riy1 is always 1:1 fori > 0. Ifb
is mot a zero divisor in R, then b-: 8T Ry — 8T Ry is also 1:1.

e The multiplication map b- : gr Ry — &T Riy1 is onto for all large 1.

Note that the first two claims are only interesting for i € N, whereas the second
two are interesting for i € Q.

Proof. The first claim is essentially tautological.

For the second, consider the ascending chain ann(b) < ann(b?) < ann(b3) <
... of annihilator ideals in grR. Let j be the stage at which it stabilizes. Then
for ¢ € grR, blc # 0 implies b*c # 0 for any k > j. With this and the first claim,
we see that if d € gr Ry \ {0}, k > j, then bd # 0.

The third and fourth don’t depend on R as much as R mod its nilpotents, so
we assume now that R has none.

For the third, let ¢ € R. If b vanishes on a component of SpecR on which ¢
doesn’t, then (1) b is a zero divisor and (2) G(c) = 0. So now we assume that c
vanishes on each component of Spec R on which b vanishes, and we can pass to
R/ann(b).

Now, q(c) = min; \\:11((3) Then
_ . vi(bc) . vi(b) +vi(c) ) vi(c) . vi(c) _

be) = = —_ = = 1+ =1+ =1+ .
q(bc) min vi(b] min vi(b) min vi(b) min vi(b) q(c)

So ¢ # 0 implies gr (bc) # 0. Contrapositively, the only way for gr (¢ # 0) to be
annihilated by b- is for b to be a zero divisor and for q(c) = 0. This gives the
third claim.

For the last claim, since gr R is Noetherian, let gq,..., g generate grR as an
algebra over g Ry (using lemma 1). Then any monomial in the {g;} of high degree
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must involve some @i to a high power. Since each gi € \/(b), having g; to a high
power means that a factor of b can be extracted. This establishes the fourth
claim. 0

The following gives a characterization of q that is useful for verifying examples,
and in section 3 will also be of use in interpreting balanced normal cones geometri-
cally. It uses the concept of homogeneous filtrations p, meaning p(r™) = np(r)
Vre Ryn e N.

Proposition 4. The filtration q is the unique minimum homogeneous filtration
p with p(b) = 1. In other words, let p be a homogeneous filtration on R such that
p(b) =1. Then p(r) > q(r) Vr € R.

IfR=TFlaj,...,an,bl/], and wr,...,wn > 0 are lower bounds on q(ay),...,
q(an), then let p be the (possibly inhomogeneous) filtration induced on R from the
filtration p(bB Lait) = B+ Y nywy on the polynomial ring. If the associated
graded to p has no nilpotents, then p =14.

Proof. By the existence of the limit q, given r € R, e > 0, for all large n we have
q(r™)/n > q(r) — e. Hence r™ = abl™d™)=€)l for some a € R. Then

p(r)= %D(Tn) _ %p(abln(ﬁ(r)ﬂ—:ﬂ) > %p(bln(a(f)*eﬂ)
:%{n(ﬁ(r) —e)] > %(n(a(r) —e)—1)=q(r)—e— %

hence p(r) > q(r).

For the second part, saying that the associated graded to p has no nilpotents
is the same as saying that p is homogeneous. Plainly p(b) = 1. So by the first
part, p > q. Since p is the smallest filtration with p(ai) = wy, and w; < q(ai)
by assumption, we have p ¥ q. Sop =4. O

Note that not every homogeneous filtration on a polynomial ring mod an ideal
is of the form in the second part of the proposition — for example, the (x+y)-adic
filtration on F[x,y]. We will only be able to apply the second part of proposition
4 when the generating set has been chosen felicitously.

In some of the examples to come, we will present R as a polynomial ring modulo
an ideal. We’ll determine some lower bounds {w;i} on the @s of the variables,
including q(b) = 1, and consider the induced (a priori inhomogeneous) filtration
p. To compute the associated graded to p, we check that the generating set of the
ideal is a Grobner basis with respect to some term order respecting this weighting
of the variables, and replace each relation by its lowest-weight component. To
be sure we’re satisfying proposition 4, it remains to check that the associated
graded has no nilpotents. When all goes well and that turns out to be true, we
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learn three things: p = q, our lower bounds {w;} were correct, and each filtered
piece of R intersected with the linear span of the variables is spanned by a subset
thereof.

2.2. Examples. Here are some of the nonobvious possible behaviors of q and
gr.

2.2.1. The limit q need not be achieved. One way of thinking about the limit
limn oo q(; ) is to take the limit through a subsequence 1 = njnyns|-- -, which

is easily seen to be increasing:
qr™) _ q(r™) _ q(r™)

q(r) = < < <...<q(r).
n n»o ns3

Many people’s first guess, upon learning the definition of q, is that the limit q(r)
is achieved for some finite n. This turns out to be true if R is integrally closed.

Proposition 5 (Rees). Let R be an integrally closed domain, and 1 = (b). Then
there exists N > 0 such that q(r) = %q(TN).

Proof. Let N be the least common multiple of the valuations vi(b), so Nq is
N-valued. Then for any r, the rational function r™N/bNd(") satisfies the valuative
criterion for integrality. (We asked that R be a domain so that b is not a zero

divisor.) Since R is integrally closed, v™/bNd(") = s for some s € R. Hence
q(v™) > Nq(r), but we already knew the opposite inequality. O
Ezxample 7. This is a variant of example 3, with the same geometry.

Let R = F[a,b]/(a? — ab), and I = (b). Then a™ = ab™!, and in fact
gd(a™) = n—1. Taking the limit, g(a) = 1. But fornonis q(a™)/n =7q(a).

2.2.2. grR # grR despite being integer-graded. We’ve already shown that q =T,
if and only if gr R has no nilpotents, if and only if g R = gr R. One obvious reason
for gt R to be different from grR is if vi(b) > 1 for some valuation v; in Rees’
formula, and grR to have support in other than integer degrees. Geometrically,
this corresponds to the divisor b = 0 not being generically reduced. (It is still
possible for gr R to be integer-graded, as example 3 shows.)

This raises the question: if the divisor b = 0 is generically reduced, does that
force grR = grR? To construct a counterexample, it will suffice to make the
divisor generically reduced but not reduced, hence not satisfying Serre’s criterion
S1. So the ambient SpecR shouldn’t satisfy Serre’s criterion S2, the canonical
example being the union of two planes in 4-space.

Let R = F[b, c,d,e]/(d(b—d), dc, e(b—d), ec), the union of the d = e = 0 plane
and b—d = ¢ = 0 plane. Then the b-divisor is SpecF[b, ¢, d, e]/(b, d?, dc, ed, ec),
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supported on the b = d = e = 0 line union the b = d = ¢ = 0 line, with an extra
point embedded at the origin.

Since dN = db™N for all N > 1, we see q(d) > % So q(d) > 1, and the
lower bounds {w;} we can guess for the q of the variables are q(b),q(d) > 1,
alc),ale) > 0. (Note that (d) # q(d) = 0.)

The relations are homogeneous with respect to this weighting, hence the asso-
ciated graded gr R turns out to be isomorphic to R:

grR = F[bm,c,dm,e]/(ec,d(b —d),dc,e(b— d))

Since this has no nilpotents, we can use proposition 4 to know that we have
correctly calculated q. (Side note: the fact that gr R = R doesn’t mean that grR
is boring — rather, it has served as a means of discovering a grading with which
to better understand R itself.)

Whereas grR = F[b(yy, ¢, d, e]/(ec, d?, dc, ed), whose quotient by v/0 = (d) is
F[b(1),c,el/(ec). Geometrically, the map grR— grR/(d) < grR corresponds (in
reverse) to a pair of planes meeting at a point, mapping onto a pair of planes
meeting along a line, mapping into a thickening of that scheme along the line.

2.2.3. grR # grR despite the divisor being reduced. It is curious that this can
only happen if b is a zero divisor, as we now prove.

Proposition 6. Let the ring R contain the element b, and assume R/(b) = gr Ry
has no nilpotents. If b is not a zero divisor, then grR also has no nilpotents, so
q=q and grR = grR.

Proof. Assume ¢ € R is nonzero, and q(c) = n > 0, so ¢ has image ¢ € gr Rn.
Assume also that ¢™ =0, so q(c™) > mn.

Then we can write ¢ = ab™ and ¢™ = db™ ! where q(a) = 0. So c™ =
a™b™ = db™ 1 hence b™(a™—bd) = 0. Since b is not a zero divisor, a™—
bd =0, so q(a™) > 1. Hence a is a nilpotent element of gr Ry, contradiction. [

To find an example in which grR has nilpotents, but only after degree O,
we therefore need to allow b to be a zero divisor. The proof above suggests’
I = (c — ab,c? — db*), which is almost good enough, we just need to take its
radical (using [M2]):

1= \/<c — ab, c2 — db#) = (ab—c, ac—b3d,c?—b?d) = (b,c)N{c—ab, a*—b?d)

"Instead of the relation ¢ — bd*, we might equally well have used ¢? — bd?, in which case
qlc) = 1%. We preferred q(c) = 2 to emphasize that the advantages of grR over grR are not
merely due to the rational grading.
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Let R = Fla,b,c,d]/I. Then R has no nilpotents, and neither does R/(b) =
Fla,b,c,d]/(b,c). But q(c) = 1, q(c?) = 4, so ¢ gives a nilpotent element of
gr R1.

In fact q(c) = 2, and
grR = F[a(o),b(]), C(2) d(o)]/<(lb, ac, c?— b4d>

where the parenthesized subscripts indicate the degrees. This, too, can be checked
with proposition 4.

A more standard Grobner basis calculation tells us
gr R = Flag), b1, ¢(0), d(0))/(c, a’b).

Geometrically, the map gr R — gr R corresponds (in reverse) to a union of a plane
and a surface along a line, mapping to a union of a plane and a double plane
along a line, where the map is generically 1: 1 on the first component and 2 : 1
on the second.

3. SOME NORMAL CONES AND BALANCED NORMAL CONES AS FLAT LIMITS

Let R =TFlay,...,an_1,b] be a polynomial ring in n variables, and I a radical
ideal. Let Y = A™ = SpecR, and let X = A™! be the b = 0 hyperplane.
Let V = SpecR/I, and W = X N V. We interpret the “basic construction” in
this case in terms of a transparent geometric limit, and under the hypotheses of
proposition 4, do the same for the balanced version. We include this description
only for illustration, and in this section do not give full proofs (though they are
quite straightforward from the theory of Grébner degenerations).

The basic construction, in this case, goes from

W — Vv W « CwV
1 ] to 1 1
Anf] 3y AT An71 «w AM

Hence CywV maps into the pullback W x A', inducing a Chow class on W x A
and thereby on the intersection W.

There is a geometric picture of the passage to the normal cone Cpyn-1A™ = A™.
Let the circle Gy, act on A™ by

t- (a1,...,an,1,b) = (a1,...,an,1,tb).

Then CwV can be computed as the flat limit lim o t - V, stretching V away
from VN A™ T

Two things can happen to any particular component K C V under this limit.
If KC A™ ' then t- K =K for all t including t = co. The map Cy/V — W x A
restricts to a map K — K x A, inducing the zero Chow class.
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It is more interesting when K ¢ A™ 1. Then lim¢ 0o t- K = (KNA™T) x AT,
and the map CwV — W x A restricts to an isomorphism (KNA™ 1) x Al = (KN
A™ 1) x A', inducing the fundamental class. The Thom-Gysin isomorphism then
takes that to the fundamental class of KN A™ ! inside W.

In all, the intersection class on W is given by the fundamental classes of the
(dim V — 1)-dimensional components of W (weighted by their lengths), leaving
out those components that were components of V.

In the balanced basic construction,

W — V W «CwV
l l gives l l
AN AN AN AT

Assume now we are in the case of proposition 4, where q(ai) = wy for 1 =
1,...,m—1, and § is induced from the filtration q(bB]; al) =B+ ) niws.
Fix a number N > 0 such that each Nw; € N.

In this case CwV can also be computed as a limit. Let G, act on A™ by
t-(an,...,an_1,b) = (t""1ay,..., t""n1a, g, tNb).
Then it is not hard to show that CywV = lim,o t- V.

Example 8. Let V be the parabola {b = a?} in the ab-plane, so W is a
double point at the origin. Then t -V is the skinny parabola {b/t = a?},
whose limit as t — oo is a double line. The map CywV — W x A! is an
isomorphism.

In the balanced construction, q(a) = 1/2, and we need N even. Sot-V
is the parabola {b/tN = (a/t"N/2)2}, which is to say, t -V = V = Cw/\V.
The map CywV — W x A is a double cover of the reduction of W x A'.

Ezample 9. Recall the nodal cubic V = SpecR, R = F[aq, b]/(bz—az(a—H ))
from example 5. The limit picture of the usual normal cone stretches this
nodal cubic vertically, resulting in a line at a = —1 and a double line at
a=0.

In this case grR was not generated by two variables; we needed to
introduce ¢ = a(a + 1). Geometrically, V is stretched into the third
dimension. In terms of the R-picture, the points in W = VN {b = 0}
are left alone, the points elsewhere in a < 0 are pushed behind the page,
and the points in a > 0 are pulled out of the page. The local picture of
an X through the origin is rotated a bit about the b axis, leaving the
ab-plane.

The limit picture of the balanced normal cone stretches not only the
vertical dimension, but the new third dimension (since q(c) = 1). In the
limit, one has a vertical line through the point (—1,0,0) € W, and the
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local picture of an x has been stretched to a union of two lines lying in
the a = 0 plane.

It would be interesting to study the relation of balanced normal cones and
dynamical intersection theory (which in the context of this section, defines the
intersection as the flat limit of VN {b = t} as t — 0). Very preliminary in-
vestigation suggests that where usual dynamical intersection theory studies how
solutions collide as t — 0, the balanced version keeps track also of how fast they
collide.

4. THE CARTIER CASE: THE RING /g\f AND A HOMOTOPY INTERPRETATION

We saw in proposition 3 that the multiplication operator b- on grR is always
1:1 above degree 0, so that

grR — R/VI @ grR/ann(b)

is an injection. This proposition also told us that on gr R/ann(b), multiplying by
b is 1: 1 and in high degrees, onto. That suggests that we fill in the holes in
small degrees, which we do now.

The map gr R to the fraction ring gr R[b~'] has kernel ann(b). Define
gr R := the integral closure of gr R/ann(b) in gr R[b~"].

Lemma 2. Let R, be a Q>o-graded ring with a homogeneous element b such that
b-: Ry — Ruy1is1: 1 for alln and onto for large n. Let v € Ry be homogeneous.
Then v/b Lk s integral over R, and even over Ry[b].

Proof. Pick d > 0 such that kd € N. Then 19 € Ryq, and to show 7 is integral
it is enough to show 19 is integral. In this way we can reduce to the case k € N,
which we assume hereafter.

Fix N € N such that b- : R, — Ryq7 is onto for all n > N. Then Ry is a
finite module over Ry (proof: take a homogeneous generating set for the ideal
®n>NRn; the elements in Ry generate Ry as an Ro-module). Since we can use b-
to identify all these Ry, for n > N,n € N, we will denote this module by Rys.o.
By multiplying by b", any homogeneous element s € R has an image s’ in Rys.o.
Now consider the sequence 17,1/, (1%)’,... in Ryso. They generate an Ro-
submodule of Rys.p, but only finitely many are needed to generate. Hence for
some m > 0, we can write (r™)’ =3 . __ci(r')’ with each c; € Ro. Lifting back
to R, this becomes r™ = ) . cibk(m=i Qo 1 satisfies a monic polynomial
with Rg[b]-coeflicients. O

Theorem 3. Let R be a ring and b an element, inducing q,gr R, grR as above.
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Then the natural map
orR -5 R/VI® grR
is a graded inclusion, and an isomorphism in high degrees. The multiplication
map
b-:grRy — gr Ry
is an isomorphism for all rational n > 0.

(A common reflex is to conclude from this that gr R = (grRp) [b]. But grR is
rationally graded, not integrally, so this result is merely specifying a periodicity
in the grading.)

If R® is a graded ring with R® =T an algebraically closed field, and b € R® is
homogeneous for this grading, then gr R splits naturally as a finite direct sum of
doubly graded rings {Ai}i—1. m with each (A;)® = (Ai)g = F.

Proof. The map given is the composite
gTR — R/VI @ grR/ann(b) — R/VI® grR
of two graded inclusions (taking R/v/T to be degree 0), and hence is one also.

Using proposition 3, choose N > 0 such that b- : grR, — grR,41 is an
isomorphism for all n > N. Then if ¢c/b* € grR, for n > N, we know ¢ €
(gr R/ann (b)) 4k, which we can identify with gF R4y since n+k > N+k > N > 0.
Then by the assumption on N, ¢ = b*d for some d, so ¢/b¥ = d € grR,,. This
shows that the inclusion gr R,, — gr Ry, is onto for n > N.

To see that b- is an isomorphism for all rational n > 0, we apply lemma 2 to
grR.

Since gr R stands between gr R/ann(b) and its full normalization, it is finite over
gr R/ann(b). In particular gr R is a finite-dimensional F-algebra. Since gr R® has
no nilpotents and F is algebraically closed, we find gr R® = @; F. In more detail,
gr R® has a unique F-basis (711,...,7m) up to reordering, with 7'[112 =1y, 7t =0
for i #£ .

Again since gr R is finite-dimensional without nilpotents, all of gr R must be
in ngg.

Let A; = mgrR as an algebra with unit element 7t;. Then grR = ®A; as
claimed. ([

It was to obtain a theorem like this that first led the author to the study of
balanced normal cones, to study the Hilbert function of R® in terms of R/v/T and
grR. In a future publication [Kn] we will use theorem 3 inductively to study
standard bases of homogeneous coordinate rings.
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For the rest of this section, we make the assumptions of the latter part of the
theorem, namely that R® is a graded ring with R® = F an algebraically closed
field, and b € R® is a homogeneous element. Let Y = ProjR® and X = ProjR/(b)
the divisor b = 0. Let E;Y = Projgr R®, where the € is there as reminder that
this is a completion of the usual cone.? Write (~Z§(Y for ProjgrR. Then by the last
part of the theorem above, 6§<Y is a disjoint union of weighted cones {Proj A}.

We can now interpret some of these ring maps geometrically:

gfR - gTR[b ] = CSY \ X — CyY
grR— R/vVI & gr R/ann(b) = Xrea U CxY \ X — CxY
GTROR/NVIOPAA = XpeaUU ProjA — CxY

4.1. Examples.

Example 10. Recall R = Fla,b]/(a? — ab) from example 7, with q(a) =
q(b) =1.

Here f = ab~! is integral, since f(f — 1) = b~2a(a —b) = 0, and
grR =TF[b, f]/(f(f — 1)) = F[b] & F[b'].

Geometrically, the divisor b = 0 is a double point at the intersection of
the two lines Spec R. The normal cone Spec grR is the trivial line bundle
over the double point. The balanced normal cone Specgr R = SpecR is
just the two intersecting lines. Whereas SpecgrR pulls apart the two
lines; it is the full normalization.

Ezample 11. Let R = F[b, ¢, d]/(c(c?—bd)), so X = ProjR is the union of
a line and a conic in the plane. One of the two points of intersection lies
on the line b = 0, which is tangent to the conic there. Using proposition
4, we find grR = R, with b € grRy,c € gR]/z, d € grRo.

Then f = c?b~! € grR[b~] is integral, because f(f —d) = cb2c(c? —
bd) = 0. In fact

g\fR — ]F[ba c, da ﬂ/<C(f - d)abf - Cz)f(f - d)>>

so ProjgrR/(b) is the disjoint union of the point ProjgrR/(b,c) and the
(doubly fat) point ProjgrR/(b,f — d,c?). Whereas ProjgrR/(b) is only
one (triply fat) point.

Note that ProjgrR is not the full normalization of X, which would pull
the two components apart at both ends.

Example 12. Recall the ring R = F[b,c,d,e]/(d(b — d),e(b — d), dc, ec)
from subsection 2.2.2, the union of the d =e =0 planeand b—d=c =0

2Note that this Proj is defined using the original grading R® on R (which descends to one
on grR since b is homogeneous), not the new grading gr R.. We won’t need this latter space
Projgr R., whose non-balanced analogue Projgr R, is the exceptional divisor in the blowup of
SpecR along Spec R/(b), hence isomorphic to SpecR/(b).
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plane. We found that the associated graded gr R turns out to be isomorphic
to R, with q(b) =q(d) =1,q(c) =q(e) = 0.
The first few graded pieces of gr R, are
gr Ro=TFIc,e]/(ec)
TR =b(grRo) @ Fd
grR, =b?(grRy) @ Fbd
grR3=b>(gr Ro) @ Fb’d

so b-: Ry — Ry is 1:1, and is an isomorphism in all higher degrees. This
suggests we look at the element f = db~'. It is indeed integral, satisfying
f(f—1)=0.

We know that grR should be the b-cone over gr Ry, so should have no
relations involving b; each will end up replaced by relations in degree O.
In fact

grR =TF[b,c,f,el/(f(f—1),e(f —1),fc,ec),
geometrically the cone over the disjoint union of the two linesc = f—1 =20,
e=f=0.

Ezxample 13. From subsection 2.2.3, recall the ring
grR = F[a(o), b(”, C(2) d(o)]/<ab, ac, C2 — b4d>

where the parenthesized subscripts indicate the degrees. The first few
graded pieces are

gr Ro =Fa, d]

grR1 =Db(grRp)

gr R2 =b?(aT Ro) & c(gT Ro)
gt R3 =b>(gT Ro) & be(gr Ro)
gt Ry =b*(gr Ro) @ bZc(gr Ro)

In this example b is a zero divisor, and b- : &Ry — g Ry is not 1:1. All
later maps are 1: 1, but only become onto at and after gr R; — gr R3.

The relation ¢ — b*d = 0 says that e = cb™2 is integral, as e* = d. In
fact

grR =Fla,b,e,d]/(a, e’ — d)

where we’ve lost the component that lived in b = 0.

Note that this is an example where the inclusion grR — grR is not
an isomorphism in all positive degrees n — only n > 2. (That’s because
q(c) = 2; this phenomenon is unrelated to b being a zero divisor.)
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Ezample 14. This is an irreducible example with gr R # grR.
Consider R = F[b, ¢, d, f]/(b*f + bed + c3), the homogeneous coordinate
ring of a cubic surface. It has a P! of singularities, along b = ¢ = 0.
It is easy to see that c?™! € (b™), and the lower bounds q(c) > 1/2,
q(d),q(f) > 0 suggest the degeneration F[b(y),c(1,2), d(o), f(o)]/(bcd—l—c3>.
Applying proposition 4, we see that we have correctly computed q, and
grR.
The first few graded pieces of grR are
grRo=F[d, f]
@R% :F[d, flc

grRy =F[d, flb @ F[d, f]c?
grRyy =TI[d, f]bc

gr Ry =F[d, f]b? @ F[d, flbc?

Multiplication by b should give a “I-fold periodicity” on gr R, suggesting
we let y = ¢?b™! fill in the hole seen in degree 0. Then y? + dy =
b~2c(c3 4 bed) =0, so y is indeed integral over R. In fact

grR=TFb,c,d, f,yl/(y*+ dy, by — c?) = (FId, f,yl/(y(y + d))) [b,cl/(by — c?).
Consider the map gr R grR after b is killed:
Fle, d, fl/(c®) — Flc, d, f,yl/(y? + dy,c?)

Taking Proj, this is a map from a bouquet of two P's (one with multiplicity
2) onto a single P! (with multiplicity 3), 1: 1 at the north pole intersection
but otherwise 2 : 1.

In case it helps give intuition into gr, we observe that the integral closure can
be taken before or after gr.

Proposition 7. Let R be a ring and b € R. Let R denote the integral closure of
R/ann(b) in R[b~']. Then grR = grR.

Proof. First, define a filtration on R[b~'] again called g by q(p/b*) = q(pb) —
(k+1). By Rees’ formula for @, this formula is well-defined. (If b is not a zero
divisor, the more obvious formula q(p)—k works as well.) Plainly it restricts to q
on R/ann(b), justifying the reuse of the name. With it, we can define gr (R[b~']),
easily seen to be isomorphic to (gF R)[b~']. Now the gF of

R/ann(b) <= R<—R[b~'] gives gr(R/ann(b))—grR—gr(Rb ') = (grR)[b .
Our goal is to show that @ﬁ is the integral closure of gr (R/ann(b)) in gF (R[b~]).
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We first show ﬁﬁ is integral over grR. Let r € R lie over T € grR. Then if
1/b¥ satisfies a monic polynomial p € R[x], its image T/b* satisfies p € gF R[x].
Hence we have maps

gF (R/ann(b)) < gF R < gr R.
Since the composite is an isomorphism in large degrees, so is the second inclusion.

Now it is enough to know that the map b- : ﬁﬁn — ﬁﬁnﬂ is onto for all
n>0. Letpe ﬁﬁnﬂ be the image of p € ﬁn+], soq(p) =n+12>1. Then
by Rees’ formula and the valuative criterion for integrality, p/b is integral over
R/ann(b), so p/b € ﬁn, giving a preimage of p in ﬁﬁn. O

4.2. A homotopical analogy. Let X be a topological space, and D a closed
subset. Then we can think of X as built from D with X \ D attached. A standard
homotopical operation at this point is to study (X, X\ D) by collapsing X\ D to
a point, or at least something contractible.

That is slightly too brutal for us. First thicken D to an open neighborhood
D, such that D retracts to D and X\ D retracts to X\ D. Then separate X\ D
into connected components W, with each W_ := W\ D a closed retract of W.
Now let X’ be X with each W_ collapsed to its own point. In good cases, up to
homotopy this means we replace W with the cone on W N D.

Ezxample 15. Let X be a circle and D a point on it. Then X\ D is con-
nected, so there is only one connected component W, and W is already
contractible. But in the (trivial) passage from X to X’ we don’t replace W
by the cone on the point W\ W = X\ (X\ D) = D; that would flatten the
circle X to an interval. Rather, we replace W with the cone on W_ND_,
which is two points.

In bad cases like this example, we are still replacing W with a cone - it’s just
not the cone on WN D, but instead a sort of link of that inside W. In the above
example, the link was two points.

In the algebraic geometry, the passage from X --+ X’ parallels the flat degen-
eration R --» grR. The decomposition of the open set X'\ D into connected
components UW corresponds to the decomposition of the fraction ring gr R[b~']
as a direct sum @, A. “Being a cone” is replaced by having a periodic grading.

The most subtle point in the above topological picture is the fact that we don’t
replace each W with a cone on WN D, but on something that maps to WND. In
the algebraic geometry, this reflects the fact that the inclusion gr R/ann(b) < grR
may not be an isomorphism. In this way, perhaps one should think of the map
gr R/ann(b) < grR as sort of an attaching map when building a complex. In
example 14 above, the attaching map is the one from the bouquet of two P's to
a single P'.
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5. FROM LOCAL TO GLOBAL

One can define the normal cone for any pair W C V of schemes, not necessarily
affine. The cleanest way to do this is to take global Spec [Ht, ex. 5.17] of the
sheaf of Oy-algebras gr Oy := Ov/I & I/I% @ ... where T is the ideal sheaf of
the subscheme W.

To define the balanced normal cone for any pair W C V (where V is now
reduced), we need an analogue of this sheaf of algebras. To each open set U, we
have associated filtrations qu, qy on I'(U; Ov). Let

IF(U;Ov)n :={r € T(U;Ov) : q(r) > n}, ne Q.

This is obviously a presheaf of Ov-ideals. For each U, there is a number Ny such
that Nyqy, is integral, i.e. T(U;Oy)n only depends on |[Nyn].

Proposition 8. Let W C V where V is a reduced scheme. Then each presheaf
U — T'(U; Ov)n is a sheaf. Consequently we can define the sheaf of graded algebras

grOy  defined by U P (r(u;(’)v)n/ > F(U;Ov)m>

neQ ny>n

whose Spec we call the balanced normal cone Cy/V.

Proof. Since these presheaves are defined as sub-presheaves of Oy, they auto-
matically satisfy the uniqueness half of the gluing axiom for sheaves, so we focus
on existence. Let 11 € T(Uy;Ov)n, T2 € T(Uy; Ov)n agree on Uy N Uy, and let
T € I'(U; U Uz Ov) be their common extension. We must show qy, y, (1) > 1.
Letn_ =n—e < n. Sincer; € I'(Uyq; Oy)n for i = 1,2, there exist M > 0 such
that qu, (rM) > Min_. So qu, (rM™2) > MiMn_, indeed qy, (r"™MM2) >
mM M n_ for all integral m > 0. Since the ideal sheaf 7 [mMiMen-] g indeed
a sheaf, we learn that qu,uu, (r™M2) > | mM;Myn_| for all integral m > 0.
Hence qyy, yu, (1) > n_. Since € was arbitrary, we find qy, y, (t) > n. O

The construction of the (usual) normal cone as a Spec has a parallel con-
struction of the blowup as a Proj. However, we cannot directly apply this Proj
construction to the obvious sheaf U — @neQ I'(U; Ov)n in order to define a “bal-
anced blowup”, because the Proj construction really requires the algebras to be

N-graded.

We could work with the sheaf U +— @ne%N I'(UW; Ov)n for some N > 0, but
this only interfaces well with the balanced normal cone construction if each stalk
of gr Oy is %N—graded. We now show how to find such an N in the case V is of
finite type.
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Lemma 3. Let I <R be an ideal, and qr, qgr the associated filtrations. Let ¢ € R,
and let S be the fraction ring R[c™], with filtrations qs,qg associated to the ideal
Ilc™"]. Then for each v € R, either qs(r) = oo or qs(r) = qr(rc™) for some m.

In particular, if Ng, Ns denote the LCMs of the denominators of qgr,ds, then
as\aR.

Proof. For any n,
Gs(r) >n < YM > 0,vM e (1[c ")) ™M
& Im,YM > 0, (rc™M e 1M
& dm,qg(rc™) >n
= n%1_r>noo qgr(re™) >n since this is increasing in m
Hence qg(r) = limm_,00 qr(rc™). The weakly increasing sequence qg(rc™) takes

a discrete set of values, so if it doesn’t go to infinity then it achieves its limit at
some finite m. O

(We leave the reader to convince herself that in the case that I is principal,
this lemma also follows easily from Rees’ formula.)

Proposition 9. Let W C V be a closed subscheme and V' be of finite type. Then
there is a number N > 0 such that each stalk of gr Ov s %N—gmded.

Proof. To find the N, we cover V by finitely many affine charts Uy, and let N be
the least common multiple of the Ny, for those charts. Now we need to show
that N has the desired property.

For each v € V, choose « such that the affine chart U, contains v. Now
we show that for any affine U C Uy, Ny|Ny,, or equivalently that Ny, qy is
integer-valued (where qy is the homogenized filtration on I'(U; Ov)). Proof: let
¢ € I'Ug; Ov) be a function vanishing on Uy \ U (necessarily a divisor, since U
is affine). Then apply lemma 3.

Now note that affine open sets contained in Uy give a basis for the topology
at v, so they are enough to compute the stalk. O

In this case we christen Proj (U = ey N (’)V)n) the balanced blowup
N

of V along W. It would be interesting to understand what universal property
characterizes balanced blowups.

6. PROOF OF THEOREM 1

Since we have to deal seriously with Chow classes in this section, we list some
simple properties we will need of them:



Balanced Normal Cones 1127

(1) If ¢ : W — V is proper, there is an induced map ¢, : Ae(W) — A4(V) of
their Chow groups, and these maps are functorial.

(2) The inclusion Wieq <— W of the reduction of W induces a map Ae(Wieq) —
A+(W) which is an isomorphism.

(3) Any sheaf F on V determines a class in Agimv(V), namely the sum
> ccyl(dim Fe)[C] where C ranges over the top-dimensional® components
of V. In particular, the structure sheaf Oy defines the fundamental
class [V] € Agimv(V). This assignment descends to a map Ke(V) —
Adim v(V) from K-homology.

(This is only the simplest approximation to a better-known result: the
K-homology possesses a natural filtration whose associated graded space
is rationally isomorphic to A(V). The above approximation is all we will
need.)

Because of property 2, we can work on any scheme whose reduction is (Cyw/V)yeq.
This will make it easier to find a venue in which the two induced classes in K-
homology are equivalent. From there, we will use property 3 to deduce that the
two induced Chow classes are equivalent.

The following K-homology lemma also appears in [AK], where it is applied to
a more general situation than the one considered in this paper.

Proposition 10. Let t be a non-zero-divisor in Q, and let Q > Q stand between
Q and its integral closure in Q[t~']. Assume that Q is finite over Q (for example,
if Q is reduced and finitely generated over a field).

Then 3 N > 0 such that the modules Q/tQ and Q/tQ define the same element
of K-homology of the ring Q/(tN).

Proof. Consider the short exact sequences of Q-modules

0—-Q/tQ - Q/tQ - Q/Q — 0, 0—1tQ/tQ —» Q/tQ — Q/tQ — 0.

Since t is not a zero divisor, the natural map Q/Q — tQ/tQ is an isomorphism.
So we get the equation in K-homology

[Q/tQl = [Q/tQl - [Q/Ql = [Q/tQ] — [tQ/tQ] = [Q/tQl.

By the assumptions on Q, there exists an N such that tN"1Q c Q. Therefore
annihilates all of these modules, so they are modules over the ring Q/(t"),
and the derivation of this K-homology equation holds there. O

tN

3Some authors define the fundamental Chow class as a sum over all components, but this
definition has some problems. Here is one. Given a connected flat family of projective schemes,
one can push forward the fundamental Chow classes of the fibers to give Chow classes on
projective space. Our definition gives a constant result, whereas the sum over all components
may not.
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Before continuing the proof, we try to give some topological feeling for the
application of property 2. Given four spaces A,B C X C Y, knowing A and B
are homologous in X implies they are homologous in Y. We can go the reverse
direction (knowing A and B are homologous in Y implies they are homologous
in X) if X is a homotopy retract of Y. But Y may be a more convenient place
to calculate. Property 2 says that, when computing Chow classes, W;eq behaves
like a homotopy retract of W.

Corollary 1. In the setup of proposition 10, the class in Aiop(Spec Q/(t)) as-
sociated to the module Q/tQ is the fundamental class of Spec Q/(t).

Proof. The result follows from the above proposition, property 3, and two appli-
cations of property 2, comparing Q/(tN) to Q/1/(tN) = Q/+/(t) to Q/(t). O

Ezample 16. We give an example to show how things can fail if Q is not
reduced. Consider the ring F[x, t,t~']/(x?), graded by power of t, and let
Q be the graded subring generated by t and xt~'. So the degree n part is
0 forn < —1, Fxt~! for n = —1, and Ft" @ Fxt™ for n > 0.

The integral closure Q of Q inside Q[t™'] = F[x,t,t~']/(x?) agrees with
Q in degrees n > —1, but in degrees n < —1 it includes also Fxt™, as
each xt™ satisfies the monic polynomial zZ = 0. Since Q uses all negative
degrees and Q is supported in degree n > —1, Q is not a finitely generated
module over Q. Moreover, the conclusion of corollary 1 is false; Q/tQ = IF
gives the class of a single point, whereas Spec Q/(t) = F[xt~']/{(xt™")?)
is a double point.

We will obtain the integrality required in the above proposition from the I-adic
case of Theorem 4.16, part iii, of [Re]:

Theorem 4. [Re] Let R be a Noetherian ring, 1 an ideal, and q,q as in the
introduction. Define q*(r) as the maximum m such that v satisfies a monic
polynomial

X" ax™ N+ Fan=0

with each q(ai) >1im. Then q* = |q].

Proof of theorem 1. We first reduce to the affine case as follows. While Chow
classes on a scheme are in principle global objects, those in top degree are local
in that they are characterized by their restriction to the generic point of each
(top-dimensional) component. And each of those generic points is hit by CxY for
some affine opens X C WY C V.

By hypothesis, we can work in affine charts where the coordinate ring R of
Y is finitely generated over a field. Let I be the ideal defining X, and define
q,q,grR,grR as usual.
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Let N be the LCM of the denominators in . Then define two subalgebras of
R[t,t~ '], where t is a new indeterminate;

Q=@ t " {r=a() = n/N} Q=P t " {r:q(r) = n/N}.

nez nez

(If N = 1, then the first is exactly the Rees algebra of the pair R,1.) It is easy
to see that Q/(t) = grR, Q/(t) = grR, once one rescales the grading by —N. To
connect to the statement given of theorem 1, we observe that the corresponding
schemes are CxY, CxY, which are patches on CywV, CywV.

In either Q or Q, the positive degree summands are just R, so Q[t~'] =
Q[t™'] = R[t,t"]. In particular, Q < Q[t~']. Since § > ¢, we also have a
containment Q < Q. We are almost in the situation of proposition 10; it remains
only to show that Q is integral over Q. (Finiteness follows from the fact that Q
too is reduced and finitely generated over a field, hence has a finite normalization.)

Let s =t *r € Qy, so q(r) > k/N. The element 7 is integral over Q iff its Nth
power is, so by replacing s by its Nth power we can reduce to the case that k is a
multiple of N. Hence q*(r) > k/N, as defined in theorem 4 above. So 1 satisfies
a monic polynomial

2

a2+ an =0 with each q(ai) > ik/N.

Dividing by t™¥, we get

s (a1t (az/tP)sV 2 L an/t™ =0
Since q(a;i) > ik/N, each ai/t'* is in Q, so s is integral over Q as was to be
shown.

We are now able to apply corollary 1, which tells us that the class in Aop(Spec
gr R) associated to the module grR is the fundamental class of Spec gr R.

The proof is done; we pause to unwind it. By property 2, Atop((CxY)red) =
Atop(CxY). Using that identification and the last paragraph above, we showed
that the class in A¢op((CxY)rea) associated to the thickening CxY matches the
class in Atop((CxY)rea) associated to the branched cover CxY. As explained in
the first paragraph, we can use local calculations like this to establish the desired
result in A¢op((CwV)rea)- O

Ezxample 17. Since theorem 1 uses proposition 10, it can fail if Y is not
reduced. Let R = F[x]/(x?), I = (x). Then q(x) = 1, and q(x) = co. So

Q= t " {r:q(r) = n} Q=P t{r:am=n

nez nez

are the Q, Q of example 16.
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After observing this Rees algebra normalization interpretation of theorem 4,
we found the same interpretation in Theorem 10.6.6 of the forthcoming book
[HuSw].
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