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Abstract: We recall the basic definitions and results of Goresky and
MacPherson on Stratified Morse Theory. We also briefly describe the “clas-
sical” applications of these results to intersection homology, homotopy re-
sults for algebraic varieties, and homology groups of complements of affine
subspace arrangements. We then discuss a number of related results and
developments, which have appeared since Goresky and MacPherson’s work.

1. INTRODUCTION

In 1974, Mark Goresky and Robert MacPherson began their development of
intersection homology theory, and their first paper on this topic appeared in 1980;
see [12]. At that time, they were missing a fundamental tool which was available
for the study of smooth manifolds; they had no Morse Theory for stratified spaces.
Goresky and MacPherson wished to have a Stratified Morse Theory to allow them
to prove a Lefschetz hyperplane theorem for the intersection homology of complex
singular spaces, just as ordinary Morse Theory yields the Lefschetz Hyperplane
Theorem for ordinary homology of complex manifolds ([34], §7).

The time was ripe for a stratified version of Morse Theory. In 1970, Mather
had given a rigorous proof of Thom'’s first isotopy lemma [33]; this result says
that proper, stratified, submersions are locally-trivial fibrations. In 1973, Morse
functions on singular spaces had been defined by Lazzeri in [25], and the density
and stability of Morse functions under perturbations had been proved in [37]. We
shall recall these definitions and results in Section 2.

What was missing was the analog of the fundamental result of Morse Theory, a
theorem describing how the topology of a space is related to the critical points of a
proper Morse function. In [16], Goresky and MacPherson proved such a theorem
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for stratified spaces. Suppose that M is a smooth manifold, that X is a Whitney
stratified subset of M, and that f : X — R is a proper function which is the
restriction of a smooth function on M. For all v € R, let X<, := f~1((—o00,v]).
Suppose that a,b € R, a < b, and f~!([a,b]) contains a single (stratified) critical
point, p, which is non-degenerate (see Definition 2.3) and contained in the open
set f~1((a,b)). Let S be the stratum containing p. Then, the Main Theorem of
Stratified Morse Theory (see Theorem 2.16) says that the topological space X<y,
is obtained from the space X<, by attaching a space A to X<, along a subspace
B C A, where the pair (A, B), the Morse data, is the product of the tangential
Morse data of f at p and the normal Morse data of f at p. This result is especially
powerful in the complex analytic case, where the normal Morse data depends
on the stratum S, but not on the point p or on the particular Morse function
f. Detailed proofs of these results appeared in the 1988 book Stratified Morse
Theory [16]; we present a summary of a number of these results in Section 2.

Even before the appearance of [16], Goresky and MacPherson published two
papers, Stratified Morse Theory [15] and Morse Theory and Intersection Homol-
ogy Theory [14], which contained announcements of many of the fundamental
definitions and results of Stratified Morse Theory. In addition, these two papers
showed that Stratified Morse Theory has a number of important applications to
complex analytic spaces, including homotopy results, the desired Lefschetz Hy-
perplane Theorem for intersection homology, and the first proof that the (shifted)
nearby cycles of a perverse sheaf are again perverse. We shall discuss these results
and others in Section 3.

While it is probably fair to say that most papers on the topology of singular
spaces which have appeared in the last 15 years use Stratified Morse Theory
as a tool at some point, many of these papers are not really about Stratified
Morse Theory. In Section 4, we will discuss results which has appeared since the
publication of [16] which are, in fact, closely related to Stratified Morse Theory.
In these works, either Stratified Morse Theory is the fundamental tool, or the
results are improvements/refinements of results found in [16], or the results are
variations of the Main Theorem that local Morse data is the product of tangential
and normal Morse data. We also include a very brief discussion of discrete Morse
Theory.

We should remark that this paper is not a complete treatment of Stratified
Morse Theory. For such a treatment, the reader is directed to [16]; the exposition
and pictures provided by Goresky and MacPherson are outstandingly beautiful,
especially for such a technical subject.
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2. BASIC STRATIFIED MORSE THEORY

In this section, we will briefly present the fundamental definitions and results
from [16], [15], and [14]; we will discuss the applications of these results in the
next section.

STRATIFICATIONS AND DECOMPOSITIONS

Fix a smooth (C*°) manifold M, and a subset X C M with a Whitney strat-
ification & (where we are not assuming that the strata are connected). For
Sa,Sp € 6, we write S, < Sp for the usual ordering given by S, C 5’7ﬁ For
x € X, let S, denote the stratum of & containing x.

Many of the results and constructions in Stratified Morse Theory refer to topo-
logical spaces which can be written as disjoint unions of subspaces which are nat-
urally indexed by the stratification G, even though the spaces themselves are not
stratified by &. For instance, this is the case in the Main Theorem of Stratified
Morse Theory (Theorem 2.16). Thus, one is led to define the notion of a decom-
position. One can define decompositions with respect to any partially-ordered
set; however, for our purposes, it suffices to consider the partially-ordered set &.

Definition 2.1.([16], §1.1.1) An S-decomposition of a topological space Z is a
locally finite collection {Zs | S € &} of disjoint, locally closed, subsets of Z such
that Z = Jges Zs and

Zs,NZs, #0 < Zs, CZs, <> Sa < Sp.

Suppose that Y is a subspace of X, and P is a topological space. Then, Y
and P x'Y have canonical G-decompositions; if S € &, then we let Yg :=5SNY
and (P xY)g := P x Yg, and define decompositions Sy := {Yg | S € &} and
Cpxy = {(P X Y)S ’ S e 6}.

An 6-decomposed map g between two S-decomposed spaces W and Z is a
continuous function which “preserves strata”, i.e., for all S € &, g(Wg) C Zg.
If A, B, and Z are &-decomposed spaces, where B C A, and g: B — Z is an G-
decomposed map, then the adjunction space ZUpg A is canonically &-decomposed.

If two &-decomposed spaces are homeomorphic via an &-decomposed homeo-
morphism, then we say that the spaces are G-homeomorphic.

Note that these decompositions of Y and Y x P can easily fail to be Whitney
stratifications. However, if N is a smooth submanifold of M which transversely
intersects all of the strata of &, then the &-decomposition of N N X is, in fact,
a Whitney stratification.
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Assume now that M is endowed with a Riemannian metric; all of the results
that we discuss are independent of the choice of this metric. We let Bs(z) denote
the closed ball of radius ¢ centered at z € M. In the following definition, we follow
[16], §1.1.4; however, we have altered the terminology slightly, in an attempt to
more accurately match current usage.

Definition 2.2. If x € X, then, there exists 69 > 0 such that, for all § such
that 0 < 0 < &g, the boundary sphere OBs(x) is transverse to the strata of S,
and so the &-decomposition of 0Bs(x) N X is actually a Whitney stratification;
thus, Bs(x) N X has a canonical Whitney stratification, which is a refinement of
its &-decomposition. We refer to such a Bs(z) as a Whitney ball at = in M,
and the &-decomposed Whitney stratified space Bs(x) N X as a Whitney ball
at z in X. The &-decomposed Whitney stratified space OBs(x) N X is the real
link of X at x. The &-decomposed Whitney stratified homeomorphism-type of
the pair (Bs(x) N X,0Bs(x) N X) is independent of the Riemannian metric, the
Whitney ball, and the choice of x in a single connected component of the stratum

Sy.

Let x € X, and let N be a smooth submanifold of M which transversely inter-
sects all of the strata of &, and such that N NS, = {x}. Then, N is a normal
submanifold to X at p, and the &-decomposed Whitney stratified space N N X
is called a normal slice of X at x. A normal ball to X at x is a Whitney
ball at x in NN X.

The real link of the stratum S, at x is the is the real link of the stratum
{z} in NNX. The &-decomposed Whitney stratified homeomorphism-type of the
pair (N N X N Bs(x), N N X N9IBs(x)) is independent of the choice of N, the
Riemannian metric, the Whitney ball, and the choice of x in a single connected
component of the stratum S,.

The reader should note that the term “normal slice” is frequently used to mean
any one of the three spaces: N N X N Bs(x) (as in [16]), N N X, or N; however,
the meaning is always clear from the context.

If Bs(z) is a Whitney ball, and we write cone(0Bgs(z)) for
(0Bs(z) x [0,1])/(0Bs(z) x {0}),

then there exists a homeomorphism h : Bs(x) — cone(0Bs(x)) such that h(x) =
cone point, and the restriction of h to a map from Bs(z) — {z} to 0B;s(x) x (0, 1]
is 6-decomposed.

COTANGENTS AND CONORMALS

Fix a smooth function f : M — R, and let f := f‘x. Such an f is simply
referred to as a smooth function on X. The (stratified) critical locus of f is
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Yof = U, 2(f|s, ) where X(f|, ) is the ordinary critical locus of a function on
a smooth manifold.

Let us recall some notions from conormal geometry. For S, € &, we let
T§ M denote the conormal space to So in M, ie., T§ M is a vector bundle

over S, whose fiber (TgaM )m over a point x € S, consists of the cotangent
vectors (covectors) in (T*M )x which vanish on the tangent space to S, at x. By
Whitney’s condition A, TgM := [J,c4 T5 M is a closed subset of (T*M),; the
elements of T3, M are called conormal (or, characteristic) covectors of X (in T*M
with respect to &). If the stratification of X is clear, we usually write T% M in
place of TEM. Note that x € Xgf if and only if dof € s M.

The set of degenerate conormal covectors to a stratum S, is defined to be

ps M=Ts M0 |J TEM=( |J T5,M)
Sa<55 Sa<Sg
Thus, the fiber (Dgw M )x consists of limits at x of conormal covectors to larger
strata or, equivalently, conormal covectors to S, at x which vanish on limiting
tangent spaces from larger strata.

Suppose that we have another smooth manifold N and a smooth map g :
M — N. Then, a covector { € TN is characteristic (for g and &) if there exists
ap € XNg '(g) such that the pullback g*(¢) := od,g € T, M is a characteristic
covector of X.

MORSE FUNCTIONS AND NONDEPRAVED CRITICAL POINTS
Now we are ready to define Morse functions in the stratified situation.
Definition 2.3.([25], [37]) A point x € X is a (stratified) nondegenerate crit-
ical point of f if and only if x is a nondegenerate critical point of fi; and
dof & D% M.
The function f is a Morse function if and only if f is proper, has distinct
critical values, and all of the critical points of f are nondegenerate.

Note that a nondegenerate critical point of f is necessarily an isolated point
in Xsf.

It follows from the work of Pignoni [37] and others (see 1.2.2.1 of [16]) that
if M is an analytic manifold, X is a closed subanalytic set of M, and & is a
subanalytic Whitney stratification, then:

Theorem 2.4. The set of smooth, proper functions from M into R, which re-
strict to Morse functions on X, form an open, dense subset (in the Whitney C*°
topology) of the set of all smooth, proper functions from M into R.
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Thus, any smooth, proper function on M can be perturbed slightly to produce
a function which restricts to a Morse function on X.

Another familiar “genericity” result from ordinary Morse theory generalizes to
Stratified Morse Theory:

Theorem 2.5.([16], 1.2.2.4) Suppose that M =R". Forpe M, letr, : M — R
denote the distance squared function (from p). Then, for almost allp € M, (r})
is a Morse function.

|x

Essentially, Stratified Morse Theory is the theory which describes what a Morse
function on a stratified space tells one about the topology of the space. However,
the Main Theorem of Stratified Morse Theory (Theorem 2.16) applies to critical
points which are more general than nondegenerate critical points; the theorem
applies to what Goresky and MacPherson termed as nondepraved critical points.
This more general notion is useful since it includes, for instance, isolated critical
points of real analytic functions, even if the critical point is degenerate.

Definition 2.6.([16], §1.2.3) Let U be an open subset of R™, and let g : U — R be
a smooth function. Then, an isolated critical point p of g is nondepraved if and
only if it satisfies the following condition: Suppose that p; is a sequence of points
in U, and that the vectors v; := (p; — p)/|pi — p| converge to some limiting vector
v. Suppose that the hyperplanes ker dp,g converge to some limiting hyperplane T,
and that v & . Then, for all sufficiently large i, dp,g(v;) - (9(pi) — g(p)) > 0.

In order to define a nondepraved critical point of a function on a smooth
manifold, we need to know that nondepravity is invariant under diffeomorphisms.

Proposition 2.7.([16], §1.2.6) Suppose that U and V are open neighborhoods of
the origin in R™, and that ¢ : (U,0) — (V,0) is a diffeomorphism. Then, 0 is a
nondepraved critical point of a smooth function g : V — R if and only if 0 is a
nondepraved critical point of g o ¢.

Definition 2.8. If N is a smooth manifold and g : N — R is smooth, then
p € N is a nondepraved critical point of g if and only if, for some smooth
coordinate patch ¢ on N at p, ¢(p) is a nondepraved critical point of go ¢~ 1.

Proposition 2.9. If p is a nondegenerate critical point of a smooth function g
on a smooth manifold, then p is nondepraved.

Proof. By the Morse Lemma and Proposition 2.7, one is reduced to showing that

the origin is a nondepraved critical point of g = —2% — - -+ — xi + xiﬂ +...22.

This is trivial. O
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Proposition 2.10.([16], §1.2.4) If N is a real analytic manifold, and g : N —
R is a real analytic function, with an isolated critical point at p, then p is a
nondepraved critical point of g.

Now, we return to the stratified setting.

Definition 2.11.([16], §1.2.3) A critical point x € X of the function f: X — R
is nondepraved (with respect to &) if and only if Ji s, has a nondepraved critical

point at © and d,f & Dy M.

Note that a nondepraved critical point of f is necessarily an isolated point in
Sef.

MORSE DATA

Throughout this subsection on Morse data, we assume that our smooth func-
tion f : X — R is proper, and that p € X is a nondepraved critical point of f.
Let v := f(p).

In the remainder of this section, there will be a number of G-decomposed
and /or stratified spaces which are defined after making a choice of real numbers ¢
and € such that 0 < € < § < 1. When we do this, we mean that this characterizes
a unique &-decomposed and/or stratified homeomorphism-type. When we write
that the space is independent of the choice of 0 < € <« § < 1, we actually mean
that this homeomorphism-type is independent of the pair (e, d) in some fringed
set; see [16], Chapter 5.

For a,b € R, let X, := f~!(a), X<q := f~((—00,4a]), and X[, := f~*([a,b]).
Recall that S, denotes the stratum containing p.

If p is the only critical point of f with critical value v, then it follows easily that
there exists ¢y > 0 such that [v — €y, v + €g] contains no critical values of f other
than v. By Thom'’s first isotopy lemma, for 0 < € < €, Z,_, (respectively, Z, 1,
1eSP.;, Z[y—ey,ut<o]) 15 homeomorphic to Z,_, (respectively, Zy ¢, resp., Zjy_cy1e])
by an &-decomposed homeomorphism; note that the &-decompositions of Z,_.
and Z,. are Whitney stratifications, and that Zj,_ , 1 has a canonical Whitney
stratification which is a refinement of its G-decomposition.

Definition 2.12.([16], §1.3.3, §1.3.4) Suppose that p is the only critical point of
f with critical value v.

A pair (A, B) of &-decomposed spaces is Morse data for f at p if and only if
there ezists € > 0 such that v is the only stratified critical value of f in [v—e, v+¢],
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and there is an G-decomposed embedding i : B — X<,_. such that X<,y s
homeomorphic to X<,— Up A by an &-decomposed homeomorphism.

Coarse Morse data for f at p is a Whitney stratified, G-decomposed pair
(X[v,eere],Xv_e), where € > 0 is such that v is the only stratified critical value
of fin[v—ev+e.

Lemma 1.3.5.1 of [16] tells us that, for all sufficiently small 6 > 0, p is the
only critical point of fi Bs(m)nX with critical value v (where Bs(p) N X is given the

induced Whitney stratification), and Proposition 1.3.5.3 of [16] tells us that &-
homeomorphism type of the coarse Morse data for f| Bs(mInX at p is independent of
the choice of Riemannian metric and of the choice of the sufficiently small § > 0.

Hence, one makes the following definition:

Definition 2.13.([16], §I.3.5) Local Morse data for f at p is coarse Morse
data for f‘B(S(me at p for sufficiently small § > 0.

Note that local Morse data is Whitney stratified and &-decomposed. Also,
note that the definition of local Morse data does not require that f is globally
proper, but only requires that the restriction of f to a sufficiently small closed
ball is proper.

Theorem 2.14.([16], Theorem 1.3.5.4) If p is the only stratified critical point of
[ with critical value v, then local Morse data for f at p is Morse data for f at p.

Thus, if f has distinct critical values and no depraved critical points, then the
change in the topology of X over a given critical value of f can be described in
terms of local data at the corresponding nondepraved critical point. Of course, if
we begin with any proper smooth function g with isolated critical points, then,
by Theorem 2.4, we may perturb g to obtain a Morse function whose only critical
points are arbitrarily close to the original critical points; in this sense, the change
in the topology of X over a critical value of g depends only on data near the
critical points. However, if the critical points of g are depraved, then Lemma
1.3.5.1 of [16] fails and there is no well-defined local Morse data.

We now need the notions of tangential and normal Morse data for f.

Definition 2.15.([16], §1.3.6.1) Tangential Morse data for f at p is the
Whitney stratified local Morse data for f‘sp at p.

Let N be a normal submanifold to X at p. Normal Morse data for f at p
is the Whitney stratified, &-decomposed, local Morse data for f| . atp.

The &-decomposed homeomorphism-type of the normal Morse data is inde-
pendent of the choice of the normal submanifold N (see [16], 1.3.6.1).
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If N is a normal submanifold to X at p and 0 < € < 6 < 1, then there are (so
far) three pairs of data at p in which we are interested:

e the G-decomposed local Morse data,
(A,B) = (Bs(p) N [ ([v — e,v+ ), Bs(p) N (v —e));
e the tangential Morse data,
(C.D) == (Bs(p) N S, 1 £ ([v — ;0 + €]}, Bs(p) NS, 0 f (v - €));
and

e the Whitney stratified, &-decomposed normal Morse data,
(B, F):= (Bs(p) NN N fH[v—ev+e), Bs(p)NNNf ' (v—e)).

There are two more pairs of spaces which we need to define:
e the G-decomposed, Whitney stratified upper halflink,
(1F,007) i= (Bs() NN N f~ (v + ), 9B5(p) NN N f~1(v + )
and
e the G-decomposed, Whitney stratified lower halflink,
(7,00) := (Bs(p) NN N f~ (v =€), Bs(p) NN N fH v —e)).

The homeomorphism-type of each these five pairs of spaces, with their &-
decompositions, is independent of the choice of the Riemannian metric, the nor-
mal submanifold, and the choices of § and e. Note that, as each pair of spaces is
intersected with a small closed ball in M, the definitions do not rely on the fact
that we made the global assumption that f is proper.

Fix a choice of N, §, and € as above.

The subspace and product decompositions yield a canonical G-decomposition
on the product of tangential and normal Morse data

(C,D) x (E,F)=(C x E,(CxF)U(D x E)).

Now we can state the Main Theorem of Stratified Morse Theory.

Theorem 2.16.([16], 1.3.7) There is an &-decomposed homeomorphism of pairs
from the local Morse data of f at p to the product of the tangential and normal
Morse data for f at p.
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The reader should understand the importance of Theorem 2.16. Suppose for
the moment that f is, in fact, a (stratified) Morse function. Then, by Theo-
rem 2.14, the change in the topology of X as f passes through a critical value is
determined by the local Morse data at the corresponding critical point. By Theo-
rem 2.16, this local Morse data is determined by the tangential and normal Morse
data. However, the tangential Morse data is determined by the ordinary Morse
theory on smooth manifolds; one finds the index of the critical point. Therefore,
what Theorem 2.16 tells us is that, to understand the change in the topology of
X, the new data that needs to be analyzed is the normal Morse data.

The following three results help one to understand the normal Morse data.

Theorem 2.17.([16], 1.7.5.1) Let g : M — R be another smooth function.
Suppose that g : X — R is proper, and has a nondepraved critical point at p.

If d,g and dpf are in the same connected component of the set TgipM —
DgpM (i.e., the nondegenerate conormal covectors to Sy ), then the normal Morse

data and upper and lower halflinks for g at p are homeomorphic, by a stratum-
preserving &-decomposed homeomorphism, to the respective data for f at p.

Theorem 2.18.([16], I.1.8 and 1.7.5.3) Let S denote the connected component
of Sy, which contains p. Suppose that M is a real analytic manifold, X is a
subanalytic set in M, and & is a subanalytic Whitney stratification.

Then, TGM — DM has a finite number of connected components, and so
there are finitely many choices, up to stratum-preserving homeomorphism, for
the normal Morse data, and upper and lower halflinks, of f at p.

Theorem 1.3.11.1 of [16] explains how the normal Morse data is constructed,
up to G-homeomorphism, from the upper and lower halflinks. As a corollary,
Goresky and MacPherson obtain:

Corollary 2.19.([16], 1.3.11.2) The normal Morse data for f at p has the
homotopy-type of the pair of spaces (cone(l™),[7).

THE RELATIVE NONPROPER SITUATION

In many applications, it is important to be able to eliminate the condition
that the functions to which we apply Stratified Morse Theory must be proper. In
other applications, it is useful to have Stratified Morse Theory relative to a map
between stratified spaces. Goresky and MacPherson address these more general
situations in Chapters 9 and 10 of [16], and discuss the combined generalization
in Chapter 11; we present some of these results here.
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Let Z be a closed Whitney stratified subset of a manifold M. Suppose that
f : Z — R is a proper smooth function, which has a nondepraved critical point p
with an isolated critical value f(p) = 0.

Let X be a Whitney stratified set, with stratification &. Let 7 : X — Z be
a surjective, proper, stratified map, i.e., T takes each stratum of X submersively
to a stratum of Z. Let T C &, and let X be the union of the strata in ¥.

Let m := 7. We are interested in the Stratified Morse Theory of for : X — R.

Note that the non-relative, nonproper case is the case where Z = X and 7 is the
identity map, while the relative, proper case is the case where ¥ = & (and so,
X =X).

Theorem 2.20.([16], 1.11.2) Suppose that the interval [a,b] contains no stratified
critical values of the map f. Then, there is a T-decomposed homeomorphism
X<o = Xap.

Let (J, K) denote the local Morse data for f at p. Let (P, Q) denote the normal
Morse data for f at p, and let (A, B) denote the tangential Morse data for f at

p.
Definition 2.21. The relative local Morse data (J™, K™) is (7~ 1(J), 771 (K)),
and the relative normal Morse data (P™, Q™) is (7~ 1(P), 7 1(Q)).

The following theorem says that the relative local Morse data is, in fact, Morse
data for f o, “at” (or, above) the point p.

Theorem 2.22.([16], I.11.4) For sufficiently small € > 0, there is a T-decomposed
homeomorphism
Xee® (X<—e) Ugn (J7).

The relative nonproper version of the Main Theorem of Stratified
Morse Theory is:
Theorem 2.23.([16], 1.11.5) There is a T-decomposed homeomorphism

(J7, K7) = (A, B) x (P", Q).

THE COMPLEX ANALYTIC SITUATION

Throughout this subsection, we assume that M is a complex analytic manifold,
endowed with a Riemannian metric, X is a complex analytic subset of M, and
S is a complex analytic Whitney stratification of X (which always exists). We
continue to assume that f : X — R has a nondepraved critical point at p € X.
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As in Theorem 2.18, let S denote the connected component of S, which contains
p. There is the following analog of Theorem 2.18.

Theorem 2.24.([16], 1.7.5.4) The space TeM — DEM has a single connected
component, and so the &-homeomorphism-type of the normal Morse data, and
upper and lower halflinks, at the point p are independent of the function f.

Moreover, the upper and lower halflinks are &-homeomorphic to each other.

In light of the theorem, in the complex analytic case, one normally speaks
of the normal Morse data, and upper and lower halflinks, of S at p, without
reference to the function f.

We need to define one of the most basic concepts in complex analytic Strat-
ified Morse Theory: the complex link of a stratum. Let N C M be a complex
analytic normal submanifold to X at p. Note that restriction to T, N yields an
isomorphism 7 from (TgM )p to (T*N )p.
Definition 2.25.([16], §11.2.2) Let w be a nondegenerate conormal covector at p.
Let L : N — C be a complex analytic map such that L(p) = 0 and d,(ReL) =
T(w).

Then, for 0 < || < § < 1, the complex link of S in X, Lg, is the &-
decomposed (homeomorphism-type of the) space

Ls:= L~ (&) N X N Bs(p).

The boundary of the complex link of S in X, 0lLg, is the &-decomposed
(homeomorphism-type of the) space

OLg := L™1(€) N X N dB;(p).

Using the above notation, Ng := NN X N Bs(p) is a normal slice of X at p, and
the &-homeomorphism-type of Ng is determined by the G-homeomorphism-type
of the real link of X at p, which in turn is determined by the following result; the
proof is completely constructive, but we omit the actual construction.

Theorem 2.26.([16], §11.2.5) The &-homeomorphism-type of the real link of S
at p and normal Morse data of S at p are determined by a monodromy (&-
decomposed) homeomorphism of Lg, obtained by letting £ travel around a small
circle around the origin, and leaving a neighborhood of JlLg fixed.

Note that if S is a maximal stratum of X (i.e., not contained in the closure
of another stratum), then Ng = {p} and Lg = (. Even in this trivial case,
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Theorem 2.26 remains true, for the real link is empty, and the normal Morse
data is ({p},0).

We have the following strong uniqueness theorem.

Theorem 2.27.([16], I1.2.3) The &-homeomorphism-types of Lg, dLg, and Ng
are independent of the point p € S, the nondegenerate conormal covector w, the
Riemannian metric, the normal submanifold N, the function L, and the choice
of § and & (provided 0 < [€] < § < 1).

Finally, the complex link determines the normal Morse data up to homotopy.

Theorem 2.28.([16], I11.2.4) If the critical point p of f is nondegenerate, then the
normal Morse data of f at p has the homotopy-type of the pair (Ng,Lg), which
is also the homotopy-type of the pair (cone(Lg),Lg).

CONSTRUCTIBLE COMPLEXES OF SHEAVES

In [16], 6.A, Goresky and MacPherson give a very brief discussion of the con-
nection between Stratified Morse Theory and hypercohomology of bounded, con-
structible complexes of sheaves. Background references for this subsection are
[1], [20], [6], [39], and [31], Appendix B.

Let X be a complex analytic space, embedded in a complex manifold M, and
let & := {S4}a be a complex analytic Whitney stratification of X. For notational
convenience, we assume that each stratum of & is connected. Fix a Riemannian
metric on M.

Fix a base ring R that is a regular Noetherian ring with finite Krull dimension
(e.g., Z, Q, or C). Let F* be a bounded complex of sheaves of R-modules, which
is constructible with respect to &.

Let p € X, let S denote the stratum containing p, and let dg := dim¢ S. As
in Definition 2.25, let (Ng,Lg) be the complex normal slice and complex link of
Sin X.

One then has the following hypercohomology version of the Main The-
orem of Stratified Morse Theory.

Theorem 2.29.([16], I1.6.A.1) For all k, the degree k Morse module given by
the hypercohomology

m(F*) := H'(Ns, Ls; Fj_[~ds]) = H"% (N5, Ls; F*),

is independent, up to isomorphism, of the choices of Ng, Lg, and p € S.



1066 David B. Massey

Suppose that f : M — R is a smooth function such that f = ﬁx is a Morse
function, and such that the interval [a,b] C R contains no stratified critical values
of f other than v := f(p). Then, for all k, there is an isomorphism

HF (X<p, X<o; F*) =2 HFNNg, Lg; F*) = mli M9 (F*),
where A is the index of f, at p.

Note that our notation and indexing differs slightly from that in [16]; we are using
our conventions from [30] and [32].

Remark 2.30. Suppose that P*® is a perverse sheaf (which is actually a complex
of sheaves) on X, constructible with respect to &. This is equivalent to P® being
pure (with shift 0). See [19] and [16], II.6.A.3. Because we have included the
shift by —dg in the definition of the Morse modules, purity implies that perverse
sheaves have possibly non-zero Morse modules in only degree zero. In particular,
this applies to the (middle perversity) intersection cohomology complex with
constant coefficients, or with coefficients in a local system.

Theorem 2.29 is a theorem about a real function f. There is a corresponding
complex analytic result. Suppose now that f : (X,p) — (C,0) is a complex
analytic function. By definition, the stalk cohomology at p of the wvanishing
cycles of F* along f, ¢;F*, is given by
(1) H*(¢;F*), = H""'(Bs(p) N X, Bs(p) N f~(£); F*),
where 0 < |{] < § < 1, and one may replace the closed ball Bs with the open
ball. The space Bs(p) N f~1(&) is the Milnor fiber of f at p, Fy,. If F® is the

constant sheaf Z%, then, since Bs(p) N X is contractible, the isomorphism above
becomes the well-known formula

HY$s2%)y = H*Y(Bs(p) N X, Fyp Z) 2 H(Fyy; Z),

where H* denotes reduced reduced cohomology and, by convention, H 0, z) =
Z. Because of the shift of degrees in (), it is usually nicer to consider the shifted
vanishing cycles ¢;F*[—1], so that H*(¢;F*[-1]), = H*"1(¢;F*),. See [6], p.
105-106, and [31], Appendix B, p.227-228.

By applying Theorem 2.29 to |f — £|2, one obtains:

Theorem 2.31.([16], 116.A.2) Let f: (M,p) — (C,0) be a complex analytic
function such that dyf is a nondegenerate conormal covector to S at p, and such
that the complex Hessian of f, at p is nondegenerate. Let f:= f, .

Then, for all k, H*(¢;F*[—1]), = m&(F®), i.e., for 0 < |¢| < 6 < 1,
H"(Bs(p) N X, Bs(p) N f~(€); F*) = H"%(Ng, Lg; F*).
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3. “CLASSICAL” APPLICATIONS

In this section, we will recall some of the important results that Goresky and
MacPherson obtained using Stratified Morse Theory. We present these results
in the chronological order in which they appeared: first, in Morse Theory and
Intersection Homology Theory [14], then in the paper Stratified Morse Theory [15]
and, finally, in the book [16], which, in addition to containing results not found
in the two papers, also contains detailed proofs of the results from the earlier two
works.

INTERSECTION HOMOLOGY

Intersection homology and cohomology were developed by Goresky and Mac-
Pherson. Their first paper on the subject was [12], and their sheaf-theoretic pre-
sentation and results appeared in [13]. Intersection cohomology is important not
just because it provides useful topological data about a space, but also because
it arises in the Weil conjectures for singular varieties, in the Decomposition The-
orem of Beilinson, Bernstein, Deligne, and Gabber (see [1]), and the proof of
the Kazhdan-Lusztig conjecture in representation theory. For nice expositions of
these applications, the reader is directed to [24], and [23].

Let I Hj, denote the degree k intersection homology group (with middle perver-
sity) with integral coefficients. (Here, we use the topological indexing, as in [12],
on intersection homology; hence, the non-zero homology occurs in non-negative
degrees.)

Let X be a complex analytic space with a complex analytic Whitney strati-
fication. Let p € X, and let .S denote the connected component of the stratum
containing p. Suppose that f: X — R is a Morse function with a critical point
at p. Let v := f(p).

By using properties of intersection homology, and using the same description
of the normal Morse data that is used in proving Theorem 2.26, Goresky and
MacPherson obtained:

Theorem 3.1.([14], 4.1; [16], 11.6.4) Let i = X + ¢, where c is the complex
codimension of S in X, and X\ is the Morse index of f, at p.

Then, for all sufficiently small € > 0, for all k # i, [Hp(X<yte, X<v—c) = 0.
In addition, Ay = IH;(X<yte, X<v—c) is free Abelian and, up to isomorphism,
is independent of the point p in S and independent of f itself.

Remark 3.2. The group A, is called the Morse group of S in X. This is the
homological version of the Morse module (over Z) from Theorem 2.29, when one
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uses the intersection cohomology complex for F®. As this intersection cohomology
complex is perverse, the Morse module is possibly non-zero only in degree 0; see
Remark 2.30.

Goresky and MacPherson show, in fact, that, if ¢ > 0, then the Morse group
is isomorphic to the image of the variation map

var : [H._1(Lg,0Lg) — IH._1(Lg),

determined by the monodromy of the complex link of S. Note that it is possible
that A, = 0.

We should remark that Theorem 6.4 of [16] is actually more general than the
result appearing in [14]. In [16], Goresky and MacPherson allow for the case
where X is an open dense union of strata of a larger stratified space Z, and
p € Z — X is a critical point of a proper Morse function f: Z — R.

As a quick corollary to Theorem 3.1, Goresky and MacPherson obtained the fol-
lowing Lefschetz hyperplane theorem for intersection homology, which was their
original motivation for developing Stratified Morse Theory.

Theorem 3.3.([14], 5.4; [16], 11.6.10) Let X be a complex n-dimensional alge-
braic subvariety of some complex projective space PN. Let H be a hyperplane
in PN which is transverse to each stratum of some complex analytic Whitney
stratification of X.

Then, the inclusion XNH — X induces isomorphisms [ H,(XNH) = TH(X),
for all k <n—1, and a surjection IH,_1(X NH) — [H,_1(X).

Proof. Fix a complex analytic Whitney stratification of X such that H is trans-
verse to all of the strata. Let f : X — R be a Morse perturbation of the function
which gives the square of the distance to H, with respect to the Fubini-Study
metric on PY. Then, by the transversality assumption on H, for some small
§ > 0, X_s is homeomorphic to Y x R2. In addition, X.,, = X for some m > 0.

By the Kiinneth formula and the long exact sequence of a pair for intersection
homology, what we need to show is that [ Hy (X<, X<5) = 0 for all & < n.

However, this follows at once from Theorem 3.1, since the index ¢ of f|; at a
critical point p in a stratum S must be at least dim¢.S.

Remark 3.4. As one sees in the proof, one can eliminate the assumption that H
is transverse to all of the strata if one is willing to replace X NH by a neighborhood
of X N H. This generalization is what appears in [16], I1.6.10, where the result
is further generalized to apply to the relative case of a purely n-dimensional
algebraic variety and a (not necessarily proper) algebraic map m: X — PV with
finite fibers.
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In [34], Theorem 7.2, Milnor applies Morse Theory to prove that a Stein man-
ifold of complex dimension k has the homotopy-type of a CW complex of dimen-
sion k, and so, its homology vanishes above dimension k. Goresky and MacPher-
son used Stratified Morse Theory to obtain an analogous result about intersection
homology.

Theorem 3.5.([14], 5.3; [16], I1.6.9) Let X be an n-dimensional Stein space.
Then, for all k > n, IH,(X) =0, and IH,(X) is torsion-free.

Proof. Embed X as a closed analytic subspace of some CV. Fix a complex
analytic Whitney stratification of X. Choose a generic point ¢ € CV, and let f
be the Morse function on X given by the square of the Euclidean distance to q.

Then, if p is in a stratum S and p is a critical point of f|,, then the index
of fig at p is at most dimcS. Thus, by Theorem 3.1, if v = f(p) and € > 0
is sufficiently small, for all & > n, IHp(X<yte, X<v—e) = 0, and, for all k& < n,
THi(X<yte, X<p—c) is torsion-free. The result follows now by induction and the
long exact sequence of a pair in intersection homology. |

Let g : X — C be a complex analytic map. In the category of perverse sheaves
on X (see [1], [20]), the simple objects are intersection cohomology sheaves with
coefficients in irreducible local systems. By applying Stratified Morse Theory to
this intersection cohomology, and using a careful topological description of how
the nearby fiber collapses to g~1(0), Goresky and MacPherson gave the first proof
of the following result.

Theorem 3.6.([14], 6.6) If P*® is a perverse sheaf on X, then the shifted nearby
cycles 1,P*[—1] are a perverse sheaf on g~1(0).

Remark 3.7. Goresky and MacPherson make the assumption that g : X — C
is proper. This assumption is not necessary; see, for instance, [20], X.10.3.13.
In our statement of the theorem, we have used the now standard indexing on
perverse sheaves which places possibly non-zero cohomology in only non-positive
degrees. This is why we must include the shift by —1 in our statement. Finally,
Goresky and MacPherson used the term “vanishing cycles” for v,. In modern
terminology, the 1, functor that appears in [14] is called the “nearby cycles”
functor.

HOMOTOPY RESULTS

In [15], Chapter 4, and in [16], II.1, Goresky and MacPherson use relative
Stratified Morse Theory to obtain a number of important results on homotopy
types and homotopy groups. Here, we present three such results, so that the
reader can get the flavor of the theorems.
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By convention, below, we set the dimension of the empty set to be —oo.

Theorem 3.8.([15], 4.1; [16], II.1.1) Let X be an n-dimensional nonsingular,
connected, complex algebraic variety. Let m : X — PN be an algebraic map and
let H C PN be a linear subspace of complex codimension c. Let Hs be the §-
neighborhood of H with respect to some real analytic Riemannian metric. Let
(k) = dim{y € P — H | dim7*(y) = k}.

Then, if § > 0 is sufficiently small, the homomorphism 7;(x~(Hs)) — mi(X)
is an isomorphism for all i < n, and is a surjection for i = n, where

n:i=n-—1- Sl;p [2k — (n — ¢(k)) + inf(¢(k),c — 1)].

Furthermore, if H is generic or 7 is proper, then 7—1(Hj) may be replaced by
-1
T (H).

Theorem 3.9.([15], 4.1%; [16], IL.1.1*) Let X be an n-dimensional (possibly
singular) complex analytic variety. Let m : X — PN — H be a proper com-
plex analytic map, where H C PN is a linear subspace of codimension c. Let
#(k) = dim{y € 7(X) | dim7(y) = k}.

Then, X has the homotopy-type of a CW complex of real dimension less than
or equal to

n*i=n+ Sllip 2k — (n — ¢(k)) + inf(o(k), c — 1)].

Theorem 3.10.([16], I1.1.2) Let X be a complex algebraic subvariety of some
complex algebraic manifold M. Let 7 : X — PN be a (not necessarily proper)
complex algebraic map with finite fibers. Let H C PN be a linear subspace of
complex codimension c. Let Hs be the §-neighborhood of H with respect to some
real analytic Riemannian metric. Let ¢(k) denote the dimension of the set of
points p € X — w1 (H) such that a neighborhood of p in X can be defined in M
by k equations and no fewer.

Then, if § > 0 is sufficiently small, the homomorphism 7;(7—(Hs)) — m;(X)
is an isomorphism for all © < n, and is a surjection for i = n, where

ni=—14 ir];f [dime M — k + inf(¢(k), c — 1)].

COMPLEMENTS OF AFFINE SUBSPACES

In Part IIT of [16], Goresky and MacPherson study the topology of the com-
plement of an affine subspace arrangement, i.e.,

M :=R" - 6 A
S (3]
=1
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where A := {A;,..., A} is a finite collection of affine linear subspaces of R™.
They arrive at a combinatorial description of the homology groups of M. This
generalized work of Zaslavsky in [43] and Orlik and Solomon in [35]. We will
briefly describe Goresky and MacPherson’s result.

Associated to A, there is a partially ordered set P, whose elements v consist
of the flats of A, i.e., non-empty, finite intersections 4;, N---N A, . The partial
order on this set is given by containment: if v,w € P, then v < w if and only
if v C w. There is a maximum element, corresponding to the intersection of no
subspaces, T := R™ € P. For v € P, define the ranking function d(v) := dimg(v).

We should remark that it is only the structure of P as an ordered set, together
with its ranking function d, that will be used here. To emphasize this fact,
Goresky and MacPherson write |v| where we are writing simply v, and use v to
denote an abstract element of the partially ordered set.

It turns out that the homology of M can be described solely in terms of the
partially ordered set P, and the ranking function d, by using order complezes.

Let S be an arbitrary ordered set. The order complex K(S) is a simplicial
complex with one vertex for every element v € § and one k simplex for every chain
vg < v < -+ < vy of elements of S. For v,w € S, let Sspy :={z € S | z > v},
and let S, ) == {r €S | v <z < w}.

To apply Stratified Morse Theory to this situation, Goresky and MacPherson
consider all of R™ as a Whitney stratified space, where the Whitney stratification
is determined by the flats. For each v € P, define the stratum S(v) by

S(v) :==v— U w.

It is trivial to verify that this yields a Whitney stratification of R™.

Now, one uses Theorem 2.5, and selects “almost any” ¢ € R"™ such that the
distance-squared function r, : R™ — R is a stratified Morse function, with respect
to the Whitney stratification above. By analyzing the Stratified Morse Theory
of the nonproper function (r4)|,,, Goresky and MacPherson prove:

lazs
Theorem 3.11.([16], I11.1.3) The homology of M s given by
Hy(M; Z) = @ H" "7 (K(Psy), K(Pur); Z),
vEP

where, by convention, H1(0,0; Z) = Z, i.e., T contributes a copy of Z to the
homology group Ho(M; 7).
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As the complexified arrangement A ® C has the “same” (isomorphic) partially
ordered set P, but a different ranking function, one concludes:

Corollary 3.12.([16], III.1.4) Letting by, denote the k-th Betti number,

n m 2n m
Zbk <R”— UAz-) - Zbk ((C”— UAZ-®(C> :
k=0 =1 k=0 =1

Since the appearance of [16], there have been a number of substantial improve-
ments to Theorem 3.11; see [2], [3], [7], and [44].

4. “MODERN” DEVELOPMENTS

In this section, we will discuss a sampling of results related to Stratified Morse
Theory which have appeared since the publication of [16].

COMPLEX HYPERPLANE ARRANGEMENTS

We wish to describe some of the results that D. Cohen obtained in his 1992
doctoral dissertation [4]. An extensive treatment of the relations between Strati-
fied Morse Theory and hyperplane arrangements can be found in Stratified Morse
Theory in Arrangements, [5], in these volumes.

Definition 4.1. Suppose that X is a Whitney stratified subset of a smooth man-
ifold M. A stratified Morse function f : X — R is weakly self-indexing
(with respect to the stratification) if and only if, for all strata S, and Sg, if
dim S, > dim Sg, and ve and vg are critical values of f; and f'%’ respectively,

then v, < vg.

In other words, f is weakly self-indexing if and only if, as the value of f grows,
one hits critical points on higher-dimensional strata before hitting critical points
on lower-dimensional strata.

As in the last subsection of Section 3, let A := {A;,..., A} be an affine
subspace arrangement in X := R", and stratify R™ by the Whitney stratification
determined by the flats. Let p := (p1,...,pn) € R" — U Ak

Cohen proves:

Proposition 4.2.([4], 1.2) There exist positive constants wi,...,w, such that
the function f : R" — R given by f(x1,...,z,) = Zizl wi(mr, — pr)? is weakly
self-indexing, and has a unique critical point of index zero (a minimum) on each
stratum.
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Fix such a set of w; and f.

As f is weakly self-indexing, one obtains a filtration
(1) 0=X< 1S Xew, € Xcwoy &+ € Xawy =X =R",

where each wy, is greater than all of the critical values of f on all k-dimensional
strata, but less than all the critical values on (k — 1)-dimensional strata.

Suppose now that we consider the case of a complex hyperplane arrangement:
X :=C" and A is an arrangement of complex hyperplanes in X. Once again use
the flats of A to produce a (complex analytic) Whitney stratification & of X.
Let M := X — J;-; Ak, and let i : M — X denote the inclusion.

Let P*® be a perverse sheaf on X (over Z or C, or more general base rings),
which is constructible with respect to the stratification &. Interesting examples to
use for P*® include Ri,Z},[n] and the intersection cohomology complex, IC% (L),
with coefficients in a local system £ on M.

One may consider the underlying real arrangement, and apply Proposition 4.2
and (f) to produce a weakly self-indexing Morse function f : X — R, together
with a filtration

®:X71QX§wngXS’wn_1 QQXS’I,UO:X:(C”,

where each wy, is greater than all of the critical values of f on all strata of complex
dimension k, but less than all the critical values on strata of complex dimension

(k —1).

As the index of each critical point of f is 0, when we apply Theorem 2.29, we
conclude that, if k # —I[, then Hk(XSwz7X§wz+1§ P°*) =0, and

CH(P*) = H ! (Xcw, X<uy: P = P mi(P).
dim S=I

Now, the connecting homomorphism in the long exact sequence on hypercoho-
mology of the triple (X<u, ,, X<uw,,,X<uw,,) yields a map 97! : C7YP*) —
C~H1(P*) such that 971 097! =0, i.e., 0" is a differential.

The main theorem of [4] is:

Theorem 4.3.([4], 2.4) The k-th hypercohomology module H*(X; P*®) is isomor-
phic to the degree k cohomology of the differential complex

—n—+1

0 c (P 2L oty 2 27 copey L,

in which C~'(P*®) = Daim s m%(P.>-
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When P® = IC% (L), this theorem provides information about the intersection
cohomology TH*(X; L).

When P* = Ri,Z3,[n], H¥(X; P*) & H*™(M;Z), and the Morse modules
mY(P*®) are isomorphic to 7S where p(S) is the Mébius function of the flat
S (see [4] or [36]). Using the techniques of Theorem 3.11, Cohen shows that, in
this case, the differentials in the complex in Theorem 4.3 are zero and, hence, he
recovers the result of Orlik and Solomon [35] that the cohomology H*(M; Z) is
free Abelian in each degree, with ranks given by sums of absolute values of the
Mobius functions of the flats of the appropriate dimension.

The global topology of complex hyperplane arrangements can be reduced to
a local study, by taking the complex “cone” on the arrangement — that is, by
homogenizing the defining equation of the arrangement. Then, one may study the
topology of the original arrangement by analyzing, near the origin, the topology of
the new, central arrangement (one in which each hyperplane contains the origin),
and the complex appearing in Theorem 4.3 can be generalized, locally, for a
perverse sheaf on any complex analytic space, with any complex analytic Whitney
stratification. This generalization appears in [28]. We will briefly describe this
result.

Since we wish to work locally, we may assume that we have a d-dimensional
complex analytic X, embedded in an open subset &/ € C"!, and that our point
of interest is the origin 0 € X. Let P* be a perverse sheaf of R-modules on
X, constructible with respect to some complex analytic Whitney stratification &
(with connected strata).

For a generic (with respect to &) choice of linear forms 2o, ..., z, on C"*1 we
consider iterated nearby and vanishing cycles along these functions, composed
with a shift by —1. Thus, we consider 1, [—1] and ¢, [—-1], where we do not
distinguish in the notation between z; and its restriction to various subspaces.
(In fact, it is only the corresponding differentials dgzo, . . . doz, which matter.)

For all k, let
’Yk(P.) = ¢Zk [_1]wzk—1 [_1] s ¢Zo[_1]P.7

where we mean that 7°(P*®) := ¢,,[—1]P*. Each v*(P*) is a perverse sheaf which,
by the genericity of the z;’s, has the origin as an isolated point in its support.
Thus, the stalk cohomology of v*(P*®) at the origin is zero outside of degree 0.
Let A*(P*) := H(v*(P*®))o. Essentially by looking at long exact sequences of
triples, as in the construction of the differentials in Theorem 4.3, one obtains a
canonical map 9% : A¥(P*®) — A*1(P*) such that 9"+ 0 9% = 0, and it is easy
to show:
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Theorem 4.4.([28], Theorem 5.4) The degree k stalk cohomology H*(P®)g is
isomorphic to the degree k cohomology of the differential complex

o—ad+1
- =

—d _
0 — A~dP*) I5 A-d+l(pe L9 40P 0.

In addition, one can describe the modules A*(P*®) in terms of the Morse mod-
ules of strata and the relative polar varieties of Lé and Teissier [27].

Theorem 4.5.(]28], 7.5; [32], 4.24) For each k, the module A=*(P*) is isomorphic

to
D (m(P*) ® R5),
Ses

where R is the base ring, and ’yg s the multiplicity of the k-dimensional polar
variety of S at the origin.

Remark 4.6. Note that, in the case of a central arrangement, if S € &, the only
non-zero fyg occurs when k£ = dim S, and vg‘ms = 1. Thus, the characterization

of the modules in Theorem 4.5 generalizes that of Theorem 4.3.

We should also remark that the summands in Theorem 4.5 are products of
a normal factor m%(P*®) and a tangential factor RYs. We shall discuss further
generalizations of Theorem 2.29, the Main Theorem of Stratified Morse Theory
for hypercohomology, later in this section.

SELF-INDEXING STRATIFIED MORSE FUNCTIONS

In this subsection, we will discuss the work of M. Grinberg ([17], 2005) on
self-indering stratified Morse functions. As the names imply, this is a stronger
form of the notion of weakly self-indexing from the previous subsection.

Throughout this subsection, we weaken our requirements on a (stratified)
Morse function; we do not require that distinct critical points have dis-
tinct critical values.

Suppose that M is an n-dimensional compact, smooth manifold, and that
f:M — R is a Morse function. We write X f for the critical locus of f.

Definition 4.7. The Morse function f is self-indexing if and only if, for all
p € Xf, the index of f at p is equal to f(p).

If f is a self-indexing Morse function, one may perturb f slightly to obtain a
Morse function with distinct critical values, but for which all of the critical points
of index 0 have values arbitrarily close to 0, all of the critical points of index 1
have value arbitrarily close to 1, and so on.
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The importance of f being a self-indexing Morse function is that it yields a
filtration

0 =M_5C Mcos C M<15C -+ C M<p05 C M<pios =M

SUCh that, lf] 7£ k‘, Hk(M§j+0.5, M§j70.5; Z) = O, and Hk(M§k+0.5, Mgk_().5; Z)
= 77k where 73 is equal to the number of points in X f of index k. From this,
by using the long exact sequence of a triple (as in Theorem 4.3), we obtain a
differential complex whose cohomology is isomorphic to H*(M; Z).

The following theorem is due to Smale. The proof involves successively modi-
fying gradient-like vector fields.

Theorem 4.8.([41]) Every compact, smooth manifold admits a self-indezing
Morse function.

The question, of course, is whether or not there is a useful stratified version of
Theorem 4.8.

The first problem one encounters is how to define a well-behaved notion of
“index” for a stratified Morse function. It turns out that such a notion of index
exists in the complex setting, and so we will switch to that situation. Let X be
a smooth, complex algebraic variety, and let & be a complex algebraic Whitney
stratification of X. Let n denote the complex dimension of X.

Definition 4.9. Suppose that p is a stratified nondegenerate critical point of a
smooth function f : X — R. Let S denote the stratum containing p. Define the
index of f at p by

indexy(p) := index, (p) — dimc S.

If f: X — R is a stratified Morse function, we say that f is self-indexing
provided that, at each stratified critical point p of f, indexs(p) = f(p).

Note that the index of a critical point could be any integer between —n and
n, inclusive.

With this definition of self-indexing, what could one conclude from the exis-
tence of a self-indexing Morse function? As in the unstratified case, we would
have a filtration

0=Xc<c pn05<C X<cnt05 < Xcpng15C - C Xeppos € X<pgos = X,

We wish to see what this tells us about the cohomology of X with coefficients in a
perverse sheaf P*® (which is constructible with respect to &). Let us alter slightly
our notation from Theorem 2.29; if p € X, and S is the connected component of
the stratum containing p, then define the degree k Morse module of P® at p to
be mb(P*®) := m(P*).
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Then, according to Theorem 2.29, for all j # k, H¥(X<j105, X<j—05; P*) =0,
and
Bf(P*) := H*(X<p05, X<k0.5; P*) = @ my(P*).

peXf
index (p)=Fk

Once again using long exact sequences of triples, one obtains a differential com-
plex

87n+1 87172

0— B(P*) L5 prti(pe) B (p*) L Br(P*) — 0,

whose cohomology is isomorphic to H*(X; P*).

This explains an important use of stratified self-indexing Morse functions, but
do they exist? Grinberg’s answer is “yes” if X is complete (proper over C); in
particular, this includes the compact case.

Theorem 4.10.([17], 1.6) Every complete, nonsingular, Whitney stratified com-
plex algebraic variety (X, &) admits a stratified self-indexing Morse function.

The proof of this result is again by successively altering gradient-like vector
fields, but these vector fields must now be controlled along the strata.

RESULTS ON THE MAIN THEOREM

In his 1997 paper [22], and in [21], H. King gave a short proof of the Main
Theorem of Stratified Morse Theory. In the first form of this result, King’s
hypotheses are weaker; he does not require the critical point to be nondepraved.
His conclusion is correspondingly weaker; one does not know that one obtains
standard local Morse data.

Let M be a smooth manifold, and let f : M — R be a smooth function. Let
X C M be a locally closed Whitney stratified set. Let p € X, and let S be the
stratum containing p.

Theorem 4.11.([22], Theorem 5; [21], Theorem 9) Suppose that d,f is a nonde-
generate conormal covector, and that p is an isolated stratified critical point of f.
Then, in a neighborhood of p, the product of Morse data for fi; and for fi, .,
where D is any submanifold of M transverse to S with D NS = {p}, is Morse
data for f.

It is somewhat difficult in [22] to determine what King means by “Morse data”;
this is clarified on page 3 of [21]. By “Morse data”, King means local Morse data,
(C,C N f~1(=d)), where 6 > 0 is small and C is a certain type of neighborhood
of p (part of the critical point data), which need not be a ball with respect to
some Riemannian metric.
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However, in Lemma 12 of [21], under the assumption that f has a nondepraved
critical point at p, King does, in fact, recover the full content of the Main Theorem
(Theorem 2.16) via a totally different proof than that of [16].

One final comment on King’s papers: on page 8 of [22], and on page 10 of
[21], King remarks that, in [16], Goresky and MacPherson care only about the
intersection homology of the Morse data. As we saw and discussed in Section 3, it
is true that Goresky and MacPherson were motivated to create Stratified Morse
Theory to apply to intersection homology, but — as we also saw in Section 3 —
this was certainly not all that they were interested in in [16].

In addition to the work of King on Stratified Morse Theory on the level of
homeomorphisms, there have been two large works dealing with results on the
level of hypercohomology (or derived category) with coefficients in complexes of
sheaves. These are the theories developed by Kashiwara and Schapira in Chapter
V of [20], and Schiirmann in Chapters 4 and 5 of [39]. In essence, these theories
make rigorous and greatly expand upon the comment made in 1.4.1 of [16]: spaces
change as one moves in the direction of characteristic covectors. The microlocal
approaches of Kashiwara, Schapira, and Schiirmann proceed from a fundamental
generalization of this precept: a complex of sheaves F* on a space X determines
“characteristic covectors with respect to F*”, i.e., the directions in which the
hypercohomology of X with coefficients in F*® will change. This collection of
characteristic covectors with respect to F® is called the micro-support of F*,
denoted by SS(F*®).

The results of Kashiwara and Schapira in Chapter V of [20] provide powerful
tools for studying hypercohomology of real or complex spaces, but one does not
see a precise correlation with the results of [16]. On the other hand, in Chapters 4
and 5 of [39], Schiirmann essentially redefines all of the concepts, and reproves all
of the results, of Stratified Morse Theory, but always with respect to a complex of
sheaves. This allows him to optimize his hypotheses for derived category results,
and allows him to simplify a number of proofs. For instance, Schiirmann’s derived
category version of the Main Theorem of Stratified Morse Theory appears in
Theorem 5.3.3 of [39], and its proof is considerably less difficult than that of
Theorem 2.16.

While it would take us too far afield to provide the requisite background to
explain results from [20] or [39], we can provide one of our own applications
of the micro-local approach. This is a generalization of Theorem 2.31; it is a
complex, hypercohomological version of the Main Theorem. First, we need a
definition, and we would like to characterize, using Stratified Morse Theory data,
the micro-support in the complex analytic setting.
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Suppose that X is a complex analytic space, embedded in a complex manifold
M. Let f: M — C be complex analytic, and let f := ﬁx. Let F*® be a bounded
complex of sheaves of R-modules on X, constructible with respect to a complex
analytic Whitney stratification &, with connected strata.

Definition 4.12. A stratum S € & is F*-visible if and only if it possesses a
non-zero Morse module m%(F*®) in some degree k, i.e., H*(Ng,Lg; F*®) # 0.

Theorem 4.13.([30], 4.13) The micro-support, SS(F*), of F* is equal to

%
J T
F*—visible S

Our generalization of Theorem 2.31 is:

Theorem 4.14.([30], 3.4 and 5.3) A point p is an isolated point in the support
of ¢r[—1]F*® if and only if p is an isolated point in

fex|@dhe |J T
F*—visible S
and, when these equivalent condition hold, for all k, there is an isomorphism
HYosF*[-1]), = D (m§(F*) @ RHS),
F*—visible S

where g is the number of complex nondegenerate critical points of a small, com-
plex perturbation of f which occur near p on the stratum S. Thus, ps equals the
intersection number (TgiM -im df) ()

»p

Remark 4.15. On the level of Euler characteristics, this is the index theorem
proved independently by Ginsburg in [11], Lé in [26], and Sabbah in [38]. In the
proof of Theorem 4.14, we used many results from Chapter V of [20]. However,
one can prove this theorem very quickly by using enriched cycles (see [32]) and
“enriching” Lé’s proof of the Euler characteristic result.

The reader should note that the hypothesis that p is an isolated point of the
support of ¢¢[—1]F* is strictly weaker than requiring that f has a stratified iso-
lated critical point at p, i.e., that p is an isolated point of g f. In Theorem 4.14,
f may have non-isolated critical points on strata which are not F®-visible.

If, in fact, p is an isolated point of X s f, then one can simply perturb f slightly,
in a complex analytic manner, to obtain a function with only complex nonde-
generate critical points (as in Theorem 2.31) in a neighborhood of p, and the
conclusion of Theorem 4.14 follows easily from Theorem 2.31. This result, with
constant coefficients, is due to Siersma ([40]) and Tibar ([42]), and we proved
it with coefficients in F® in Theorem 3.2 of [29]. A proof along the same lines
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can be made to work under the weaker hypothesis that p is an isolated point
of the support of ¢¢[—1]F*®; however, it is complicated to deal with the possibly
non-isolated critical points of f on F®-invisible strata, and prove that they do
not matter when applying Stratified Morse Theory to the boundary strata of a
compact neighborhood of p.

If p is not an isolated point in the support of ¢¢[—1]F®, then a result for the
stalk cohomology, like that in Theorem 4.14, is not known. However, one can
calculate the Morse modules of the strata of any stratification with respect to
which ¢f[—1]F*® is constructible. This generalization of Theorem 4.14 appears in
Theorem 3.4 of [32].

RECTIFIED HOMOTOPICAL AND HOMOLOGICAL DEPTH

In [18], Hamm and Lé prove a number of conjectures made by Grothendieck on
homotopy (or homology) relations between complex algebraic varieties and their
hyperplane sections (or more general subvarieties). These results are similar in
flavor to those appearing in [16], II.1 and to the homotopy results we discussed
in Section 3. Most of the proofs in [18] do not use Stratified Morse Theory.
While the authors were familiar with Stratified Morse Theory, and mention in the
introduction that they could have used this theory in some of their proofs, they
wished to write their paper using techniques that were known to Grothendieck.

Nonetheless, in the proofs of Lemma 3.3.3, Lemma 3.4.2, and Theorem 4.2.1,
Hamm and Lé are “forced” to use Stratified Morse Theory. In addition, in Theo-
rem 4.1.2 of [18], Hamm and Lé characterize rectified homotopical depth in terms
of the normal Morse data of strata. Below, we define rectified homotopical and
homological depth, and give Theorems 4.1.2 and 4.2.1 of [18].

Let X be a complex analytic space, with a complex analytic Whitney stratifi-
cation &, with connected strata. Let X; be the union of strata of dimension at
most i. Fix a base ring R, which is either Z or Q.

Definition 4.16.([18], 1.1) The rectified homotopical (resp., homological)
depth, rhds(X) (resp., rtHds(X; R)), of X is greater than or equal to n if and
only if, for all i, for all x € X; — X;_1, there exists a fundamental system {Uy}o
of neighborhoods of x in X such that, for all av, the pair (Us, Uy — X;) is (n—1—1)-
connected (resp., Hy(Un,Us — Xi; R) =0 for all k <n —i).

Of course, this completely determines the numbers rhdg(X) and rHdg(X; R).

In Lemma 1.3, Hamm and Lé prove that rhdg(X) and rHdg(X; R) are in-
dependent of the Whitney stratification &, and thus drop the reference to the
stratification from the terminology and notation. One writes simply rhd(X) and
rHd(X; R).
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The rectified homotopical depth can be characterized nicely in terms of (Ng, Lg).
Theorem 4.17.([18], 4.1.2) The following conditions are equivalent:

(1) rhd(X) > n;
(2) for all S € &, the pair (Ng,Lg) is (n — dim S — 1)-connected.

Hamm and Lé prove the following result by considering the Stratified Morse
Theory of a small perturbation of the function given by negative the distance
squared to p.

Theorem 4.18.([18], 4.2.1) Assume that X is embedded in a complex manifold,
endowed with a Riemannian metric. Let Z be a closed complex analytic subspace
of X, and let p € Z. Suppose that tHA(X;Z) > n. Let g : (U,p) — (C,0) be a
complex analytic function defined on a neighborhood U of p in X.

Then, for 0 < a < € < 1, for all t € C such that |t| = «, the pair of spaces
(Bp) 1 (X = 2), [(Selp) N9~ (D)) U (Bp) ng™ ()] 11 (X = 2))

is (n — 1)-connected, where D, C C is the closed disk of radius o centered at 0.

DISCRETE MORSE THEORY

In [9] and [8], R. Forman develops a discrete, combinatorial version of Morse
Theory and Stratified Morse Theory. We present the fundamental definitions and
main theorem here. We follow the exposition in [10].

First, we recall some basic facts on abstract simplicial complexes.

Definition 4.19. An abstract finite simplicial complex consists of a finite
set V' of vertices, together with a set K of non-empty subsets of V such that,
for allv e V, {v} € K (by abuse, one frequently writes V C K ), and, if « € K
and ) # B C «, then 8 € K.

The elements of K are called simplices, and the dimension, dimc«, of a
simplex a € K is defined to be the cardinality of o minus 1, i.e., dima = (#a)—1.
To indicate that o has dimension p, we write P,

If a, 8 € K, we write a < (8 to indicate that « is a proper subset of (3.
A discrete Morse function on the abstract simplicial complex (V, K) is a func-

tion which essentially assigns higher numbers to higher-dimensional simplices,
with at most one exception, locally, at each simplex.

Definition 4.20. A function r : K — R is a discrete Morse function on
(V,K) if and only if, for all o®) € K,

1> #{ﬁ(p-ﬁ-l) > o | r(B) < r(a)}
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and
1> #{v(p_l) < o | 7(y) > r(a)}.

Suppose now that r is a discrete Morse function on an abstract finite simplicial
complex (V, K). We need the analog of a “critical point”.

Definition 4.21. A simplez a®) is a critical simplex of r if and only if

0=#{8""" >l | 17(8) <r()}
and
0= #{7(”*1) <a® | r(y)> r(a)}.

Now, suppose that we have a topological space X, together with a (geometric)
finite simplicial decomposition. One frequently expects to be able to find a CW
decomposition of X which has fewer cells than the original simplicial decompo-
sition. This is addressed by the main theorem of discrete Morse theory.

Theorem 4.22.([10], 2.5) Suppose that (V, K) an abstract finite simplicial com-
plex with a discrete Morse function. Then, the geometric realization |K| is
homotopy-equivalent to a CW complex with exactly one cell of dimension p for
each critical simplex of dimension p.

An example will aid the reader in understanding the above definitions and
theorem, and will help explain in what sense this yields of version of “Stratified
Morse Theory”.

Example 4.23. Consider the singular space X consisting of two circles joined
by a line segment. Below, we have drawn the space, together with a simplicial
subdivision with vertices {a,b,c,d, e, f}. This simplicial complex has 6 zero-
dimensional simplices, and 7 one-dimensional simplices.

The numbers that we have drawn on the outside of the diagram are the values
of a discrete Morse function r. For instance, r({b}) = 2 and r({a,b}) = 3.

The reader should verify that this function does, in fact, satisfy the conditions
for a discrete Morse function, and that the critical simplices are precisely {a, b},
{c}, and {e, f}. Thus, X is homotopy-equivalent to a CW complex with one 0-
cell and two 1-cells. Of course, this is obvious in this example, since X is clearly
homotopy-equivalent to a figure eight.
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There is a connection with smooth functions on stratified spaces. Sometimes
one can “smooth out” a discrete Morse function to obtain a smooth one, or one
can “discretize” a smooth (stratified) Morse function to obtain a discrete one.
For instance, the discrete Morse function r above was obtained by discretizing
the function given by (a small perturbation of) the distance (or distance squared)
from the vertex c.
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