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Abstract: We survey contributions of Robert MacPherson to the theory of
arithmetic groups. There are two main areas we discuss: (i) explicit reduc-
tion theory for Siegel modular threefolds, and (ii) constructions of compact-
ifications of locally symmetric spaces. The former is joint work with Mark
McConnell, the latter with Lizhen Ji.
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1. Introduction

1.1. Arithmetic groups sit at the crossroads of many areas of mathematics. On
one hand, they lead to beautiful manifolds with intricate geometry, and to mod-
uli spaces for many important objects in arithmetic. On the other, they are
conjoined with the theory of automorphic forms, and provide one path to under-
standing the mysteries of the absolute Galois group of the rationals. The study

Received February 23, 2006.
1991 Mathematics subject Classification. 11F23, 11F46, 11F75, 20G30, 22E40, 54D35.
Keywords: Cohomology of arithmetic groups, reduction theory, compactifications of locally
symmetric spaces.



1016 Paul E. Gunnells

of arithmetic groups is a beautiful blend of algebraic topology, algebraic and dif-
ferential geometry, representation theory, and number theory, and includes some
of the most fascinating and inscrutable phenomena in mathematics.

1.2. In this survey we discuss Robert MacPherson’s contributions to arithmetic
groups. We focus on two of his collaborations. The first (§3) is joint work
with Mark McConnell, and appears in the papers Explicit reduction theory for
Siegel modular threefolds (Inv. Math. 111 (1993)) [39] and Classical projective
geometry and modular varieties (Proceedings of JAMI 1988) [38]. The second
(§4) is joint work with Lizhen Ji, and appears in Geometry of compactifications
of locally symmetric spaces (Ann. Inst. Fourier, Grenoble 52 (2002)) [31]. We
also provide (§2) some background on arithmetic groups and their relationship
to number theory and automorphic forms.

1.3. There are two other contributions of MacPherson to arithmetic groups that
we unfortunately will not discuss, the topological trace formula and the geometric
approach to the fundamental lemma. To compensate for this omission, we say a
few words here.

In [2], using his trace formula, Arthur derived an expression for the Lefschetz
number of the action of a Hecke correspondence on the L2-cohomology of a modu-
lar variety. In view of the Zucker conjecture (proved by Saper and Stern [46] and,
independently, by Looijenga [36]), which identifies this L2-cohomology with the
intersection cohomology of the Baily–Borel compactification (§4.2), Casselman
and Arthur asked whether Arthur’s formula could be interpreted as a Lefschetz
fixed point formula for intersection cohomology, and in particular whether each
term in Arthur’s formula might correspond to a single fixed point component.
The ingredients (volumes of centralizers, orbital integrals, and averaged discrete
series characters) in Arthur’s formula did not, initially, look like the local contri-
butions one might expect from a Lefschetz fixed point formula.

Nevertheless, Arthur and Casselman’s suggestion was eventually realized in a
series of papers [19–21,25–27] in which it was shown that each term in Arthur’s
formula corresponds to a sum of (Lefschetz) contributions over a certain collection
of fixed points. New techniques were developed including (i) a general topologi-
cal formula for the local contribution to the Lefschetz number from “hyperbolic”
fixed points; see also the closely related results of Kashiwara and Schapira [32]; (ii)
the “weighted cohomology” of modular varieties (similar to the intersection coho-
mology, but involving a weight truncation rather than a degree truncation), later
shown [43] to coincide with the weighted L2-cohomology of Franke [17]; and (iii)
a combinatorial formula for the characters of discrete series, somewhat different
from the formulas [29] of Herb. For more details about the actual constructions
involved in this program, we refer to the announcement [25].
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For the geometric approach to the fundamental lemma, we have considerably
less to say. This program is still under development, with some publications
available [22,23] and others in preparation. Recently Laumon–Ngo extended and
improved the original strategy of Goresky–Kottwitz–MacPherson and completed
a proof of the fundamental lemma for unitary groups, a spectacular advance [34].
It is premature to predict where all this will lead, but some experts share a certain
optimism. In any case, writing a detailed survey of this subject would require a
long and complicated article of its own.

1.4. Acknowledgments. I thank Avner Ash, Mark Goresky, Lizhen Ji, and
Mark McConnell for helpful comments. I also thank the editors for inviting me
to write this article. Finally, I’m glad to thank (in print) Bob MacPherson, not
only for helping to create such beautiful mathematics, but also for being a patient
and benevolent teacher.

2. Arithmetic groups

2.1. In this section we review background on algebraic groups, arithmetic groups,
and discuss their relationships to geometry and number theory.

2.2. Linear algebraic groups.

2.2.1. The starting point is G, a connected linear algebraic group defined over
Q. For our purposes, this means the following [44, §2.1.1]:

(1) The group G has the structure of an affine algebraic variety given by an
ideal I in the ring C[xij ,D

−1], where the variables {xij | 1 ≤ i, j ≤ n}
should be interpreted as the entries of an “indeterminate matrix,” and D
is the polynomial det(xij). Both the group multiplication G × G → G
and inversion G → G are required to be morphisms of algebraic varieties.

The ring C[xij,D
−1] is the coordinate ring of the algebraic group GLn.

Hence we are viewing G as a subgroup of GLn defined by the vanishing
of polynomial equations in matrix entries.

(2) Defined over Q means that the ideal I is generated by polynomials with
rational coefficients.

(3) Connected means that G is connected as an algebraic variety.

Given any subring R ⊂ C, we can consider the group of R-rational points
G(R). As a set G(R) is the set of solutions to the defining equations for G
with coordinates in R. Especially important in the following will be the groups
of real points G(R), rational points G(Q), and integral points G(Z). Following
a usual convention, we denote algebraic groups by bold letters and their groups
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of real points by the corresponding Roman letter. Hence we write G = G(R),
P = P(R), and so on.

2.2.2. A linear algebraic group G is reductive if its maximal connected unipotent
normal subgroup is trivial, and semisimple if its maximal connected solvable
normal subgroup is trivial.

The prototypical example of a reductive group is G = GLn, the split general
linear group. For any ring R ⊂ C, the group GLn(R) is the group of n × n
invertible matrices with entries in R.

There are two basic examples of semisimple groups that will be important for
us. The first is the split special linear group G = SLn. For any ring R ⊂ C, we
have G(R) = SLn(R), which is the group of all n × n matrices with entries in
R and with determinant equal to one. The second is the split symplectic group
Sp2n. The group of real points Sp2n(R) is the automorphism group of a fixed
nondegenerate alternating bilinear form on a real vector space of dimension 2n.

For some nonsplit examples, let F be an algebraic number field. Then there is
a Q-group GF satisfying G(Q) = SLn(F ). The group GF is constructed via the
technique of restriction of scalars from F to Q; the notation is GF = RF/Q SLn

[44, §2.1.2]. For example, if F is totally real, the group RF/Q SL2 plays an
important role in the study of Hilbert modular forms.

2.2.3. Another family of examples is provided by tori. A torus is a linear alge-
braic group T such that T � Dn, where Dn ⊂ GLn is the subgroup of diagonal
matrices. We have T(C) � (C×)n. The number n is called the (absolute) rank of
T. A torus is said to be Q-split if T(Q) � (Q×)n, where n is the absolute rank
of T, and if the isomorphism is defined over Q. The Q-rank of G is defined to
be the dimension of a maximal Q-split torus. For example, the Q-rank of SLn,
or more generally RF/Q SLn, is n − 1.

2.3. Symmetric spaces.

2.3.1. Let G be connected semisimple, and let G = G(R) be the group of real
points. Then G is a connected Lie group. Let K ⊂ G be a maximal compact
subgroup. The quotient X := G/K is called a (global) Riemannian symmetric
space; it is diffeomorphic to a contractible smooth real manifold.

For example, if G is the special linear group SLn, then G is the Lie group
SLn(R). For a maximal compact subgroup K we can take SO(n), the special
orthogonal group. This is the group of n × n real matrices A with A−1 = At

and detA = 1. Thus X = SLn(R)/SO(n). It is easy to compute that dim X =
n(n + 1)/2− 1. The most familiar example from this family of symmetric spaces
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is n = 2. We have SL2(R)/SO(2) � H, where H ⊂ C is the upper halfplane of
complex numbers with positive imaginary part.

If G = Sp2n(R), then K = U(n), the unitary group of all n × n complex
matrices A with A∗ = A−1, where the star denotes conjugate transpose. One
can show that the symmetric space X, called the Siegel upper halfspace, has real
dimension n2 + n.

2.4. The nonsplit examples lead to more complicated geometry. Consider G =
RF/Q SL2, where F is a quadratic extension of Q. Any such field has the form
F = Q(

√
d), where d �= 0, 1 is squarefree. There are two cases to consider, F real

and F imaginary.

If F is real, then d > 0. There are two ways to embed F as a subfield of
R, corresponding to the two choices for the square root of d. Denote these
embeddings by a �→ a(i), i = 1, 2. We have G = G(R) = SL2(R) × SL2(R). A
maximal compact subgroup is K = SO(2) × SO(2), and the symmetric space is
X = H × H.

Now suppose F is imaginary. This time G = SL2(C) and K = SU(2); the
symmetric space X is the hyperbolic 3-space H3.

2.5. Locally symmetric spaces.

2.5.1. Let Γ ⊂ G(Q) be an arithmetic group. By definition this is a subgroup
commensurable with G(Z), which means Γ∩G(Z) has finite index in both Γ and
G(Z). For example, Γ = SLn(Z) ⊂ SLn(Q) is arithmetic, as is any conjugate
gΓg−1, where g ∈ SLn(Q).

2.5.2. The left action of Γ on the symmetric space X is properly discontinu-
ous. Suppose Γ is torsion-free. Then Γ\X is a manifold, and is called a locally
symmetric space.

2.6. Cohomology of arithmetic groups.

2.6.1. We continue to assume that Γ is torsion-free. Since X is contractible,
Γ\X is an Eilenberg–Mac Lane space for Γ. In particular π1(Γ\X) � Γ, and all
other homotopy groups vanish. The group cohomology of Γ (with trivial complex
coefficients) is isomorphic to the complex cohomology of the quotient Γ\X:

(2.6.1) H∗(Γ; C) � H∗(Γ\X; C).



1020 Paul E. Gunnells

In fact (2.6.1) remains true even if Γ has torsion, since we are using complex
coefficients.1

More generally, let M be a complex finite dimensional rational representation
of G. Then M is also a Γ-module, and one can define the group cohomology
H∗(Γ;M) of Γ with coefficients in M . One can associate to M a locally constant
sheaf M on Γ\X so that

H∗(Γ;M) � H∗(Γ\X;M ).

Again, this remains true even if Γ has torsion, although we must use locally
constant sheaves on orbifolds.

2.6.2. It turns out that the cohomology groups H∗(Γ;M) are intimately related
to automorphic forms. The simplest interesting example is G = SL2. The basic
arithmetic group here is G(Z) = SL2(Z), which acts on the symmetric space H
by fractional linear transformations:(

a b
c d

)
· z =

az + b

cz + d
,

(
a b
c d

)
∈ SL2(Z), z ∈ H.

The group SL2(Z) is the most obvious arithmetic group in SL2(Q), but there
are many others. For any N ≥ 1, let Γ0(N) ⊂ SL2(Z) be the subgroup of
matrices that are upper triangular modulo N . The locally symmetric space
Y0(N) = Γ0(N)\H is the (open) modular curve of level N . Topologically, Y0(N)
is a punctured surface with genus roughly N/12. The Eichler–Shimura isomor-
phism connects the cohomology of Y0(N) with holomorphic modular forms. In
particular, we have

H1(Γ0(N); C) = H1(Y0(N); C) � S2(N) ⊕ S2(N) ⊕ Eis2(N),

where S2(N) is the space of weight 2 cuspidal modular forms of level N , the bar
denotes complex conjugation, and Eis2(N) is the space of weight 2 Eisenstein
series of level N . More generally, if k ≥ 0, let Mk = Symk(C2) be the kth
symmetric power of the standard representation of Γ0(N), and let Mk be the
associated locally constant sheaf on Y0(N) Then we have, in obvious notation,
(2.6.2)
H1(Γ0(N);Mk) = H1(Y0(N);Mk) � Sk+2(N) ⊕ Sk+2(N) ⊕ Eisk+2(N) k ≥ 0.

Hence the group cohomology for these modules is directly related to modular
forms of level N .

1The isomorphism (2.6.1) is not true for integral coefficients if Γ has torsion. Similar remarks
apply to more general coefficient modules M than those we consider in this paper.
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2.6.3. Similar phenomena occur for our nonsplit examples. Let G = RF/Q SL2,
where F is the quadratic field Q(

√
d). Inside F is a certain subring OF , the ring

of algebraic integers, that plays the same role for F that the ring Z does for Q.
We have OF = Z[

√
d] unless d = 1 mod 4, in which case OF = Z[(1 +

√
d)/2].

The basic arithmetic group here is Γ = G(Z) = SL2(OF ).

Suppose F is real. Then
(

a b
c d

) ∈ Γ acts on the symmetric space X = H×H by
fractional linear transformations, where on the factors we use the two embeddings
F → R to map SL2(OF ) into SL2(R):(

a b
c d

)
· (z1, z2) =

(
a(1)z1 + b(1)

c(1)z1 + d(1)
,
a(2)z2 + b(2)

c(2)z2 + d(2)

)
, (z1, z2) ∈ H × H.

The quotient Γ\X is an algebraic surface, called a Hilbert modular surface. Its
cohomology can be described explicitly in terms of Hilbert modular forms.

If F is imaginary, the group Γ is called a Bianchi group. The quotient Γ\H3

is a 3-dimensional hyperbolic orbifold, and its cohomology can also be computed
in terms of appropriate automorphic forms.

2.6.4. For a general arithmetic group Γ, the relationship between cohomology
and automorphic forms is captured by the following deep theorem of Franke [17].

Assume the Γ-module M arises from a complex finite-dimensional rational
representation of G as in §2.6.1. Then Franke’s result says that the cohomology
H∗(Γ\X;M ) can be systematically built out of automorphic forms attached to
G and to certain subquotients of G. Specifically, we have a decomposition

(2.6.3) H∗(Γ;M) = H∗
cusp(Γ;M) ⊕

⊕
{P}

H∗
{P}(Γ;M),

where the direct sum is taken over the set of classes of associate proper Q-parabolic
subgroups of G (§4.4.3). The summand H∗

cusp(Γ;M) corresponds to the full group
G, and is known as the cuspidal cohomology ; this is the subspace of cohomology
classes represented by cuspidal automorphic forms. The remaining summands
constitute the Eisenstein cohomology of Γ. In particular the summand indexed
by {P} is built of Eisenstein series and their residues attached to suitable cuspidal
automorphic forms on the Levi quotients (§4.4.4) of elements of {P}; these are
the subquotients alluded to above.

For G = SL2(R), this decomposition is exactly the right side of Eichler–
Shimura isomorphism (2.6.2). The cuspidal cohomology is the subspace Sk+2(N)⊕
Sk+2(N), and the Eisenstein cohomology is the subspace Eisk+2(N).

For an exposition of Franke’s result, as well as more information about the
cohomology of arithmetic groups, we highly recommend the recent survey [35].
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3. Reduction theory for Siegel modular threefolds

3.1. Reduction theory.

3.1.1. Let G be a connected semisimple group, let X = G/K be the associated
symmetric space, and let Γ ⊂ G(Q) be an arithmetic group. The goal of reduction
theory is understanding the action of Γ on X. In particular, one wants to find
a “nice” fundamental domain for the action of Γ on X. This should be an open
set Ω ⊂ X such that

(1) the union of the Γ-translates of the closure Ω is all of X, and
(2) for all γ ∈ Γ with γ �= 1, we have γΩ ∩ Ω = ∅.

Of course, what “nice” means is a matter of taste, but commonly this is taken to
mean that Ω is locally homeomorphic to a polytope, and is of finite type in some
sense.

3.1.2. The prototypical example is Γ = SL2(Z) and X = H. The classical
fundamental domain Ω, shown in the left of Figure 3.1, is the set

Ω =
{
z ∈ H

∣∣ |z| > 1,−1/2 < z < 1/2
}
.

This example is also the source of the name reduction theory. There is a close
connection between H and the space of binary positive definite quadratic forms
Q(x, y) = Ax2+Bxy+Cy2 (§3.3). The Γ-action on H corresponds to unimodular
change of variables: the matrix

(
a b
c d

)
takes Q(x, y) to Q(ax + cy, bx + dy).

This change of variables is a natural equivalence relation on quadratic forms
for the following reason. Given a positive definite binary quadratic form Q, we
can form the theta series

Θ(Q) =
∑

x,y∈Z

qQ(x,y), where q = exp(2πiz), z ∈ H.

Writing Θ(Q) =
∑

N aNqN , we see that the coefficient aN is the number of
integral solutions of the equation Q(x, y) = N . Hence Θ(Q) encodes all posi-
tive integers that can be represented by Q, along with the multiplicity of each
representation. If Q and Q′ are related by the Γ-action, then Θ(Q) = Θ(Q′);
in particular Q and Q′ represent the same set of integers, each with the same
multiplicity.

Now given Q, we can use the Γ-action to find a form Q′ equivalent to Q and
such that the corresponding point z(Q′) ∈ H lies in the domain Ω. Moreover Q′
is uniquely determined if z(Q′) ∈ Ω. The quadratic form Q′ is called reduced,
since its coefficients A,B,C are small.



Robert MacPherson and Arithmetic Groups 1023

3.1.3. Sometimes in reduction theory one considers weaker conditions on Ω than
those above. For example, sometimes one replaces item (2) in §3.1.1 with the
requirement that {γ | γΩ ∩ Ω �= ∅} is finite. The middle of Figure 3.1 shows an
example; this set is three times as large as the exact domain on the left of Figure
3.1, and is stabilized by a subgroup of Γ of order 6. Although this domain is
larger than a true fundamental domain, it has the nice property that γΩ ∩ Ω is
either empty or equals Ω. One may even drop this condition, and merely require
that {γ | γΩ ∩ Ω �= ∅} is finite and that that Ω has an easily described form.
This is useful in the theory of automorphic forms, when one wants good control
over certain analytic objects related to Ω without fretting too much about the
exact geometry of Ω. The right of Figure 3.1 shows an example of this kind of
domain, a Siegel set in H [8, I.1].

−1 −111 10

∞

Figure 3.1. Various notions of reduction domains for SL2(Z)

3.2. Reduction theory and cohomology.

3.2.1. There is another application of reduction theory that is less familiar: com-
putation of the cohomology H∗(Γ;M). Explicit knowledge of a precise reduction
domain Ω allows one to chop X up into subsets. These subsets pass to subsets of
the quotient Γ\X, and even Γ′\X where Γ′ ⊂ Γ is a finite-index subgroup. These
subsets can be used with standard methods of combinatorial topology to build
chain complexes to compute the cohomology of Γ and its finite-index subgroups.

3.2.2. We will make this discussion more precise in a moment, but the general
idea can already be seen for Γ = SL2(Z). Let N ≥ 1, and let Γ(N) ⊂ SL2(Z) be
the principal congruence subgroup of matrices congruent to the identity modulo
N .2 For N ≥ 2 the group Γ(N) is torsion-free. The quotients Y (N) = Γ(N)\H
are punctured topological surfaces with genus roughly N3/24.

2A congruence subgroup of SL2(Z) is one that contains Γ(N) as a subgroup for some N .
Hence the groups Γ0(N) from §2.6.2 are congruence subgroups.



1024 Paul E. Gunnells

Let Ω be the ideal triangle in H with vertices at 0, 1,∞, as in the middle of
Figure 3.1. Then the SL2(Z)-translates of Ω pass to a “punctured triangulation
of Y (N),” by which we mean the following. The surface Y (N) sits naturally
inside a compact surface X(N) obtained by filling the punctures with points,
and there is a triangulation of X(N) such that the vertices are the punctures.
For example, if N = 3 (respectively, 4, 5) then the genus of Y (N) is 0, and Y (N)
equipped with this structure is isomorphic to a tetrahedron (resp., octahedron,
icosahedron) with punctures at its vertices.

3.2.3. Here is how this structure can be used to compute H∗(Γ(N);M). Consider
the tessellation of H given by the SL2(Z)-translates of Ω, where Ω is as in §3.2.2.
There is a regular trivalent graph W embedded in H dual to this tessellation (Fig-
ure 3.2). In other words, W has a vertex for each triangle in the tessellation, and
two vertices are connected by an edge if and only if the corresponding triangles
meet along an edge.

Modulo Γ(N), the graph W is finite. For example, for N = 3 (respectively, 4,
5), the quotient Γ(N)\W is isomorphic to the 1-skeleton of the tetrahedron (resp.,
cube, dodecahedron). In fact, Γ(N)\W is naturally a deformation retract of
Γ(N)\H: the retraction is given by pinching Y (N) along its punctures to enlarge
them. Thus the cohomology of Γ(N)\W equals that of Y (N). Since Γ(N)\W is
a simplicial complex, it can be used with standard techniques of combinatorial
topology to explicitly compute H∗(Γ(N);M). Similar considerations apply to
any finite-index subgroup Γ ⊂ SL2(Z).

Figure 3.2. The graph W inside the tessellation by Γ-translates
of Ω

3.2.4. The construction of W reveals more about the cohomology of Γ. The
dimension of H is 2, so a priori H∗(Γ\H;M ) can be nonzero in degrees 0, 1, 2.
But since Γ\W is a graph, its cohomology vanishes in degree 2. This is a special
case of a theorem of Borel–Serre [10], which implies that for any arithmetic group
Γ ⊂ G(Q) with M as in §2.6.4, we have Hk(Γ;M) = 0 if k > ν := dim X − q,
where q is the Q-rank of G. Thus for example if Γ ⊂ SLn(Z), we have ν =
n(n − 1)/2; for Γ ⊂ Sp2n(Z) we have ν = n2. The number ν is called the virtual
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cohomological dimension of Γ. Since for SL2(Z) the number ν is 1, the graph W
is optimal from a computational point of view: it is exactly the right dimension
to use in investigating the cohomology. It is also optimal from an æsthetic point
of view, since W is beautifully embedded in H.

Hence we have the following natural problem: Given an arithmetic group Γ,
find a subspace W of the associated symmetric space X such that the following
hold:

(1) W is a locally finite regular cell complex (a regular cell complex is a
CW complex such that the attaching map from each closed cell into the
complex is a homeomorphism onto its image [13]);

(2) W admits a cellular Γ-action such that if Γ′ ⊆ Γ is a torsion-free finite-
index subgroup, Γ′\W then is a regular cell complex;

(3) W is a Γ-equivaraiant deformation retract of X; and
(4) W has dimension ν(Γ).

This is the problem solved in [38,39] for G = Sp4.

3.3. The cone of positive-definite quadratic forms.

3.3.1. To explain the results in [38,39], we first need to understand how to find
W for the special linear group SLn. Indeed, the constructions here play a key
role for Sp4 through the natural inclusion Sp4(R) ⊂ SL4(R).

One technique to construct W for SLn builds on work of Voronǒı’s theory of
perfect quadratic forms [50]. We recall the definitions. Let V be the R-vector
space of all symmetric n × n matrices with entries in R, and let C ⊂ V be
the subset of positive-definite matrices. The space C can be identified with the
space of all real positive-definite quadratic forms in n variables: in coordinates,
if x = (x1, . . . , xn)t ∈ Rn (column vector), then the matrix A ∈ C induces the
quadratic form

x �−→ xtAx.

It is well known that any positive-definite quadratic form arises in this way. The
space C is a cone, in that it is preserved by homotheties: if x ∈ C, then λx ∈ C
for all λ ∈ R>0. It is also well known that C is convex. Let D be the quotient of
C by homotheties.

3.3.2. The case n = 2 is illustrative. We can take coordinates on V � R3 by
representing any matrix in V as(

x y
y z

)
, x, y, z ∈ R.

The subset of singular matrices Q = {xz − y2 = 0} is a quadric cone in V
dividing the complement V �Q into three connected components. The component
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containing the identity matrix is the cone C. The quotient D can be identified
with an open 2-disk.

3.3.3. The group G = SLn(R) acts on C on the left by

(g, c) �−→ gcgt.

This action commutes with that of the homotheties, and thus descends to a G-
action on D. One can show that G acts transitively on D and that the stabilizer
of the image of the identity matrix is K = SO(n). Hence we may identify D
with the symmetric space XSL = SLn(R)/SO(n). We will do this in the sequel,
using the notation D when we want to emphasize the coordinates coming from
the linear structure of C ⊂ V , and the notation XSL for the quotient G/K.

The G-action induces an action of SLn(Z) on C. This is the unimodular change
of variables action on quadratic forms as in §3.1.3. Under our identification of D
with XSL, this is the usual action of SLn(Z) by left translation from §2.5.2.

3.4. The Voronǒı polyhedron.

3.4.1. Recall that a point in Zn is said to be primitive if the greatest common
divisor of its coordinates is 1. In particular, a primitive point is nonzero. Let
P ⊂ Zn be the set of primitive points. Any v ∈ P, written as a column vector,
determines a rank-one symmetric matrix q(v) in the closure C via q(v) = vvt.
The Voronǒı polyhedron Π is defined to be the closed convex hull in C of the
points q(v), as v ranges over P. Note that by construction, SLn(Z) acts on Π,
since SLn(Z) preserves the set {q(v)} and acts linearly on V .

3.4.2. The polyhedron Π is quite complicated: it has infinitely many faces, and
is not locally finite. However, one of Voronǒı’s great insights is that Π is actually
not as complicated as it seems. To explain his insight, we need the notion of a
perfect quadratic form.

For any A ∈ C, let μ(A) be the minimum value attained by A on P, and
let M(A) ⊂ P be the set on which A attains μ(A). Note that μ(A) is positive
and M(A) is finite since A is positive-definite. Then A is called perfect if it is
recoverable from the knowledge of the pair (μ(A),M(A)). In other words, given
(μ(A),M(A)), we can write a system of linear equations

(3.4.1) mZmt = μ(A), m ∈ M(A),

where Z = (zij) is a symmetric matrix of variables. Then A is perfect if and only
if it is the unique solution to the system (3.4.1).
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3.4.3. We can now summarize Voronǒı’s main results:

(1) There are finitely many equivalence classes of perfect forms modulo the
action of SLn(Z). Voronǒı even gave an explicit algorithm to determine
all the perfect forms of a given dimension.

(2) The facets of Π, in other words the codimension 1 faces, are in bijection
with the rank n perfect quadratic forms. Under this correspondence the
minimal vectors M(A) determine a facet FA by taking the convex hull in
C of the finite point set {q(m) | m ∈ M(A)}. Hence there are finitely
many faces of Π modulo SLn(Z), and thus finitely many modulo any
finite-index subgroup Γ.

(3) Let V be the set of cones over the faces of Π. Then V is a fan, which
means (i) if σ ∈ V , then any face of σ is also in V ; and (ii) if σ, σ′ ∈ V ,
then σ ∩ σ′ is a common face of each.3

(4) The Voronǒı fan V provides a reduction theory for C in the following
sense: any point x ∈ C is contained in a unique σ(x) ∈ V , and the
stabilizer subgroup {γ ∈ SLn(Z) | γ · σ(x) = σ(x)} is finite. Voronǒı
also gave an explicit algorithm to determine σ(x) given x, the Voronǒı
reduction algorithm.

The number of equivalence classes of perfect forms modulo the action of GLn(Z)
grows rapidly with n. Voronǒı computed the equivalence classes for n ≤ 5 [50].
Currently the largest n for which the number is known is n = 8: Dutour–
Schurmann–Vallentin recently showed that there are 10916 equivalence classes
[15]. For a list of perfect forms up to n = 7, see [12].

3.5. The Voronǒı decomposition and the retract.

3.5.1. Here is how the Voronǒı fan V can be used to construct higher-dimensional
analogues of the tessellation in Figure 3.2. The idea is to use the cones in V to
chop the quotient D into pieces.

For any σ ∈ V , let σ◦ be the open cone obtained by taking the complement in
σ of its proper faces. Then after quotienting by homotheties, the cones {σ◦ ∩C |
σ ∈ V } pass to locally closed subsets of D. Note that σ◦ ∩ C may be empty. If
σ◦ ∩ C �= ∅, and c is the image of σ◦ modulo homotheties, we say σ◦ induces c.
Note that each c is a cell, in other words is homeomorphic to an open ball, since
it is the quotient of an open polyhedral cone by homotheties.

3.5.2. Let C be the set of cells c induced from the Voronǒı cones. Clearly C
is the union of all cones σ that induce cells in C . Since C comes from the fan
V , the cells in C have good incidence properties: the closure in D of any c ∈ C

3Strictly speaking, Voronǒı actually showed that every codimension 1 cone is contained in
exactly two top dimensional cones.
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can be written as a finite disjoint union of elements of C . Moreover, C is locally
finite: by taking quotients of only the σ◦ meeting C, we have eliminated the open
cones lying in C, and it is the latter cones that are responsible for the failure of
local finiteness of V .

We summarize these properties by saying that C gives a cellular decomposition
of D. Clearly SLn(Z) acts on C , since C is constructed using the fan V . Thus
we obtain a cellular decomposition of Γ\D for any finite-index Γ ⊂ SLn(Z). We
call C the Voronǒı decomposition of D.

3.5.3. Now we explain how V can be used to construct the cell complex W . The
first step is to enlarge the cone C to a partial Satake compactification C∗. Let
H be a hyperplane in V , and let C be the closure of C in V . We say H is a
supporting hyperplane of C if H is rational and H ∩C = ∅ but H ∩C �= ∅. Since
C is convex, these conditions imply that C lies entirely in one of the two closed
half-spaces determined by H.

Given a rational supporting hyperplane H of C, let C ′ = Int(H ∩ C̄), where
Int( ) denotes the interior in the linear span. Then C ′ is called a rational boundary
component; it is isomorphic to a smaller dimensional cone of positive definite
quadratic forms. Let C∗ be the union of C and all its proper rational boundary
components. We can similarly form D∗, the union of D and the images of the
rational boundary components modulo homotheties. One can topologize D such
that Γ\D∗ is a compact Hausdorff space. In general Γ\D∗ is singular.

Again, we can consider these constructions for SL2 and the principal congru-
ence subgroup Γ(N). In this case D∗ is H ∪ Q ∪ {∞}. The quotient Γ(N)\D∗ is
isomorphic to the surface X(N) obtained by filling in the punctures of Y (N).

3.5.4. It turns out that formation of the Voronǒı polyhedron Π is compatible
with construction of the rational boundary components, which means the fan V
actually lies in C∗. Let B(V ) be the first barycentric subdivision of V . Take
the cones in B(V ) that are dual to the cones inducing cells in C . These cones
are contained entirely in C, and project to a collection of cells in D. By taking
unions of these cells, we build W . This strategy was devised by Ash in [4], and
used by him to construct retracts for a large class of arithmetic groups.

Figure 3.3 shows the process in D for SL2. On the left we see part of the
Voronǒı tessellation in D∗, displayed in the linear coordinates on D. The gray
discs correspond to the points in D∗ � D. The middle shows the barycentric
subdivision of this decomposition. The right shows W , in heavy black lines.
Note that edges from the centers of the triangles to the boundary components do
not appear in W , since they are not dual to cells in the original tessellation. Also
note that the cells in W are formed by taking unions of cells in the barycentric
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subdivision. For more about W , as well as extensions of W to other settings, we
refer to [4, 5, 40,49,51,52].

Figure 3.3. Forming W by taking the dual

3.6. The symplectic cell decomposition.

3.6.1. Finally we come to the symplectic case, and to the results of [38,39]. Let
G = Sp2n, G = Sp2n(R), and Γ = Sp2n(Z). Let XSp be the symplectic symmetric
space Sp2n /U(n), a real manifold of dimension n2 + n. How can we construct
W ? Unfortunately, there is no analogue of the cone C for XSp: the Siegel upper
halfspace has no hidden linear structure.

The main idea of [39] is extremely simple. There is an embedding Sp2n(R) ⊂
SL2n(R) that induces an embedding ι : XSp → XSL. In terms of the linear coor-
dinates on D � XSL, the image of XSp is cut out by quadratic equations. In XSL

we have the Voronǒı cells C that provide a cellular decomposition, and we can
consider all possible intersections {c∩ ι(XSp) | c ∈ C }. These provide candidates
for the cells in a cellular decomposition CSp of XSp.

However, there is a potential pitfall with this idea: how do we know that
the intersections c ∩ ι(XSp) are actually cells? If each c met the image of XSp

transversely, then we would know by a general argument that the intersections
would be cells. Unfortunately, this is not the case. It seems that sometimes the
Voronǒı cells meet the Siegel space transversely, and sometimes not. Thus we
have no way of knowing a priori that the sets c ∩ ι(XSp) are actually nice.

3.6.2. Because of this difficulty, the authors decide to study one special case:
Sp4. There are several reasons why this is a good choice. First of all, the Voronǒı
complex is only known in full detail for n ≤ 5, so this is the only symplectic
case other than Sp2 � SL2 that can be studied explicitly. It is also the simplest
example of a nonlinear symmetric space of Q-rank > 1. This is important, since
to construct the symplectic retract WSp the authors plan to use a Satake com-
pactification as in §3.5.3, and with such compactifications there are significant
differences in passing from Q-rank 1 to Q-rank > 1. Finally, arithmetic quotients
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of Sp4(R) have always played a special role in the literature. For one, they are
moduli spaces of abelian surfaces with extra structure, and hence give interesting
yet tractable examples of Shimura varieties other than the modular curves. Also
the associated automorphic forms have long been of interest in arithmetic, since
they are the first examples of Siegel modular forms that are not elliptic.

Thus to study CSp the authors resort to explicit computations in coordinates.
They find that indeed the intersections c ∩ ι(XSp) are always cells, and that the
collection CSp provides a cell decomposition of XSp.

3.7. The symplectic retract.

3.7.1. After forming the cell decomposition CSp, McConnell and MacPherson
construct the symplectic retract WSp by following the strategy indicated in §3.5.3.
They enlarge XSp to a Satake compactification X∗

Sp, and show that the decom-
position C ∗

Sp extends to X∗
Sp in such a way that the compact quotient Γ′\C ∗

Sp

is a regular cell complex for any torsion-free finite-index Γ′ ⊂ Sp4(Z). Then
they define WSp to be the Poincaré dual complex to CSp in the first barycentric
subdivision of C ∗

Sp, as indicated in Figure 3.3.

3.7.2. The difficulty in carrying out these arguments is that they must first verify
that C ∗

Sp is a regular cell complex. Again this doesn’t follow from any general
principles; they really need to show that the closure of each cell in C ∗

Sp is a closed
ball. Various bad things could happen when taking the closures. For example,
the boundaries of the closures could be non-simply-connected homology spheres
instead of true spheres.

To verify the regularity, more explicit computations are needed. They show
that the boundaries of the closures are spheres by constructing explicit shellings.
Roughly speaking, a shelling of a simplicial complex is a total ordering of its
maximal faces satisfying certain properties that guarantee that the full complex is
assembled from the maximal faces nicely. A result from combinatorics [14] states
that if a finite n-dimensional simplicial complex Δ is shellable and any (n − 1)-
simplex is contained in exactly two n-simplices, then Δ is homeomorphic to an
n-sphere. Using a computer, McConnell and MacPherson constructed shellings of
the barycentric subdivisions of the boundaries of the closures of cells; the largest
complex they shelled was a simplicial S5 with 23232 faces.

3.7.3. We conclude this section by describing the geometry of the 4-dimensional
cell complex WSp.4 The group Sp4(Z) acts cellularly on WSp, and in the following
we say two cells have the same type if they lie in the same Sp4(Z)-orbit.

4The images in Figures 3.4–3.7 were produced by the author in collaboration with Mark
McConnell, as a birthday present to Bob MacPherson. Happy Birthday, Bob!
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There is one type of 4-cell. Fix a 4-cell and let P be its closure. Then P can be
realized as a cellular ball with 40 facets, 180 two-faces, 216 edges, and 76 vertices.

There are three types of 3-cells. In [38] their closures are called the crystal,
the vertebra, and the pyramid (Figures 3.4 and 3.5). The pyramid has 4 triangle
faces and 1 square face. The crystal has 12 square and 12 triangle faces. The
vertebra has 2 hexagon, 12 square, and 12 triangle faces.

There are two types of 1-cells and two types of 0-cells modulo Sp4(Z).

Now we focus on the closure P of a 4-cell, which contains 4 crystals, 4 vertebrae,
and 32 pyramids. Each crystal (respectively, vertebra and pyramid) lies in the
boundary of 3 (resp., 3 and 4) 4-cells. Hence P meets the closures of 112 other
4-cells.

How is P assembled together from its 3-faces? Unfortunately P has so many
edges that it’s difficult to draw. The structure of P , on the other hand, is rela-
tively easy to describe.

Begin by connecting 4 vertebrae together in pairs along their hexagonal faces
to form a cellular solid torus. This chain of vertebrae has 72 vertices, and thus
accounts for all but 4 of the vertices of P .

Embed the chain of vertebrae in the boundary ∂P � S3 as a solid torus T , and
let C be an unknotted circle disjoint from T but nontrivially linking T with linking
number 1. For example, if we identify S3 with the polydisc {(x, y) ∈ C2 | |x| ≤
1, |y| ≤ 1}, then we can take T = {|x| = 1, |y| ≤ 1} and C = {x = 0, |y| = 1}.
The remaining 4 vertices of P can be taken to lie along the circle C. If we place
4 vertices along C, then any two adjacent vertices a, a′, together with certain
vertices in the vertebrae, determine a crystal.

More precisely, each vertebra meets every other crystal in P , and does so
along three 2-faces (2 squares and a triangle). This is indicated in Figure 6(a);
the shaded 2-faces are those that meet the crystals. Each triple of shaded 2-faces
meets one of the crystals, and as we move around the chain T adjacent sets of
triples meet the same crystal. It follows that each crystal meets every vertebra.
This is indicated in Figure 6(b) by the triples of shaded 2-faces (note that in this
figure, one vertex of the crystal appears at infinity in the Schlegel diagram).

Figure 6(b) also shows which two of the vertices of a crystal don’t lie in any
vertebrae; in the figure these vertices appear connected to the rest with light-
shaded edges. Hence to build a crystal in P one takes adjacent pairs a, a′ of
vertices along C and uses each of them with 8 vertices of the chain T to flesh out
a crystal.

This shows how to find all the crystals and vertebrae in P . The pyramids
simply plug up the gaps to fill out all of ∂P .
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Figure 3.7 shows the 1-skeleton of ∂P . The torus T is the central block of dark
vertices and edges; the circle C is represented by a vertical line (i.e. we’ve used
stereographic projection to identify S3 �{pt} with R3), and the light vertices and
edges are those arising from the “fleshing out” construction described above.

For more about the structure of WSp, as well as a beautiful way to index its
cells in terms of configurations of points and lines in P3, we refer to [38].

(a) Top (b) Front

Figure 3.4. Two views of the crystal

(a) Vertebra (b) Pyramid

Figure 3.5. The vertebra and the pyramid
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(a) Vertebra

at ∞

(b) Crystal

Figure 3.6. Schlegel diagrams for the vertebra and the crystal.
A colored 2-face of the vertebra (respectively crystal) also meets
another crystal (resp., vertebra) in ∂P . The light vertices and
edges in the crystal are those not contained in any vertebra (cf.
Figure 3.7).

4. Compactifications of locally symmetric spaces

4.1. Introduction.

4.1.1. We return to the general setting. Let G be a connected semisimple Q-
group with group of real points G, and let K be a maximal compact subgroup
of G. Let X = G/K be the associated symmetric space, and let Γ ⊂ G(Q) be a
torsion-free arithmetic group. Then as we have discussed, the quotient Γ\X is a
smooth manifold.

Suppose the Q-rank of G is positive. Then the quotient Γ\X is noncompact.
The basic problem we now address is the following: Can one find a good com-
pactification of Γ\X?

4.1.2. This problem has a long history, and there are many beautiful and inge-
nious solutions. Before we talk about some of them, it’s useful say a few words
about why this question is worth asking. Why do we care that Γ\X is noncom-
pact?

Indeed, for many applications we don’t care. The space X carries a natural G-
invariant complete Riemannian metric that induces a G-invariant volume form.
It turns out that even though Γ\X is noncompact, its volume is finite (one says
that Γ is cofinite). For many applications this is sufficient; the noncompactness
of Γ\X doesn’t matter.
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Figure 3.7. The 1-skeleton of the closure of a 4-cell in WSp. The
dark edges lie in the chain of 4 vertebrae, which one shold picture
as being on a torus lying flat on its side. The light vertices are the
vertices of the 4 crystals not already appearing in the vertebrae;
in S3 they lie on a circle passing through the hole of the torus. If
one labels these vertices 0, 1, 2, 3 from top to bottom, with labels
taken mod 4, then the pair (i, i+1) lies in a single crystal (cf. the
right of Figure 3.6)

4.1.3. Nevertheless, there are reasons why one wants to compactify Γ\X:

(1) There are many tools from algebraic and differential topology (for ex-
ample, Lefschetz fixed point theorem, Morse theory) that only work on
compact spaces. Since the cohomology of Γ\X is important in number
theory, we would like to avail ourselves of such tools to study it.

(2) For certain groups G the spaces Γ\X can be interpreted as the complex
points of a moduli space, for example for G = Sp2n. Here the space
Γ\X parametrizes n-dimensional abelian varieties with additional struc-
ture determined by Γ.

When Γ\X is a moduli space, the points at infinity of a compactifi-
cation often correspond to degenerations of the objects parametrized by



Robert MacPherson and Arithmetic Groups 1035

Γ\X. The higher the Q-rank, the more intricate these degenerations are.
One is interested in understanding these possible degenerations and their
interrelationships.

(3) Even if Γ\X is not a moduli space, it has additional structure coming
from the group theory of G, structure that affects computations on Γ\X
in subtle ways. Perhaps the most definitive example of this phenomenon
is Langlands’s pièce de résistance, the determination of the spectral de-
composition of L2(Γ\G) [33, 41]. Other manifestations of this principle
can be seen in Franke’s theorem (§2.6.4), Arthur’s trace formula [1], and
the computation of the spectrum of the Laplace operator on L2(Γ\X)
(§4.7.2). This group-theoretic structure also arises in the construction of
compactifications of Γ\X. Hence it is natural to understand such com-
putations in the fuller context of different compactifications of arithmetic
quotients of X.

4.2. Examples of compactifications.

4.2.1. We hope the reader is convinced that compactifying Γ\X is profitable.
Because of the wealth of different applications of these compactifications, there
is a whole zoo of them in the literature. Excellent overviews can be found in
[9, 18, 28]. Here we content ourselves with a brief synopsis of some of the most
useful. To simplify notation, we write Y = Γ\X.

4.2.2. Borel–Serre compactification Y BS [10]. From a topological perspective,
this compactification is the simplest: it is differentiably a manifold with cor-
ners, by which we mean a Hausdorff space smoothly modeled on the generalized
halfspaces Rk × (R≥0)n−k, k = 0, . . . , n. Topologically Y BS is just a manifold
with boundary. The boundary ∂Y BS := Y BS � Y is assembled from certain fiber
bundles over locally symmetric spaces of lower rank (§4.6.2)

4.2.3. Reductive Borel–Serre compactification Y RBS [19, 53]. In contrast to the
Borel–Serre, Y RBS is usually singular. It is obtained as a quotient of Y BS; one
collapses the fibers in the bundles above to points. Hence the boundary ∂Y RBS

is glued together from locally symmetric spaces of lower rank (§4.6.2)
Why should one ever use Y RBS instead of Y BS? After all, Y BS is nearly a

manifold itself, and Y RBS is quite singular. There are two answers. One is that
the singularities of Y RBS are intricate yet manageable, so little serviceability is
lost in passing from Y BS to Y RBS. This feature plays an important role in the
topological trace formula [27, §1.1.4]. The other is that Y BS is deficient from a
differential-geometric perspective: the complete metric on Y becomes degenerate
on Y BS. This is not so on Y RBS; the metric on Y extends to be nondegenerate
on Y RBS.
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4.2.4. Satake compactifications Y Sat
τ [47, 48]. Here there is not one compactifi-

cation, but rather a whole collection of them. The construction is very similar
to what we did in §3.5.3 in creating C∗ from C, except that now we don’t have
a linear model for X. One begins by choosing an irreducible locally faithful rep-
resentation τ : G → GL(V ) on a finite dimensional real vector space V . Not just
any such τ will work: τ must be geometrically rational (cf. [11]). Let P Sym2 V
be the symmetric square of V modulo homotheties. Then one embeds the global
symmetric space X in P Sym2(V ) by g �→ τ(g)tτ(g) mod homotheties. One then
takes the closure X of the image of X in P Sym2(V ) and identifies a certain subset
of rational boundary components XSat

τ ⊂ X .5 After appropriately topologizing
XSat

τ , the quotient Y Sat
τ = Γ\XSat

τ is compact and Hausdorff. This compactifi-
cation is also usually singular, in general even more singular than the reductive
Borel–Serre Y RBS.

4.2.5. Baily–Borel compactification Y BB [6]. This compactification, and the
toroidal compactifications that follow, are defined for Hermitian symmetric spaces
X. This means that X carries a G-invariant complex structure; accordingly the
quotient Y does as well. Such X may be realized as a bounded domain in a
complex vector space. One takes the closure X of X there and again identifies
a certain subset XBB of rational boundary components. Again after defining an
appropriate topology, the quotient Y BB = Γ\XBB is compact and Hausdorff, and
in fact is a normal analytic space. After further investigation of the functions
giving Y BB its ringed structure, namely certain Poincaré-Eisenstein series, one
finds that Y BB is actually a projective variety. Topologically Y BB can be obtained
as one of the Satake compactifications ( [53], cf. [11, §7]). This compactification
is usually extremely singular.

4.2.6. Toroidal compactifications Y Σ [3]. These compactifications were origi-
nally constructed to resolve the singularities of the Baily–Borel Y BB. The con-
struction depends on some extra (noncanonical) combinatorial data Σ; this data is
a collection of rational polyhedral fans in certain self-adjoint homogeneous cones
attached to G, fans that are geometrically very similar to the Voronǒı fan V
in the cone of positive definite quadratic forms C (§3.4.2). Further assumptions
on Σ guarantee that Y Σ is a smooth projective variety with ∂Y Σ a divisor with
normal crossings. An overview of the construction for Siegel modular varieties
can be found in [42].

4.2.7. The simplest example where there are differences between some of these
compactifications is G = SL2. Consider Y (N), the modular curve Γ(N)\H
(§3.2.2). As described before, Y (N) is homeomorphic to a punctured topological

5X itself is also considered to be a boundary component, called the improper boundary
component.
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surface. There are two obvious compactifications of Y (N), one filling each punc-
ture with a single point, and the other lining each puncture with a circle S1. The
first is the reductive Borel–Serre Y (N)RBS, as well as the Baily–Borel Y (N)BB.
It is also the only possible Satake and only possible toroidal compactification of
Y (N). The second is the Borel–Serre Y (N)BS. In this case the quotient map
∂Y BS → ∂Y RBS defined in §4.2.3 simply collapses each S1 ⊂ ∂Y BS to a point.

4.2.8. For a more revealing example, let G = RF/Q SL2, where F is real qua-
dratic. Let Γ ⊂ SL2(OF ) be torsion-free and of finite index. The locally sym-
metric space Y = Γ\H × H has real dimension 4. Each connected component of
the boundary of the Borel–Serre ∂Y BS is a three manifold Z that is naturally the
total space of a torus bundle over a circle: T 2 ↪→ Z → S1.6

In the boundary of the reductive Borel–Serre ∂Y RBS, the tori in these bundles
are collapsed to points; hence the boundary components are circles. This already
shows that Y RBS is singular, since the link of any point in the boundary is a
2-torus.7 The Baily–Borel Y BB is obtained by collapsing these circles to points;
thus the link of any point in ∂Y BB is a 3-manifold Z as above. For more details,
see [45].

A toroidal compactification resolving the cusp singularities of Y BB was first
constructed by Hirzebruch [30]. Indeed, Hirzebruch’s technique was one of the
principal motivations for the general theory of toroidal compactifications [3].
Since F is quadratic, there is a canonical minimal toroidal compactification.
This is not true for higher degree F ; compactifications in this case were first
constructed by Ehlers [16].

4.3. Building compactifications using geometry.

4.3.1. The compactifications above all use the structure theory of G, the group
underlying the symmetric space X, in an essential way. The basic questions
addressed by Ji–MacPherson are

• What natural compactifications of Y = Γ\X can be constructed using its
intrinsic geometry? Here by intrinsic geometry we mean objects such as
sets of geodesics on Y .

6The different connected components of Y BS need not be homeomorphic.
7In a stratified space X ⊂ Rn, the link L(p) of a point p in a stratum S is by definition

L(p) = ∂Bδ(p) ∩ N ∩ X, where (i) N is a submanifold through p meeting all strata of X
transversely, and with dimN + dim S = n, and (ii) Bδ(p) is a closed ball centered at p with
radius 0 < δ << 1. It is known that the homeomorphism type of the L(p) is independent of the
above choices for a wide class of stratified spaces, and the that the normal slice Bδ(p) ∩ N ∩ X
is homeomorphic to the cone on L(p). For this same class of spaces, the link is an invariant of
the stratum S. For more details, we refer to [24, I.1.4].
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• What is the relationship of such compactifications with the standard ones
from §4.2?

4.3.2. To illustrate the methods Ji–MacPherson have in mind, we consider M =
Rn equipped with the standard metric [31, §1.1]. How can we compactify M?

We first need to know what the points at infinity M(∞) should be. Let m ∈ M
be a fixed point, and let γ : R≥0 → M be a geodesic ray with γ(0) = m. We say γ
is based at m. Let d( , ) be the distance function on M induced from the metric.
Any sequence of points {mi}i≥1 ⊂ γ with d(m,mi) → ∞ should converge to a
point on M(∞), since the mi go arbitrarily far from m. Moreover, all such
sequences along γ should tend to the same point at infinity.

Now consider two geodesic rays γ, γ′ with distinct basepoints m �= m′. If γ
and γ′ are not parallel, then for any two sequences {mi}i≥1 and {m′

i}i≥1 with
d(m,mi), d(m′,m′

i) → ∞, we have d(mi,m
′
i) → ∞. Hence these sequences

should converge to different points at infinity. On the other hand if γ and γ′ are
parallel, we can find two such sequences with d(mi,m

′
i) bounded above. Hence

it is reasonable to require that these sequences converge to the same point at
infinity.

This leads to the following definition. As a set, M(∞) is the set of geodesic
rays in M modulo the equivalence relation of parallelism. For this example the
topology on M(∞) is clear: if the angle between two rays is small, the corre-
sponding points on M(∞) should be close. With this topology, M ∪ M(∞) is
homeomorphic to the closed ball Bn, with M(∞) homeomorphic to Sn−1.

4.3.3. Now the authors want to apply this idea to a locally symmetric space
Y = Γ\X. The geometry here is more intricate: there are geodesic rays that
don’t go cleanly off to infinity, but close up to form immersed loops. Even worse,
there are geodesics that reenter a fixed compact set infinitely often. This is
already visible when Y = Γ\H is a modular curve. If γ ⊂ H is a geodesic ray
tending to an ideal point α ∈ R, then the behavior of the image of γ in Y depends
subtly on the basepoint γ(0) and the arithmetic nature of α, in particular the
continued fraction expansion of α.

Because of this phenomenon, the authors define a distance minimizing ray (DM
ray) to be a geodesic ray γ : R≥0 → Y that gives an isometric embedding of R≥0

in Y . More generally, they introduce eventually distance minimizing geodesics
(EDM geodesics); by definition γ : R → Y is EDM if there exists t0 >> 0 such
that γ restricted to R≥t0 is DM. These will be the basic objects determining
points on Y (∞).

Next they need an appropriate equivalence relation on geodesics. Since paral-
lelism makes no sense in Y , they generalize the characterization of parallel rays in
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Rn through distances as in §4.3.2. They define two DM rays γ, γ′ to be equivalent
if

lim
t→∞ sup d(γ(t), γ′(t)) < ∞.

In other words, as t → ∞, the distances between the corresponding points on
γ, γ′ remain bounded above.

Finally they define Y (∞) as a set to be the set of DM rays modulo equiv-
alence. After defining an appropriate topology on Y ∪ Y (∞), they obtain a
compact Hausdorff space such that each DM ray converges to the point on Y (∞)
corresponding to its equivalence class. The resulting space is called the geodesic
compactification of Y , and is denoted Y geo.

4.3.4. The basic idea of Ji–MacPherson’s construction makes sense for any com-
plete noncompact Riemannian manifold, not just a locally symmetric space, and
in fact the geodesic compactification appears in the literature in different guises.
For example, the geodesic compactification of a Hadamard manifold is known as
the conic compactification [7].8

For complete noncompact Riemannian manifolds M , one has a very general
compactification technique due to Gromov [7]: one embeds M in a space of
continuous functions using the distance function associated to the metric, and
then takes the closure. Ji and MacPherson show that, if M is a locally symmetric
space, the geodesic compactification coincides with Gromov’s.

4.4. More structure theory.

4.4.1. Our next goal is a description of the geometry of Y geo, as well as the
relationship of Y geo to Y BS and Y RBS. This requires substantially more notation
from the theory of algebraic groups (§§4.4.2–4.4.6). We give examples of most of
the following in §4.4.7 for G = SLn; the inexpert reader may wish to skip ahead.

4.4.2. Let S be a maximal Q-split torus of G, with character lattice (respectively,
dual lattice of one-parameter subgroups) X(S)Q (resp., X∨(S)Q). We denote by
〈 , 〉 : X(S)Q × X∨(S)Q → Z the natural unimodular pairing.

Let g be the Lie algebra of G, and let Φ = Φ(G,S) be the roots of S in
the adjoint action on g. Then Φ is a root system in the vector space X(S)R :=
X(S)Q⊗R. This root system determines a hyperplane arrangement {Hα | α ∈ Φ}
in X∨(S)R by

Hα = {y ∈ X∨(S)R | 〈α, y〉 = 0}.
The connected components of the complement of this arrangement are called
Weyl chambers. The Weyl group W = W (G) acts on X∨(S)R by transitively

8A manifold is Hadamard if it is simply-connected, nonpositively curved, and complete [7].
For example, H × R, H × H, and H3 are all Hadamard.
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permuting the chambers. If we fix a chamber C, we determine a subset Φ+ ⊂ Φ
of positive roots, and a subset Δ ⊂ Φ+ of simple roots.

4.4.3. A closed subgroup P ⊂ G is called parabolic if it contains a maximal
connected solvable subgroup, and is called Q-parabolic (or rational parabolic) if
it is defined over Q.

The spherical Tits building B = B(G) is the simplicial complex constructed as
follows. Simplices of B are in bijection with proper rational parabolic subgroups
of G. The vertices of B correspond to the maximal parabolic subgroups; given
a set of such P1, . . . ,Pk, if the intersection Q = P1 ∩ · · · ∩ Pk is a rational
parabolic subgroup, then there is a simplex in B corresponding to Q with vertices
corresponding to P1, . . . ,Pk. It is known that B has pure dimension equal to
q − 1, where q is the Q-rank of G.

The group of rational points G(Q) acts on B through conjugation of rational
parabolic subgroups. If Γ ⊂ G(Q) is an arithmetic subgroup, then Γ acts on B,
and the quotient Γ\B has simplices in bijection with the Γ-conjugacy classes of
rational parabolic subgroups. It is known that Γ\B is always finite.

4.4.4. Let NP ⊂ P be the unipotent radical of P. The quotient LP := P/NP is
called the Levi quotient. It is a reductive group, defined over Q if P is.

Let SP be a maximal Q-split torus in the center of LP. Let AP = S0
P, the

connected component of the identity in the group SP of real points SP(R). Put

MP =
⋂

α∈X(LP)Q

ker α2.

The group MP is semisimple, in general not connected.

There is a unique lift i : LP → P compatible with our choice of maximal
compact subgroup K ⊂ G. This induces lifts of SP and MP to P that allow us
to view the groups of real points AP and MP as subgroups of P . This leads to
the Langlands decomposition of P :

P = NPAPMP.

One can show that the map NP × AP × MP → P induced by multiplication is a
diffeomorphism.

4.4.5. The Langlands decomposition leads to coordinates on the global sym-
metric space X = G/K as follows. The group P acts transitively on X. Any
x ∈ X can be written as x = uamx0, where u ∈ NP, a ∈ AP, m ∈ MP are
uniquely determined, and where x0 ∈ X is the basepoint determined by K. Let
KP = MP ∩ K and put XP = MP/KP. Then XP is the product of a global
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symmetric space of noncompact type with a possible Euclidean factor. The de-
composition x = uamx0 induces a diffeomorphism

NP × XP × AP −→ X

by
(u,mKP, a) �−→ uamx0.

4.4.6. Let P be a rational parabolic subgroup, and let aP, nP be the Lie algebras
of AP, NP. We denote by Φ+(P, AP) the positive roots of the adjoint action of
aP on nP. Put

(4.4.1) A+
P(∞) = {H ∈ aP | α(H) > 0, (H,H) = 1, α ∈ Φ+(P, AP)},

where ( , ) is the Killing form on aP. Let A
+
P(∞) be the closure of A+

P(∞)
obtained by replacing the conditions α(H) > 0 in (4.4.1) with α(H) ≥ 0. Then
A

+
P(∞) is homeomorphic to a closed simplex. Define a simplicial complex B(X)

by

(4.4.2) B(X) =
⋃
P

A
+
P(∞)/ ∼,

where the union is taken over all proper rational parabolic subgroups, and we
identify A

+
P(∞) with a face of A

+
Q(∞) if the two parabolic subgroups P, Q satisfy

Q ⊂ P. Then B(X) � B, in other words the complex B(X) is a realization of
the Tits building B. If Γ is an arithmetic subgroup, we similarly define

(4.4.3) B(Γ\X) =
⋃
P

A
+
P(∞)/ ∼,

where the union is now taken over all Γ-conjugacy classes of proper rational
parabolic subgroups. We have B(Γ\X) � Γ\B.

4.4.7. We consider the example G = SLn.

The maximal Q-split torus S is the subgroup of all diagonal matrices. The
standard choice of positive roots is the set Φ+ = {ei − ej | 1 ≤ i < j ≤ n},
where {ei} is the standard basis of Rn. The simple roots Δ ⊂ Φ+ are the points
{ei − ei+1 | i = 1, . . . , n − 1}, and the root lattice X(S)Q can be identified with
{(x1, . . . , xn) ∈ Zn |∑xi = 0}.

Any proper Q-parabolic subgroup is conjugate over SLn(Q) to a standard
proper Q-parabolic subgroup. The latter are indexed by ordered positive par-
titions π of n with at least 2 parts. Given such a partition π = (π1, . . . , πk), the
corresponding parabolic subgroup has real points

P =

{(P1 · · · ∗
. . .

...
0 Pk

) ∣∣∣∣∣ Pi ∈ GLπi(R),
∏

det(Pi) = 1

}
.
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The Langlands decomposition P = NPAPMP is given as follows:

• MP ⊂ P is the subgroup of block diagonal matrices such that each block
is an element of SL±

πi
(R). Here the ± means to take matrices with deter-

minant ±1.
• AP ⊂ P is the subgroup of block diagonal matrices such that each ith

block has the form aiIπi , where ai > 0 and Iπi is the πi × πi identity
matrix.

• NP ⊂ P is the subgroup such that each ith block equals Iπi .

The parabolic subgroup P0 corresponding to the partition (1, . . . , 1) is called
the Borel subgroup. The Lie algebra aP0 of AP0 can be identified with X∨(S)R.
There are n! Weyl chambers, each of which is an open simplicial cone of dimension
n− 1. The subset A

+
P0

(∞) is the intersection of the closure of one of these cones
with a sphere. For any other standard rational parabolic subgroup Q, we have an
inclusion aQ ⊂ aP0 such that A

+
Q(∞) is identified with a proper face of A

+
P0

(∞).

Figure 4.1 shows the situation for SL4. The left shows A
+
P0

(∞) as the dark
spherical triangle topping off the simplicial cone. In this figure we have used the
Killing form to identify aP0 with its dual, which allows us to view the simple roots
αi alongside the cone. Each simple root is orthogonal to a facet of the cone. We
have also rescaled the form in the definition (4.4.1) to make the picture clearer.

There are 7 partitions π: 1111, 211, 121, 112, 31, 22, 13. Here we abbreviate
(π1, . . . , πk) by π1 · · · πk, and in what follows denote a parabolic subgroup by its
partition and drop (∞) from the notation. The right of Figure 4.1 shows how
the faces of A

+
1111 = A

+
P0

(∞) are indexed by the partitions. (To go from the left
figure to the right rotate the back of the dark triangle forward.) The edges of A

+

correspond to partitions with 3 parts; the bottom is A
+
121, the left A

+
112, and the

right A
+
211. The vertices correspond to partitions with 2 parts; clockwise from

the top they are A
+
22, A

+
31, and A

+
13.

4.5. The geodesic compactification.

4.5.1. We are now ready to discuss the geometry of Y geo. Choose a rational
parabolic subgroup P, and write X = NP × XP × AP as in §4.4.5. If we choose
u ∈ NP, z ∈ XP, a ∈ AP, and H ∈ A+

P(∞), we get a geodesic γ on X by

(4.5.1) γ(t) = (u, z, a exp(tH)) ⊂ NP × XP × AP, t ∈ R,

where exp: aP → AP is the exponential map. The authors show that the image
of γ in Y = Γ\X is an EDM geodesic, and that in fact any EDM geodesic on
Y has the form (4.5.1) for appropriately chosen P. Moreover, two geodesics γ, γ′
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α1

α2

α3

A
+
P0

(∞)

112

121

211

3113

22

Figure 4.1. The region A
+
1111 = A

+
P0

(∞) for SL4, where P0 is a
Borel subgroup.

of the form (4.5.1) project to the same geodesic in Y , up to reparametrization,
if and only if H = H ′, log a − log a′ is a multiple of H, and (u, z) = g(u′, z′) for
some g ∈ ΓP := Γ ∩ P(Q). Hence all EDM geodesics on Y have an especially
simple form.

4.5.2. Next the authors investigate equivalence. It turns out that the equivalence
class of the geodesic γ(t) = (u, z, a exp(tH)) depends only on the H component,
and not u, z, or a. This, together with the explicit realizations

B(X) � B, B(Γ\X) � Γ\B
from §4.4.6, shows that the boundary ∂Y geo is homeomorphic to Γ\B.

This result motivates Ji and MacPherson to define another natural compact-
ification of Y : the Tits compactification Y T. By definition, the (partial) Tits
compactification of X is the union X ∪B, appropriately topologized so that the
quotient Y ∪ (Γ\B) is compact and Hausdorff. In Y T, the image of the geo-
desic (u, z, a exp(tH)) converges to the point in Γ\B corresponding to H via the
realization (4.4.3).

4.6. The Borel–Serre and the reductive Borel–Serre compactifications.

4.6.1. The Tits compactification is a new compactification of Y constructed
using the group theory of G, and as such properly joins the list in §4.2. As we
shall shortly see, Y T is as far from Y BS as possible: if the Q-rank of G is > 1, then
the greatest common quotient of Y T and Y BS is the one-point compactification
of Y ! With hindsight, it is clear that this must be the case, since the boundary
of Y T � Y geo is constructed using rays that converge to each other at infinity,
and on Y BS the metric degenerates. Hence equivalence classes of EDM geodesics
cannot detect points in ∂Y BS.
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4.6.2. To understand the exact relationship between Y geo and Y BS, Y RBS, we
must first say more about the construction of the latter spaces. We begin with the
globally symmetric space X and construct partial compactifications XBS, XRBS

by gluing on boundary components for each proper rational parabolic subgroup.
Given such a subgroup P, write X = NP × XP × AP. We define boundary
components eBS(P), eRBS(P) by

eBS(P) = NP × XP, eRBS(P) = XP,

and set

(4.6.1) XBS = X
⋃
P

eBS(P), XRBS = X
⋃
P

eRBS(P),

where the unions are taken over all proper rational parabolic subgroups.

The topologies on (4.6.1) can be defined by specifying the convergence prop-
erties of sequences of points in X and in the boundary components. For in-
stance, to converge to a point on eBS(P) starting from inside X, take a sequence
{yn} = {(un, zn, exp(Hn))} ⊂ NP × XP × AP, and suppose that

(1) un → u∞ ∈ NP,
(2) zn → z∞ ∈ XP, and
(3) for any α ∈ Φ+(P, AP), we have α(Hn) → ∞ as n → ∞.

Then in XBS, the sequence yn converges to (u∞, z∞) ∈ eBS(P). Similarly, in
the reductive Borel–Serre XRBS, the same sequence converges to the point z∞ ∈
eRBS(P). Other sequences can be constructed that converge from one boundary
component to a point in another. For a full list of all the sequences that need
to be specified to produce the correct topologies on XBS and XRBS, we refer
to [31, §7].

Appropriately topologized, the quotients by the action of any arithmetic group
Γ become the compact Hausdorff compactifications Y BS and Y RBS. We have a
commutative diagram

XBS

��

�� Y BS

��

XRBS �� Y RBS

.

The left vertical map is the identity on X, and for each proper Q-parabolic
subgroup P is the projection NP × XP → XP. The right vertical map is the
identity on Y ; to understand it on the boundary components, we need more
notation. Let ΓNP

= Γ ∩ NP, and let UP be the nilmanifold ΓNP
\NP. Let

ΓP = Γ ∩ P , and let ΓMP
⊂ MP be the discrete group obtained by projecting

ΓP to MP via P = NP × MP × AP → MP. Write ZBS
P (respectively, ZRBS

P )
for the boundary component of Y BS (resp., Y RBS) corresponding to P. Then
ZRBS

P is isomorphic to the locally symmetric space YP = ΓMP
\XP. In Y BS, the
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component ZBS
P has the structure of a fiber bundle over Y P with fiber UP. For

each P, the map ZBS
P → ZRBS

P collapses the nilmanifold UP to a point.

4.6.3. From the description of EDM geodesics on Y given in §4.5.1, it is clear
that all points in the boundaries ∂Y BS and ∂Y RBS can be reached by following
an EDM geodesic to its limit point. Hence there should be some construction of
Y BS and Y RBS by putting a suitable equivalence relation on the EDM geodesics.
This is indeed the case, and is carried out here.

If the Q-rank of G is 1, the construction is quite simple. For the Borel–Serre,
Ji and MacPherson prove that there is a bijection between the set of all EDM
geodesics and points in ∂Y BS, given by taking the endpoint of an EDM geodesic
γ:

γ �−→ lim
t→∞ γ(t)

The reductive Borel–Serre Y RBS is a quotient of the Borel–Serre, so we need
an equivalence relation on the EDM geodesics. We say two EDM geodesics γ, γ′

are N -equivalent (notation: γ
N∼ γ′) if

lim
t→∞ d(γ(t), γ′(t)) = 0

for appropriate parametrizations of γ, γ′. Denote the N -equivalence class of γ by
[γ]N . Then Ji–MacPherson show that there is bijection between the set of EDM
geodesics modulo N -equivalence and the points in ∂Y RBS, again given by taking
the endpoint:

(4.6.2) [γ]N �−→ lim
t→∞ γ(t).

Here the limit in (4.6.2) is taken in Y RBS.

4.6.4. For higher Q-ranks, similar results hold, although we need more equiva-
lence relations to state them. Let γ be an EDM geodesic. We define two sets
C(γ), F (γ) of EDM geodesics related to γ by

C(γ) =
{
γ′ ∣∣ d(γ(t), γ′(t)) is constant for t >> 0

}
F (γ) =

{
γ′ ∣∣ lim

t→∞ sup d(γ(t), γ′(t)) < ∞}.
The set C(γ) is called the congruence bundle of γ. It consists of all the EDM
geodesics that are eventually at constant distance to γ. The set F (γ) is called the
finite bundle of γ. Note that F (γ) is actually the set of all EDM geodesics that
are equivalent to γ in the sense used to construct the geodesic compactification
(§4.3.3).
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4.6.5. The congruence bundle C(γ) can be turned into a metric space with metric
δ as follows. First we put δ(γ′, γ) = c, where c is the constant in the definition of
C(γ). This constant can also be recovered as limt→∞ d̄(γ(t), γ′), where d̄(γ(t), γ′)
is defined by

inf
{
d(γ(t), γ′(s))

∣∣ s ∈ R
}
.

Via this description, we can also extend δ to all of C(γ). The authors show that
(C(γ), δ) is complete, and in fact has the following concrete form. If

γ(t) = (u, z, a exp(tH)) ⊂ NP × XP × AP,

then

(4.6.3) C(γ) � YP × span(H)⊥.

Here YP is as in §4.6.2, and span(H)⊥ is the orthogonal complement to the line
through H in aP.

4.6.6. Now we are ready to define our next equivalence relation. Let γ be EDM.
We define the rank r(γ) of γ by

r = r(γ) =
{
k ∈ Z

∣∣ there exists a faithful isometric action of Rk−1 on C(γ)
}
.

We then say γ′ ∈ C(γ) is L-related to γ (notation: γ
L∼ γ′) if γ, γ′ belong to the

same Rr−1-orbit. Here the L stands for linear ; one pictures the Rr−1-action as
linearly sliding the geodesics in C(γ) around in the span(H)⊥ factor from (4.6.3).

The authors show that L-equivalence extends to an equivalence relation on the
set of all EDM geodesics. In terms of (4.6.3), L-equivalence can be written as
follows. If γ1

L∼ γ2, then there exists γ with γi ∈ C(γ). Write C(γ) as in (4.6.3),
and write γi(t) = (ui, zi, ai exp(tHi)). Then γ1

L∼ γ2 means that the ui project to
the same point in the nilmanifold UP and the zi to the same point in the locally
symmetric space YP. From this it also follows that r(γ) is the Q-rank of P.

4.6.7. The restriction of L-equivalence to the finite bundle F (γ) also induces
an equivalence relation. The dimension of the quotient F (γ)/ L∼ is called the
mobility degree of γ, and is denoted μ(γ).

Using the mobility degree we can define another equivalence relation on EDM
geodesics, called R-equivalence. The R stands for rotation. Let γ0, γ1 be EDM
and let [γi]L be their L-equivalence classes. We say [γ0] is R-equivalent to [γ1],
and write [γ0]L

R∼ [γ1]L, if there exists a family γs, s ∈ [0, 1] of EDM geodesics
interpolating γ0 and γ1 with the following properties:

(1) d(γs1(t), γs2(t)) = c|s1 − s2|t for t ≥ 0, for some constant c and for all
s1, s2 ∈ [0, 1], and

(2) the mobility degree μ restricted to γs is constant.
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Two EDM geodesics γ, γ′ are said to be RL-related (notation: γ
RL∼ γ′) if their

L-classes are R-related: [γ]L
R∼ [γ′]L.

For the reductive Borel–Serre, we will need to combine RL-equivalence with
N -equivalence from §4.6.3. We say γ and γ′ are NRL-equivalent if there exists
an EDM geodesic γ′′ such that γ

RL∼ γ′′ and γ′ N∼ γ′′.

4.6.8. We can finally explain how to construct Y BS and Y RBS using EDM geo-
desics. If the Q-rank of G is bigger than 1, then ∂Y BS is in bijection with the
RL-equivalence classes of EDM geodesics, via the endpoint map:

[γ]RL �−→ lim
t→∞ γ(t),

where the limit is taken in Y BS. For the reductive Borel–Serre, the boundary
∂Y RBS is in bijection with the NRL-equivalence classes of EDM geodesics by the
endpoint map:

[γ]NRL �−→ lim
t→∞ γ(t),

where the limit is now taken in Y RBS.

4.6.9. We can now finally explain the relationship between Y geo and the com-
pactifications Y BS, Y RBS. First we need an explicit realization of RL-equivalence.

Suppose γ(t) = (u, z, a exp(tH)) and γ
RL∼ γ′. Then it turns out we can write

γ′(t) in the form
γ′(t) = (u, z, a′ exp(tH ′))

for the same parabolic subgroup P. Hence two geodesics are RL-equivalent if
their NP and XP components coincide; the AP part is irrelevant.

Notice that this is exactly the opposite of the basic equivalence relation used
to construct Y geo: for the geodesic compactification, the AP component is the
only component of an EDM geodesic that matters; the NP and XP components
play no role (§4.5.2). This is the sense in which Y geo is as far as possible from
Y BS.

4.6.10. We conclude our discussion by giving fanciful pictures of the local struc-
ture of compactifications Y BS, Y RBS, and Y geo for G = SL3 near the boundary
components corresponding to the Γ-conjugacy classes of the standard rational
parabolic subgroups.

Figure 4.2 shows the Borel–Serre compactification. This figure is based on one
by MacPherson [37]. We use the notation of §4.4.7, so that partitions are 111,
21, and 12. If π is a partition corresponding to the standard rational parabolic
subgroup P with Langlands decomposition P = NPAPMP, we write Yπ for the
locally symmetric space ΓMP

\XP and Uπ for the nilmanifold ΓNP
\NP (§4.6.2).
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The codimension 1 corners are both torus bundles over locally symmetric spaces
for SL2. In these cases the unipotent radicals N12, N21 are both isomorphic
to R2 with the subgroups Γ12, Γ21 isomorphic to Z2 acting by translation. The
alignment of the tori in the figure indicates the structure of the unipotent radicals.
For example, the unipotent radical N12 consists of all real matrices of the form⎛

⎝1 ∗ ∗
0 1 0
0 0 1

⎞
⎠ .

In the codimension 2 corner Z111 the locally symmetric space Y111 is a point.
Hence all the topology of Z111 is contained in the nilmanifold U111. This 3-
manifold is known as the Heisenberg manifold. It can be written as a bundle
T 2 → Z111 → S1 in two different ways, reflecting the two subgroups N12, N21 ⊂
N111.9

Y

Y111

Y12 Y21

U12
U21

U111

Figure 4.2. Borel–Serre compactification for SL3

Figure 4.3 shows the reductive Borel–Serre compactification. In this figure
the nilmanifold fibers have been collapsed to points, and all that remains in the
boundary are the lower-rank locally symmetric spaces.

Y

Y111

Y12 Y21

Figure 4.3. Reductive Borel–Serre compactification for SL3

Finally, Figure 4.4 shows the geodesic compactification with some geodesics
suggestively converging to boundary components. Here we write Bπ for the sim-
plex in the building corresponding to the standard parabolic subgroup Pπ. As

9Incidentally, both of these bundles are different from the T 2-bundle in §4.2.8.
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expected from §4.6.9, the boundary components here are in some sense totally
opposite to those of Y BS and Y RBS: as the codimension increases in the bound-
aries of Y BS and Y RBS, so does the dimension of the corresponding boundary
components of Y geo. This illustrates why, if the Q-rank is > 1, the greatest
common quotient of Y BS and Y geo is the one-point compactification.

Y

B111
B12 B21

Figure 4.4. Geodesic compactification for SL3

4.7. Complements.

4.7.1. We conclude by briefly summarizing some of the other material in [31].

4.7.2. Let M be a complete Riemannian manifold, and let Δ be the Laplace
operator on L2(M). It is known that if M is noncompact, then the continu-
ous spectrum of Δ (if it exists) cannot change under compact perturbation of
M . Hence one has the natural problem of trying to understand the connection
between the continuous spectrum of Δ and compactifications of M .

In the case that M is a locally symmetric space Y = Γ\X, it is known that Δ
has continuous spectrum thanks to Langlands’s study of Eisenstein series [33,41].
Ji and MacPherson are able to describe the continuous spectrum of Δ in terms of
the geometry of Y geo by reinterpreting Langlands’s fundamental work. This pro-
vides a very accessible and geometric introduction to the intricate constructions
in [33,41].

4.7.3. Let M be a complete Riemannian manifold and let λ be any real number
less than the bottom of the spectrum of the Laplace operator Δ. Associated to
this data is a certain compactification of M , the Martin compactification MMar

λ .
The precise definition is somewhat involved; we refer to [28] and [31, §15] for
details. Using Eisenstein series, Ji and MacPherson show that for a locally sym-
metric space Y the geodesic compactification Y geo canonically injects into the
Martin compactification Y Mar

λ . They also conjecture that this injection is in fact
a homeomorphism.



1050 Paul E. Gunnells

References

[1] J. Arthur, Introduction to the trace formula, Harmonic Analysis, The Trace Formula, And
Shimura Varieties (J. Arthur, D. Ellwood, and R. Kottwitz, eds.), CMI/AMS Publications,
2005, Proceedings of the 2003 Clay Mathematics Institute Summer School.

[2] J. Arthur, The L2-Lefschetz numbers of Hecke operators, Invent. Math. 97 (1989), no. 2,
257–290.

[3] A. Ash, D. Mumford, M. Rapaport, and Y. Tai., Smooth compactifications of locally sym-
metric varieties, Math. Sci. Press, Brookline, Mass., 1975.

[4] A. Ash, Deformation retracts with lowest possible dimension of arithmetic quotients of self-
adjoint homogeneous cones, Math. Ann. 225 (1977), no. 1, 69–76.

[5] , Small-dimensional classifying spaces for arithmetic subgroups of general linear
groups, Duke Math. J. 51 (1984), no. 2, 459–468.

[6] W. L. Baily, Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmet-
ric domains, Ann. of Math. (2) 84 (1966), 442–528.

[7] W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of nonpositive curvature, Progress
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