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1. Introduction

Let U be an open neighborhood of the origin in Cn+1, let f : (U ,0) → (C, 0)
be complex analytic, and let s denote the dimension of the critical locus Σf at
the origin.

We will use x := (x0, . . . , xn) to denote the standard coordinate functions on
Cn+1. We will use z := (z0, . . . , zn) to denote arbitrary analytic local coordinates
on U near the origin. All of our constructions and results will depend only on the
linear part of the coordinates z; hence, when we say that the z are chosen gener-
ically, we mean that the linear part of z consists of a generic linear combination
of x (generic in PGL(Cn+1)).

Let Ff = Ff,0 denote the Milnor fiber of f at the origin. It is well-known (see
[9]) that the reduced integral homology, H̃k(Ff ), of Ff can be non-zero only for
n− s ≤ k ≤ n, and is free Abelian in degree n. Cohomologically, this means that
H̃k(Ff ) can be non-zero only for n − s ≤ k ≤ n, and is free Abelian in degree
n− s. For a general reference to non-isolated hypersurface singularities, see [26].

For s > 0 and arbitrary f , it is not known how to calculate, algebraically,
the groups H̃∗(Ff ) or their ranks. Even for s = 1, there is no effective, general
method for calculating the ranks of H̃n−1(Ff ) and H̃n(Ff ). However, there are
a number of known bounds on the Betti numbers of Ff ; we need to describe one
of these bounds.
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For each s-dimensional component, ν, of Σf , for a generic point p ∈ ν, for a
generic codimension s (in U) affine linear subspace, N , (a normal slice) containing
p, the function f|N has an isolated critical point at p and the Milnor number at

p is independent of the choices; we let
◦
µν denote this common value.

Let V (z0, . . . , zs−1) denote the zero locus of the coordinate functions z0, . . . , zs−1.
If the coordinates (z0, . . . , zs−1) are such that f|V (z0,...,zs−1)

has an isolated crit-
ical point at the origin, then the s-dimensional Lê number [17], λs

f,z(0), at
the origin is defined, and λs

f,z(0) is a sum of intersection numbers: λs
f,z(0) =

∑
ν

◦
µν

(
ν · V (z0, . . . , zs−1)

)
0
, where the sum is over the s-dimensional (reduced)

components ν of Σf . If the coordinates (z0, . . . , zs−1) are sufficiently generic, then

λs
f,z(0) obtains its minimum value of

∑
ν

◦
µνmult0ν; we denote this generic value

by λs
f (0) (with no subscript by the coordinates). Theorem 3.3 of [17] implies that

b̃n−s := rank H̃n−s(Ff ) = rank H̃n−s(Ff ) ≤ λs
f (0).

We wish to consider families of singularities. Fix a set of local coordinates z
for U at the origin. Let G := (z0, . . . , zs−1). If q ∈ U , we define fq := f|G−1(G(q))

.

Definition 1.1.. We say that fq is a simple µ-constant family at the origin if
and only if, at the origin, f0 has an isolated critical point, Σf is smooth, G|Σf

is
a submersion and, for all q ∈ Σf close to the origin, the Milnor number µq(fq)
is independent of q.

Our interest in simple µ-constant families stems from the fact that they have
many “equisingularity” properties; see Theorem 2.3. In particular, if n − s 6= 2
and fq is a simple µ-constant family at the origin, then the main theorem of Lê
and Ramanujam in [14] implies that the local, ambient, topological-type of V (fq)
at q is independent of the point q ∈ Σf near the origin.

We can now state our main theorem, which tells us that the rank of H̃n−s(Ff )
completely determines whether or not f defines a simple µ-constant family.

Main Theorem (Theorem 5.3). Suppose that dim0 Σ(f0) = 0.

Then, the rank, b̃n−s, of H̃n−s(Ff ) is equal to λs
f,z(0) if and only if fq is a

simple µ-constant family.

This general case of the Main Theorem actually follows quickly from the 1-
dimensional case;

Theorem (Theorem 5.1). Suppose that dim0 Σf = 1, and dim0 Σ(f|V (z0)
) = 0.

Then, the following are equivalent:
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a) fq := f|
z−1
0 (z0(q))

is a simple µ-constant family;

b) rank H̃n−1(Ff ) = λ1
f,z0

(0);

c) there exists a prime p such that dim H̃n−1(Ff ; Z/pZ) = λ1
f,z0

(0).

Thus, if we are not in the simple µ-constant case, rank H̃n−1(Ff ) < λ1
f,z0

(0) =
λ1

f (0), and this inequality holds with Z/pZ coefficients.

In [30], M. Tibăr investigates, on the homotopy level, the Milnor fiber of hyper-
surfaces with one-dimensional singular sets. Corollary 4.2 of that paper provides
an independent proof of our Theorem 5.1.

The remaining sections of this paper are organized as follows. In Section 2, we
prove that many different notions of “Milnor equisingularity” are all equivalent.
In Section 3, we recall a number of known results on the topology of the Milnor
fiber. In Section 4, we provide a careful construction of the “swing homotopy”,
which is essential for the proof of the Main Theorem. Section 5 contains the
proof of the Main Theorem. As a corollary to our Main Theorem, we show that
it implies that the vanishing cycles of f , as an object in the category of perverse
sheaves, cannot be semi-simple in non-trivial cases. In the final section of this
paper, Section 6, we make some final remarks and present counterexamples to
some conceivable “improvements” to the statement of the Main Theorem.

2. Milnor Equisingularity

There are many conceivable definitions of what one might wish to call a “sim-
ple” µ-constant family. The definition that we use in Definition 1.1 may seem
too strong; we used this strong characterization so that it would be clear in the
Main Theorem that the condition b̃n−s = λs

f,z(0) implies that we are in a very
trivial case.

In this section, we will show that all other reasonable concepts of µ-constant
families are equivalent. In the case s = 1, these equivalences are a combination
of the results Lê and Saito in [15], Lê and Ramanujam in [14], Teissier in 1.2 of
[28], and the non-splitting result proved independently by Gabrielov [8], Lazzeri
[10], and Lê [12].

Suppose that dim0 Σ(f0) = 0. Then, the analytic cycle
[
V

(
z0, . . . , zs−1,

∂f

∂zs
, . . . ,

∂f

∂zn

)]
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has the origin as a 0-dimensional component, and [0] appears in this cycle with
multiplicity µ0(f0). Thus, at the origin,

C :=
[
V

( ∂f

∂zs
, . . . ,

∂f

∂zn

)]

is purely s-dimensional and is properly intersected by [V (z0, . . . , zs−1)]. Let the
cycle Γs

f,z be the sum of the components of C, with their multiplicities, which
are not contained in Σf , and let Λs

f,z be the cycle C − Γs
f,z. The cycles Γs

f,zand
Λs

f,z are, respectively, the s-dimensional polar cycle and s-dimensional Lê cycle;
see [17]. It follows at once that

µ0(f0) =
(
Γs

f,z · V (z0, . . . , zs−1)
)
0

+
(
Λs

f,z · V (z0, . . . , zs−1)
)
0
.

Note that Γs
f,z = 0 is equivalent to the equality of sets: Σf = V

( ∂f

∂zs
, . . . ,

∂f

∂zn

)
.

Using our notation from the introduction, Λs
f,z =

∑
ν

◦
µν [ν], where the sum

is over the s-dimensional components ν of Σf , and, by definition, λs
f,z(0) =(

Λs
f,z · V (z0, . . . , zs−1)

)
0
. Therefore, we obtain:

Lemma 2.1.. Suppose that dim0 Σ(f0) = 0. Then,

µ0(f0) =
(
Γs

f,z · V (z0, . . . , zs−1)
)
0

+
∑

ν

◦
µν

(
ν · V (z0, . . . , zs−1)

)
0

=
(
Γs

f,z · V (z0, . . . , zs−1)
)
0

+ λs
f,z(0),

where the sum is over all s-dimensional components, ν, of Σf .
In particular, µ0(f0) = λs

f,z(0) if and only if Γs
f,z = 0.

Note that, while λs
f,z(0) is not independent of the choice of z, Λs

f,z is indepen-
dent of the coordinate choice, and this fact is very useful. Let (ẑ0, . . . , ẑn) be a
set of local analytic coordinates for U which are close to the coordinates z; let
f̂q denote the corresponding analytic family. As dim0 Σ(f0) = 0, dim0 Σ(f̂0) =

0. Let Ĉ :=
[
V

( ∂f

∂ẑs
, . . . ,

∂f

∂ẑn

)]
. Then, Proposition 8.2.a of [7] implies that

limẑ→z Ĉ ≤ C, i.e.,
lim
ẑ→z

(
Γs

f,ẑ + Λs
f,ẑ

) ≤ (
Γs

f,z + Λs
f,z

)
.

As Λs
f,z is independent of the coordinates, we conclude that limẑ→z Γs

f,ẑ ≤ Γs
f,z.

It follows immediately that

Lemma 2.2.. If there exist coordinates z such that dim0 Σ(f0) = 0 and Γs
f,z = 0,

then the set of coordinates ẑ such that dim0 Σ(f̂0) = 0 and Γs
f,ẑ = 0 form an open

dense set (i.e., the linear portion of ẑ is obtained from the standard coordinates
by applying a transformation from an open dense set of PGL(Cn+1)).
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There is one more piece of preliminary notation that we need. Consider the
blow-up of U along the Jacobian ideal, J(f) of f , i.e., B := BlJ(f)U . This blow-up
naturally sits inside U × Pn. Thus, the exceptional divisor E of the blow-up is a
cycle in U × Pn.

We now give many equivalent characterizations of µ-constant families. Note
that we are not presupposing below that the critical locus of f is smooth at the
origin.

Theorem 2.3.. Let z be local coordinates for U at the origin such that dim0 Σ(f0)
= 0. Then, the following are equivalent:

1. For all q ∈ Σf near the origin, µ0(f0) = µq(fq).
2. µ0(f0) = λs

f (0).
3. fq is a simple µ-constant family.
4. µ0(f0) = λs

f,z(0).
5. Γs

f,z = 0.

Futhermore, if n − s 6= 2, then 1), 2), 3), 4), and 5) above hold if and only
if the local, ambient, topological-type of V (fq) at q is independent of the point
q ∈ Σf near the origin.

In addition, the following are equivalent:

a. There exist coordinates z such that 1), 2), 3), 4), and 5) above hold.
b. Near the origin, Σf is smooth and (U − Σf,Σf) is an af stratification, i.e.,

for all p ∈ Σf near the origin, for every limiting tangent space, Tp, from level
hypersurfaces of f approaching p , Tp(Σf) ⊆ Tp.

c. Σf is smooth at the origin, and over an open neighborhood of the origin, the
exceptional divisor, E, as a set, is equal to the projectivized conormal variety
to Σf and, hence, as cycles E =

◦
µΣf

[
T ∗ΣfU

]
.

d. For generic ẑ, Γs
f,ẑ = 0 near the origin.

e. Σf is smooth at the origin and, for all local coordinates ẑ such that V (ẑ0, . . . ,

ẑs−1) transversely intersects Σf at the origin, f̂q is a simple µ-constant family.

Proof. Throughout, we work in a sufficiently small neighborhood of the origin.
The theorem is trivially true if s = 0; so, we suppose that s ≥ 1.

Suppose that 1) holds. Then, Lemma 2.1 implies that

µ0(f0) =
(
Γs

f,z · V (z0, . . . , zs−1)
)
0

+
∑

ν

µ0(f0)
(
ν · V (z0, . . . , zs−1)

)
0
.

Thus, Γs
f,z = 0, and

∑
ν

(
ν · V (z0, . . . , zs−1)

)
0

must equal 1, i.e., Σf must have
a single smooth s-dimensional component, which is transversely intersected by
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V (z0, . . . , zs−1). Hence, λs
f (0) =

∑
ν

◦
µν

(
ν · V (z0, . . . , zs−1)

)
0
, and Lemma 2.1

now implies 2).

Suppose that 2) holds. Then, Lemma 2.1 implies that Γs
f,z = 0 and, for each

s-dimensional component ν of Σf ,
(
ν · V (z0, . . . , zs−1)

)
0

= mult0ν. In order to
conclude 3), we have only to show that Σf must be smooth.

As Γs
f,z = 0, there is an equality of sets Σf = V

(
∂f
∂zs

, . . . , ∂f
∂zn

)
, and so every

component of Σf must be at least s-dimensional. We conclude that Σf is purely
s-dimensional. Now, let ẑ be a generic choice of coordinates, close to z. As the
Milnor number is upper-semicontinuous, µ0(f0) ≥ µ0(f̂0) ≥ λs

f (0). As µ0(f0) =
λs

f (0), we conclude that µ0(f̂0) = λs
f (0). As prepolar coordinates are generic (see

[17]), we may assume that ẑ is prepolar.
Consider now g := f|V (ẑ0,...,ẑs−2)

(where we mean that g := f if s = 1). Then,
as ẑ is generic, Σg = Σf ∩V (ẑ0, . . . , ẑs−2) is 1-dimensional. By induction, Propo-
sition 1.21 of [17] implies that the polar curve Γ1

g,zs−1
= Γs

f,z ·V (ẑ0, . . . , ẑs−1) = 0.
Now, Proposition 1.30 of [17] (which uses the non-splitting result, proved indepen-
dently by Gabrielov [8], Lazzeri [10], and Lê [12]) implies that Σg is smooth. As
ẑ was generic and Σf was purely s-dimensional, we conclude that Σf is smooth,
and so 3) holds.

Certainly, 3) implies 1). Therefore, we have shown that 1), 2), and 3) are
equivalent. By Lemma 2.1, 4) and 5) are equivalent. That 3) implies 4) is
immediate.

Now, suppose that 4) holds. Then, easy generalizations of any of the non-
splitting arguments of Gabrielov [8], Lazzeri [10], and Lê [12] immediately imply
that, at the origin, Σf has a single smooth component and V (z0, . . . , zs−1) trans-
versely intersects Σf . For example, Lê’s proof in our current setting is as follows.
Fix a small open ball

◦
Bε around the origin in U , small enough so that the only

critical point of f0 in
◦
Bε ∩V (z0, . . . , zs−1) is 0. For all q ∈ Σf near the ori-

gin, let tr(fq) denote the trace of the Milnor monodromy of fq on H̃n−s(Ffq,q).
As 4) implies 5), we may follow Lê’s argument in [12] to conclude that, for all
a := (a0, . . . , as−1) ∈ Cs near the origin,

tr(f0) =
∑

q∈K

tr(fq),

where K :=
◦
Bε ∩Σf∩V (z0−a0, . . . , zs−1−as−1). However, by the main theorem of

[1], each of the traces above is equal to (−1)n−s−1. Hence, the number of elements
of K must be precisely 1, and so Σf must be smooth at 0 and transversely
intersected by V (z0, . . . , zs−1). Combined with the definition of λs

f,z(0), this
implies 3).
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Thus, 1), 2), 3), 4), and 5) are equivalent.

If 3) holds and n− s 6= 2, then the classic result of Lê and Ramanujam in [14]
implies that the local, ambient, topological-type of V (fq) at q is independent of
the point q ∈ Σf near the origin.

With no constraint on n − s, if the local, ambient, topological-type of V (fq)
at q is independent of the point q ∈ Σf near the origin, then 1) holds, since the
Milnor number is an invariant of this topological-type.

We need to show that a) through e) are equivalent.

Assume that a) holds. Then, 3) implies b) by Theorem 6.8 of [17] (which uses
the result of Lê and Saito from [15]).

The equivalence of b) and c) is immediate, and they clearly imply d). That e)
implies a) is also clear. It remains for us to show that d) implies e).

Assume d). By Lemma 2.1, a) holds and, thus, so does c). Hence, Σf is
smooth at the origin. Let ẑ be such that V (ẑ0, . . . , ẑs−1) transversely intersects
Σf at the origin. Then, c) tells us at once that dim0 Σ(f0) = 0 and Γs

f,ẑ = 0, and
so, by Lemma 2.1, a) holds. ¤

Definition 2.4. . Whenever the equivalent conditions a), b), c), d), and e) of
Theorem 2.3 hold, we say that f is Milnor equisingular at the origin.

The Main Theorem of this paper, Theorem 5.3, tells us that there is another
topological characterization of Milnor equisingularity. First, however, we must
recall some known results and prove the Swing Lemma.

3. Known Results

We assume that the first coordinate z0 on U is a generic linear form; in the
terminology of [17], we need for z0 to be “prepolar” (with respect to f at the
origin). This implies that dim0 Σ(f|V (z0)

) ≤ s− 1 (provided that s 6= 0), that the
polar curve, Γ1

f,z0
, is purely 1-dimensional at the origin (which vacuously includes

the case Γ1
f,z0

= ∅), and Γ1
f,z0

has no components contained in V (f) (this last
property is immediate in some definitions of the relative polar curve).

For convenience, we assume throughout the remainder of this paper that the
neighborhood U is re-chosen, if necessary, so small that Σf ⊆ V (f), and every
component of Σf and Γ1

f,z0
contains the origin.

There is the attaching result of Lê from [11] (see, also, [17]):
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Theorem 3.1.. Up to diffeomorphism, Ff is obtained from
◦
D ×Ff0 by attaching

τ :=
(
Γ1

f,z0
· V (f))0 handles of index n.

Remark 3.2. . On the level of homology, Lê’s attaching result is a type of
Lefschetz hyperplane result; it says that, for all i < n − 1, the inclusion map
Ff0 = Ff ∩ V (z0) ↪→ Ff induces isomorphisms H̃i(Ff0) ∼= H̃i(Ff ), and H̃n(Ff )
and H̃n−1(Ff ) are, respectively, isomorphic to the kernel and cokernel of the
boundary map

Zτ ∼= Hn(Ff , Ff0)
∂−→ H̃n−1(Ff0).

We remind the reader here of the well-known result, first proved by Teissier in
[27] (in the case of an isolated singularity, but the proof works in general), that

τ =
(
Γ1

f,z0
· V (f))0 =

(
Γ1

f,z0
· V

(
∂f

∂z0

) )
0

+
(
Γ1

f,z0
· V (z0))0.

As defined in [17], the first summand on the right above is λ0
f,z0

(0), the 0-
dimensional Lê number, and second summand on the right above is γ1

f,z0
(0),

the 1-dimensional polar number.

Assume, throughout the remainder of this section, that s = 1.

In this case, H̃n−1(Ff0) ∼= Zµ0(f0), and one can certainly calculate the difference
of the reduced Betti numbers of Ff :

b̃n(Ff )− b̃n−1(Ff ) = τ − µ0(f0).

Hence, a bound on one of b̃n(Ff ) and b̃n−1(Ff ) automatically produces a bound
on the other. As a final comment, it is well-known, and easy to show that
µ0(f0) = γ1

f,z0
(0) + λ1

f,z0
(0).

In Proposition 3.1 of [17], the second author showed how the technique of
“tilting in the Cerf diagram” or “the swing”, as used by Lê and Perron in [13]
could help refine the result of Theorem 3.1. Here, we state only the homological
implication of Proposition 3.1 of [17].

Theorem 3.3. . The boundary map Hn(Ff , Ff0)
∂−→ H̃n−1(Ff0) maps a direct

summand of Hn(Ff , Ff0) of rank γ1 isomorphically onto a direct summand of
H̃n−1(Ff0).

Thus, the rank of H̃n(Ff ) is at most λ0
f,z0

(0), and the rank of H̃n−1(Ff ) is at
most λ1

f,z0
(0).
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However, if one of the components ν of Σf is itself singular, then the above
bounds on the ranks are known not to be optimal. A result of Siersma in [25], or
an easy exercise using perverse sheaves (see the remark at the end of [25]), yields:

Theorem 3.4.. The rank of H̃n−1(Ff ) is at most
∑

ν

◦
µν .

In light of Theorem 3.3 and Theorem 3.4, the question is: Is it possible that
rank H̃n−1(Ff ) = λ1

f,z0
(0)? Of course, the answer to this question is “yes”; if f

is Milnor equisingular and z0 is generic, then Theorem 3.1 tells us immediately
that rank H̃n−1(Ff ) = λ1

f,z0
(0). Theorem 5.1 tells us that the only way for

rank H̃n−1(Ff ) to equal λ1
f,z0

(0) is for f to be Milnor equisingular.

Remark 3.5.. Of course, if all of the components ν of Σf are smooth, and z0 is
generic, then λ1

f,z0
(0) = λ1

f (0) =
∑

ν

◦
µν , and the bounds on the ranks obtained

from Theorem 3.3 and Theorem 3.4 are the same. In addition, Theorem 3.4 is
true with arbitrary field coefficients; this yields bounds on the possible torsion in
H̃n−1(Ff ). We should also remark that the result of Siersma from [25] that we
cite above can actually yield a much stronger bound if one knows certain extra
topological data – specifically, one needs that the “vertical monodromies” are
non-trivial.

Hence, if one of the components of Σf is itself singular , then rank H̃n−1(Ff ) <
λ1

f,z0
(0) by Theorem 3.4. Even in the case where all of the components of Σf are

smooth, we could conclude that rank H̃n−1(Ff ) < λ1
f,z0

(0) from [25] if we knew
that one of the vertical monodromies were non-trivial. However, the vertical
monodromies are complicated topological data to calculate. In addition, the
vertical monodromies can be trivial even when the polar curve is non-empty, i.e.,
when f is not Milnor equisingular.

In [22], Siersma proved another closely related result, at the homotopy level.
On the level of homology, what he proved was that, if f is not Milnor equisingular,
and Σf has a single smooth component, ν, such that

◦
µν = 1, then H̃n−1(Ff ) = 0;

Theorem 5.1, including the modulo p statement, is a strict generalization of this
homological conclusion.

In addition, we should point out that, in [4], Th. de Jong provides evidence
that a result like Theorem 5.1 might be true.

Before we can prove our Main Theorem, we still need to prove the Swing
Lemma.

4. The Swing

We prove the one-dimensional version of our Main Theorem by combining
the swing technique of Theorem 3.3 and the connectivity of the vanishing cycle
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intersection diagram for isolated singularities, as was proved independently by
Gabrielov in [8] and Lazzeri in [10].

In Section 3, we referred to the swing (or, tilting in the Cerf diagram), which
was used by Lê and Perron in [13] and in Proposition 3.1 of [17], where the swing
was used to prove Theorem 3.3. The swing has also been studied in [3], [29],
[17], [31]. However, no detailed proof of the swing has appeared in the literature.
As the swing is so crucial to the proof of the Main Theorem, we wish to give a
careful explanation of its construction.

Suppose that W is an open neighborhood of the origin in C2. We will use
the coordinates x and y on W. For notational ease, when we restrict x and y to
various subspaces where the domain is clear, we shall continue to write simply x
and y.

Let C be a complex analytic curve in W such that every component of C
contains the origin. We assume that the origin is an isolated point in V (x) ∩ C
and in V (y) ∩ C, i.e., that C does not have a component along the x- or y-axis.

Below, we let Dε denote a closed disk, of radius ε, centered at the origin, in the
complex plane. We denote the interior of Dε by

◦
Dε, and when we delete the origin,

we shall superscript with an asterisk, i.e., D∗ε := Dε − {0} and
◦
D∗ε :=

◦
Dε − {0}.

We select 0 < ε2 ¿ ε1 ¿ 1 so that:

i): the “half-open” polydisk Dε1 ×
◦
Dε2 is contained in W;

ii): (∂Dε1 ×
◦
Dε2)∩C = ∅ (using that the origin is an isolated point in V (y)∩C) ;

Note that ii) implies that (Dε1 ×
◦
Dε2) ∩ C = (

◦
Dε1 ×

◦
Dε2) ∩ C.

iii): Dε1×
◦
D∗ε2

y−→
◦
D∗ε2 is a proper stratified submersion, where the Whitney strata

are ∂Dε1 ×
◦
D∗ε2 , (

◦
Dε1 ×

◦
D∗ε2)− C, and (

◦
Dε1 ×

◦
D∗ε2) ∩ C.

iv): (
◦
Dε1 ×

◦
D∗ε2) ∩C

y−→
◦
D∗ε2 is an m-fold covering map, where m := (C · V (y))0.

Let D := (Dε1 ×
◦
Dε2) ∩ (C ∪ V (y)). Let (x0, y0) ∈ (D∗ε1 ×

◦
D∗ε2) − D. Let

σ : [0, 1] → {x0} ×
◦
Dε2 be a smooth, simple path such that σ(0) = (x0, y0),

σ(1) =: (x0, y1) ∈ C, and σ([0, 1)) ⊆ ({x0} ×
◦
Dε2)−D.

Let S be the image of σ; as σ is simple, S is homeomorphic to [0, 1]. Let
σ0 := y ◦σ and let S0 be the image of σ0. Thus, S0 is homeomorphic to [0, 1] and

is contained in
◦
D∗ε2 .
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Lemma 4.1..(The Swing) There exists a continuous function H : [0, 1]×[0, 1] →
Dε1 × S0 with the following properties:

a) H(t, 0) = σ(t), for all t ∈ [0, 1];

b) H(t, 1) ∈ Dε1 × {y0}, for all t ∈ [0, 1];

c) H(0, u) = (x0, y0), for all u ∈ [0, 1];

d) if H(t, u) ∈ D, then t = 1;

e) H(1, u) ∈ C, for all u ∈ [0, 1];

f) the path η given by η(u) := H(1, u) is a homeomorphism onto its image.

Thus, H is a homotopy from σ to the path γ given by γ(t) := H(t, 1) ∈ Dε1 ×
{y0}, such that (x0, y0) is “fixed” and the point (x0, y1) = H(1, 0) “swings up to
the point” H(1, 1) by “sliding along” C, while the remainder of σ does not hit D
as it “swings up” to γ.

Proof. The proper stratified submersion Dε1 ×
◦
D∗ε2

y−→
◦
D∗ε2 is a locally trivial

fibration, where the local trivialization respects the strata. The restriction of
this fibration Dε1 × S0

y−→ S0 is a locally trivial fibration over a contractible
space and, hence, is equivalent to the trivial fibration.

Therefore, there exists a homeomorphism

Ψ :
(
Dε1 × S0, (Dε1 × S0) ∩ C

) → (
Dε1 × {y0}, (Dε1 × {y0}) ∩ C

)× [0, 1]

such that the projection of Ψ(x, σ0(t)) onto the [0, 1] factor is simply t, and such
that Ψ(x, y0) = ((x, y0), 0). It follows that there is a path α : [0, 1] → Dε1 such
that Ψ(σ(t)) = ((α(t), y0), t), for all t ∈ [0, 1]. Define H : [0, 1]× [0, 1] → Dε1 ×S0

by
H(t, u) := Ψ−1

(
(α(t), y0), (1− u)t

)
.

All of the given properties of H are now trivial to verify. ¤

Remark 4.2.. By Property c) of Lemma 4.1, the map H yields a corresponding
map HT whose domain is a triangle instead of a square. One pictures the image
of H, or of HT , as a “gluing in” of this triangle into Dε1 × S0 in such a way
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that one edge of the triangle is glued diffeomorphically to S, and another edge
is glued diffeomorphically onto the image of η. The third edge of the triangle is
glued onto the image of γ, but not necessarily in a one-to-one fashion.

5. The Main Theorem

In this section, we will prove the Main Theorem. We must first describe the
machinery that goes into this part of the proof.

We will first prove a 1-dimensional version of the Main Theorem. Assume for
now that dim0 Σf = 1. As the value of λ1

f,z0
(0) is minimal for generic z0, we

lose no generality if we assume that our linear form z0 is chosen more generically
than simply being prepolar. We choose z0 so generically that, in addition to
being prepolar, the discriminant, D, of the map (z0, f) and the corresponding
Cerf diagram, C, have the usual properties – as given, for instance, in [13], [29],
and [31]. We will describe the needed properties below.

Let Ψ̃ := (z0, f) : (U ,0) → (C2,0). We use the coordinates (u, v) on C2. The
critical locus ΣΨ̃ of Ψ̃ is the union of Σf and Γ1

f,z0
. The discriminant D :=

Ψ̃(ΣΨ̃) consists of the u-axis together with the Cerf diagram C := D − V (v). We
assume that z0 is generic enough so that the polar curve is reduced and that, in
a neighborhood of the origin, Ψ̃|

Γ1
f,z0

is one-to-one.

We choose real numbers ε, δ, and ω so that 0 < ω ¿ δ ¿ ε ¿ 1. Let Bε ⊆ Cn

be a closed ball, centered at the origin, of radius ε. Let
◦
Dδ and

◦
Dω be open disks

in C, centered at 0, of radii δ and ω, respectively.

One considers the map from (
◦
Dδ × Bε) ∩ f−1(

◦
Dω) onto

◦
Dδ ×

◦
Dω given by the

restriction of Ψ̃; we let Ψ denote this restriction. As Bε is a closed ball, the map
Ψ is certainly proper, but the domain has an interior stratum, and a stratum
coming from the boundary of Bε. However, for generic z0, all of the stratified
critical points lie on Γ1

f,z0
∪ Σf , i.e., above D.

We continue to write simply D and C, in place of D ∩ (
◦
Dδ ×

◦
Dω) and C ∩

(
◦
Dδ ×

◦
Dω). As Ψ is a proper stratified submersion above

◦
Dδ ×

◦
Dω − D, and as

Ψ|
Γ1

f,z0

is one-to-one, many homotopy arguments in (
◦
Dδ ×Bε) ∩ f−1(

◦
Dω) can be

obtained from lifting constructions in
◦
Dδ ×

◦
Dω. This is the point of considering

the discriminant and Cerf diagram.

Let v0 ∈
◦
Dω − {0}. By construction, up to diffeomorphism, Ψ−1(

◦
Dδ × {v0}) is

Ff and Ψ−1((0, v0)) is Ff0 . In fact, for all u0, where |u0| ¿ |v0|, Ψ−1((u0, v0)) is
diffeomorphic to Ff0 ; we fix such a non-zero u0, and let a := (u0, v0).
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We wish to pick a distinguished basis for the vanishing cycles of f0 at the
origin, as in I.1 of [2] (see, also, [5]). We do this by selecting paths in {u0} ×

◦
Dω

which originate at a. We must be careful in how we do this.
First, fix a path p0 from a to (u0, 0). Select paths q1, . . . , qγ1 from a to each of

the points in ({u0}×
◦
Dω)∩C =: {y1, . . . , yγ1}. The paths p0, q1, . . . , qγ1 should not

intersect each other and should intersect the set {(u0, 0), y1, . . . , yγ1} only at the
endpoints of the paths. Moreover, when at the point a, the paths p0, q1, . . . , qγ1

should be in clockwise order. Let r0 be a clockwise loop very close to p0, from a
around (u0, 0).

As we are not assuming that f had an isolated line singularity, we must perturb
f|V (z0−u0)

slightly to have (u0, 0) split into λ1 points, x1, . . . , xλ1 inside the loop
r0; each of these points corresponds to an A1 singularity in the domain. We select
paths p1, . . . , pλ1 from a to each of the points x1, . . . , xλ1 , and paths q1, . . . , qγ1

from a to each of the points in ({u0}×
◦
Dω)∩C =: {y1, . . . , yγ1}. We may do this

in such a way that the paths p1, . . . , pλ1 , q1, . . . , qγ1 are in clockwise order.

The lifts of these paths via the perturbed f|V (z0−u0)
yield representatives of

elements of Hn+1(Bε, Ff0), whose boundaries in H̃n(Ff0) form a distinguished
basis ∆′

1, . . . ,∆
′
λ1 ,∆1, . . . ,∆γ1 .

By using the swing (Lemma 4.1), the paths q1, . . . , qγ1 are taken to new paths

q̂1, . . . , q̂γ1 in
◦
Dδ × {v0}. Each q̂i path represents a relative homology class in

Hn(Ff , Ff0) whose boundary in H̃n−1(Ff0) is precisely ∆i. We remark that The-
orem 3.3 follows from this.

We can now prove:
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Theorem 5.1.. Suppose that dim0 Σf = 1 and dim0 Σf0 = 0. Then, the follow-
ing are equivalent:

a) fq is a simple µ-constant family, i.e., f has a smooth critical locus which
defines a family of isolated singularities with constant Milnor number µf0;

b) rank H̃n−1(Ff ) = λ1
f,z0

(0);

c) there exists a prime p such that dim H̃n−1(Ff ; Z/pZ) = λ1
f,z0

(0).

Thus, if f is not Milnor equisingular, and K is a prime field ( i.e., Q or Z/pZ),
then dim H̃n−1(Ff ;K) < λ1

f,z0
(0), and so dim H̃n(Ff ;K) < λ0

f,z0
(0).

In particular, if f is not Milnor equisingular, and λ1
f,z0

(0) = 1, then H̃n−1(Ff ;Z)
= 0 and H̃n(Ff ;Z) is free Abelian of rank λ0

f,z0
(0)− 1.

Proof. That a) implies b) and c) is well-known; it follows at once from Theo-
rem 3.1. Assume then that fq is not a simple µ-constant family. We will prove
that rank H̃n−1(Ff ) < λ1

f,z0
(0), and then indicate why the same proof applies

with Z/pZ coefficients.
By Theorem 2.3, Γ1

f,z0
6= ∅, and so C 6= ∅. We want to construct just one new

path in {u0}×
◦
Dω, one which originates at a, ends at a point of C, and misses all

of the other points of D; we want this path to swing up to a path in
◦
Dδ × {v0},

and represent a relative homology class in Hn(Ff , Ff0) whose boundary is not in
the span of ∆1, . . . ,∆γ1 .

By the connectivity of the vanishing cycle intersection diagram ([8], [10]), one
of the ∆′

j must have a non-zero intersection pairing with one of the ∆i, i.e., there
exist i0 and j0 such that 〈∆i0 ,∆

′
j0
〉 6= 0.

By fixing the path pj0 and all the qi paths, but reselecting the other pj , for
j 6= j0, we may assume that j0 = 1, i.e., that 〈∆i0 ,∆

′
1〉 6= 0.

We now follow Chapter 3.3 of [5]. Associated to each path pj , 1 6 j 6 λ1, is
a (partial) monodromy automorphism T ′j : H̃n−1(Ff0) → H̃n−1(Ff0), induced by
taking a clockwise loop rj very close to pj , from a around xj . Let T ′ := T ′1 . . . T ′λ1 ,
where composition is written in the order of [5]. We claim that T ′(∆i0) is in the
image of δ : Hn(Ff , Ff0) → H̃n−1(Ff0), but is not in Span{∆1, . . . ,∆γ1}.

The composition r of the loops r1, . . . , rλ1 is homotopy-equivalent, in {u0} ×
◦
Dω−

{{x1, . . . , xλ1}∪C
}
, to the loop r0 (from our discussion before the theorem).

By combining (concatenating) the loop r0 and the path qi0 , we obtain a path in



Hypersurface Singularities and Milnor Equisingularity 907

{u0} ×
◦
Dω which is homotopy-equivalent to a simple path which swings up to a

corresponding path in
◦
Dδ × {v0}. Thus, T ′(∆i0) is in the image of δ.

Now, by the Corollaries to the Picard-Lefschetz Theorem in [2], p. 26, or as in
[5], Formula 3.11,

T ′(∆i0) = ∆i0 − (−1)
n(n−1)

2 〈∆i0 ,∆
′
1〉∆′

1 + β2∆′
2 + · · ·+ βλ1∆′

λ1 ,

for some integers β2, . . . , βλ1 . As the ∆′
1, . . . ,∆

′
λ1 ,∆1, . . . ,∆γ1 form a basis, and

as 〈∆i0 ,∆
′
1〉 6= 0, T ′(∆i0) is not in Span{∆1, . . . ,∆γ1}.

This finishes the proof over the integers. Over Z/pZ, the proof is identical,
since the intersection diagram is also connected modulo p; see [8]. ¤

Remark 5.2.. One must be careful in the proof above; it is tempting to try to use
simply T ′1(∆i0) in place of T ′(∆i0). The problem with this is that T ′1(∆i0) is not

represented by a path in {u0} ×
◦
Dω − {(u0, 0)} and, thus, there is no guaranteed

swing isotopy to a corresponding path in
◦
Dδ × {v0}.

In fact, we could have avoided the explicit construction of T ′(∆i0) completely,
though we find the construction intuitive and geometrically interesting. By natu-
rality (of the monodromy automorphism on the vanishing cycle functor), the map
δ : Hn(Ff , Ff0) → H̃n−1(Ff0) commutes with the respective monodromy actions.
Thus, the image of δ, im δ, is invariant under the monodromy action. Now, the
swing and the construction of the distinguished basis for H̃n−1(Ff0) tell us that
we can write H̃n−1(Ff0) as a direct sum A⊕B, where A and B are generated by
distinguished basis elements, rankA = γ1, and A ⊆ im δ. However, the connec-
tivity of the intersection matrix for f0 implies that the only monodromy-invariant
submodules of H̃n−1(Ff0), which are generated by distinguished basis elements,
are the zero-module and all of H̃n−1(Ff0) (see [2], Theorem 3.5). Thus, if γ1 6= 0
(i.e., if we do not have a simple µ-constant family), then the image of δ must
properly contain A. Theorem 5.1 follows.

We should also remark that using K := Z/pZ coefficients in Theorem 5.1,
even when λ1

f,z0
(0) ≥ 2, yields non-trivial information. By the Universal Co-

efficient Theorem and because H̃n−2(Ff ;Z) = 0, we find that H̃n−1(Ff ;K) ∼=
H̃n−1(Ff ;Z) ⊗ K. The dimension of this K-vector space is equal to the rank of
H̃n−1(Ff ;Z) plus the number of cyclic p-torsion direct summands of H̃n−1(Ff ;Z),
and so, if f is not Milnor equisingular, then (λ1

f,z0
(0)− 1) is an upper-bound on

this sum.
Finally, as we mentioned earlier, while our result is on the homology level, one

may also investigate this situation on the homotopy level, as in [22] (in the case
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λ1
f,z0

(0) = 1) and in [30] (in the general s = 1 case). The homology statement in
Theorem 5.1 follows from these homotopy results.

We can now prove our Main Theorem. We return to the general case where
s := dim0 Σf is arbitrary. Fix a set of coordinates (z0, . . . , zn), and consider the
corresponding family fq.

Theorem 5.3. .(Main Theorem). Suppose that dim0 Σ(f0) = 0. Let K be a
prime field.

Then, dim H̃n−s(Ff ;K) = λs
f,z(0) if and only if fq is a simple µ-constant

family.

Proof. If fq is a simple µ-constant family, then it is well-known that dim H̃n−s

(Ff ;K) = λs
f,z(0); this follows from an inductive application of [11], using that

Γs
f,z = 0 (as we saw in Theorem 2.3).

Suppose that b̃n−s := dim H̃n−s(Ff ;K) = λs
f,z(0). As we saw in the Introduc-

tion, b̃n−s ≤ λs
f (0) ≤ λs

f,z(0). Thus, we must have that λs
f,z(0) = λs

f (0). Let ẑ
be a generic choice of coordinates at the origin, consider the codimension s − 1
linear slice N := V (ẑ0, . . . , ẑs−2) through the origin.

Then, f|N has a 1-dimensional critical locus and, by an iterated application of
Theorem 3.1, we obtain that H̃n−s(Ff ;K) is isomorphic to H̃(n−s+1)−1(Ff|N

;K).
Now, by Proposition 1.21 of [17], λs

f,ẑ(0) = λ1
f|N ,ẑs−1

(0). Combining these last
two sentences with Theorem 5.3, we conclude that f|N is Milnor equisingular;
in particular, the polar curve, Γ1

f|N ,ẑs−1
is zero (or, as a set, is empty). By

Proposition 1.21 of [17], this implies that Γs
f,ẑ = 0. Now, by d) of Theorem 2.3, f

is Milnor equisingular. Therefore, Σf is smooth at the origin and, since λs
f,z(0) =

λs
f (0), V (z0, . . . , zs−1) must transversely intersect Σf at the origin. The desired

conclusion now follows from e) of Theorem 2.3. ¤

In the following corollary and in Proposition 5.6, we will use terminology and
techniques involving perverse sheaves and the complex of vanishing cycles. We
refer the reader to [6] and [18], Appendix B.

We wish to see that Theorem 5.3 puts restrictions on the types of perverse
sheaves that one may obtain as shifted vanishing cycles φf [−1]Z•U [n + 1] of the
shifted constant sheaf on affine space. We will restrict this perverse sheaf to its
support. Below, we refer to the constant sheaf on ν of rank

◦
µν , shifted by some

integer j; we write (Z
◦
µν )•ν [j] for this sheaf. The isomorphisms and direct sums

that we write below are in the Abelian category of perverse sheaves.
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Corollary 5.4. . Suppose that the critical locus of f is s-dimensional, where
s > 1 is arbitrary, and that every s-dimensional component, ν, of Σf is smooth.

Then,
⊕

ν(Z
◦
µν )•ν [s] is a direct summand of

(
φf [−1]Z•U [n + 1]

)
|Σf

if and only if
f is Milnor equisingular. Moreover, when these equivalent conditions hold, Σf is

smooth and
(
φf [−1]Z•U [n + 1]

)
|Σf

∼= (Z
◦
µΣf )•

Σf
[s].

In addition, this conclusion holds with Z replaced by any prime field.

Proof. We will give the proof with Z coefficients. The proof modulo p is identical.
If f is Milnor equisingular, then, by b) of Theorem 2.3, V (f) has an af strat-

ification consisting of two strata: V (f) − Σf and Σf . As φf [−1]Z•U [n + 1] is
constructible with respect to any af stratification, it follows that

(
φf [−1]Z•U [n + 1]

)
|Σf

∼= (Z
◦
µΣf )•

Σf
[s].

If
⊕

ν(Z
◦
µν )•ν [s] is a direct summand of

(
φf [−1]Z•U [n+1]

)
|Σf

, then rank H̃n−s(Ff )

is at least
∑

ν

◦
µν , which equals λs

f (0), as each ν is smooth. Now, Theorem 5.3
tells us that f must be Milnor equisingular. ¤

Not surprisingly, if one places more restrictions on the critical locus of f , one
can obtain restrictions on the cohomology of the Milnor fiber that are sharper
than what we obtain in Theorem 5.3. For example, in [20] and [32], Némethi and
Zaharia consider the case where the critical locus is a 2-dimensional complete
intersection with an isolated singularity and, for each 2-dimensional component
ν of Σf ,

◦
µν = 1; in addition, they place special assumptions on the types of

critical points of f that one can have at non-generic points of Σf − {0}.
We will prove a result related to those in in [20] and [32]. Our hypotheses on

the critical locus are substantially weaker than those in in [20] and [32], and our
conclusion is correspondingly not as strong. First, we need a new definition.

Definition 5.5. . A point p ∈ Σf is a Milnor equisingular point of f if and
only if there exists an open neighborhood W of p in U such that f|W is Milnor
equisingular.

Proposition 5.6.. Suppose that s = dim0 Σf ≥ 2, and that for all s-dimensional
components ν of Σf ,

◦
µν = 1. Suppose that there exists an open neighborhood W

of the origin in U and an analytic function g : (W ∩ Σf,0) → (C, 0) such that

(1) W ∩ Σf − {0} is smooth,
(2) for all p ∈ W ∩ Σf − V (g), p is a Milnor equisingular point of f , and
(3) for all p ∈ W ∩ V (g)− {0}, p is not a Milnor equisingular point of f .
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Then, H̃n−s(Ff ) = 0.

Proof. Throughout the proof, we shall work in a sufficiently small neighborhood
W, in which all of the hypotheses of the proposition are satisfied. We shall sup-
press any further reference to W. Note that Item 3 above excludes the possibility
that g vanishes identically on a component of Σf containing the origin.

Let P• be the perverse sheaf on Σf given by restricting the shifted vanishing
cycles to their support, i.e.,

P• :=
(
φf [−1]Z•U [n + 1]

)
|Σf

.

Let Σ∗ := Σf − {0}. Let ı̂ be the open inclusion of Σf − V (g) into Σ∗, let m be
the open inclusion of Σ∗ into Σf , and let i := m ◦ ı̂.

The cosupport condition for perverse sheaves, applied at the origin, immedi-
ately implies that

H̃n−s(Ff ) ∼= H−s(P•)0 ∼= H−s
(
Σ∗;P•

|Σ∗
)
.

Using the E2 spectral sequence for hypercohomology and that P•
|Σ∗ is perverse,

we conclude that H−s
(
Σ∗;P•

|Σ∗
) ∼= H0(Σ∗;H−s(P•

|Σ∗ )); see, for instance, [5],
Proposition 5.2.20. By Theorem 5.3 or [22], H−s(P•

|Σ∗ ) is a local system in
degree −s, extended by zero over V (g)−{0}, i.e., if Q• is the complex of sheaves
which has H−s(P•

|Σ∗ ) in degree −s, and zero in all other degress, then Q• ∼=
ı̂!ı̂

!(P•
|Σ∗ )

∼= (i!i!P•)|Σ∗ . Therefore,

H0(Σ∗;H−s(P•
|Σ∗ ))

∼= H−s(Σ∗;Q•) ∼= H−s(Σ∗; (i!i!P•)|Σ∗ ).

Now, the extension by zero of a perverse sheaf on the complement of a hypersur-
face defined by a single function is perverse; see, for instance, [18], Appendix B,
p. 210.

Once again using the cosupport condition for perverse sheaves, we find that

H−s(Σ∗; (i!i!P•)|Σ∗ )
∼= H−s(i!i!P•)0 = 0.

Combining all of the above isomorphisms yields H̃n−s(Ff ) = 0. ¤

Remark 5.7. . Note that, if Σf is smooth at the origin, then Proposition 5.6
follows at once from Theorem 5.3, which – since we have assumed that

◦
µν = 1 –

follows quickly from the main theorem of [22].
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6. Comments, Questions, and Counterexamples

One might hope that a stronger result than Theorem 5.3, or Theorem 5.1, is
true.

For instance, given that Theorem 5.1 and Theorem 3.4 are true, it is natural
to ask the following:

Question 6.1.. If we are not in the trivial case, is the rank of H̃n−1(Ff ) strictly

less than
∑

ν

◦
µν?

The answer to the above question is “no”. One can find examples of this in the
literature (see, for instance, [24], [19], [26]); perhaps the easiest is the following:

Example 6.2. . Let f := (y2 − x3)2 + w2. Then, Σf has a single component

ν := V (w, y2 − x3), and one easily checks that
◦
µν = 1. However, as f is the

suspension of (y2−x3)2, the Sebastiani-Thom Theorem (here, we need the version
proved by Oka in [21]) implies

H̃1(Ff ) ∼= H̃0(F(y2−x3)2) ∼= Z,

and

H̃2(Ff ) ∼= H̃1(F(y2−x3)2) ∼= Z4.

Moreover, by suspending f again, one may produce an example in which f itself
has a single irreducible component at the origin.

We wish to see that this example also shows that the assumption on the
smoothness of the s-dimensional components of Σf in Corollary 5.4 is necessary.
This will require a short discussion about perverse sheaves.

Let K be a prime field. We claim that, for the current example, the shifted
constant sheaf K•Σf [1] is a direct summand of

(
φf [−1]K•U [n+1]

)
|Σf

in the Abelian
category of germs of perverse sheaves at the origin in Σf .

The critical locus in our example has a single component at the origin. Hence,
the germ of Σf at the origin is topologically a complex line (a real 2-disk). The
category of germs, at the origin, of perverse sheaves on a line is equivalent to a
category in which the objects are diagrams A

α−→ B
β−→ A, where A and B are

finite-dimensional K-vector spaces, and id−β ◦α is an isomorphism. A morphism
between two diagrams A1

α1−→ B1
β1−→ A1 and A2

α2−→ B2
β2−→ A2 consists of
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linear transformations f : A1 → A2 and g : B1 → B2 such that

A1 B1 A1

A2 B2 A2

-α1

?
f

-β1

?

g

?
f

-α2 -β2

commutes. See [16]. We refer to these diagrams as MacPherson-Vilonen diagrams
or, simply, MV-diagrams. The Verdier dual of the perverse sheaf represented by
A

α−→ B
β−→ A has as its MV-diagram the dual (in the linear algebra sense)

diagram A∗ β∗−→ B∗ α∗−→ A∗.
Suppose now that P• is a perverse sheaf on the germ of a complex line at the

origin. While we do not wish to explain how one obtains the vector space B or
the maps α and β of the corresponding MV-diagram, we need to explain enough
to reach the conclusion that we desire. In the MV-diagram corresponding to P•,
the vector space A is isomorphic to H−1(P•)x at any x 6= 0 which is close to 0.
In addition, the map α in the MV-diagram is such that kerα ∼= H−1(P•)0 and
cokerα ∼= H0(P•)0. Finally, the shifted constant sheaf of dimension d corresponds
to the MV-diagram Kd → 0 → Kd.

Now, consider P• :=
(
φf [−1]K•U [n+1]

)
|Σf

and its MV-diagram A
α−→ B

β−→ A.

In our current example, the dimension of A is
◦
µν = 1, and dimH−1(P•)0 is equal

to the dimension of H̃1(Ff ;K), which is 1. As kerα ∼= H−1(P•)0, α must be the
zero map. As α = 0, B ∼= cokerα ∼= H0(P•)0 ∼= H̃2(Ff ;K) ∼= K4.

In addition, the vanishing cycles are self-dual; that is, the Verdier dual of P•
is isomorphic to itself. It follows that β must also be the zero map. It is now
a trivial exercise to show that the MV-diagram of

(
φf [−1]K•U [n + 1]

)
|Σf

is the

direct sum of K → 0 → K and 0 → K4 → 0, i.e., the shifted constant sheaf K•Σf [1]
is a direct summand of

(
φf [−1]K•U [n + 1]

)
|Σf

.

The reader should understand part of the significance of this example. While a
perverse sheaf is a topological device which does not distinguish between the germ
of a complex line and the germ of an irreducible curve, the vanishing cycles can
“remember” that they come from a function whose critical locus is not smooth
and, thus, unlike the case in Corollary 5.4, the shifted constant sheaf is “allowed”
to be a direct summand.

Now, let α be the number of irreducible components of Σf .

Question 6.3.. If we are not in the trivial case, is the rank of H̃n−1(Ff ) strictly
less than λ1 − α?
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Again, there are examples in the literature (see, for instance, [23]) which
demonstrate that the answer to this question is “no”. One simple example is:

Example 6.4. . The function f = x2y2 + w2 has a critical locus consisting of
two lines, λ1 = 2, but – using the Sebastiani-Thom Theorem again – we find that
H̃1(Ff ) ∼= Z.

However, a result such as that asked about in Question 6.3, but where α is
replaced by a quantity involving the number of components of Γ1

f,z0
, or numbers of

various types of components in the Cerf diagram, seems more likely. Moreover, if
we put more conditions on the intersection diagram for the vanishing cycles of f0,
we could certainly obtain sharper bounds than we do in the Main Theorem. Or,
if we know more topological data, such as the vertical monodromies, as in [25], we
could obtain better bounds. However, other than Theorem 5.1 and Theorem 5.3,
we know of no nice, effectively calculable, bound which holds in all cases.

Finally, Corollary 5.4 and Example 6.2 lead us to ask:

Question 6.5.. Which perverse sheaves can be obtained as the vanishing cycles
of the constant sheaf on affine space? In particular, if we fix an irreducible curve
C ⊆ U containing the origin, can we list precisely those MV-diagrams which can
be obtained from the vanishing cycles of f : U → C, where C = Σf?

Unlike our previous questions, we do not know the answer to Question 6.5.
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