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Combinatorial Secant Varieties

Bernd Sturmfels and Seth Sullivant

Abstract: The construction of joins and secant varieties is studied in the
combinatorial context of monomial ideals. For ideals generated by quadratic
monomials, the generators of the secant ideals are obstructions to graph
colorings, and this leads to a commutative algebra version of the Strong
Perfect Graph Theorem. Given any projective variety and any term order,
we explore whether the initial ideal of the secant ideal coincides with the
secant ideal of the initial ideal. For toric varieties, this leads to the notion
of delightful triangulations of convex polytopes.

1. Introduction

Given two varieties X and Y in a projective space, their join X∗Y is the Zariski
closure of the union of all lines spanned by a point in X and a point in Y . The
join of a variety X with itself is the secant variety of X, and the r-fold join of X
with itself is the r-th secant variety of X. It is denoted X{r} = X∗X∗· · ·∗X. The
study of joins and secant varieties has a long tradition in algebraic geometry, and
many authors have studied the dimension and degree of these varieties. Recent
references include [1, 5, 6, 7, 10]. In the emerging field of algebraic statistics, the
construction of joins and secant varieties corresponds to mixture models [13, 22],
and it is of considerable interest to compute the defining prime ideals of X∗Y and
X{r} from those of X and Y . For recent successes along these lines see [2, 18].

In this paper, we present a combinatorial framework for the study of joins
and secant varieties. The basic setup was already suggested by Simis and Ulrich
[24], and our results are generalizations and extensions of theirs. Our strategy is
summarized by the following steps. First, we take secants and joins of arbitrary
projective schemes, and, hence, of arbitrary homogeneous ideals in a polynomial
ring. Second, we develop the combinatorial study of secants and joins of monomial
ideals, relating secants and joins to Alexander duality, coloring properties of
graphs, antichains in posets, and regular triangulations of polytopes. Third, we
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use Gröbner degeneration as a tool to reduce questions about secants and joins of
arbitrary projective schemes to secants and joins of monomial schemes. Among
the applications of our technique is a new perspective on classical determinantal
ideals, yielding a short unified proof for the Gröbner basis property of minors
and Pfaffians.

Here is the outline for our paper. In Section 2 we introduce secants and joins
of arbitrary ideals and we study the secants of monomial ideals. We give an
explicit formula (Theorem 2.6), valid in characteristic zero, for computing the
join of monomial ideals by multiplying their Alexander duals.

In Section 3 we focus on the case of ideals generated by quadratic monomials.
If the generators are squarefree, so the ideal is an edge ideal, then the secants
reflect coloring properties of the graph. As a consequence, perfect graphs make a
surprise appearance, and we get a commutative algebra version (Theorem 3.12)
of the celebrated strong perfect graph theorem [8].

In Section 4 we show that the secant of an initial ideal contains the initial
ideal of the secant. This allows for the derivation of numerical invariants of the
secants of an ideal from the secants of carefully chosen initial ideals. We also
introduce the notion of a delightful term order for a variety X. This is a term
order where taking secants commutes with taking initial ideals. Diagonal term
orders for determinantal and Pfaffian ideals are delightful.

In Section 5 we apply our techniques to the study of secant varieties of toric
varieties. We show how information about such secant varieties can be derived
from regular triangulations of the corresponding polytopes. We are particularly
interested in finding delightful triangulations which correspond to delightful term
orders for toric varieties. The existence of delightful triangulations is explored
for Veronese varieties, Segre varieties and scrolls.

We close the Introduction with an example which demonstrates how our ap-
proach can be used to derive equations defining secant varieties. Let X ⊂ P9 be
the cubic Veronese surface in its standard toric embedding. Consider the Gröbner
degeneration of X into a union of nine coordinate planes corresponding to the
triangulation depicted in Figure 1.

The initial ideal of the surface X with respect to this term order is the edge
ideal I(G) whose graph G consists of all non-edges of this triangulation:

I(G) = 〈x0x3, x0x4, x0x5, . . . , x6x9, x7x9〉.
Consider the variety X{3} of secant planes. This is a hypersurface in P9 and
we wish to compute its defining polynomial f . To do so, we apply Theorem 3.2
below to see that the ideal of the combinatorial secant variety equals

I(G){3} = 〈x0x4x6x9〉.
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Figure 1: A delightful triangulation for the cubic Veronese surface.

The generator is the unique clique of size four in G. Equivalently, it is the
unique independent set of size four in the edge graph of the triangulation. The
desired polynomial f has degree at least four, and its leading term is a multiple
of x0x4x6x9. Consider the quartic invariant of ternary cubics [26]

x0x4x6x9 + x1x2x7x8 + x1x3x5x8 + x2x3x5x7 − x2
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−3x1x4x5x7 − 3x2x3x4x8 + 2x1x
2
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2
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4.

This polynomial vanishes on X{3} and it has the correct leading term. This
proves that the desired generator f equals the quartic polynomial above.
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2. Joins of monomial ideals

Let I1, I2, . . . , Ir be ideals in a polynomial ring K[x] = K[x1, . . . , xn] over a field
K. Their join I1 ∗ I2 ∗ · · · ∗ Ir is a new ideal in K[x] which can be computed as
follows. We introduce rn new unknowns, grouped in r vectors yj = (yj1, . . . , yjn),
j = 1, 2, . . . , r, and we consider the polynomial ringK[x,y] in all rn+n unknowns.
Let Ij(yj) be the image of the ideal Ij in K[x,y] under the map x 7→ yj . Then
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I1 ∗ I2 ∗ · · · ∗ Ir is the elimination ideal

(1)
(

I1(y1) + · · ·+ Ir(yr) + 〈 y1i + y2i + · · ·+ yri − xi : 1 ≤ i ≤ n 〉
)
∩ K[x].

Of particular interest is the case when all r ideals are identical. We define the
rth secant of an ideal I ⊂ K[x] to be the r-fold join of I with itself:

(2) I{r} := I ∗ I ∗ · · · ∗ I.

The join operation I ∗ J of ideals is commutative and associative. Moreover,
it satisfies the following distributive law with respect to intersection.

Lemma 2.1. If I, J and K are ideals in K[x] then

(I ∩ J) ∗ K = (I ∗K) ∩ (J ∗K).

Proof. See Proposition 1.2 (i) in [24]. ¤

If the ideals I1, . . . , Ir are geometrically prime then their join I1 ∗ · · · ∗ Ir is also
geometrically prime. Similarly, for the properties of being geometrically primary
and for being radical, provided K is a perfect field. See [24, Proposition 1.2].
Thus for homogeneous prime ideals, the ideal-theoretic join and secant represent
the prime ideals of the secant varieties and joins of irreducible projective varieties,
the setting discussed in the Introduction. For arbitrary ideals, the ideal-theoretic
join corresponds to the Minkowski sum of affine schemes.

This section is concerned with another extreme case, namely, when the given
ideals are monomial ideals. We start with the simplest example.

Example 2.2. Let n = 1 and consider the ideals I = 〈xi〉 and J = 〈xj〉. Then
I ∗ J = 〈xk〉 where k is the smallest integer such that the characteristic of K
divides

(
k
l

)
for all l ∈ {k − j + 1, k − j + 2, . . . , i− 1}. In particular,

〈xi〉 ∗ 〈xj〉 = 〈xi+j−1〉 if char(K) = 0.

This example generalizes to irreducible monomial ideals in n variables. Such
an ideal is represented by an integer vector u = (u1, . . . , un) as follows:

mu = 〈xui
i : ui > 0 〉.

Lemma 2.3. The join of two irreducible monomial ideals mu and mv is an
irreducible monomial ideal mw. Here wi = 0 if ui = 0 or vi = 0. Otherwise wi

is the smallest integer such that the characteristic of K divides
(
wi
l

)
for all l with

wi − ui < l < vi, and if char(K) = 0 then wi = ui + vi − 1.

Proof. A polynomial f(x) =
∑

a caxa lies in the join mu ∗ mv if and only if
f(y1 + y2) =

∑
a ca(y1 + y2)a lies in the monomial ideal

(3) mu(y1) + mv(y2) = 〈yui
1i : ui > 0〉+ 〈yvi

2i : vi > 0〉.
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This happens if and only if every term (y1 + y2)a lies in (3). Hence mu ∗mv is
a monomial ideal. Now, xa lies in mu ∗mv if and only if every term of

(y1 + y2)a =
n∏

i=1

(y1i + y2i)ai =
n∏

i=1

( ai∑

l=0

(
ai

l

)
yl
1iy

ai−l
2i

)

lies in mu(y1) + mv(y2) if and only if wi ≤ ai for some i with uivi 6= 0 if and
only if xa lies in mw. Therefore, mu ∗mv = mw. ¤

We shall prove that the join of monomial ideals is always a monomial ideal.
Recall that the standard monomials of a monomial ideal J are the monomials in
K[x]\J , so J is characterized by its set of standard monomials.

Proposition 2.4. Let I1, . . . , Ir be monomial ideals in K[x]. Then I1 ∗ · · · ∗ Ir

is a monomial ideal. If char(K) = 0 then the standard monomials of I1 ∗ · · · ∗ Ir

are precisely the products m1 · · ·mr where mj is standard for Ij. If I1, . . . , Ir are
squarefree, the monomial generating set of I1 ∗ · · · ∗ Ir is independent of char(K).

Proof. It suffices to consider the case r = 2; the general statement follows by in-
duction on r. If I1 = mu and I2 = mv are irreducible ideals then both statements
follow from Lemma 2.3. Otherwise, we decompose I1 =

⋂
u mu and I2 =

⋂
v mv

as intersections of irreducible monomials ideals (see [20]). Using Lemma 2.1, we
then write I1 ∗ I2 is an intersection of joins mu ∗mv. Hence I1 ∗ I2 is a mono-
mial ideal, and its set of standard monomials is the union of the sets of standard
monomials of its irreducible components mu ∗mv. If I1 and I2 are irreducible
and squarefree the formula for I1 ∗ I2 of Lemma 2.3 does not depend on char(K).
Since every monomial ideal in the irreducible decomposition of squarefree mono-
mial ideals is squarefree, we deduce that the monomial generators of I1 ∗ I2 are
independent of the characteristic of the field K. ¤

A statement equivalent to Proposition 2.4 appears in [24, Proposition 3.1].

Corollary 2.5. The rth secant I{r} of a monomial ideal I is a monomial ideal.
Every standard monomial of I{r} is a product of r standard monomials of I. If
char(K) = 0 then every such product is standard for I{r}. If I is squarefree, the
generating set of I{r} is independent of char(K).

These results show that the operations of taking joins and secants are very
natural from the point of view of Alexander duality. Namely, forming joins is
Alexander dual to taking products of monomial ideals, and forming secants is
Alexander dual to taking powers of monomial ideals. We make this statement
precise using the I [a] notation. See [20, Chapter 5] for the relevant definitions
and basic facts on Alexander duality of monomial ideals.
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Theorem 2.6. Let I and J be monomial ideals in K[x], char(K) = 0, and let a
be a vector in Nn whose coordinates are sufficiently large. Then

(4) I ∗ J =
(
I [a] · J [a]

)[2a] modulo ma+1.

Here 1 = (1, 1, . . . , 1), and the operation modulo ma+1 removes all the monomial
generators that are divisible by xai+1

i for some i.

Proof. First assume that the given ideals are irreducible, say, I = mu and J =
mv. Then I [a] is the principal ideal generated by

∏
i:ui>0 xai+1−ui

i , and J [a] is
generated by

∏
i:vi>0 xai+1−vi

i . Their product is the principal ideal

I [a] · J [a] =
〈 ∏

i:ui>0,vi>0

x2ai+2−ui−vi
i ·

∏

i:ui>0,vi=0

xai+1−ui
i ·

∏

i:ui=0,vi>0

xai+1−vi
i

〉
.

Taking the Alexander dual again, we see that (I [a] ·J [a])[2a] is an irreducible ideal
which is generated by three groups of monomials. The first group is

x
2ai+1−(2ai+2−ui−vi)
i = xui+vi−1

i for i such that ui > 0 and vi > 0.

The second group of generators of (I [a] · J [a)[2a] is

x
2ai+1−(ai+1−ui)
i = xai+ui

i for i such that ui > 0 and vi = 0,

and the third group of generators is

x
2ai+1−(ai+1−vi)
i = xai+vi

i for i such that ui = 0 and vi > 0.

Reduction modulo ma+1 removes the second and third group of generators. The
remaining first group generates the irreducible ideal I ∗ J , by Lemma 2.3. This
proves Theorem 2.6 for irreducible monomial ideals.

For the general case, we decompose the two given monomial ideals into their
irreducible components: I = ∩νIν and J = ∩µJµ. Alexander duality switches
intersections of monomial ideals with sum of monomial ideals, so we get I [a] =∑

ν(Iν)[a] and J [a] =
∑

µ(Jµ)[a]. This implies

I [a] · J [a] =
∑
ν,µ

(Iν)[a] · (Jµ)[a],

and therefore
(I [a] · J [a])[2a] =

⋂
ν,µ

(
(Iν)[a] · (Jµ)[a]

)[2a]
.

Using Lemma 2.1, and using the result for irreducible ideals, we find

I ∗ J =
⋂
ν,µ

(Iν ∗ Jµ) = (I [a] · J [a])[2a] modulo ma+1.

This completes the proof of Theorem 2.6. ¤
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Corollary 2.7. Let I be a monomial ideal in K[x], suppose that char(K) = 0,
and let a be a vector in Nn whose coordinates are sufficiently large.

I{r} =
(
(I [a])r

)[ra]
modulo ma+1.

Theorem 2.6 and Corollary 2.7 can be used for the efficient computation of
joins and secants of monomial ideals in characteristic zero.

Example 2.8. We present some code in the computer algebra program Macaulay
2 [15] for computing the first secant of a monomial ideal. In our example, the
input is the ideal I = 〈x3, x2y2, xz3, y4, y2z 〉 in Q[x, y, z].

R = QQ[x,y,z]; a = 7;
I = monomialIdeal ( x^3 , x^2*y^2 , x*z^3 , y^4 , y^2*z );
Ma = monomialIdeal(apply(gens R, u -> u^( a+1)));
M2a = monomialIdeal(apply(gens R, u -> u^(2*a+1)));
Ia = monomialIdeal ((gens (Ma:I)) % Ma); -- Alexander dualize
Ia2 = Ia*Ia; -- Take square of the result
Ia22a = monomialIdeal((gens(M2a:Ia2))%M2a);-- Alexander dualize
monomialIdeal ((gens Ia22a) % Ma) -- reduce modulo m^{a+1}

The output of these commands is the join of I with itself:

I{2} = I ∗ I = 〈x5, x4y3, x3y5, y7, y5z, x2y3z3, x3z5 〉.
Note that we compute the Alexander dual in Macaulay 2 using the formula

I [a] = (ma+1 : I) modulo ma+1. ¤

The proof of Theorem 2.6 shows that the smallest possible choice for a has
ai = max(2di−1, 1) where di is the largest power of xi appearing in any minimal
generator of I or J . This guarantees that none of the generators of the form
xui+vi−1 are removed when reducing modulo ma+1. For the secant ideal I{r},
the smallest possible choice for a has ai = max(rdi − r + 1, 1) where di is the
largest power of xi appearing in any minimal generator of I. In particular, if I
and J are squarefree monomial ideals we may choose a = 1. Note that, for I
squarefree, the ideal I [1] coincides with the squarefree Alexander dual I∨, which
is familiar from the study of Stanley-Reisner ideals I. The code above was used
with a = 1 for many examples of squarefree ideals I which we computed for the
research presented in the next sections.

Remark 2.9. Let ∆ be the simplicial complex of I and ∆{r} the simplicial com-
plex of I{r}. The simplices in ∆{r} are the unions of r simplices in ∆.

Proof. This follows from Corollary 2.5. See also [24, Corollary 3.3]. ¤
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3. Secants of edge ideals

Let G be an undirected graph with vertex set [n] = {1, 2, . . . , n}. To G we
associate the edge ideal I(G) which is generated by the squarefree quadratic
monomials xixj corresponding to the edges {i, j} of G. For example, if G is the
five-cycle with edges

{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}} then

I(G) = 〈x1x2, x2x3, x3x4, x4x5, x5x1〉.
The results below (or Remark 2.9) show that the secants of this ideal are

(5) I(G){2} = 〈x1x2x3x4x5〉 and I(G){r} = 〈0〉 for r ≥ 3.

Edge ideals have been much studied in combinatorial commutative algebra. The
main emphasis has been on expressing homological invariants of the ideal I(G)
in terms of the graph G. In this section we relate coloring properties of the graph
G to algebraic properties of the secant ideals I(G){r}.

Recall that the chromatic number χ(G) of a graph G is the smallest number
of colors which can be used to give a coloring of the vertices of G such that no
two adjacent vertices have the same color. To the subset V ⊆ [n] we associate
the monomial mV =

∏
i∈V xi. A basic first result is:

Proposition 3.1. The chromatic number χ(G) of a graph G is the smallest
integer r ≥ 0 such that the rth secant ideal I(G){r} is the zero ideal 〈0〉.

Proof. The monomial mV =
∏

i∈V xi is a standard monomial of I(G) if and only
if V is an independent subset of the vertices of G. An r-coloring is a partition
V1, . . . , Vr of the vertices of G such that each Vi is an independent subset of
vertices of G. An r-coloring exists if and only if x1x2 · · ·xn =

∏r
i=1 mVi is a

standard monomial of I(G){r} if and only if I(G){r} = 〈0〉, since I(G){r} is
radical. ¤

The proof of Proposition 3.1 leads to a combinatorial description of the minimal
generators of the secant ideals I(G){r}. Given a subset V ⊆ [n], we write GV for
subgraph of G which is induced on the set of vertices V .

Theorem 3.2. The rth secant I(G){r} of an edge ideal I(G) is generated by the
squarefree monomials mV whose subgraph GV is not r-colorable:

I(G){r} = 〈mV | χ(GV ) > r 〉.
The minimal generators of I(G){r} are those monomials mV such that GV is not
r colorable but GU is r-colorable for every proper subset U ⊂ V .

The minimal graphs that are not 2-colorable are the cycles of odd length. This
explains the computation for the five-cycle in (5). The special case r = 2 of
Theorem 3.2 was already obtained in [24, Proposition 5.1]:
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Corollary 3.3. The secant I(G){2} is minimally generated by the monomials mV

whose corresponding induced subgraph GV is a cycle of odd length.

This implies that even for a monomial ideal I, there is no bound on the degrees
of minimal generators of I{2} in terms of the degrees of the generators of I
alone. Furthermore, if I is generated by squarefree quadratic monomials then
I{2} cannot have any minimal generators of even degree.

Since every graph on ≤ r vertices can be colored by r colors, the minimal
generators of I(G){r} have degree at least r + 1. This suggests the problem of
characterizing the graphs G that have the property that the secants I(G){r} are
generated in degree r + 1. Recall that a graph G is perfect if the chromatic
number χ(GV ) equals the clique number ω(GV ) for every subset V ⊆ [n]. The
clique number is the size of the largest complete subgraph.

Proposition 3.4. A graph G is perfect if and only if every non-zero secant ideal
I(G){r} is generated in degree r + 1.

Proof. Suppose G is perfect and let mV be a minimal generator of I(G){r}. Then
GV is not r-colorable, i.e. r < χ(GV ). Since G is perfect, we have χ(GV ) = ω(GV )
and hence r < ω(GV ). This means there exists a subset U ⊆ V such that GU is
a complete subgraph Kr+1. Since Kr+1 is not r-colorable, the monomial mU is
in I(G){r}. Since mV is a minimal generator, we conclude that U = V . Hence
GV = Kr+1 and mV has degree r + 1.

Conversely, if G is not perfect then we pick a subset V ⊆ [n] such that χ(GV ) >
ω(GV ). We may assume that V is minimal with this property. Setting r = ω(GV )
we have |V | > r + 1. The monomial mV is in I(G){r}, whilst mU /∈ I(G){r} for
any proper subset U ⊂ V . Hence mV is a minimal generator of I(G){r} which
has degree larger than r + 1. ¤

Example 3.5 (Cyclic Polytopes). Let G = C be the complement of a cycle C of
length n > 3; that is, the edges of G are the edges not appearing in C. The edge
ideal I(G) is a combinatorial model for the elliptic normal curve in Pn−1, since
the variety of I(G) has degree n and geometric genus 1.

We claim that the secant ideal I(G){r} is the Stanley-Reisner ideal of the
boundary complex of the 2r-dimensional cyclic polytope with n vertices. To
see this, we must analyze the structure of the maximal simplices of the secant
complex C{r}. If 2r ≤ n, each of these maximal simplices consists of 2r points. A
set F ⊂ [n] of cardinality 2r is a maximal face of C{r} if and only if F is a union
of r pairwise disjoint pairs of the form {`, ` + 1} or {n, 1}. This condition on F
is equivalent to saying that, for every pair i ≤ j, with i, j /∈ F , the cardinality
of {i, i + 1, . . . , j − 1, j} ∩ F is even. Thus, by Gale’s evenness condition (e.g.
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Theorem 0.7 in [28]), the facets of C{r} are precisely the facets of the cyclic
polytope.

Note that I(G){r} is generated in degree r + 1, unless n = 2r + 1, in which
case there is a single generator in degree 2r + 1, since G is perfect if n is even
and minimally imperfect if n is odd. This derivation of the cyclic polytope from
the “stick elliptic normal curve” was suggested to us by C. Athanasiadis and
F. Santos. ¤

The most important development in graph theory in the past few years has
been the proof, announced in 2002, of Berge’s Strong Perfect Graph Conjecture by
Chudnovsky, Robertson, Seymour and Thomas [8]. Their theorem characterizes
perfect graphs in terms of excluded induced subgraphs.

Theorem 3.6 (Strong Perfect Graph Theorem). The minimal imperfect graphs
are precisely the odd holes and the complements of the odd holes.

A hole is a cycle of length greater than 3. The secants to the edge ideal I(G)
detect the minimal imperfections in the graph G. The Strong Perfect Graph The-
orem implies the following strong result on the degrees of the minimal generators
of the secant ideals I(G){r}.

Corollary 3.7. Let G be an imperfect graph. Then either

(1) I(G){2} has a minimal generator of odd degree bigger than three, or
(2) for some r > 2, I(G){r} has its minimal generators in degrees r + 1 and

2r + 1 only, and I(G){s} is generated in degree s + 1 for s < r.

Proof. Let G be an imperfect graph. If G contains an odd cycle of length d ≥ 5
then I(G){2} has a minimal generator of degree d by Corollary 3.3. If G contains
no such odd cycle then, by Theorem 3.6, the graph G contains the complement of
an odd hole. Let 2r +1 be the minimal length of such a hole. That subgraph has
chromatic number r + 1, so it contributes a minimal generator of degree 2r + 1
to the ideal I(G){r}. Theorem 3.6 also ensures that I(G){r} has no generators of
degree other than r + 1 or 2r + 1. ¤

Remark 3.8. Corollary 3.7 is, in fact, equivalent to the Strong Perfect Graph
Theorem. If I(G){2} has a minimal generator mV of odd degree greater than
3, the induced subgraph GV must be an odd hole. If I(G){r} has a minimal
generator mV of degree 2r+1 and each of I(G){s} is generated in degree s+1 for
s < r, then the induced subgraph GV must be minimally imperfect, with clique
number ω(GV ) = r and 2r + 1 vertices. A theorem of Lovász [19] implies that
the complementary graph GV is also minimally imperfect with clique number
ω(GV ) = 2. Thus, GV must be the complement of an odd hole. ¤
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One family of perfect graphs are the incomparability graphs of posets [4]. If
P is a poset on the set [n] then the edge ideal of its incomparability graph is the
Stanley-Reisner ideal of P which is defined as follows:

J(P ) = 〈xixj | neither i ≤ j nor i ≥ j in P 〉 .
In words, the ideal J(P ) is generated by the 2-element antichains of P . That the
incomparability graph is perfect follows from Dilworth’s Theorem which states
that the size of the largest antichain of any poset P equals the minimal number
of chains needed to partition P . Proposition 3.4 implies

Corollary 3.9. Let P be a poset. Then any non-zero secant ideal J(P ){r} of the
Stanley-Reisner ideal J(P ) is generated in degree r + 1. More precisely,

J(P ){r} = 〈mA | A is an antichain of cardinality r + 1 in P 〉 .

The secant ideals of graph ideals have other important connections to geometric
constructions in the theory of graph coloring.

Remark 3.10 (The Combinatorial Space of Explanations). Given any projective
scheme X, there is a natural rational map φr from the r-fold free join of X to the
secant variety X{r}. In the statistics literature, the (nonnegative real) preimage
of a point x on (the nonnegative real part of) X{r} is known as the space of
explanations for the point x. See [21].

In the situation where X = V (I(G)) is the simplicial complex of indepen-
dent sets in a graph G, the space of explanations has a very nice combinatorial
interpretation. Namely, if X{r} = Pn−1 and x is generic then the space of expla-
nations is a geometric realization of Hom(G,Kr), the polyhedral cell complex of
graph homomorphisms from G to Kr. See [3] and [17, §4.1]. ¤

The graph-theoretic interpretation of secant ideals extends to arbitrary square-
free monomial ideals, by thinking of these as facet ideals as in [12]. Let H ⊂ 2[n]

be a collection of subsets of [n] with the property that for every U, V ∈ H, neither
U ⊂ V nor V ⊂ U . The collection H is the set of hyperedges of a hypergraph,
or the maximal faces of a simplicial complex. The facet ideal of the hypergraph
H is the squarefree monomial ideal

I(H) = 〈mV | V ∈ H 〉 .
A coloring of the vertices of the hypergraph is an assignment of colors with the
property that no hyperedge has all its vertices the same color. The chromatic
number of H is the smallest number χ(H) such that H has a coloring using χ(H)
colors. Proposition 3.1 easily generalizes to this setting:

Proposition 3.11. The chromatic number of a hypergraph H is the smallest
positive integer r such that I(H){r} = 〈0〉.
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In the next section we shall apply these results to the study of secant varieties
of certain irreducible projective varieties. It might make sense to use graph-
theoretic language even at that level of generality. We could say that a projective
scheme X is perfect if all its secant schemes are cut out by equations of minimal
degree, and the smallest secant scheme of X which fills the ambient projective
space would determine the chromatic number of X. We are inclined to speculate
that some version of the Strong Perfect Graph Theorem generalizes to arbitrary
projective schemes defined by quadrics. One piece of evidence is that the result
about the generating degrees of secants in Corollary 3.7 generalizes to arbitrary
quadratic monomial ideals.

Theorem 3.12. Let I be an ideal generated by quadratic (not necessarily square-
free) monomials whose projective scheme is not perfect and let char(K) = 0. Then
either

(1) I{2} has a minimal generator of odd degree bigger than three, or
(2) for some r > 2, the ideal I{r} has its minimal generators in degrees r + 1

and 2r + 1 only, and I{s} is generated in degree s + 1 for s < r.

Proof. Fix a large integer m À 0 and introduce a graph Gm as follows. There
is one vertex Xi,0 for each index i such that x2

i 6∈ I, and there are m vertices
Xi,1, . . . , Xi,m for each index i such that x2

i ∈ I. Two distinct vertices Xi,j and
Xi′,j′ are connected by an edge in Gm if and only if xixi′ ∈ I. We consider the
edge ideal I(Gm) in the polynomial ring with variables Xi,j .

We claim that for every integer r ≤ m, the ideal I{r} is obtained from the
squarefree ideal I(Gm){r} by replacing Xi,j by xi. Since Theorem 3.12 holds for
I(Gm), we conclude that it holds for the given ideal I as well.

To prove the claim, note that xr+1
i divides a minimal generator of I{r} if and

only if xr+1
i is a minimal generator of I{r} if and only if x2

i ∈ I. This chain
of implications follows because I is generated by quadrics and either x2

i /∈ I, in
which case I{r} is squarefree in xi, or x2

i ∈ I in which case xr+1
i ∈ I{r}. Since

I(Gm){r} contains a generator that maps onto xr+1
i if and only if x2

i ∈ I, it suffices
to show that the replacement procedure sends I(Gm){r} to I{r} when restricted
to those monomials not divisible by xr+1

i for any I. Let M be such a monomial
and suppose that M is not in I{r} and that M is squarefree in each variable xi

such that x2
i /∈ I. This condition holds if and only if M admits a factorization

M = M1 · · ·Mr into a product of r monomials such that each Mj is standard for
I. By our assumption on M , each Mj is squarefree. Since the squarefree standard
monomials of I(Gm) map onto the set of squarefree standard monomials of I, we
deduce that M /∈ I{r} if and only if every squarefree preimage of M is standard
for I(Gm){r}. The existence of such squarefree preimages is guaranteed because
r ≤ m. We conclude that every minimal generator of I{r} arises from a squarefree
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minimal generator of I(Gm){r} and hence, by Corollary 3.7, satisfies the specified
requirements on its degree. ¤

Needless to say, it would be fantastic to find a commutative algebra proof of
Theorem 3.12 and hence of the Strong Perfect Graph Theorem. Note, however,
that the statement of Theorem 3.12 does not hold for all ideals generated by
quadrics. In particular, for a non-monomial ideal I generated by quadrics, the
secant ideal I{2} need not have a generator of odd degree.

Example 3.13. Let I be generated by two generic homogeneous quadrics in
K[x, y, z]. The variety of I consists of four points in general position in P2. The
secant variety is the reduced union of six lines. Hence I{2} is a principal ideal
generated by a homogeneous polynomial of degree six. ¤

4. Equations of secant varieties via initial ideals

In this section we consider the degeneration of secant ideals to their initial
ideals. Theorem 4.1 and its corollaries on initial degrees appear already in [24],
but we include some proofs because ours are, perhaps, more elementary. We then
examine determinantal and Pfaffian ideals. In contrast to the exposition in [24,
§5], we offer direct new proofs for the Gröbner basis properties of determinants
and Pfaffians, using results from Section 3. To be precise, we replace the use of the
Knuth-Robinson-Schensted correspondence, first proposed in [25], by Dilworth’s
Theorem (Corollary 3.9). Besides Dilworth’s Theorem, which is a relatively easy
combinatorial result, our derivation depends only on elementary linear algebra.
The full proof for generic matrices is presented in Theorem 4.9 and Corollary
4.10 below.

Let I1, . . . , Ir be arbitrary ideals in K[x] and ≺ any term order. Then the
initial ideal of a join is contained in the join of the initial ideals.

Theorem 4.1. We have the following inclusions of monomial ideals:

in≺
(
I1 ∗ I2 ∗ · · · ∗ Ir

) ⊆ in≺(I1) ∗ in≺(I2) ∗ · · · ∗ in≺(Ir).

Proof. It suffices to consider the case of the join of two ideals I ∗ J ; the general
result following by induction on r. Consider any polynomial f ∈ I ∗ J . Let
w ∈ Rn be a weight vector which represents the term order ≺ in the sense that
inw(I) = in≺(I), inw(J) = in≺(J) and inw(f) = in≺(f). We denote the latter
monomial by m = inw(f). We consider the ideal I(x) + J(y) in the polynomial
ring K[x,y]. The (w, w)-initial ideal of this ideal equals

(6) in(w,w)(I(x) + J(y)) = inw(I(x)) + inw(J(y)) = in≺(I(x)) + in≺(J(y)).

This is seen by refining (w, w) to a term order and using Buchberger’s First
Criterion (the S-pairs of polynomials with relatively prime leading terms reduce
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to zero). Now, since f ∈ I ∗ J , the polynomial f(x + y) lies in I(x) + J(y). Its
(w, w)-leading form equals in(w,w)

(
f(x + y)

)
= m(x + y). This polynomial lies

in (6) and hence m lies in in≺(I) ∗ in≺(J), as desired. ¤

In the special case when all r ideals are equal, this proposition implies

Corollary 4.2. A secant of an initial ideal contains the initial ideal of the cor-
responding secant ideal. For any ideal I, term order ≺ and integer r ≥ 2,

(7) in≺(I{r}) ⊆ (in≺(I)){r}

Theorem 4.1 implies lower bounds on the degrees of generators for the ideals
of joins and secants of arbitrary projective schemes. For a homogeneous ideal
I ⊂ K[x] let indeg(I) denote the smallest degree of any minimal generator of I.
We omit the proofs which appear in [24, Theorem 4.4].

Corollary 4.3. Let char(K) = 0 and let I and J be homogeneous ideals in K[x].
Then either I ∗ J = 〈0〉 or indeg(I ∗ J) ≥ indeg(I) + indeg(J)− 1.

Corollary 4.4. Let char(K) = 0 and I be a homogeneous ideal such that indeg(I) =
d. Then either I{r} = 〈0〉 or indeg(I{r}) ≥ rd− r + 1.

Remark 4.5. The lower bound of Corollary 4.4 is best possible. This is illus-
trated by the family of determinantal ideals to be featured below. Namely, if I
is the ideal of d × d-minors of an m ×m-matrix of unknowns (for m À 0) then
I{r} is the ideal of (rd− r + 1)× (rd− r + 1)-minors.

Remark 4.6. Corollaries 4.3 and 4.4 do not hold if the field K has positive
characteristic. For instance, take n = 1 and char(K) = 2, and consider the ideal
I = 〈x3〉. We have indeg(I) = d = 3. By Example 2.2, the first secant ideal is
I{2} = 〈x4〉 while the bound in Corollary 4.4 says indeg(I{2}) ≥ 5.

Corollary 4.2 shows that the secant of the initial ideal (in≺(I)){r} can provide
useful bounds on numerical invariants of the ideal I{r}. An inclusion of monomial
ideals leads to a coefficientwise inequality among the Hilbert series and hence
among values of the Hilbert polynomials. This implies:

Corollary 4.7. We have the following inequality for the Krull dimension:

dimK[x]/(in≺(I)){r} ≤ dimK[x]/I{r}.

If these two algebras have the same Krull dimension then their degrees satisfy

degK[x]/(in≺(I)){r} ≤ degK[x]/I{r}.

Definition 4.8. If equality holds in (7) then we say that the term order ≺ is
r-delightful for the ideal I. We call ≺ delightful for I if this holds for all integers
r ≥ 2. Being delightful implies that equalities hold in Corollary 4.7.
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A classical result in combinatorial commutative algebra states that the k × k
minors of a generic matrix, the k × k minors of a generic symmetric matrix, and
the 2k × 2k sub-Pfaffians of a generic skew-symmetric matrix are all Gröbner
bases for the ideals they generate. As a corollary, one deduces that these ideals
are all prime ideals and one gets formulas for their Hilbert series. Our approach
through secants of initial ideals provides a unified framework for proving these
results, using the following strategy:

(1) Solve the “easy” k = 2 case by specifying a quadratic Gröbner basis for I
whose leading terms correspond to the incomparable pairs in a poset P .
(Usually, one here has an algebra with straightening law.)

(2) Determine a combinatorial description of the antichains of size r + 1 in
P . (By Corollary 3.9, these antichains generate (in≺(I)){r}).

(3) Find a set G ⊂ I{r} whose initial terms are the above antichains.
(4) Conclude that (in≺(I)){r} = in≺(I{r}) and G is a Gröbner basis.

The following theorem was first proved in [25] using the Knuth-Robinson-
Schensted correspondence. In our new proof, Knuth-Robinson-Schensted is re-
placed by Dilworth’s Theorem (imcomparability graphs are perfect).

Theorem 4.9. Let I be the ideal generated by the 2 × 2 minors of a generic
m× n matrix, and let ≺ be any term order on K[x11, . . . , xmn] which selects the
diagonal leading term of each 2× 2 minor. Then ≺ is delightful for I.

Proof. The poset P is the product of an m-chain with an n-chain, indexed so
that the incomparable pairs are xijxkl with i < k and j < l. One easily checks
that in≺(I) = J(P ). By Corollary 3.9, J(P ){r} is generated by the monomials
xi0j0xi1j1 · · ·xirjr with i0 < i1 < · · · < ir and j0 < j1 < · · · < jr. Each such
monomial is the ≺-leading term of an (r+1)× (r+1)-minor of the m×n-matrix.

The affine variety V (I) consists of all matrices of rank ≤ 1. Since a matrix has
rank ≤ r if and only if it is a sum of r matrices of rank ≤ 1, the affine variety
V (I{r}) consists of all matrices of rank ≤ r. Hence the (r + 1) × (r + 1) minors
vanish on V (I{r}). Now, the ideal I is easily seen to be prime over any field, and
hence I{r} is geometrically prime. Hence the (r + 1) × (r + 1) minors lie in the
ideal I{r}. This proves that the monomial ideal J(P ){r} = (in≺(I)){r} is equal
to the monomial ideal in≺(I{r}) for all r ≥ 2. We conclude that the term order
≺ is delightful for the ideal I of 2× 2-minors. ¤
Corollary 4.10. The secant ideal I{k−1} is generated by the k × k minors of a
generic matrix, and these minors are a Gröbner basis under any diagonal term
order ≺ as above.

Proof. In the proof of Theorem 4.9 we have argued that the k × k-minors lie
in I{k−1}, and their leading terms generate the initial ideal (in≺(I)){k−1} =
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in≺(I{k−1}). This implies that the k × k-minors form a Gröbner basis for the
ideal I{k−1}, and, in particular, they generate that ideal. ¤
Corollary 4.11. The ideal of k × k minors of a generic matrix is prime.

Proof. The ideal I of 2×2-minors is geometrically prime. The secant ideal I{k−1}
of a geometrically prime ideal I is prime. Now use Corollary 4.10. ¤

The same argument works also for symmetric minors and Pfaffians.

Example 4.12 (Minors of a symmetric matrix). Consider a generic m × m
symmetric matrix (xij) and let I be its ideal of 2× 2-minors. Let P be the poset
on the set of variables {xij | 1 ≤ i ≤ j ≤ m} defined by xij ≤ xkl whenever
i ≤ k and j ≥ l. Let ≺ be the reverse lexicographic term order on any linear
extension of P . It is easy to check that the 2× 2-minors are a Gröbner basis for
I with respect to ≺, and the generators of in≺(I) are the incomparable pairs in
P . Every antichain of size k in P is the leading term of a k × k-subdeterminant
of (xij). Hence the term order ≺ is delightful for I, and we conclude that the
k× k-minors of (xij) form a Gröbner basis of I{k−1} with respect to ≺, and their
ideal is prime. ¤
Example 4.13 (Pfaffians). Consider a generic m × m skew-symmetric matrix
(xij), and let I be the ideal generated by its 4×4-Pfaffians xilxjk−xikxjl+xijxkl

for 1 ≤ i < j < k < l ≤ m. These are the three-term Plücker relations, and I is
the defining ideal of the Grassmannian of lines in projective (m − 1)-space and,
hence, is geometrically prime. Let P be the poset on the variables {xij | 1 ≤
i < j ≤ m} defined by xij ≤ xkl whenever i ≤ k and j ≤ l. Let ≺ be the
reverse lexicographic term order on any linear extension of P . The three-term
Plücker relations are a Gröbner basis for I with respect to ≺, and the generators
of in≺(I) are the incomparable pairs in P (see, for example, [20, Chapter 14]).
Every antichain of size k in P is the leading term of a 2k×2k subpfaffian of (xij)
and each 2k× 2k subpfaffian lies in I{k−1}. Hence the term order ≺ is delightful
for I. We conclude that the 2k× 2k subpfaffians of (xij) form a Gröbner basis of
I{k−1} with respect to ≺, and their ideal is prime. ¤
Remark 4.14. We do not know whether the Plücker ideals of the higher Grass-
mannians, Gk,n for k ≥ 3, and their Schubert subvarieties, admit delightful term
orders. Some computational explorations would be worthwhile.

Remark 4.15. The arguments we have presented also work to show the Gröbner
basis property for ladder determinantal ideals and ladder Pfaffian ideals. These
ladder ideals consist of ideals generated by the minors and Pfaffians contained
in staircase shaped regions of a generic matrix, symmetric matrix, or skew-
symmetric matrix. Each poset P for these ideals is a sub-poset of the posets
described in Theorem 4.9 and Examples 4.12 and 4.13. For studies of such ideals
and their posets we refer to [9] and [14].
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5. Delightful triangulations of polytopes

In this section we consider the case when I is a homogeneous toric ideal, and
we examine when there exist delightful initial ideals for these toric ideals. In
the case where in≺(I) is generated by squarefree monomials, this corresponds
to finding a special regular unimodular triangulation of the point configuration
underlying I. We begin by briefly reviewing the connection between toric initial
ideals and regular triangulations [27].

Let A = {a1, . . . , an} ⊂ Zd and suppose there is a vector ω ∈ Qd such that
ωT ai = 1 for all i. The toric ideal IA ⊂ K[x] is the kernel of the map

K[x1, . . . , xn] → K[t±1
1 , . . . , t±1

d ] , xj 7→
d∏

i=1

t
aij

i .

Let ≺ be any term order on K[x] and in≺(IA) the initial ideal of IA. Then the
radical of in≺(IA) is a squarefree monomial ideal whose corresponding simplicial
complex ∆≺(A) is a regular triangulation ofA. Conversely, every regular triangu-
lation of A has the form ∆≺(A) for some term order ≺. A subset {ai1 , . . . , air} of
A is a simplex of the triangulation ∆≺(A) if and only if every power of xi1 · · ·xir

is a standard monomial modulo in≺(IA).

A triangulation of the point configuration A is said to be full if every point of
A appears as the vertex of some simplex in the triangulation.

Proposition 5.1. Suppose that ≺ is a delightful term order for the toric ideal
IA. Then the regular triangulation ∆≺(A) is full.

Proof. If ∆≺(A) is not full then some ai is not a vertex of ∆≺(A). Hence xm
i ∈

in≺(IA) for some m > 1. By Example 2.2, (in≺(IA)){r} contains the monomial
xrm−r+1

i . Thus (in≺(IA)){r} 6= in≺(I{r}A ) = 〈0〉 for r À 0. ¤

To illustrate the notion of delightful triangulations, and to tie it in with deter-
minantal ideals, we start out with examples in dimension two (d = 3).

Example 5.2. Consider the embedding of the toric surface P1×P1 in P8 by the
line bundle O(2, 2). Here n = 9 and the defining configuration is

A =




1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2


 .

The toric ideal IA is generated by the 2× 2-minors of the symmetric matrix

M =




x1 x2 x4 x5

x2 x3 x5 x6

x4 x5 x7 x8

x5 x6 x8 x9


 .
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Fix a term order ≺ which selects the main diagonal product as the leading term
for each 2 × 2-minor. The regular triangulation ∆≺(A) is displayed on the left
in Figure 2. The diagram on the right of Figure 2 shows a poset P to which we
can apply steps (1)–(4) of Section 4. Note that the maximal chains in P are the
triangles in ∆≺(A). Using Macaulay 2 we can verify that the r× r-minors of M

form a Gröbner basis of I
{r}
A . In particular, the variety of secant planes to our

surface is the hypersurface det(M) = 0. This proves that this triangulation of
A is delightful. Note that this example is a specialization of the m = 4 case in
Example 4.12. ¤
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Figure 2. A delightful triangulation given by the chains in a poset.

Example 5.3. The Veronese example discussed in the Introduction has

A =




3 2 2 1 1 1 0 0 0 0
0 1 0 2 1 0 3 2 1 0
0 0 1 0 1 2 0 1 2 3


 .

We have seen that the standard triangulation of A is 3-delightful. However, it
turns out that no full triangulation of A is 2-delightful. This can be proved
by a brute-force enumeration of all full triangulations of A, using CaTS [16] or
TOPCOM [23], and by using the following counting argument.

Results in [10] imply that I
{2}
A has the expected dimension (Krull dimension

6) and its degree equals 15. For each of the triangulations ∆≺(A) we count the
number of six-tuples of vertices which form the vertices of two disjoint triangles.
If there is no such six-tuple then in≺(IA){2} has dimension less than six, so ≺
cannot be delightful. Otherwise, the number of such six-tuples equals the degree
of in≺(IA){2}. Now, the maximum number arising from any triangulation of A
is 14 which is less than 15. ¤

A familiar example of a delightful triangulation is the staircase triangulation
of the product of two simplices. This is the content of Theorem 4.9.
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The quest for delightful triangulations is a worthwhile undertaking even if no
such triangulation exists. Namely, the same approach can be used for showing
that certain secant varieties of toric varieties are nondefective and to compute a
non-trivial lower bound on their degree. Recall that a (d− 1) dimensional subva-
riety X of Pn−1 is called r-defective if the secant variety X{r} has dimension less
than min(rd − 1, n − 1), which is the expected dimension. If all secant varieties
X{r} have the expected dimension then X is called nondefective. Regular trian-
gulations of A can be used to prove that the toric variety XA is nondefective.
This was the original problem suggested to us by Rick Miranda. To make the
idea precise, we introduce the following terminology.

Let ∆ be a full triangulation of a configuration A of maximal rank d. A subset
C of A is called r-partitionable if C is the disjoint union of r maximal simplices
in ∆. Naturally, if C is r-partitionable then |C| = rd. We write XA for the
projective toric variety in Pn−1 defined by IA.

Theorem 5.4. Let ∆ be a regular triangulation of A which has at least one r-
partitionable set. Then X

{r}
A has the expected dimension, and the degree of X

{r}
A

is bounded below by the number of r-partitionable sets in ∆.

Proof. The r-partitionable sets are the (rd− 1)-dimensional simplices of ∆{r} by
Remark 2.9. The number of r-partitionable sets is positive if and only if ∆{r}
has the expected dimension rd − 1. In this case, that number is the number of
maximal-dimensional simplices in ∆{r}, which is the degree of ∆{r} when regarded
as a reduced union of coordinate subspaces in Pn−1.

Pick a term order ≺ such that ∆ = ∆≺(A). Then we have

(8) deg(X{r}
A ) = deg(in≺(I{r}A )) ≥ deg(in≺(IA){r}) ≥ deg(∆{r}).

The first equation holds because the degree is preserved under Gröbner degener-
ations, the middle inequality holds by Corollary 4.7, and the last inequality holds
because ∆{r} is the reduced scheme defined by the (possibly non-radical) ideal
in≺(IA){r}. This proves the asserted lower bound. ¤

Conjecture 5.5. If the lower bound for the degree in Theorem 5.4 holds with
equality then ∆ is an r-delightful triangulation of A.

Example 5.6 (Segre varieties, lex triangulations, and rook placements). Let
d = (d1, . . . , dn) be a vector of positive integers and fix the configuration

Ad = {vi1···in = ei1 ⊕ · · · ⊕ ein | 0 ≤ ij ≤ dj for all j}.
Thus Ad represents a product of simplices, and the corresponding toric variety
is the product Pd1 × Pd2 × · · · × Pdn in the standard Segre embedding.
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Consider a lexicographic term order ≺ such that vi1···in is higher than all other
elements of Ad. Since the polytope conv(Ad) is smooth, the resulting lexico-
graphic triangulation ∆≺(Ad) has exactly one maximal simplex which contains
the vertex vi1···in . This simplex is denoted σi1···in , and it is formed by the vertices
that are neighbors of vi1···in . In other words, the simplex σi1···in contains all vj1···jn

such that the Hamming distance between the vectors (i1, . . . , in) and (j1, . . . , jn)
is at most one.

Now consider a set of indices I = {i1, . . . , is} with the property that the Ham-
ming distance between ij and ik is greater than two for all j 6= k. Let ∆ be any
lexicographic triangulation of Ad which puts the elements in VI = {vi | i ∈ I}
lexicographically larger than all elements of Ad\VI . By our assumption on the
Hamming distance between elements of I, each simplex σi, i ∈ I appears in the
triangulation ∆, and these simplices are disjoint. Thus, if such an index set of
cardinality s exists, the secant varieties X

{r}
Ad

for r ≤ s will all have the expected
dimension by Theorem 5.4.

This combinatorial technique for proving that secant varieties to certain Segre
varieties have the expected dimension was introduced by Catalisano, Geramita
and Gimigliano in [6]. As pointed out in [6], finding an s-element index set I with
pairwise Hamming distance greater than 2 is equivalent to finding a placement
of s rooks on a (d1 +1)×· · ·× (dn +1) chessboard with the property that no two
rooks attack each other or attack the same square on the board. Our approach via
triangulations can be used to get information about further invariants (beyond
dimension) of such secant varieties. ¤

To conclude this section, we explore the existence of delightful triangulations
for the class of rational normal scrolls. While all the secant ideals in question are
known to have nice determinantal presentations, not every scroll has a delightful
term order. This is somewhat surprising, considering our results on delightful
term orders for minors and Pfaffians in Section 4.

Let λ = (λ1, . . . , λn) be any vector of positive integers. The rational normal
scroll S(λ) is the toric variety given by the parametrization:

xij = sjti, i = 1, . . . , n, j = 0, . . . , λi.

The corresponding vector configuration equals

Aλ = {je0 ⊕ ei | 1 ≤ i ≤ n and 0 ≤ j ≤ λi} ⊂ Nn+1.

The toric ideal corresponding to this parametrization is denoted Iλ.

A determinantal presentation for the secant ideals I
{r}
λ is well known. Namely,

for each i and r with λi ≥ r let M i,r denote the (r + 1) × (λi − r + 1) Hankel
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matrix

M i,r =




xi0 xi1 . . . xi,λi−r

xi1 xi2 . . . xi,λi−r+1
...

...
. . .

...
xir xir+1 . . . xiλi


 .

If λi < r then M i,r denotes the empty (r + 1)× 0 matrix. The concatenation

M r =
(
M1,r|M2,r| · · · |Mn,r

)

is a matrix with r + 1 rows and
∑r

i=1 λi − n(r − 1) columns.

Theorem 5.7 ([5, 11]). The secant ideal I
{r}
λ is generated by the (r+1)× (r+1)

minors of the matrix M r.

Our first result shows that delightful scrolls are rare.

Proposition 5.8. If the ideal Iλ has a delightful term order then there exists an
integer m such that λi ∈ {m,m + 1,m + 2,m + 3} for all i.

Proof. We first reduce to the two dimensional case. This reduction is possible
because a delightful triangulation of a polytope is delightful for any face, and the
quadrangle conv(Aλi,λj

) appears as a face of the polytope conv(Aλ).

To analyze the two dimensional case, we first must understand the full trian-
gulations of the sets Aλ. Each of these triangulations is lexicographic. The full
triangulations of Aλ1,λ2 correspond to certain bipartite graphs. Namely, aside
from the edges like (x1,i, x1,i+1) and (x2,i, x2,i+1), the remaining edges form a bi-
partite planar spanning tree in the complete bipartite graph Kλ1+1,λ2+1. Planar
means that there is no pair of edges (x1,i, x2,j) (x1,k, x2,l) with i < k and j > l.
An example of such a triangulation and the associated bipartite planar spanning
tree appear in Figure 3.

Figure 3. Triangulation for the scroll and the corresponding planar tree.
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If a triangulation of a scroll is delightful, then the associated bipartite planar
graph cannot possess certain induced subgraphs. We claim that, up to symmetry,
these forbidden induced subgraphs are the following two:

(1) The three edges (x1,i, x2,j), (x1,i, x2,j+1), (x1,i, x2,j+2) where 1 ≤ i ≤ λ1−1
and 0 ≤ j ≤ λ2 − 2.

(2) The four edges (x1,0, x2,0), (x1,0, x2,1), (x1,0, x2,2), (x1,0, x2,3).

Thus (1) is a claw K1,3 which is not adjacent to a vertical boundary, and (2)
is a claw K1,4 which is adjacent to a vertical boundary. Note that the triangu-
lation in Figure 3 contains both of these forbidden subgraphs. If the graph of a
triangulation contains the K1,3 in case (1) then the ideal (in≺(Iλ)){2} contains
the monomial x1,i−1x1,i+1x2,j+1. However, by virtue of the fact that the full tri-
angulation can be chosen to be lexicographic with x1,i−1, x1,i and x1,i+1 smaller
than any other x1,j , and appealing to Proposition 5.7, we see that this monomial
cannot be the leading monomial of any polynomial in I

{2}
λ . A similar argument

rules out the subgraph K1,4 in case (2).

To finish the proof, note that if λ1 < λ2 and λ1+3 < λ2, then the induced graph
of any full triangulation of Aλ must contain one of the two forbidden subgraphs
(or a subgraph symmetrically equivalent). ¤

We can, however, show the existence of a delightful term order in the special
case when all the λi are equal.

Theorem 5.9. Suppose that λ1 = λ2 = · · · = λn. Let ≺ be the lexicographic
term order such that xij Â xkl if j < l or j = l and i < k. Then ≺ is delightful
for Iλ.

Proof. The edge graph of every full triangulation of a configurationAλ is a chordal
graph. This can be proved by induction on

∑n
i=1 λi. Let Gλ be the complemen-

tary graph to that chordal graph. The initial ideal in≺(Iλ) equals the edge ideal
I(Gλ). Since chordal graphs are perfect, and the complements of perfect graphs
are perfect, it follows that Gλ is a perfect graph.

For the particular lexicographic term order we have chosen, the edges in the
graph Gλ are the pairs of the form (xij , xkl) such that j + 1 < l or j + 1 = l and
i < k. It is the simplicity of the graph Gλ which depends on λi = λj for all i
and j. To show that ≺ is delightful, we must show that for each clique of size
r in Gλ there is a polynomial in I

{r−1}
λ which has the clique as a leading term.

Let xi1j1xi2j2 · · ·xirjr be such clique. We may suppose that j1 < j2 < · · · < jr.
Consider the r × r matrix
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M =




xi1j1 xi2j2−1 xi3j3−2 · · · xirjr−r+1

xi1j1+1 xi2j2 xi3j3−1 · · · xirjr−r+2

xi1j1+2 xi2j2+1 xi3j3 · · · xirjr−r+3
...

...
...

. . .
...

xi1j1+r−1 xi2j2+r−2 xi3j3+r−3 · · · xirjr




.

By construction, the polynomial f = det M belongs to I
{r−1}
λ since it is one of

the minors appearing in Proposition 5.7. Furthermore, f is not identically zero.
The structure of M implies that f could be identically zero only if there were two
identical columns in M . This implies that there are indices s and t with s < t
such that is = it and js = jt + t − s. But the conditions on the edges of Gλ

make it impossible for there to be a lexicographically ordered clique in Gλ with
these properties. Furthermore, each indeterminate appearing in the matrix M is
a valid indeterminate in our polynomial ring. This follows because all the second
indices, jk ± l, lie between j1 and jr. Finally, the term order ≺ selects the main
diagonal as the leading term. Hence ≺ is delightful for Iλ. ¤
Corollary 5.10. Suppose that there exists an integer m such that λi ∈ {m,m+1}
for all i. Then Iλ has a delightful term order.

Proof. The ideal Iλ can be realized as the elimination ideal of Iλ′ where λ′i = m+1
for all i. The lexicographic ordering from Theorem 5.9 realizes this elimination
and thus the delightful property passes to this elimination ideal. ¤

In general, we do not know whether the converse to Proposition 5.8 is true.
However, we can show that it holds in the two dimensional case.

Proposition 5.11. Suppose that λ2 ≤ λ1 ≤ λ2 + 3. Then the ideal Iλ1,λ2 has a
delightful term order.

Proof. We will prove the case λ1 = λ2 + 3. The case of λ1 = λ2 + 2 follows by
the elimination argument used in the proof of Corollary 5.10, and the other two
cases are proved in Theorem 5.9 and Corollary 5.10.

Now introduce the lexicographic term order ≺, given by the rule

x10 Â x11 Â x20 Â x12 Â x21 Â x13 Â · · · Â x1j Â x2,j−1 Â x1,j+1 Â · · ·
· · · Â x1,λ+1 Â x2,λ Â x1,λ+2 Â x1,λ+3.

We claim that this lexicographic term order is delightful for Iλ1,λ2 . To see this,
let xi1j1 , . . . , xirjr be an independent set in the triangulation corresponding to
this term order, arranged in decreasing lexicographic order. Since every full
triangulation of Aλ1,λ2 is chordal and hence perfect, we must show that this
independent set yields the initial term of a polynomial in I

{r−1}
λ1,λ2

. For a general
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pair of sequential elements in our independent set xikjk
, xik+1jk+1

, this happens if
and only if either: ik = ik+1 and jk +1 < jk+1; or ik = 1, ik+1 = 2, and jk ≤ jk+1;
or ik = 2, ik+1 = 1, and jk +2 < jk+1. The only exceptions to these rules come at
the ends: we cannot have the pairs x10, x20 or x2λ2 , x1λ1 in an independent set.

Now construct the matrix M as in the proof of Theorem 5.9. Our conditions
on the sequence xi1j1 , . . . , xirjr guarantee that all the entries in M are valid
indeterminates in our polynomial ring. Furthermore, f = det M is not identically
zero, and f has leading term equal to xi1j1 · · ·xirjr . Thus, the lexicographic term
order ≺ is delightful. ¤

References

[1] J. Alexander and A. Hirschowitz. Polynomial interpolation in several variables. J. Algebraic
Geom. 4 (1995), no. 2, 201–222.

[2] E. Allman and J. Rhodes. Phylogenetic ideals and varieties for the general Markov model.
Preprint, 2004, math.AG/0410604

[3] E. Babson and D. Kozlov. Topological obstructions to graph colorings. Electron. Res. An-
nounc. Amer. Math. Soc. 9 (2003), 61–68.

[4] B. Bollobás. Modern Graph Theory, Graduate Texts in Mathematics, 184, Springer-Verlag,
New York, 1998.

[5] M. Catalano-Johnson. The possible dimensions of the higher secant varieties. Amer. J.
Math. 118 (1996), no. 2, 355–361.

[6] M. V. Catalisano, A. V. Geramita, and A. Gimigliano. Ranks of tensors, secant varieties of
Segre varieties and fat points. Journal of Linear Algebra and Its Applications 355 (2002),
263–285.

[7] M. V. Catalisano, A. V. Geramita, and A. Gimigliano. Secant varieties of Grassmann
varieties. Proc. Amer. Math. Soc. 133 (2005), no. 3, 633–642.

[8] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph
theorem. To appear in Annals of Mathematics, 2002, math.CO/0212070

[9] A. Conca. Ladder determinantal rings. J. Pure Appl. Algebra 98 (1995) 119–134.
[10] D. Cox and J. Sidman. Secant varieties of toric varieties. Preprint, 2005, math.AG/0502344
[11] P. De Poi. On higher secant varieties of rational normal scrolls. Matematiche (Catania) 51

(1996), no. 1, 3–21.
[12] S. Faridi. The facet ideal of a simplicial complex. Manuscripta Mathematica 109 (2002),

no. 2, 159–174.
[13] L. D. Garcia, M. Stillman, and B. Sturmfels. Algebraic geometry of Bayesian networks

Journal of Symbolic Computation. 39 (2005) 331–355.
[14] N. Gonciulea and C. Miller. Mixed ladder determinantal varieties, J. Algebra 231 (2000)

104–137.
[15] G. R. Grayson and M. E. Stillman. Macaulay 2, a software system for research in algebraic

geometry. Available at, http://www.math.uiuc.edu/Macaulay2/
[16] A. N. Jensen. CaTS, a software system for toric state polytopes. 2003. Available at

http://www.soopadoopa.dk/anders/cats/cats.html

[17] D. Kozlov. Chromatic numbers, morphism complexes, and Stiefel-Whitney characteristic
classes, to appear in Geometric Combinatorics (eds. E. Miller, V. Reiner, B. Sturmfels),
Park City Series in Mathematics, AMS, math.AT/0505563.

[18] J. M. Landsberg and L. Manivel. On the ideals of secant varieties to Segre varieties. Foun-
dations of Computational Mathematics. 4 (2004), no. 4, 397–422.



Combinatorial Secant Varieties 891

[19] L. Lovász. A characterization of perfect graphs. Journal of Combinatorial Theory: Series
B 13 (1972), 95–98

[20] E. Miller and B. Sturmfels. Combinatorial Commutative Algebra, Graduate Texts in Math-
ematics, 227. Springer-Verlag, New York, 2005.

[21] D. Mond, J. Smith and D. van Straaten. Stochastic factorizations, sandwiched simplices
and the topology of the space of explanations Proceedings of the Royal Society (Math) 459
(2003) 2821 – 2845.

[22] L. Pachter and B. Sturmfels. (eds.) Algebraic Statistics for Computational Biology. Cam-
bridge University Press, 2005.

[23] J. Rambau. TOPCOM: Triangulations of Point Configurations and Oriented Matroids, ZIB
report 02-17, Berlin 2002, Software available at http://www.zib.de/rambau/TOPCOM

[24] A. Simis and B. Ulrich. On the ideal of an embedded join. Journal of Algebra 226 (2000),
1–14.
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