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Abstract: We explicitly evaluate some combinatorial sums which occur in
the theory of SU(n) Casson invariants of fibered knots, verifying a conjecture
of Boden and Nicas in a special case.

1. Introduction

This paper is concerned with the explicit evaluation of finite sums of the form:

n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∏d
`=1

(∑k
j=1 n2m`+1

j

)

∏k
j=1 bnj

∏k−1
j=1(nj + nj+1)

where n ≥ 1 and m1, . . . , md ≥ 0 are integers, bq := 4qq!(q − 1)! and the interior
sum is over of all compositions (i.e., ordered partitions) of n into k parts.

The motivation for studying these particular sums comes from topology. Given
a fibered knot K in a closed oriented 3-manifold and α ∈ SU(n) (the special uni-
tary group), the SU(n) Casson invariant of K, denoted by λn,α(K), is an integer
which can be viewed as an algebraic-topological count of the number of charac-
ters of SU(n) representations of the knot group which take a longitude into the
conjugacy class of α (see [2, 3, 4]). For generic α ∈ SU(n), including all generators
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of the center of SU(n), there exist universal polynomials qn,α(y0, y2, . . . , y2n−2)
such that

λn,α(K) = qn,α(C0, C2, . . . , C2n−2)

for any fibered knot K with Conway polynomial ∇K(z) =
∑

i≥0 C2iz
2i.

The “wall-crossing” formulae of [2] imply that the weighted homogeneous part
of the polynomial 1

mα
qn,α(y0, y2, . . . , y2n−2) (where mα > 0 is the Euler charac-

teristic of the conjugacy class of α ∈ SU(n) and y2i has weighted degree 2i) of
highest weighted degree, denoted by νn, is independent of (generic) α ∈ SU(n).
Using Zagier’s summation formula [6] for solving the Atiyah-Bott recursion [1],
we showed in [3] how to express each coefficient of νn as an explicit linear com-
bination of sums of the form

4
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∏d
`=1

[∑k
j=1

∑nj

i=1(2i− 1)2λ`

]

∏k
j=1 bnj

∏k−1
j=1(nj + nj+1)

where λ` is a positive integer for ` = 1, . . . , d such that λ1+· · ·+λd < n. Although
these sums appear to be rather complicated, numerical evidence supports the
following conjecture:

Conjecture 1.1. (Conjecture 1.16 of [3].) For n ≥ 1 and λ1, . . . , λd > 0,

4
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∏d
`=1

[∑k
j=1

∑nj

i=1(2i− 1)2λ`

]

∏k
j=1 bnj

∏k−1
j=1(nj + nj+1)

=
{

0 if λ1 + · · ·+ λd < n− 1
nd−2

∏d
`=1

(
2λ`
λ`

)
if λ1 + · · ·+ λd = n− 1.

The case d = 1 of Conjecture 1.1 was proved in Theorem 2.18 of [3]. This was
accomplished by first showing that Conjecture 1.1 is implied by Conjecture 1.2
below (in the case d = 1, but a straightforward generalization of argument used
in the proof of Theorem 2.18 of [3] shows that Conjecture 1.2 implies Conjecture
1.1 for all d ≥ 1):

Conjecture 1.2. (Conjecture 2.19 of [3].) For n ≥ 1 and m1, . . . , md ≥ 0,

n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∏d
`=1

(∑k
j=1 n2m`+1

j

)

∏k
j=1 bnj

∏k−1
j=1(nj + nj+1)

=

{
0 if

∑d
`=1 m` < n− 1

nd−24−n
∏d

`=1

(
2m`
m`

)
(2m` + 1) if

∑d
`=1 m` = n− 1.

The case d = 1 of Conjecture 1.2 was proved in Proposition 2.17 of [3].
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In this paper we prove Conjecture 1.2, and thus also Conjecture 1.1, in the
case d = 2 (Theorem 5.10). The case d = 2 of Conjecture 1.2 is considerably
more difficult to prove than the case d = 1. We expect that the techniques
developed here to prove Theorem 5.10 should be effective to treat the case d > 2
(see Remark 5.12).

The paper is organized as follows. In §2, we summarize the integral equation
technique introduced in [3] for analyzing sums of the form

n∑

k=1

(−1)k−1
∑

n1+···+nk=n

an1 · · · ank∏k−1
j=1(nj + nj+1)

where the interior sum is over of all compositions of n into k parts and {an | n =
1, 2, . . .} is a sequence of elements in an algebra defined over a field of character-
istic 0. Of particular interest are integral equations of the form

(?) Φ(s, t)+
∫ 1

0

γ(sx)
x

Φ(tx, t) dx = f(s, t)

where γ(u) :=
∑∞

n=1 un/bn with bn := 4nn!(n− 1)! and f(s, t) is a formal power
series such that f(0, t) = 0. We develop methods in §3 to explicitly solve (?) in
terms of a particularly convenient “basis” of functions {ψj | j ≥ 1} given by (10);
see Theorem 3.9. Some special solutions to (?) enjoy a remarkable “multiplica-
tive” property (see Theorem 3.16) which used in the proof of Proposition 4.3, a
key ingredient in the proof the main theorem (Theorem §5.10). In §4, we give an
explicit formula for the series

(??)
∞∑

n=1

n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∏d
i=1

(∑k
j=1 z

nj

i

)

∏k
j=1 bnj

∏k−1
j=1(nj + nj+1)

sn1tn−n1 ,

where z1, . . . , zd are independent variables, in the cases d = 0, 1, 2 (in the case d =
0, interpret the product in the numerator to be 1); see (28), (32) and Proposition
4.1. The results of §3 and §4 together with exponential generating functions
associated to (??) are used in §5 to prove the main theorem (Theorem §5.10)
which verifies Conjecture 1.2 in the case d = 2.

2. Integral Equations

We summarize the integral equation technique introduced in §2 of [3] for ana-
lyzing sums of the form

(1)
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

an1 · · · ank∏k−1
j=1(nj + nj+1)

where the interior sum is over of all compositions of n into k parts.
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Let A be a (not necessarily commutative) algebra over a field of characteristic
0. For a polynomial p(y) =

∑N
i=0 aiy

i over A in the commuting variable y, define
the formal integral:

∫ 1

0
p(y)dy :=

N∑

i=0

ai

i + 1
∈ A.

If f(t, y) =
∑∞

n=0 pn(y)tn is a formal power series in the commuting variable t
with coefficients in the polynomial algebra A[y], define:

∫ 1

0
f(t, y)dy :=

∞∑

n=0

(∫ 1

0
pn(y)dy

)
tn.

Given a sequence an ∈ A, n ≥ 1, the associated generating function is the formal
power series in the commuting variable s:

ρ(s) :=
∞∑

n=1

ansn.

Define a formal power series over A in the commuting variables s, t by:

(2) Φ(s, t) :=
∞∑

k=1

(−1)k−1
∞∑

n=k

∑
n1+···+nk=n

an1 · · · ank∏k−1
j=1(nj + nj+1)

sn1tn−n1 .

Observe that

Φ(t, t) =
∞∑

n=1

(
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

an1 · · · ank∏k−1
j=1(nj + nj+1)

)
tn

is the generating function for the sequence of sums (1).

In [3], we showed that Φ(s, t) satisfies the basic integral equation:

(3) Φ(s, t) +
∫ 1

0

ρ(sy)
y

Φ(ty, t)dy = ρ(s).

Let f(s, t) be a formal power series over A with f(0, t) = 0. If a formal power
series Θ(s, t) :=

∑∞
i=1

∑∞
j=0 Aijs

itj satisfies the integral equation:

(4) Θ(s, t) +
∫ 1

0

ρ(sy)
y

Θ(ty, t)dy = f(s, t)



Combinatorial Identities 799

then a comparison of the coefficients on both sides of (4) yields the following
recursion formula for the coefficients Aij :

Ai0 = fi0 i ≥ 1,(5)

Aij =−ai

j−1∑

q=0

Aj−q,q

j − q + i
+ fij j > 0(6)

where f(s, t) =
∑∞

i=1

∑∞
j=0 fijs

itj . Conversely, if Aij are elements in A defined
by (5) and (6), then

∑∞
i=1

∑∞
j=0 Aijs

itj is a solution to (4). Since (5) and (6)
uniquely define the Aij ’s, this formal power series solution to (4) is unique. In
particular, Φ(s, t) given by (2) is the unique formal power series solution to the
basic integral equation.

Definition 2.1. Let A[[s, t]] denote the algebra of formal power series over A in
the commuting variables s, t and let A[[s, t]]′ be the ideal of A[[s, t]] consisting of
those f(s, t) ∈ A[[s, t]] for which f(0, t) = 0. Given a formal power series ρ(s)
over A with ρ(0) = 0, define the operator Iρ : A[[s, t]] → A[[s, t]] by

(IρΘ)(s, t) := Θ(s, t) +
∫ 1

0

ρ(sx)
x

Θ(tx, t) dx.

Note that Iρ is linear over F[[t]], where F is the ground field, and Iρ(A[[s, t]]′) ⊂
A[[s, t]]′. If A is commutative or if ρ is defined over the ground field then Iρ is
A[[t]]-linear. The equation (4) can be written as IρΘ = f .

Terminology. We refer to the unique formal power series solution to the integral
equation IρΘ = f , where f ∈ A[[s, t]]′, as “the solution to IρΘ = f”.

3. Solutions to the integral equation IγΦ = f

Let bn := 4nn!(n− 1)! and define the power series:

(7) γ(u) :=
∞∑

n=1

un

bn
.

Let A be a commutative algebra over a field of characteristic 0. In this section,
we are concerned with methods of explicitly solving the integral equation

Φ(s, t) +
∫ 1

0

γ(sx)
x

Φ(tx, t) dx = f(s, t)

where f(s, t) is a formal power series in the variables s, t overA such that f(0, t) =
0. We write this equation as IγΦ = f (see Definition 2.1).
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Given a formal power series g(t) =
∑∞

n=0 antn and a non-negative integer p,
the p-th derivative of g(t), denoted by g(p)(t), is the formal power series:

g(p)(t) :=
∞∑

`=0

(` + p)!
`!

a`+pt
`.

If g(y1, . . . , ym) is a formal power series in the variables y1, . . . , ym we also use
the notations ∂p

∂yp
j
g and D

(p)
j g for the p-th partial derivative of g with respect to

yj .

Define the power series:

(8) µ(u) :=
γ(u)

u
=

∞∑

n=0

un

bn+1
.

It is straightforward to show that µ satisfies the differential equation:

(9) uµ(k)(u) + kµ(k−1)(u)− 1
4µ(k−2)(u) = 0

where k ≥ 2 is an integer. It will also be useful to define the (k + 1)-th iterated
anti-derivative of µ, denoted by µ(−1−k), for k ≥ 0, as follows:

µ(−1−k)(u) :=
∞∑

n=0

n!
(n + k)!

un+k

4n(n!)2
=

∞∑

n=0

un+k

4n(n + k)!n!
.

With this definition, it is easy to show that the identity d
du µ(k)(u) = µ(k+1)(u)

and the differential equation (9) are valid for all integers k.

Leibnitz’s rule and (9) (with “u” replaced by “ux”) yield:

Lemma 3.1. For all integers k,
∂

∂u
ukµ(k−1)(ux) = 1

4uk−1µ(k−2)(ux). ¤

Repeated application of Lemma 3.1 yields:

Corollary 3.2. For j ≥ 1 and all k,
∂j

∂uj
ukµ(k−1)(ux) = 4−juk−jµ(k−1−j)(ux).

¤

A straightforward comparison of coefficients reveals the following relation be-
tween the derivatives and anti-derivatives of µ:

Lemma 3.3. For all integers n, µ(−n)(u) = 4n−1un−1µ(n−2)(u). ¤

The following formula for a product of µ(k−1)’s will be useful.

Lemma 3.4. For all integers a, b,

µ(a−1)(u) µ(b−1)(u) =
∞∑

k=M

1
4a+b+kk!(k + a + b)!

(
2k + a + b

k + a

)
uk
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where M = max(0, −a, −b, −a− b).

Proof. By making use of Lemma 3.3, it suffices to consider the case a, b ≥ 0.

µ(a−1)(u) µ(b−1)(u) =

( ∞∑

n=0

un

4n+a(n + a)!n!

)( ∞∑

m=0

um

4m+b(m + b)!m!

)

=
∞∑

k=0

∑

m+n=k

um+n

4m+n+a+b(n + a)!(m + b)!n!m!

=
∞∑

k=0

1
4a+b+kk!(k + a + b)!




k∑

j=0

(
k + a + b

j + a

)(
k

j

)
 uk

=
∞∑

k=0

1
4a+b+kk!(k + a + b)!

(
2k + a + b

k + a

)
uk .

The identity
k∑

j=0

(
k + a + b

j + a

)(
k

j

)
=

(
2k + a + b

k + a

)

is a consequence of the Vandermonde convolution formula, see §1.3 of [5]. ¤

For j ≥ 1, define power series:

(10) ψj(s, t) :=
(
(s− t)j − (−1)jtj

)
µ(j−1)(s− t) .

Proposition 3.5. For q ≥ 1, the solution to the equation IγPq (s, t) = sq is given
by

Pq(s, t) = q! (−1)q
∞∑

n=1

(−1)n4nψn(s, t)µ(n−q−1)(−t).

Proof. By Proposition 2.9 of [3],

Pq(s, t) = sq+(−1)q4qq!
∞∑

n=q+1

n−q−1∑

k=0

(−1)n+k(2n− k − q − 2)!
bn (n− q)!(n− k − 1− q)!

(
n− 1

k

)
sk+1tn−k−1

and so the coefficient of sitj in Pq(s, t) is

(−1)q4qq!(−1)j−1 (i + 2j − q − 1)!
bi+j(i + j − q)!(j − q)!

(
i + j − 1

i− 1

)

for j ≥ q, i ≥ 1 and δiqδ0j otherwise (where δab = 1 if a = b and 0 otherwise).
The Taylor expansion of ψn(s, t) in the variable s, computed with the aid of
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Corollary 3.2, is

ψn(s, t) =
∞∑

i=1

(
4−i(−t)n−iµ(n−i−1)(−t)− (−t)nµ(n+i−1)(−t)

) si

i!

and so the coefficient of sitj in q! (−1)q
∑∞

n=1(−1)n4nψn(s, t)µ(n−q−1)(−t) is the
same as the coefficient of tj in

q! (−1)q

i!

∞∑

n=1

(−1)n4n
(
4−i(−t)n−iµ(n−i−1)(−t)− (−t)nµ(n+i−1)(−t)

)
µ(n−q−1)(−t).

This coefficient, when computed with the assistance of Lemma 3.4, is seen to
coincide with the coefficient of sitj in Pq(s, t) given above. ¤

The following version of Proposition 2.11 of [3] will be useful.

Proposition 3.6. The solution to IγΦ = f , where f ∈ A[[s, t]]′, is given by:

Φ(s, t) =
∞∑

i=1

Pi(s, t)
i!

D
(i)
1 f (0, t)

where, for i ≥ 1, Pi(s, t) is the solution to IγP (s, t) = si.

Proof. Let m be the maximal ideal of A[[s, t]] consisting of those formal power
series in s, t with vanishing constant term. By Proposition 3.5, Pi(s, t) ∈ mi for
i ≥ 1. Hence the expression Φ(s, t) :=

∑∞
i=1(1/i!)Pi(s, t)D

(i)
1 f (0, t) is valid as a

formal power series; furthermore,

IγΦ(s, t) = Iγ

( ∞∑

i=1

Pi(s, t)
i!

D
(i)
1 f (0, t)

)

=
∞∑

i=1

IγPi(s, t)
i!

D
(i)
1 f (0, t) =

∞∑

i=1

si

i!
D

(i)
1 f (0, t) = f(s, t).

The last equality is the Taylor expansion of f in the first variable (the term
corresponding to i = 0 vanishes because f(0, t) = 0, i.e., f ∈ A[[s, t]]′). ¤

Definition 3.7. Define the A[[t]]-linear operator L : A[[u, t]] → A[[u, t]] by

Lf (u, t) :=
∞∑

i=0

4iuiµ(i−1)(−u)D(i)
1 f (0, t).

Remark 3.8. The operator L can be expressed using integrals as follows:

Lf (u, t) = f(u, t)− u

∫ 1

0
µ(u(x− 1))f(ux, t)dx.
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Furthermore, L is invertible and its inverse is given by

L−1f (u, t) = f(u, t)+u

∫ 1

0
µ(−u(x−1))f(ux, t)dx =

∞∑

i=0

4iuiµ(i−1)(u)D(i)
1 f (0, t).

Theorem 3.9. Suppose f(s, t) ∈ A[[s, t]]′. Then the solution to IγΦ = f is given
by:

Φ(s, t) =
∞∑

n=1

4nψn(s, t)D(n)
1 Lf (t, t).

Proof. By Definition 3.7, Lf (u, t) =
∑∞

i=1 4iuiµ(i−1)(−u)D(i)
1 f (0, t) (the sum

starts at i = 1 because f(0, t) = 0, i.e., f(s, t) ∈ A[[s, t]]′). Differentiating this
expression n times with respect to u using Corollary 3.2 and evaluating at u = t
yields:

(11) D
(n)
1 Lf (t, t) =

∞∑

i=1

4i−nti−nµ(i−n−1)(−t)D(i)
1 f (0, t).

We have:

Φ(s, t) =
∞∑

i=1

Pi(s, t)
i!

D
(i)
1 f (0, t) (by Proposition 3.6)

=
∞∑

i=1

(−1)i

( ∞∑

n=1

(−1)n4nψn(s, t)µ(n−i−1)(−t)

)
D

(i)
1 f (0, t)

=
∞∑

n=1

4nψn(s, t)(−1)n

( ∞∑

i=1

(−1)iµ(n−i−1)(−t)D(i)
1 f (0, t)

)

=
∞∑

n=1

4nψn(s, t)

( ∞∑

i=1

4i−nti−nµ(i−n−1)(−t)D(i)
1 f (0, t)

)

=
∞∑

n=1

4nψn(s, t)D(n)
1 Lf (t, t) (by (11)).

The second line follows from Proposition 3.5 and the fourth line from Lemma
3.3. ¤

Corollary 3.10. For Φ and f as in Theorem 3.9,

Φ(t, t) = Lf (t, t) =
∞∑

i=1

4itiµ(i−1)(−t)D(i)
1 f (0, t).
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Proof. Note that ψn(t, t) = −(−t)nµ(n−1)(0) = −(−t)n/(4nn!). Hence

Φ(t, t) =
∞∑

n=1

4nψn(t, t)D(n)
1 Lf (t, t) =

∞∑

n=1

−(−t)n

n!
D

(n)
1 Lf (t, t) = Lf (t, t).

The last equality is deduced by taking the Taylor expansion of Lf (u, t) with
respect to u centered at t. ¤
Remark 3.11. Corollary 3.10 can also be deduced from Proposition 3.6 and the
observation that Pi(t, t) = 4ii! tiµ(i−1)(−t).

We will be interested in equations of the form IγΦ(s, t) = f(s, t) where f
depends on a set of parameters {y1, . . . , yn}. This is interpreted by taking the
algebra A to be the algebra of formal power series in the variables y1, . . . , yn over
a field of characteristic 0. We write f(s, t; y1, . . . , yn) to indicate the dependence
of f on the parameters.

Theorem 3.12. For k ≥ 1, let Gk(s, t; z) be the solution to IγGk (s, t; z) =
ψk(sz, t). Then Gk(s, t; z) =

∑∞
j=1 4jψj(s, t)Rk,j(t; z) where

Rk,j(t; z) :=
∑∞

`=1

(
4`−k−jt`−jµ(`−k−1)(−t) − 4`−j(−1)ktk+`−jµ(`+k−1)(−t)

)
µ(`−j−1)(−t)z`.

Proof. Let g(s, t; z) := ψk(sz, t). Differentiating g with the assistance of Corollary
3.2 and applying Lemma 3.3 yields:

D
(`)
1 g (0, t; z) =

(
4−`(−t)k−`µ(k−`−1)(−t)− (−t)kµ(k+`−1)(−t)

)
z`

=
(
4−kµ(`−k−1)(−t)− (−t)kµ(k+`−1)(−t)

)
z`

and so by (11)

D
(j)
1 Lg (t, t; z) =

∞∑

`=1

4`−jt`−jµ(`−j−1)(−t)D(`)
1 g (0, t; z).

The conclusion of the theorem now follows from Theorem 3.9. ¤

Corollary 3.10 and the proof Theorem 3.12 yield:

Corollary 3.13. For k ≥ 1, Gk(t, t; z) = Rk,0(t; z). ¤

The following proposition and its corollary will be used to derive several iden-
tities involving the Rk,j(t; z)’s.

Proposition 3.14. For n, j ≥ 1, define

Qn,j(t) := 4n−jn! tn−jµ(n−j−1)(−t)− 4nn!(−1)jtnµ(n+j−1)(−t).

Then
∑∞

j=1 4jψj(s, t)Qn,j(t) = sn.
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Proof. For n ≥ 1, define hn(s, t) := Iγsn. Then

hn(s, t) = sn +
∫ 1

0

γ(sx)
x

(tx)ndx

= sn + tns

∫ 1

0
µ(sx)xndx = sn +

∞∑

k=1

sktn

4kk!(k − 1)!(k + n)
.

Calculating Lhn yields Lhn (u, t) = 4nn!µ(n−1)(−u)(un − tn) + tn. Hence, for
j ≥ 1,

D
(j)
1 Lhn (t, t) = 4n−jn! tn−jµ(n−j−1)(−t)− 4nn!(−1)jtnµ(n+j−1)(−t) = Qn,j(t).

The conclusion of the theorem now follows from Theorem 3.9. ¤
Corollary 3.15. Suppose g(s, t) ∈ A[[s, t]]′. Then

∞∑

j=1

4jψj(s, t)

( ∞∑

n=1

Qn,j(t)
n!

D
(n)
1 g (0, t)

)
= g(s, t).

Proof. Using Theorem 3.14, we have:
∞∑

j=1

4jψj(s, t)

( ∞∑

n=1

Qn,j(t)
n!

D
(n)
1 g (0, t)

)
=

∞∑

n=1

1
n!

D
(n)
1 g (0, t)




∞∑

j=1

4jψj(s, t)Qn,j(t)




=
∞∑

n=1

sn

n!
D

(n)
1 g (0, t) = g(s, t)

where the last equality is the Taylor expansion of g(s, t) in s (the term corre-
sponding to n = 0 vanishes because g(0, t) = 0). ¤

For k, j ≥ 1, define:

Xk,j(t; z) :=
∞∑

`=1

(
4`−kt`−kµ(`−k−1)(−t) − 4`(−1)kt`µ(`+k−1)(−t)

)
µ(`+j−1)(−t)z`.

Calculation using Corollary 3.15 yields the following identities:

(12)
∞∑

k=1

4kψk(s, t)Xk,j(t; z) = µ(j−1)(sz − t)− µ(j−1)(−t),

(13)
∞∑

k=1

4kψk(s, t) tj−kRk,j(t; z) = (sz − t)jµ(j−1)(sz − t)− (−t)jµ(j−1)(−t).

Combining (12) and (13) yields the identity:
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(14)
∞∑

k=1

4kψk(s, t)
(
tj−kRk,j(t; z)− (−t)jXk,j(t; z)

)
= ψj(sz, t) .

Defining

(15) Ck,j(t; z) := tj−kRk,j(t; z)− (−t)jXk,j(t; z) ,

we write the identity (14) as:

(16)
∞∑

k=1

4kψk(s, t)Ck,j(t; z) = ψj(sz, t) .

The identity (16) implies the following remarkable “multiplicative” property
of the series Gk(s, t; z) of Theorem 3.12.

Theorem 3.16. For j ≥ 1,
∑∞

k=1 4kGk(s, t;w)Ck,j(t; z) = Gj(s, t;wz).

Proof. Replacing s with sw in (16) yields:

(17)
∞∑

k=1

4kψk(sw, t)Ck,j(t; z) = ψj(swz, t) .

Let I−1
γ f denote the solution to the equation IγΦ = f . Recall that Gk(s, t; z) is,

by definition, I−1
γ ψk(sz, t). Then

∞∑

k=1

4kGk(s, t;w)Ck,j(t; z) =
∞∑

k=1

4k
(
I−1
γ ψk(sw, t)

)
Ck,j(t; z)

= I−1
γ

( ∞∑

k=1

4kψk(sw, t)Ck,j(t; z)

)

= I−1
γ ψj(swz, t) by (17)

= Gj(s, t;wz) . ¤

With the assistance of Lemma 3.4, the series Rk,j(t, z) and Ck,j(t, z) can be
written explicitly as follows:

Rk,j(t; z) =
∞∑

n=max(0,k−j)

(
n+j∑

`=1

(−1)`z`

(
2n− k + j

n− ` + j

))
(−1)n+jtn

4n+jn!(n− k + j)!
(18)

−
∞∑

n=k

(
n−k+j∑

`=1

(−1)`z`

(
2n− k + j

n + `

))
(−1)n+jtn

4n+j(n + j)!(n− k)!
.
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Ck,j(t; z) =
∞∑

n=max(0,j−k)

(
n+k∑

`=1

(−1)`z`

(
2n + k − j

n + `− j

))
(−1)n+ktn

4n+kn!(n− j + k)!
(19)

−
∞∑

n=j

(
n∑

`=1

(−1)`z`

(
2n + k − j

n− `

))
(−1)n+ktn

4n+k(n + k)!(n− j)!

−
∞∑

n=j

(
n+k−j∑

`=1

(−1)`z`

(
2n + k − j

n + `

))
(−1)n+ktn

4n+k(n + k)!(n− j)!

+
∞∑

n=j+1

(
n−j∑

`=1

(−1)`z`

(
2n + k − j

n− `− j

))
(−1)n+ktn

4n+kn!(n− j + k)!
.

We will also make use (see Proposition 4.3) of the series

(20) Ek,j(t; z) := Rj,k(t; z)− 1
2Ck,j(t; z) .

Combining (18) and (19), we obtain:

−2Ek,j(t; z) = Ck,j(t; z)− 2Rj,k(t; z)(21)

=−
∞∑

n=max(0,j−k)

(
n+k∑

`=1

(−1)`z`

(
2n + k − j

n + `− j

))
(−1)n+ktn

4n+kn!(n− j + k)!

−
∞∑

n=j

(
n∑

`=1

(−1)`z`

(
2n + k − j

n− `

))
(−1)n+ktn

4n+k(n + k)!(n− j)!

+
∞∑

n=j

(
n+k−j∑

`=1

(−1)`z`

(
2n + k − j

n + `

))
(−1)n+ktn

4n+k(n + k)!(n− j)!

+
∞∑

n=j+1

(
n−j∑

`=1

(−1)`z`

(
2n + k − j

n− `− j

))
(−1)n+ktn

4n+kn!(n− j + k)!
.

4. Polynomial product power sums

In this section we give an explicit formula for the series
(22)

Φd(s, t; z1, . . . , zd) :=
∞∑

n=1

n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∏d
i=1

(∑k
j=1 z

nj

i

)

∏k
j=1 bnj

∏k−1
j=1(nj + nj+1)

sn1tn−n1 ,
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where z1, . . . , zd are parameters, in the cases d = 0, 1, 2 (in the case d = 0,
interpret the product in the numerator to be 1); see (28), (32) and Proposition
4.1.

Let u1, . . . , ud and z1, . . . , zd be parameters. Define

Φ̂d(s, t; z1, . . . , zd;u1, . . . , ud) :=(23)
∞∑

n=1

n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∏k
j=1

∏d
i=1(1 + uiz

nj

i )
∏k

j=1 bnj

∏k−1
j=1(nj + nj+1)

sn1tn−n1 ,

and

ρd(s; z1, . . . , zd;u1, . . . , ud) :=
∞∑

n=1

(
d∏

i=1

(1 + uiz
n
i )

)
sn

bn
(24)

= γ(s) +
∑

i

γ(zis)ui +
∑

i<j

γ(zizjs)uiuj + · · ·+ γ(z1 · · · zds)u1 · · ·ud .

where γ is the series (7). The series Φ̂d is of the type (2) considered in §2 and
thus satisfies the basic integral equation (3), i.e.,

(25) Iρd
Φ̂d (s, t;p) = Φ̂d(s, t;p) +

∫ 1

0

ρd(sx;p)
x

Φ̂d(tx, t;p)dx = ρd(s, t;p)

where p := z1, . . . , zd;u1, . . . , ud is the list of parameters. Using the expansion

k∏

j=1

(1 + uiz
nj

i ) = 1 +




k∑

j=1

z
nj

i


 ui + O(u2

i ) ,

where the notation “O(u2
i )” indicates a polynomial (or a formal power series) in

the principal ideal generated by u2
i , we obtain:

Φ̂d(s, t; z1, . . . , zd;u1, . . . , ud) = Φ0(s, t) +
∑

i

Φ1(s, t; zi)ui

+
∑

i<j

Φ2(s, t; zi, zj)uiuj + · · ·

+ Φd(s, t; z1, . . . , zd)u1 · · ·ud +
∑

i

O(u2
i ) .
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Equating the coefficients of the term u1 · · ·un on both sides of (25) yields the
integral equation:

Φd(s, t; z1, . . . , zd) +
∫ 1

0

γ(sx)
x

Φd(tx, t; z1, . . . , zd)dx(26)

+
∑

i

∫ 1

0

γ(szix)
x

Φd−1(tx, t; z1, . . . , ẑi, . . . , zd)dx

+
∑

i<j

∫ 1

0

γ(szizjx)
x

Φd−2(tx, t; z1, . . . , ẑi, . . . , ẑj , . . . , zd)dx

+ · · ·+
∫ 1

0

γ(sz1 · · · zdx)
x

Φ0(tx, t)dx

= γ(sz1 · · · zd)

where “ẑi” indicates that zi has been omitted from the parameter list.

We solve the integral equation (26) explicitly in the cases d = 0, 1, 2.

In the case d = 0, (26) is the equation:

(27) Φ0(s, t) +
∫ 1

0

γ(sx)
x

Φ0(tx, t)dx = γ(s) .

The solution to (27) is

(28) Φ0(s, t) = sµ(s− t) = ψ1(s, t)

by Proposition 2.8 of [3] or, alternatively, deduce (28) from Theorem 3.9. (Recall
that µ is defined by (8) and ψj by (10) ).

In the case d = 1, (26) is the equation (writing z for z1):

(29) Φ1(s, t; z) +
∫ 1

0

γ(sx)
x

Φ1(tx, t; z)dx +
∫ 1

0

γ(szx)
x

Φ0(tx, t) = γ(sz) .

Replacing s with sz in (27) yields

Φ0(sz, t) +
∫ 1

0

γ(szx)
x

Φ0(tx, t)dx = γ(sz)

and so (29) is equivalent to

(30) IγΦ1 (s, t; z) = Φ1(s, t; z) +
∫ 1

0

γ(sx)
x

Φ1(tx, t; z)dx = Φ0(sz, t)

which, by (28), is the same as

(31) IγΦ1(s, t; z) = ψ1(sz, t) .
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By Theorem 3.12, the solution to (31) is

(32) Φ1(s, t; z) = G1(s, t; z) =
∞∑

j=1

4jψj(s, t)R1,j(t; z)

where R1,j(t; z) is given explicitly by (18).

In the case d = 2, (26) is the equation (writing w for z1 and z for z2):

Φ2(s, t;w, z) +
∫ 1

0

γ(sx)
x

Φ2(tx, t;w, z)dx(33)

+
∫ 1

0

γ(swx)
x

Φ1(tx, t; z)dx +
∫ 1

0

γ(szx)
x

Φ1(tx, t;w)dx

+
∫ 1

0

γ(swzx)
x

Φ0(tx, t)dx = γ(swz) .

Equations (27) and (30) yield:
∫ 1

0

γ(swzx)
x

Φ0(tx, t)dx =−Φ0(swz, t) + γ(swz) ,

∫ 1

0

γ(swx)
x

Φ1(tx, t; z)dx =−Φ1(sw, t; z) + Φ0(swz, t) ,

∫ 1

0

γ(szx)
x

Φ1(tx, t;w)dx =−Φ1(sz, t;w) + Φ0(swz, t) .

Substituting these identities into (30) yields the equation:

(34) IγΦ2 (s, t;w, z) = Φ1(sw, t; z) + Φ1(sz, t;w)− Φ0(swz, t).

Proposition 4.1. The series Φ2(s, t;w, z) is given by the formula:

Φ2(s, t;w, z) = −G1(s, t;wz) +
∞∑

i=1

4i (Gi(s, t;w)R1,i(t; z) + Gi(s, t; z)R1,i(t;w))

where Gi(s, t;u) =
∑∞

j=1 4jψj(s, t)Ri,j(t;u).

Proof. Equation (34) and (32), (28) yield:

IγΦ2 (s, t;w, z) =−Φ0(swz, t) + Φ1(sw, t; z) + Φ1(sz, t;w)

=−ψ1(swz, t) +
∞∑

i=1

4i (ψi(sw, t)R1,i(t; z) + ψi(sz, t)R1,i(t;w))
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Writing I−1
γ f for the solution to the equation IγΘ = f , we have:

Φ2(s, t;w, z) = I−1
γ

(
−ψ1(swz, t) +

∞∑

i=1

4i (ψi(sw, t)R1,i(t; z) + ψi(sz, t)R1,i(t;w))

)

=−I−1
γ ψ1(swz, t) +

∞∑

i=1

4i
(
I−1
γ ψi(sw, t)R1,i(t; z) + I−1

γ ψi(sz, t)R1,i(t;w)
)

=−G1(s, t;wz) +
∞∑

i=1

4i (Gi(s, t;w)R1,i(t; z) + Gi(s, t;w)R1,i(t; z))

where I−1
γ ψi(su, t) = Gi(s, t;u) by Theorem 3.12. ¤

Remark 4.2. For general d, further analysis of (26) shows that the series Φd(s, t; z1, . . . , zd)
can be expressed explicitly in terms of the Gi(s, t; zj)’s and products of the
Rk,i(t; zj)’s.

The following proposition will be used in the proof of Theorem 5.10.

Proposition 4.3.

Φ2(s, t;w, z) =
∞∑

i=1

4i (Gi(s, t;w)Ei,1(t; z) + Gi(s, t; z)Ei,1(t;w))

where Ei,1(t;u) is given by (20).

Proof. By Theorem 3.16,

G1(s, t;wz) = 1
2

∞∑

k=1

4k (Gk(s, t;w)Ck,1(t; z) + Gk(s, t; z)Ck,1(t;w))

and hence by Proposition 4.1,

Φ2(s, t;w, z)

=−G1(s, t;wz) +
∞∑

i=1

4i (Gi(s, t;w)R1,i(t; z) + Gi(s, t; z)R1,i(t;w))

=
∞∑

i=1

4i
(
Gi(s, t;w)(R1,i(t; z)− 1

2Ci,1(t; z)) + Gi(s, t; z)(R1,i(t;w)− 1
2Ci,1(t;w))

)

=
∞∑

i=1

4i (Gi(s, t;w)Ei,1(t; z) + Gi(s, t; z)Ei,1(t;w)) . ¤
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5. Integral product power sums

For non-negative integers q1, . . . , qd, define
(35)

Φ̄d(s, t; q1, . . . , qd) :=
∞∑

n=1

n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∏d
i=1

(∑k
j=1 nqi

j

)

∏k
j=1 bnj

∏k−1
j=1(nj + nj+1)

sn1tn−n1 .

Let ew :=
∑∞

j=0 wj/j!. The series Φ̄d is related to the series Φd (see (22)) by

Φ̄d(s, t; q1, . . . , qd) =
∂q1+···+qp

∂wq1
1 · · · ∂wqd

d

Φd(s, t; ew1 , . . . , ew1)
∣∣∣∣
w1=···=wd=0

,

i.e., the series Φd(s, t; ew1 , . . . , ew1) is the exponential generating function of the
Φ̄d(s, t; q1, . . . , qd)’s. Also define, for q ≥ 0,

Ḡk(s, t; q) := ∂q/∂wq Gk(s, t; ew)|w=0 ,

R̄k,j(t; q) := ∂q/∂wq Rk,j(t; ew)|w=0 ,

Ēk,j(t; q) := ∂q/∂wq Ek,j(t; ew)|w=0 .

(See Theorem 3.12 for the definition of Gk(s, t; z) and Rkj(t, z) and see (20) for the
definition of Ek,j(t; z).) Note that the effect of the operation ∂q/∂wq f(t, ew)|w=0

on a series f(t, z) is to replace occurrences of zn with nq.

Lemma 5.1. For 2n + m ≥ 0,

(−1)ne−nz(1−ez)2n+m =
n∑

`=1

(−1)`e−`z

(
2n + m

n− `

)
+

(
2n + m

n

)
+

n+m∑

`=1

(−1)`e`z

(
2n + m

n + `

)
.

Proof. Binomial expansion of (1− ez)2n+m gives:

(−1)ne−nz(1− ez)2n+m =
2n+m∑

j=0

(−1)j+ne(j−n)z

(
2n + m

j

)

=
n−1∑

j=0

(−1)j+ne(j−n)z

(
2n + m

j

)
+

(
2n + m

n

)
+

2n+m∑

j=n+1

(−1)j+ne(j−n)z

(
2n + m

j

)
.

Reindexing the last two sums yields the conclusion. ¤
Lemma 5.2. For 2n + m ≥ 0,

(−1)ne−nz(1− ez)2n+m = (−1)n+m
(
z2n+m + m

2 z2n+m+1
)

+ O(z2n+m+2) .

Proof. The series for ez yields:

(ez − 1)2n+m = (z + 1
2z2 + O(z3))2n+m = z2n+m + 1

2(2n + m)z2n+m+1 + O(z2n+m+2) ,

e−nz = 1− nz + O(z2) .
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Hence,

(−1)ne−nz(1− ez)2n+m = (−1)n+me−nz(ez − 1)2n+m

= (−1)n+m
(
1− nz + O(z2)

) (
z2n+m + 1

2(2n + m)z2n+m+1 + O(z2n+m+2)
)

= (−1)n+m
(
z2n+m + m

2 z2n+m+1
)

+ O(z2n+m+2) . ¤

Proposition 5.3. For q ≥ 1 and 2n + k − j ≥ 0,

(−1)q
n∑

`=1

(−1)``q

(
2n + k − j

n− `

)
+

n+k−j∑

`=1

(−1)``q

(
2n + k − j

n + `

)

=





0 if q < 2n + k − j,
(−1)n+k−jq! if q = 2n + k − j,
(−1)n+k−jq! k−j

2 if q = 2n + k − j + 1.

Proof. A comparison of two computations of the q-th derivative of (−1)ne−nz(1−
ez)2n+k−j at z = 0, first using Lemma 5.1 and then using Lemma 5.2 yields the
conclusion. ¤

Similarly:

Proposition 5.4. For q ≥ 1 and 2n + k − j ≥ 0,

(−1)q
n−j∑

`=1

(−1)``q

(
2n + k − j

n− `− j

)
+

n+k∑

`=1

(−1)``q

(
2n + k − j

n + `− j

)

=





0 if q < 2n + k − j,
(−1)n+kq! if q = 2n + k − j,
(−1)n+kq! k+j

2 if q = 2n + k − j + 1. ¤

Notation. Given a polynomial p(x) =
∑n

i=0 aix
i of degree n, we write p(x) =

anxn + l.d.t. or p(x) = l.d.t. + anxn (“l.d.t.” = lower degree terms).

Proposition 5.5. Let q be a positive odd integer and k ≥ 1. Then Ḡk(t, t; q) = 0
if q < k and for q ≥ k,

Ḡk(t, t; q) =





4−(q+k)/2

(
q

(q − k)/2

)
t(q+k)/2 + l.d.t. if k is odd,

4−(q+k−1)/2 qk

2

(
q − 1

(q − k − 1)/2

)
t(q+k−1)/2 + l.d.t. if k is even.

Proof. By Corollary 3.13, Gk(t, t; z) = Rk,0(t; z) and hence Ḡk(t, t; q) = R̄k,0(t; q).
The conclusion follows from Proposition 5.3 (or Proposition 5.4) applied to (18).

¤
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Combining Proposition 5.5 and (32) yields:

Corollary 5.6. Let q be a positive odd integer. Then

Φ̄1(t, t; q) = Ḡ1(t, t; q) = 4−(q+1)/2

(
q

(q − 1)/2

)
t(q+1)/2 + l.d.t. ¤

Corollary 5.6 gives another proof of Conjecture 1.2 in the case d = 1 (this case
of Conjecture 1.2 was previously verified in Proposition 2.17 of [3]).

Proposition 5.7. Let q be a positive odd integer.

(1) If q < k − j then Ēk,j(t; q) = 0.

(2) If k − j is odd and q ≥ k − j then −2Ēk,j(t; q) = l.d.t. +

4−(q+k+j)/2

(
(−1)j

(
q

(q + k + j)/2

)
−

(
q

(q − k + j)/2

))
t(q−k+j)/2 .

(3) If k − j is even and q ≥ k − j then −2Ēk,j(t; q) = l.d.t. +

4−(q+k+j−1)/2q

(
(k−j)

2 (−1)j

(
q − 1

(q + k + j − 1)/2

)
− (k+j)

2

(
q − 1

(q − k + j − 1)/2

))
t(q−k+j−1)/2 .

Proof. Apply Propositions 5.3 and 5.4 to (21). ¤

Specializing to the case j = 1 in Proposition 5.7 gives:

Corollary 5.8. Let q be a positive odd integer.

(1) If q < k − 1 then Ēk,1(t; q) = 0.

(2) If k is even and q ≥ k − 1 then −2Ēk,1(t; q) = l.d.t. +

4−(q+k+1)/2

(
−

(
q

(q + k + 1)/2

)
−

(
q

(q − k + 1)/2

))
t(q−k+1)/2 .

(3) If k is odd and q ≥ k − 1 then −2Ēk,1(t; q) = l.d.t. +

4−(q+k)/2q

(
− (k−1)

2

(
q − 1

(q + k)/2

)
− (k+1)

2

(
q − 1

(q − k)/2

))
t(q−k)/2 .

Lemma 5.9. Let p, q be positive odd integers. Then

Seven(p, q) :=
∑

k∈ even+

k

2

(
p− 1

(p− k − 1)/2

)((
q

(q + k + 1)/2

)
+

(
q

(q − k + 1)/2

))

=
(

p− 1
(p− 1)/2

)(
q − 1

(q − 1)/2

)
q(p− 1)
(p + q)

,
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where even+ is the set of positive even integers, and

Sodd(p, q) :=
∑

k∈ odd+

(
p

(p− k)/2

)(
(k − 1)

2

(
q − 1

(q + k)/2

)
+

(k + 1)
2

(
q − 1

(q − k)/2

))

=
(

p− 1
(p− 1)/2

)(
q − 1

(q − 1)/2

)
p(q + 1)
(p + q)

where odd+ is the set of positive odd integers.

Proof. For m,n ≥ 0,

Seven(2m + 1, 2n + 1) :=
m∑

i=1

i

(
2m

m− i

)((
2n + 1

n + i + 1

)
+

(
2n + 1

n− i + 1

))

=
m∑

i=1

i

(
2m

m− i

)(
2n + 2

n + i + 1

)
.

Multiplying this identity by ((m + n + 1)!)2/((2n + 2)!(2m)!) and letting A =
m+n+1, it is easy to see that the conclusion of the Lemma for Seven is equivalent
to the identity

m∑

i=1

i

(
A

m− i

)(
A

m + i

)
=

m

2

(
A

m

)(
A− 1

m

)

which can be established by induction. The proof for Sodd is similar. ¤

Theorem 5.10. Let p, q be positive odd integers. Then

Φ̄2(t, t; p, q) = 4−(p+q)/2 pq

(
p− 1

(p− 1)/2

)(
q − 1

(q − 1)/2

)
t(p+q)/2 + l.d.t.

Hence Conjecture 1.2 is true for d = 2.

Proof. Proposition 4.3 implies:

(36) Φ̄2(t, t; p, q) =
∞∑

k=1

4k
(
Ḡk(t, t; p)Ēk,1(t; q) + Ḡk(t, t; q)Ēk,1(t; p)

)
.

By Propositions 5.5 and 5.8, the sum on the right of (36) is equal to

4−(p+q)/2
(p

2Seven(p, q) + q
2Seven(q, p) + q

2Sodd(p, q) + p
2Sodd(q, p)

)
t(p+q)/2 + l.d.t.
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(See Lemma 5.9 for the notation Seven and Sodd.) By Lemma 5.9,
p
2Seven(p, q) + q

2Seven(q, p) + q
2Sodd(p, q) + p

2Sodd(q, p) =(
p− 1

(p− 1)/2

)(
q − 1

(q − 1)/2

)(
pq(p− 1)
2(p + q)

+
pq(q − 1)
2(p + q)

+
pq(q + 1)
2(p + q)

+
pq(p + 1)
2(p + q)

)
=

(
p− 1

(p− 1)/2

)(
q − 1

(q − 1)/2

)
pq . ¤

Corollary 5.11. Conjecture 1.1 is true for d = 2. ¤

Remark 5.12. The techniques of this paper can be used to show that for d ≥ 3
and non-negative integers m1, . . . , md the series Φ̄d(t, t; 2m1 + 1, . . . , 2md + 1) is
a polynomial of degree less than or equal to d +

∑d
i=1 mi and so the sums in

Conjecture 1.2 vanish for
∑d

i=1 mi < n − d (the conjectured vanishing range is∑d
i=1 mi < n− 1).
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