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Abstract: We explicitly evaluate some combinatorial sums which occur in
the theory of SU(n) Casson invariants of fibered knots, verifying a conjecture
of Boden and Nicas in a special case.

1. INTRODUCTION

This paper is concerned with the explicit evaluation of finite sums of the form:

Zn:(—l)kﬂ 3 I (S ™)

k k—1
k=1 ni+-Fng=n Hj:l bnj Hj:l (nj + njt1)

where n > 1 and myq,...,mq > 0 are integers, b, := 4%¢!(¢ — 1)! and the interior
sum is over of all compositions (i.e., ordered partitions) of n into k parts.

The motivation for studying these particular sums comes from topology. Given
a fibered knot K in a closed oriented 3-manifold and oo € SU(n) (the special uni-
tary group), the SU(n) Casson invariant of K, denoted by Ay, o(K), is an integer
which can be viewed as an algebraic-topological count of the number of charac-
ters of SU(n) representations of the knot group which take a longitude into the
conjugacy class of « (see [2, 3, 4]). For generic o € SU(n), including all generators
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of the center of SU(n), there exist universal polynomials g (Y0, ¥2,-- -, Y2n—2)
such that

)\n,a(K) = Qn,a(CO7 027 O] CQn—Q)
for any fibered knot K with Conway polynomial Vi (z) = 3,5 Coi 22,

The “wall-crossing” formulae of [2] imply that the weighted homogeneous part
of the polynomial %aqﬂ,a<y07 Y2y - -+, Yon—2) (where mg, > 0 is the Euler charac-
teristic of the conjugacy class of & € SU(n) and yo; has weighted degree 2i) of
highest weighted degree, denoted by vy, is independent of (generic) o € SU(n).
Using Zagier’s summation formula [6] for solving the Atiyah-Bott recursion [1],
we showed in [3] how to express each coefficient of v, as an explicit linear com-
bination of sums of the form

d k ) ‘

ey T[S s
B k E—1

= nmitgmg=n LLj=10n; ITj=i (nj +71541)

where ) is a positive integer for £ = 1, ..., d such that A\;+---4+X; < n. Although
these sums appear to be rather complicated, numerical evidence supports the
following conjecture:

Conjecture 1.1. (Conjecture 1.16 of [3].) Forn > 1 and Ay,...,Ag >0,

ey e B T

) k k-1

= nitamg=n 1Lj=1bn; ITj=1 (nj +nj11)
N nd_QH?:l (2):\5) if)\l_’_”'—i_)‘d:n—l'

The case d = 1 of Conjecture 1.1 was proved in Theorem 2.18 of [3]. This was
accomplished by first showing that Conjecture 1.1 is implied by Conjecture 1.2
below (in the case d = 1, but a straightforward generalization of argument used
in the proof of Theorem 2.18 of [3] shows that Conjecture 1.2 implies Conjecture
1.1 for all d > 1):

Conjecture 1.2. (Conjecture 2.19 of [3].) Forn >1 and my,...,mq >0,

En:(—l)k—l > [T (Zle "imm)

k k—1
k=1 ni4--+ng=n szl bn, szl (nj +nj+1)
Jo if S my<n—1
nd=247n 10, () (2me + 1) if Yy me=n—1.

The case d = 1 of Conjecture 1.2 was proved in Proposition 2.17 of [3].
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In this paper we prove Conjecture 1.2, and thus also Conjecture 1.1, in the
case d = 2 (Theorem 5.10). The case d = 2 of Conjecture 1.2 is considerably
more difficult to prove than the case d = 1. We expect that the techniques
developed here to prove Theorem 5.10 should be effective to treat the case d > 2
(see Remark 5.12).

The paper is organized as follows. In §2, we summarize the integral equation
technique introduced in [3] for analyzing sums of the form

n

DTS pCTEECH

k=1 ni+---+ng=n szl (nj + nj+1)

where the interior sum is over of all compositions of n into k parts and {a, | n =
1,2,...} is a sequence of elements in an algebra defined over a field of character-
istic 0. Of particular interest are integral equations of the form

1
(%) <I>(s,t)+/0 ryix)fb(tw,t) dx = f(s,t)

where y(u) := Y 07 u"/b, with b, :=4"n!(n — 1)! and f(s,t) is a formal power
series such that f(0,¢) = 0. We develop methods in §3 to explicitly solve (%) in
terms of a particularly convenient “basis” of functions {¢; | j > 1} given by (10);
see Theorem 3.9. Some special solutions to (x) enjoy a remarkable “multiplica-
tive” property (see Theorem 3.16) which used in the proof of Proposition 4.3, a
key ingredient in the proof the main theorem (Theorem §5.10). In §4, we give an
explicit formula for the series

< & (s
0) PP LD LI (S5 2)

k k—1
n=1 k=1 nit-+ng=n Hj:l bn, Hj:l (nj +nj41)

where z1, ..., zg are independent variables, in the cases d = 0,1, 2 (in the case d =
0, interpret the product in the numerator to be 1); see (28), (32) and Proposition
4.1. The results of §3 and §4 together with exponential generating functions
associated to (xx) are used in §5 to prove the main theorem (Theorem §5.10)
which verifies Conjecture 1.2 in the case d = 2.

g

)

2. INTEGRAL EQUATIONS

We summarize the integral equation technique introduced in §2 of [3] for ana-
lyzing sums of the form
n

(1) Z(il)k_l Z kfl?l © o Ony

k=1 ni+---+ng=n szl (nj + nj+1)

where the interior sum is over of all compositions of n into k parts.
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Let A be a (not necessarily commutative) algebra over a field of characteristic
0. For a polynomial p(y) = sz\; 0 @iy’ over A in the commuting variable y, define
the formal integral:

1 N
a;
dy = .
/Op(y)y Z%Hl €A

If f(t,y) = >0 opn(y)t" is a formal power series in the commuting variable ¢
with coefficients in the polynomial algebra Aly], define:

/ ' fty)dy = é ( / lpn<y>dy) "

Given a sequence a,, € A, n > 1, the associated generating function is the formal
power series in the commuting variable s:

oo
p(s) = zans".
n=1

Define a formal power series over A in the commuting variables s, ¢ by:

(2)  e(st)=) (DY Y ka?l e gmgnem

k=1 neh mt-m=n LLj=1 (0 +1541)

Observe that

@(t,ﬂZZ(Z(—l)’” > kaflma”’“ ))t”
n=1

k=1 ni+--+np=n 1L1lj=1 (n] + nj+1

is the generating function for the sequence of sums (1).

In [3], we showed that ®(s,t) satisfies the basic integral equation:

1
(3) @(s,t)+/0 p(zy)q)(ty,t)dy = p(s).

Let f(s,t) be a formal power series over A with f(0,t) = 0. If a formal power
series O(s,t) 1= 3 72, > 77 Ajjs't! satisfies the integral equation:

1
(4) @(S,t)+/0 p(zy)@(ty,t)dy = f(s,t)
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then a comparison of the coefficients on both sides of (4) yields the following
recursion formula for the coefficients A;;:

(5) Ajo = fio i>1,

i1 A;
6 AZ:_l J—4q,9 - . 0
(6) i aqEOj_qﬂ.Jrfy j>

where f(s,t) = 3272, 272, fijs't/. Conversely, if A;; are elements in A defined
by (5) and (6), then >°2, >°%, A;;s't? is a solution to (4). Since (5) and (6)
uniquely define the A;;’s, this formal power series solution to (4) is unique. In
particular, ®(s,t) given by (2) is the unique formal power series solution to the
basic integral equation.

Definition 2.1. Let A[[s, t]] denote the algebra of formal power series over A in
the commuting variables s, ¢ and let A[[s, t]]" be the ideal of A[[s, t]] consisting of
those f(s,t) € Al[s,t]] for which f(0,¢) = 0. Given a formal power series p(s)
over A with p(0) = 0, define the operator I, : A[[s, t]] — Al[s,t]] by

(1,0)(s,t) == O(s,t) + /01 p(ix)@(tx,t) dx.

Note that I, is linear over F[[t]], where F is the ground field, and I,,(A[[s, t]]") C
Alls,t]]’. If A is commutative or if p is defined over the ground field then I, is
Al[t]]-linear. The equation (4) can be written as 1,0 = f.

Terminology. We refer to the unique formal power series solution to the integral
equation 1,0 = f, where f € A[[s,t]], as “the solution to 1,0 = f.

3. SOLUTIONS TO THE INTEGRAL EQUATION I, ® = f

Let b, := 4"n!(n — 1)! and define the power series:

™) Y =300
n=1 "

Let A be a commutative algebra over a field of characteristic 0. In this section,
we are concerned with methods of explicitly solving the integral equation

B(s,t) + /01 7(25”)@@95,7:) dz = f(s,1)

where f(s,t) is a formal power series in the variables s, ¢t over A such that f(0,¢) =
0. We write this equation as I,® = f (see Definition 2.1).
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Given a formal power series g(t) = Y 7 a,t™ and a non-negative integer p,
the p-th derivative of g(t), denoted by ¢P)(t), is the formal power series:

= (L +p)!
() =3 P, e

2!
=0
If g(y1,...,Ym) is a formal power series in the variables y1,...,y, we also use
the notations % g and D](.p ) g for the p-th partial derivative of ¢ with respect to
J

Y5

Define the power series:

(8) pl) = 1y

n—0 bn+1 .
It is straightforward to show that u satisfies the differential equation:
© up®) ) + kD () = 2 (w) = 0

where k > 2 is an integer. It will also be useful to define the (k + 1)-th iterated
anti-derivative of u, denoted by M(_l_k), for k > 0, as follows:

00 ' n+k o0 n+k
(—l—k‘) — . u _ u
. () : ;)(Hk)m(n!)? nzom(mk)!n!'

With this definition, it is easy to show that the identity % pF) (w) = pHD (y)
and the differential equation (9) are valid for all integers k.

Leibnitz’s rule and (9) (with “u” replaced by “ux”) yield:

Lemma 3.1. For all integers k, gu uf =0 (ug) = %uk_lu(k_” (uzx). O

Repeated application of Lemma 3.1 yields:

J o ,
Corollary 3.2. Forj > 1 and all k, 86] wF =) (uz) = 4770k 7 pB=120) (uz).
u
O

A straightforward comparison of coefficients reveals the following relation be-
tween the derivatives and anti-derivatives of u:

Lemma 3.3. For all integers n, p=™ (u) = 4" "1 p(=2)(v). O

The following formula for a product of ;*~1’s will be useful.

Lemma 3.4. For all integers a, b,

[e.e]

) B 1 2k +a+b
1% () 7= (u) k% 4a+b+kk!(k+a+b)!( k+a >u
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where M = max(0, —a, —b, —a — b).

Proof. By making use of Lemma 3.3, it suffices to consider the case a,b > 0.

Iu(afl)(u) M(bfl)(u) = (ZO 4n+a(§+a)‘n‘> (ZO 4m+b(71:l + b)'m')

n—=

m—+n

u
Z Z gmntatb(n 4+ q)l(m + b)Inlm!

k=0 m+n==k
00 k
1 k b\ [k
:Z atbtk | 1 Z< Ta—{— )<) ut
4 El(k +a+0b)! = j+a J

_i 1 2k+a+0b o
_k:O qatbtkpl(k +a+b)!'\ k+a '

zk:<k+a+b) (k) B <2k+a+b)
= j+a i) k+a

is a consequence of the Vandermonde convolution formula, see §1.3 of [5]. O

The identity

For j > 1, define power series:

(10 Ui(s.0) = (5= 1) = (-1Y8) w5 1)
Proposition 3.5. For ¢ > 1, the solution to the equation I, P (s,t) = s? is given
by
o0
P,(s,1) 1> (1) 4 (s, )"0 ().
n=1

Proof. By Proposition 2.9 of [3],

oo n—q-—1

H"tF2n —k—q—-2)! (n—1 L
Py(s,t) = s94+(—1)74%¢! Z Z b( (73 n_k;_q1_;)l< . >8k+1tn k—1
n=q+1 = n :

and so the coefficient of s’/ in P,(s,t) is

sia i1 (i+2j—q—1) i+j—1
(=1 (=1) bitj(i+J —q)! (J—q)< i—1 )

for j > ¢q, i > 1 and d;400; otherwise (where 64, = 1 if @ = b and 0 otherwise).
The Taylor expansion of ,(s,t) in the variable s, computed with the aid of
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Corollary 3.2, is
= —1 n—i, (n—i— n, (n+i— Si
Gals,t) = D (470" 0D () = (0D () 5
i=1
and so the coefficient of st/ in q! (—1)7 300 | (—1)"4"py, (s, )"~ (—¢) is the
same as the coefficient of ¢/ in

q! (Z.!l)q Z(_l)n4n (47i(_t)n7iu(n7i71)(_t) _ (_t)nu(n+i71)(_t)> H(n*qfl)(_t)'

n=1

This coefficient, when computed with the assistance of Lemma 3.4, is seen to
coincide with the coefficient of s*t/ in P,(s,t) given above. O

The following version of Proposition 2.11 of [3] will be useful.

Proposition 3.6. The solution to I,® = f, where f € Al[s,t]]', is given by:

(s,1) = ipi(zﬁ’t)D§i>f<o,t>

=1

where, fori > 1, P;(s,t) is the solution to I,P (s,t) = s'.

Proof. Let m be the maximal ideal of A[[s,t]] consisting of those formal power
series in s, ¢ with vanishing constant term. By Proposition 3.5, P;(s,t) € m" for

i > 1. Hence the expression ®(s,t) := Z;’il(l/i!)Pi(s,t)Dgi)f (0,1) is valid as a
formal power series; furthermore,

Ld(s,t) =1, (i Fi(s ) Dy (0,t)>

7!
i=1

o0 [ee] ;
L, Pi(s,t) (i s'
=Y D00 =35 D0 (0.0 = f(s.).
i=1 i=1
The last equality is the Taylor expansion of f in the first variable (the term
corresponding to ¢ = 0 vanishes because f(0,t) =0, i.e., f € A[[s,t]]). O

Definition 3.7. Define the A[[t]]-linear operator L : A[[u,t]] — A[[u,t]] by

[e.o]

LFf (u,t) =Y 4 uV(—u)D{ £ (0,1).
=0

Remark 3.8. The operator £ can be expressed using integrals as follows:

1
Lf(u,t) = f(u,t)— u/o w(u(z — 1)) f(uz, t)dz.
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Furthermore, £ is invertible and its inverse is given by

Llf(u,t):f(u,t)Jru/lM( w(z— umtdx—Z‘lZ i (i—1) D(z)f< .
0

Theorem 3.9. Suppose f(s,t) € Al[s,t]]’. Then the solution to I,® = f is given
by:

=S .00 (1.

Proof. By Definition 3.7, Lf (u,t) = > 2, 4iui,u(i_1)(—u)D§i)f(0,t) (the sum
starts at i« = 1 because f(0,t) = 0, i.e., f(s,t) € Al[s,t]]'). Differentiating this
expression n times with respect to u using Corollary 3.2 and evaluating at u =t
yields:

(11) MLttt 241 ngi=ny i=n=1) D £ (0,4).
We have:
D(s,t) = i PZ’(S’ 75)D“) £(0,%) (by Proposition 3.6)
=i (i 1)”4%”(8,1&)#("-"—”(75)) DY 1 (0,1)
= s
—24’% 5,1)( (fj( 1)iu<”—i—1>(—t)D§“f(o,t)>
pamy
= Z A% (5, 1) (Z gimmgi=ny == () DY £ (0, t))
= pay
- i 44, (5,0 DL (1,1) (by (11)).

The second line follows from Proposition 3.5 and the fourth line from Lemma
3.3. O

Corollary 3.10. For ® and f as in Theorem 3.9,

O(t,t) = Lf (1) 24%1 =0 £ (0,1).
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Proof. Note that 1, (t,t) = —(—t)"u"~1(0) = —(—t)"/(4™n!). Hence

O(t,t) = 4" (t, ) DV LF (t,1) = _(;|t)nD§”>Lf (t,t) = Lf (t,1).
n=1 n=1 ’

The last equality is deduced by taking the Taylor expansion of Lf (u,t) with
respect to u centered at t. O

Remark 3.11. Corollary 3.10 can also be deduced from Proposition 3.6 and the
observation that P;(t,t) = 4% ' —1 (—¢).

We will be interested in equations of the form I,® (s,t) = f(s,t) where f
depends on a set of parameters {yi,...,yn}. This is interpreted by taking the
algebra A to be the algebra of formal power series in the variables y1, ..., y, over
a field of characteristic 0. We write f(s,t;y1,...,¥yn) to indicate the dependence
of f on the parameters.

Theorem 3.12. For k > 1, let Gy(s,t;2) be the solution to I,Gj (s, t;2) =
Vr(s2,t). Then Gi(s,t;2) = Y252 414;(s,t) Ry (t; 2) where

Ry j(t;2) :=

Z;il (4£—k—jt£—ju(€—k—1)(_t) _ 4£—j(_1)ktk:+é—ju(é+k—1)(_t)) ,u(g_j_l)(—t)ze.
Proof. Let g(s,t; z) := ¢ (sz,t). Differentiating g with the assistance of Corollary
3.2 and applying Lemma 3.3 yields:

g (0,;2) = (47 (=) =t =0 (=) — (=)h D (=) ) o

= (47U t) = (Pt (o)) <

and so by (11)

D Lg(tt;2) =y 4T (=)D g (0, 2),
/=1
The conclusion of the theorem now follows from Theorem 3.9. O

Corollary 3.10 and the proof Theorem 3.12 yield:
Corollary 3.13. For k> 1, Gi(t,t;2) = Ry o(t;2). O
The following proposition and its corollary will be used to derive several iden-
tities involving the Ry ;(t;2)’s.
Proposition 3.14. Forn,j > 1, define
Qnj(t) := 4" Ipl =3y (=I=D () — gnp) (=)0 =D ().
Then S5°, 419 (5,1)Quy (t) = ™.
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Proof. For n > 1, define hy,(s,t) := I,s". Then

1
hin(s,t)=3s" +/ M(tac)”alz
0 X
1 ( ) i Skt’n
—s"—i—t”s/,usmx"dx—s"—i— T ‘ )
0 i El(k— 1Yk +n)

Calculating Lh, yields Lh, (u,t) = 4™n! p(*=D(—u)(u™ — t*) + t*. Hence, for
J=1
DY Lh, (1) = 47 nl g3 (=3 =1 () — 47l (=177 1 () = Qi (8).

The conclusion of the theorem now follows from Theorem 3.9. O

Corollary 3.15. Suppose g(s,t) € Al[s,t]]'. Then

3" 49y(s, 1) (Z Q"’ﬁ(%&"’g <o,t>> = g(s,1).

) n
Jj=1

n=1

Proof. Using Theorem 3.14, we have:

o0 o0

D40 (s.1) (2 WD%(W)): S Dg0,6) [ 347055, 0)
j=1 n=1 ’ =1 j=1

o0

s™ _(n
=Y 50”9 (0.4) = g(s.1)
n=1 """

where the last equality is the Taylor expansion of g(s,t) in s (the term corre-
sponding to n = 0 vanishes because ¢(0,t) = 0). O

For k,j > 1, define:

X (t2) o= Z <4£7kt£7ku(£7k71)(_t) _ 45(_1)1?#“(4%71)(_@) u(”j’l)(—t)zf.
=1

Calculation using Corollary 3.15 yields the following identities:

(12) D oAU, 1) X (45 2) = pb7D(sz — 1) — pl =D (=),
k=1

(13) Y dFp(s, )V R j(t2) = (sz— ) pl ™V (sz — ) — (=) b0~V ().
k=1

Combining (12) and (13) yields the identity:
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14) 3 s 0) (PR (12) — (07 X (152)) = (2 t)

k=1
Defining
(15) Chy(t; 2) == /"Ry j(t2) — (=) X (15 2)
we write the identity (14) as:
(16) D 4F(s,t)Chj(ti2) = Yi(sz,t) .
k=1

The identity (16) implies the following remarkable “multiplicative” property
of the series Gi(s,t;z) of Theorem 3.12.

Theorem 3.16. For j > 1, > 7%, 48Gy(s,t;w)Cy (¢ 2) = G(s, t; wz).
Proof. Replacing s with sw in (16) yields:
(17) > AR (sw, t)Cr(ti2) = Pi(swz,t) .

k=1

Let I;lf denote the solution to the equation I,® = f. Recall that Gy (s,t; 2) is,
by definition, I_lwk(sz, t). Then

Z4kaSthkj tZ Z4k lwk Sw t))ckrj(t Z)

k=1
-1 (Z AR (sw, t)Ch ;i (t; z))

k=1
= I;le(swz, t) by (17)
=Gj(s,tywz) . O

With the assistance of Lemma 3.4, the series Ry ;(t,2) and Cy ;(t,2) can be
written explicitly as follows:

) n+j o — ki _1)ntign
(18) Rkyj(t;Z): Z <Z(1)sz(n_£:j)> 4n+j(n!(1z—k;—|—j)!

n=max(0,k—j)

00 n—k+j 2n—/{7—{—] (—1)n+jtn
_Z<Z v (L )>4"+J'<n+j>!<nk>!'
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(_1)n+kztn
Antkpl(n — 5+ k)!

(19) Cy j(t; 2) =

D

(Sco(®i)
n=max(0,5—k) ntl=j

(=1

2n+k—j (—1)ntkgn
_Z<Z_: < n—1{ >>4n+k(n+k)( —J)!
00 n+k—j
_ ciof2n+k—j (—1)then
;( £Z=:1 (=1)'z ( n+4 )) 4ntk(n + k)(n — 5)!
> (L otk (—1)n+hgn
+n§1<g (0 T

We will also make use (see Proposition 4.3) of the series

(20) Epj(t;2) == Rjx(t;z) — 3Ck;(t; 2) .
Combining (18) and (19), we obtain:
(21)_2Ek,j (t; 2’) = Ck,j (t; Z) — 2Rj7k<t; Z)
S (S ()
- ntkpl(n — 4 !
nemaod—k) \i=1 n+f—j 4ntkpl(n — j + k)!
_Z Z 1)t nt+k—j (=1t
n—1/ 4tk (p 4+ k)l(n — 7)!
+i ni] of(2n+k—j (—1)nthyn
=\ 5 n+/ 4tk (p 4+ k)l(n — 7)!
i (n J (2n+ k _]>) (_1)n+ktn
— ntknl(n — 4 |
S \o n—~0—j 4ntkpl(in — 5 4+ k)!
4. POLYNOMIAL PRODUCT POWER SUMS
In this section we give an explicit formula for the series
(22)
H?:l (Z?:l Z?)
Palsi bz, 2 =ZZ > =
n=1 k=1 ni4-Fng=n Hj:l bn, Hj:1(”j + njr1)
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where z1,...,z4 are parameters, in the cases d = 0,1,2 (in the case d = 0,
interpret the product in the numerator to be 1); see (2 ) (32) and Proposition
4.1.

Let uq,...,uq and 21, ..., z4 be parameters. Define

(23) EI\) (8 t'zl,... zd;ul,...,ud) =

k d n;
i y Z Hj 1Hi 1( +uiz ']) ghign—m

n=1 k:l ni+-Fng=n H] 1 bn, Hg 1(nJ+nJ+1)
and

n

> s
(24)  pa(s;z1,y ..., za5u1,y ..., u nz (H (1 —|—uzzf)> o

+Zv ZiS uZ+Z'y 228 Uity + -+ 4+ (21 2gS)ur - ug -

1<J

where 7 is the series (7). The series ® is of the type (2) considered in §2 and
thus satisfies the basic integral equation (3), i.e.,

-~ -~ ST
%) Lubalotip) = Bl tip)+ [ PCEPG 0 ip)ar = s, i)
0

where p := z1,...,24; U1, . .., uq is the list of parameters. Using the expansion

k
1_[1—i—uZ ) =1+ Zz u; + O(u?)

Jj=1

where the notation “O(u?)” indicates a polynomial (or a formal power series) in
the principal ideal generated by u?, we obtain:

(T)d(s,t; Z1yeeey 245 ULy - - - ,ud) = (I)()(S,t) + Z (131(87t; zz)uz
)
+ Z Po(s, t; 2, 2j)uiny +

i<j

+ @d(s,t;Zb...,Zd)Ul"’Ud—’—ZO(U?)
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Equating the coefficients of the term w; ---u, on both sides of (25) yields the
integral equation:

1
(26) Dy(s,t;21,...,24) —i—/ M‘I>d(tat,t; 21y, 2q)dT

0 x
1
SZ; T 5
+ / W‘%1(tx,t;zl>---aziv""zd)dx
—~ Jo
(2

1
v(szizjx) . .
+ E /0 %@d_g(m,t;zl,...,zi,...,zj,...,zd)daj
1<j

1 DY
+...+/ Y2 2a) o P
0 X

where “Z;” indicates that z; has been omitted from the parameter list.
We solve the integral equation (26) explicitly in the cases d = 0, 1, 2.

In the case d = 0, (26) is the equation:

1
(27) Do (s,t) —I—/O ’Y(gi@q)o(tx,t)dac =(s) .

The solution to (27) is

(28) Bo(s,t) = spls — 1) = 1 (s.1)

by Proposition 2.8 of [3] or, alternatively, deduce (28) from Theorem 3.9. (Recall
that p is defined by (8) and v; by (10) ).

In the case d = 1, (26) is the equation (writing z for z1):

(29) Dy (s,t;2) + /01 fY(Zx)@l(t:c,t; z)dx + /01 fY(S;x)@()(t:c,t) =(sz) .

Replacing s with sz in (27) yields

1
Dy(sz,t) + /0 V(szz) O (tx, t)dx = v(sz)

T

and so (29) is equivalent to

v(sz)

1
(30) L,®y (s, t;2) = D1(s,t;2) + / Oy (tx, t; z)de = Po(sz, 1)
0

which, by (28), is the same as
(31) L, ®1(s,t;2) = 1(sz2,t) .
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By Theorem 3.12, the solution to (31) is

(32) Oy(s,t;2) = Gi(s,t;2) = > 49;(s, )Ry j(t; 2)
j=1

where Ry ;(t; 2) is given explicitly by (18).

In the case d = 2, (26) is the equation (writing w for z; and z for z3):
by (sw)
(33) Do(s, t;w, 2) —l—/ —— 0y (tz, tyw, z)dx
0 x

1 1
+/ M‘Iﬁ(tm,t; z)dx—i—/ Mih(tx,t; w)dx
0 0

xr T

1
+/ M@g(m,t)dw = v(swz) .
0 X

Equations (27) and (30) yield:

1
/ W%(m, t)dr = —®g(swz,t) + y(swz) ,
0

1
/ M(I)l(tx7t7z)dl‘:—q)l(sw,t,Z) —|—(I)0(8’U)Z,t) )
0 x

1
/ Mq)l(tl‘,t, w)dl‘:—q)l(sz,t, UJ) —{—(I)O(S’UJZ,t) :
0 x

Substituting these identities into (30) yields the equation:
(34) L@y (s, t;w, 2) = ®1(sw, t; 2) + P1(s2, t;w) — Po(swz, ).
Proposition 4.1. The series ®ao(s,t;w, z) is given by the formula:
s .
Oo(s, t;w, z) = —Gi(s, t;wz) + 241 (Gi(s, t;w) Ry i(t; 2) + Gi(s, t; 2) Ry i (8 w))
i=1

where Gi(s, t;u) =372, i (s, t) R, j(t; ).

Proof. Equation (34) and (32), (28) yield:

L@y (s, t;w, 2) = —Po(swz, t) + i (sw, t; 2) + $1(s2,t;w)

= —h1(swz,t) + Y 4" (hi(sw, )Ry i(t; 2) + Pi(sz, t) Rai(t;w))
=1
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Writing Iv_lf for the solution to the equation I,© = f, we have:

Do(s, t;w, z) = I;l (1/11(5102, t) + Zlf (i(sw, t)R1i(t; 2) + ¢i(sz, t) Ry i(t; w))

=1

)

=—I "1 (swz, t) + Z 4" (I M pi(sw, ) Ri(t; 2) + 1 i(s2, 1) Ry (8 w))

i=1

= —G4(s, t;w2) +Z4% (s,t;w)Ryi(t; 2) + Gi(s, t;w) Ry 4(t; 2))
=1

where Iﬂy_lwi(su,t) = G(s,t;u) by Theorem 3.12. O

Remark 4.2. For general d, further analysis of (26) shows that the series ®4(s, t; 21, . . .

can be expressed explicitly in terms of the G;(s,t;2;)’s and products of the
R}m(t;zj‘)’s.

The following proposition will be used in the proof of Theorem 5.10.
Proposition 4.3.
(s, t;w, z) 234Z (s,t;w)E;i1(t; 2) + Gi(s, t; 2)Eiq (t; w))
where E;1(t;u) is given by (20).
Proof. By Theorem 3.16,

G1(s,t;wz) Z4k (Gr(s,t;w)Ch1(t; 2) + Gi(s,t; 2)Cra (B w))
k=1

and hence by Proposition 4.1,
Dy(s,t;w, 2)

= —Gi(s, t;wz +Z4Z (s,t;w)Ryi(t; 2) + Gi(s, t; 2) Ry i(t; w))
=1

= Z4Z (s, W) (Ryi(t;2) — 3Cia (45 2)) + Gi(s, t; 2) (Rui(tw) — G341 (¢ w)))

_241 (s, w)Eiq (6 2) + Gi(s, t; 2) B (bw)) . O
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5. INTEGRAL PRODUCT POWER SUMS

For non-negative integers qi, . . ., qq, define
(35)
] T, (X n?)
q)d(sat;q1>"'7Qd ZZ Z k
[Tj—1 bn; IT5

n=1 k=1 N1+ tng=n g:l("j +1nj41)

nign—mni

Let e := > 22, w? /5!, The series @4 is related to the series ®4 (see (22)) by

B ) Ha++ap o " -
a8 taqr, - 4d) = a5y Qals, ;e e 7
ow* - - - ow’ g et g0
i.e., the series ®4(s,t;e"!, ..., e") is the exponential generating function of the

®4(s,t;q1,-..,qq)’s. Also define, for ¢ > 0,
Gk(s, t;q) = 07/0w? G(s,t;e")|—o »
Ry (t;q) == 07/0w? Ry, j(t;e”)|,—g -
By j(t;q) := 07/0w? Ey;(t;e”)],_o -

(See Theorem 3.12 for the definition of G(s, t; 2) and Ry;(t, z) and see (20) for the
definition of Ej, ;(t; 2).) Note that the effect of the operation 0%/0w? f(t,e")|w=0
on a series f(t, z) is to replace occurrences of z" with nf.

Lemma 5.1. For 2n+m >0,
n n+m
2n+m 2n+m 2n+m
—1\ren® 1_22n+m: _167& _1€€z )
D D ) L W Lo D

Proof. Binomial expansion of (1 — e?)?n+m

2n+m
(*1)”6_712(1 o 62)2n+m — Z (71)j+ne(j—n)z <2n + m>

gives:

=0 J
— 2n+m
:Z 1)t <2n+m>+<2n+m>+ Z el n)z<2n+m>'
J n J
j=n+1
Relndexmg the last two sums yields the conclusion. U

Lemma 5.2. For2n+m >0,
(_1)ne—nz(1 _ ez)?n-{-m —_ (_1)n+m (Z2n+m + %Z2n+m+1) + O(Z2n+m+2) )

Proof. The series for e* yields:
(62 1)2n+m (Z + 1Z2 + O( ))2n+m _ Z2n+m + %(QTL + m)z2n+m+1 + O(z2n+m+2) 7

"2 =1 —-nz+0(2?) .
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Hence,
_1\n,—nz(1 _ ,2\2n+m _ [ _q1\n+m_—nz/, z _ 1\2n+m
(=D)%e™™ (1 = %)™ = (=1)"""e T (e" — 1)
_ (_1)n+m (1 —nz4+ 0(22)) (z2n+m + %(271 + m)z2n+m+1 + O(Z2n+m+2))
_ (_1)n+m (22n+m + %Z2n+m+1) + O(Z2n+m+2) o
Proposition 5.3. Forgq>1 and2n+k —35 >0,
n . n+k—j .
2n+k—j 2n+k—j
—1)9) (=1)%¢ 1)t
oot ( ) S e (1 E )
=1 =1
0 ‘ ifq<2n+k—j,
= (-1)"Fgl  ifg=2n+k 7],
(—1)nHhigl ol if g = on 4+ k — j + 1.

Proof. A comparison of two computations of the g-th derivative of (—1)"e~"#(1—
e*)2+k=J at z = 0, first using Lemma 5.1 and then using Lemma 5.2 yields the
conclusion. 0

Similarly:

Proposition 5.4. Forq>1 and 2n+k — 75 > 0,
j n+k

n—j . .
2n+k—j n+k—j
—1)7) (-1 %< ,>+ ~1 ZEQ< )
( )H( ) Nl ;( ) Dl
0 ifg<2n+k—j,

(=D)"Rgl ifg=2n+k—j,
(—1)nthgt B ifg=2on + k—j+ 1. O

Notation. Given a polynomial p(z) = Y"1 a;2" of degree n, we write p(z) =
apz™ + Ld.t. or p(z) =1d.t. +apz™ (“l.d.t.” = lower degree terms).

Proposition 5.5. Let q be a positive odd integer and k > 1. Then Gy(t,t;q) =0
if ¢ < k and for q > k,

~(g+k)/2 4 (q+k)/2 %
4 ((q B k)/?)t + ld.t. if k is odd,

Gr(t,t;q) =
k q—1 . ,
4*(q+k71)/2q7 (+k=1)/2 L 1d.t. .
2 W k1) t + Ld.t.if k is even

Proof. By Corollary 3.13, Gy (t,t; 2) = Ry o(t; 2) and hence G (t,t;q) = Ry o(t; ).
The conclusion follows from Proposition 5.3 (or Proposition 5.4) applied to (18).
O
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Combining Proposition 5.5 and (32) yields:
Corollary 5.6. Let q be a positive odd integer. Then

% LY — O ) — 4—(a+1)/2 q (¢+1)/2
O (t,t;q9) = Gi(t, t;9) =4 <(q_ 1)/2>t + lLd.t. O

Corollary 5.6 gives another proof of Conjecture 1.2 in the case d = 1 (this case
of Conjecture 1.2 was previously verified in Proposition 2.17 of [3]).

Proposition 5.7. Let g be a positive odd integer.
(1) If g < k—j then E ;(t;q) = 0.
(2) If k — j is odd and ¢ > k — j then —2E} j(t;q) = ld.t. +

e (O A B Y ) L

(3) If k—j is even and q > k — j then —2Ey ;(t;q) = Ld.t. +

4 aHRiD/2, <(kj> (_1>j< ¢—1 ) _ <k+a>< g1 >> Ha—kti-1)/2
2 (g+k+j—1)/2 2 \(g—k+35-1)/2

Proof. Apply Propositions 5.3 and 5.4 to (21). O

Specializing to the case j = 1 in Proposition 5.7 gives:
Corollary 5.8. Let q be a positive odd integer.
(1) If g < k — 1 then Ey1(t;q) = 0.
(2) If k is even and ¢ > k — 1 then —2Ex1(t;q) = Ld.t. +

e () (o))

(3) If k is odd and q > k — 1 then —2Ey1(t;q) = ld.t. +

@R/, <_<k—1>< ¢—1 ) _ <k+1>< g1 >> k)2
> \(g+k)/2 > \(g—k)/2

Lemma 5.9. Let p,q be positive odd integers. Then

Seven(p @)1= ) g((p —pk_—ll)/2> <<(q+ k:q+ 1)/2> " ((q - k:q+ 1)/2>>

k €event

- ((pp_l)l/ 2) ((qq_l)l/ 2) q((zf: ql)) ’
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where even™ is the set of positive even integers, and

Sodd(P9) = Y ((p pk)/2) <(k;1) ((qq;k;/g) + (k;l) <(qq_k;/2>)

keodd*t
- <(pp—_1)1/ 2) <(qq—_1)1/ 2> p(ijj ql))

where odd™ is the set of positive odd integers.

Proof. For m,n > 0,

m
[ 2m 2n + 1 2n+1
Seven(2m+172n+1):zzz<m—i> <<n+i+1> - <n—i+1>>

=1
i, 2m 2n+ 2

= ? .
P m—i/\n+i+1

Multiplying this identity by ((m + n + 1)1)2/((2n + 2)!(2m)!) and letting A =
m-+n+1, it is easy to see that the conclusion of the Lemma for Seven is equivalent

to the identity
zm:i A A _m A\ [A-1
= \m— iJ\m+i) 2 \m m

which can be established by induction. The proof for S,qq is similar. O

Theorem 5.10. Let p,q be positive odd integers. Then

- -1 -1
o . — 4~ (pta)/2 p q (p+a)/2 l.d.t.

Hence Conjecture 1.2 is true for d = 2.

Proof. Proposition 4.3 implies:

(36) Po(t,t;p,q) = Z‘lk (Gr(t, t;p)Era(t; q) + Gr(t, t;q) B (t:p)) -
=1

By Propositions 5.5 and 5.8, the sum on the right of (36) is equal to

4_(p+Q)/2 (%Seven(pa Q) + %Seven(Q7p) + %Sodd(pv Q) + %Sodd((bp)) t(p+q)/2 + Ld.t.
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(See Lemma 5.9 for the notation Seyen and Syqq.) By Lemma 5.9,

ESeven(P, @) + & Seven(q; p) + §50dd(p, @) + §Soad(q,p) =
p—1 q—1 palp—1) pal¢g—1)  pelg+1)  pelp+1)
(o) (o) B+ Bt + St * Sawa)

p—1/2)\(¢-1)/2) \ 2(p+q) 2(p+q) 2(p+q 2(p+q)
) ()
. O
(<p— 1)/2)\(¢ - 1)/2)"
Corollary 5.11. Conjecture 1.1 is true for d = 2. O

Remark 5.12. The techniques of this paper can be used to show that for d > 3
and non-negative integers my, ..., mq the series ®4(¢,t;2mq +1,...,2mg + 1) is
a polynomial of degree less than or equal to d + Zle m; and so the sums in
Conjecture 1.2 vanish for Z?:l m; < n — d (the conjectured vanishing range is

2?21 m; <n—1).

REFERENCES

[1] M. Atiyah and R. Bott, The Yang-Mills equations on a Riemann surface, Phil. Trans. Roy.
Soc. Lond. A. 308 (1982), 524-615.

[2] H. U. Boden, Invariants of fibred knots from moduli, in Geometric Topology, Ed. W. Kazez,
AMS/IP Studies in Advanced Mathematics, 2.1, Amer. Math. Soc., Providence, RI, 1997,
pp- 259-267.

[3] H. U. Boden and A. Nicas, Universal formulae for SU(n) Casson invariants of knots, Trans.
Amer. Math. Soc. 352 (2000), 3149-3187.

[4] C. Frohman, Unitary representations of knot groups, Topology 32 (1993), 121-144.

[5] J. Riordan, Combinatorial Identies, John Wiley, New York, 1968.

[6] D. Zagier, Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-
Atiyah-Bott formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry
(Ramat Gan, 1993), 445-462, Israel Math. Conf. Proc. 9 Bar-Ilan Univ., Ramat Gan, 1996.

Andrew Nicas

McMaster University

Hamilton, Ontario, Canada L8S 4K1
E-mail: nicas@mcmaster.ca



