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Abstract: We study a family of subvarieties of the flag variety defined by
certain linear conditions, called Hessenberg varieties. We compare them to
Schubert varieties. We prove that some Schubert varieties can be realized
as Hessenberg varieties and vice versa. Our proof explicitly identifies these
Schubert varieties by their permutation and computes their dimension.

We use this to answer an open question by proving that Hessenberg va-
rieties are not always pure dimensional. We give examples that neither
semisimple nor nilpotent Hessenberg varieties need be pure; the latter are
connected, non-pure-dimensional Hessenberg varieties. Our methods require
us to generalize the definition of Hessenberg varieties.

1. Introduction: Background and notation

A flag is a nested collection of vector spaces V1 ⊆ V2 ⊆ · · · ⊆ Vn = Cn, where
each Vi is i-dimensional. The full flag variety is the complex algebraic variety
consisting of all flags; it is smooth and compact.

This paper studies two families of subvarieties of the full flag variety: Hes-
senberg varieties and Schubert varieties. The first family is defined using two
parameters: a linear operator X : Cn → Cn and a nondecreasing function
h : {1, 2, . . . , n} −→ {1, 2, . . . , n}. We call h a Hessenberg function. The Hessen-
berg variety associated to X and h is denoted H(X, h) and defined by

H(X, h) = {Flags : XVi ⊆ Vh(i) for all i}.
(This generalizes the original definition of [dMPS], as in Sections 1.3 and 4.)

For instance, if X is arbitrary and h has h(i) = n for all i, then H(X, h) is the
full flag variety. More interesting are the Springer fibers, namely the Hessenberg
varieties such that X is nilpotent and h(i) = i for each i. Springer fibers are
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used to construct geometric representations of the symmetric group ([CG] gives
a survey). W. Borho and R. MacPherson generalize Springer representations to
a class of Hessenberg varieties that blend these two examples: h is a parabolic
function, defined in Section 4, and X is a nilpotent matrix whose Jordan blocks
are subordinate to h (see [BM]). More Hessenberg varieties are in Section 1.3.

This paper answers an open question about Hessenberg varieties: are they all
pure dimensional? The pure-dimensionality of Springer fibers is significant for
Springer representations, which arise from permutation actions on top-dimensional
cohomology. Until now, the answer was yes in all known cases.

We show two ways in which Hessenberg varieties can fail to be pure dimen-
sional. In Section 3, we give an example in which X is a semisimple operator
and H(X, h) is a disjoint union of smooth subvarieties of G/B of different di-
mensions. One case of this example came up in calculations that R. MacPherson
and I performed while researching [MT]. In Section 2, we show that H(X, h)
need not be pure dimensional even when X is nilpotent. Section 2 gives a family
of examples that are connected but (in general) reducible Hessenberg varieties
whose components have different dimensions.

To prove that nilpotent Hessenberg varieties are not always pure, we use Schu-
bert varieties. Every invertible matrix g gives a flag [g] whose i-dimensional
subspace is spanned by the first i columns of g. For each permutation w, the
Schubert variety Yw is the closure of the set {[bw] : b is upper-triangular}. Schu-
bert varieties are important because they form a basis for the cohomology of the
flag variety. Their geometry is a subject of intense scrutiny and is related to the
combinatorics of the symmetric group. For instance, whether Yw is singular is
determined by substrings of w [BL, Chapters 5 and 8].

We show that certain Schubert varieties can be realized as Hessenberg varieties,
and conversely that some Hessenberg varieties are unions of Schubert varieties.
To construct these Schubert varieties, we take X to be the highest weight vector,
namely X = E1n. Section 2 describes these Hessenberg varieties in terms of their
Schubert-variety components.

Most of this paper treats full flags in GLn(C). Section 4 discusses how to
generalize these results to other Lie types. Section 5 contains open questions
about Hessenberg varieties, including the question of whether every Schubert
variety can be realized as a Hessenberg variety.

The author thanks Konstanze Rietsch and John Stembridge for inspiring and
helpful conversations.

1.1. Descriptions of the flag variety. This section is primarily an exposition
of three classical ways to describe the flag variety, one geometric, one algebraic,
and one combinatorial, all three of which will be used in this paper. This section
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also includes small lemmas needed elsewhere. Our motivation when selecting
these proofs was diversity of approach.

1.1.1. Geometric description of the flag variety. Our initial definition was a geo-
metric characterization of the variety of full flags in Cn. We denote the flag
V1 ⊆ · · · ⊆ Vn by V•.

Throughout this paper, we use a fixed basis e1, . . ., en for Cn. Each flag can
be written explicitly in terms of this basis.

1.1.2. Algebraic description of the flag variety. The flag V• can be realized (non-
uniquely) as an invertible matrix g using the rule that the first i columns of g
span Vi. In this case V• is also denoted [g]. Let B denote the group of invertible
upper-triangular matrices. The flag variety is the quotient GLn/B.

The group GLn acts on the flag variety by the rule that if h is in GLn and
[g] is in GLn/B then h · [g] = [hg]. When this action is restricted to the upper-
triangular matrices B, it partitions the flag variety into B-orbits whose closures
are the Schubert varieties Yw.

1.1.3. Combinatorial description of the flag variety. The permutation matrices
index Schubert varieties and, as flags, are contained in Schubert varieties. We
use w to refer both to the permutation matrix and to the permutation on the set
{1, 2, . . . , n} defined by wei = ew(i). We denote transpositions by sij and denote
arbitrary permutations by w or v.

For each w, the Schubert cell [Bw] is the interior of the Schubert variety Yw.
It can be described explicitly using the following subgroup of B.

Definition 1.1. Fix a permutation w and let Uw be the subgroup of B defined
by either one of the following equivalent conditions:

(1) Uw is the maximal subgroup of B such that w−1Uww is lower-triangular
with ones along the diagonal.

(2) Uw consists of all matrices in B with ones along the diagonal and whose
(i, j) entry is zero for each pair i < j with w−1(i) < w−1(j).

The next proposition follows from [H, Sections 28.3 and 28.4].

Proposition 1.2. For each permutation w, the following hold:

(1) The set Uww consists of the matrices{
w + u : u is nonzero only in entries that are

both above and to the left of a nonzero entry in w

}
.

(2) The matrices Uww are a set of distinct coset representatives for the flags
in the Schubert cell [Bw]. (See Figure 1.)
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


a 1 0
1 0 0
0 0 1







a b 1
1 0 0
0 1 0







a b 1
c 1 0
1 0 0




Figure 1. Examples of Uww when n = 3 (a, b, and c are free)

For each permutation w, let w = si1,i1+1si2,i2+1 · · · sik,ik+1 be a factorization
with k as small as possible. We call k the length of w, denoted `(w). The length
of w relates the geometric, algebraic, and combinatorial descriptions of GLn/B.

Proposition 1.3. For each permutation w, the following hold:

`(w) = dim([Bw])
= the number of nonzero entries (strictly) above the diagonal in Uw

= the number of pairs i < j such that w−1(i) > w−1(j).

Each pair i < j that satisfies w−1(i) > w−1(j) is called an inversion for w.

The symmetric group is partially ordered by the Bruhat order. The geometric
definition is that v ≤ w if and only if [Bv] ⊆ [Bw]. Combinatorially, we say
v ≤ w if and only if there is a factorization w = si1,i1+1si2,i2+1 · · · sik,ik+1 so that
v can be written as the product of a substring of the sij ,ij+1.

1.2. Properties of permutations and Schubert cells. Several lemmas that
follow from these properties will be used later in this paper. The difficulty of the
proofs depends on which characterization of the flag variety is used. (Each of
them is a nice exercise for the reader!)

Lemma 1.4. Fix j < k ≤ n. For each permutation w, the following hold:

(1) The permutation wsj,j+1 satisfies `(wsj,j+1) = `(w) − 1 if and only if
w(j) > w(j + 1). Otherwise `(wsj,j+1) = `(w) + 1.

(2) If w(j) > w(k) then w > wsjk in the Bruhat order.

Proof. The first part is classical, proven by noting that the sets of inversions of
w and of wsj,j+1 differ exactly by (w(j), w(j + 1)).

To prove the next part, we show the closure of [Bw] contains wsjk. Let
uw(k),w(j)(a) be the upper-triangular matrix with a in position (w(k), w(j)), ones
on the diagonal, and zeroes elsewhere. Figure 2 is a schematic of uw(k),w(j)(a)w.

Denote the flag [uw(k),w(j)(a)w] by V1 ⊆ V2 ⊆ · · · ⊆ Vn. The first j−1 subspaces
and last n− k + 1 subspaces of this flag agree with those of the flag [wsjk]. The
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


...
...

0 0
0 · · · 0 a 0 · · · 0 1 0 · · · 0

0 0
...

...
0 0

0 · · · 0 1 0 · · · 0 0 0 · · · 0
0 0
...

...
0 0




Figure 2. Schematic of uw(k),w(j)(a)w

other subspaces are

〈Vj−1, ew(j) + aew(k)〉 ⊆ 〈Vj−1, ew(j) + aew(k), ew(j+1)〉 ⊆ · · ·
⊆ 〈Vj−1, ew(j) + aew(k), ew(j+1), ew(j+2), . . . , ew(k−1)〉
⊆ 〈Vj−1, ew(j), ew(j+1), ew(j+2), . . . , ew(k−1), ew(k)〉 = Vk.

As a approaches ∞, these subspaces approach the subspaces

〈Vj−1, ew(k)〉 ⊆ 〈Vj−1, ew(k), ew(j+1)〉 ⊆ · · ·
⊆ 〈Vj−1, ew(k), ew(j+1), ew(j+2), . . . , ew(k−1)〉
⊆ 〈Vj−1, ew(k), ew(j+1), ew(j+2), . . . , ew(k−1), ew(j)〉 = Vk,

which are the corresponding parts of [wsjk]. Thus lima 7→∞[uw(k),w(j)(a)w] =
[wsjk]. It follows that [Bwsjk] ⊆ [Bw], and so wsjk < w. ¤

1.3. Hessenberg varieties. In this section, we define Hessenberg varieties al-
gebraically. We also discuss some technical issues that arise.

To obtain an algebraic characterization of Hessenberg varieties, we use sub-
spaces of n×n matrices rather than the Hessenberg function h. The matrix basis
unit that is zero except in entry (i, j), where it is one, is denoted Eij . Each Hes-
senberg function defines a subspace of n × n matrices by Hh = 〈Eij : i ≤ h(j)〉.
We call Hh a Hessenberg space. The Hessenberg variety of X and h is

H(X, h) = {Flags [g] : g−1Xg ∈ Hh}.

Many examples of Hessenberg spaces come from classical Lie theory. If h is the
Hessenberg function with h(i) = i for each i then Hh is the set of upper-triangular
matrices. If h is the Hessenberg function given by h(i) = n for each i then Hh

consists of all n×n matrices. In fact, if Hh is any parabolic subalgebra, then Hh
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is a Hessenberg space and the corresponding h is one of the parabolic Hessenberg
functions from the Introduction.

Most Hessenberg spaces are not parabolic. For instance, the Hessenberg func-
tion given by h(i) = i+1 when i 6= n and h(n) = n corresponds to the subspace Hh

which is zero below the subdiagonal. Figure 3 shows this for n = 4. Hessenberg

h(1) = 2
h(2) = 3
h(3) = 4
h(4) = 4

←→




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗




Figure 3. One Hessenberg function and space when n = 4

varieties with this Hessenberg function are important in various applications, in-
cluding numerical analysis [dMPS] and computing quantum cohomology of the
flag variety (see [K] and [R]).

Our definition of Hessenberg functions omits one condition from the original
definition in [dMPS], which also requires h(i) ≥ i for each i. This paper studies
a strictly larger collection of varieties than in [dMPS]. Our generalization is
particularly useful when X is nilpotent. (When X is regular semisimple, the
variety H(X, h) will be empty if h(i) < i for each i.) Nilpotent Hessenberg
varieties arise naturally when studying representations of the symmetric group
on Hessenberg varieties that generalize Springer’s correspondance [MT].

Section 4 generalizes this definition (and other results) to all Lie types.

Our first proposition establishes that nilpotent Hessenberg varieties depend
only on the i for which the Hessenberg function does not satisfy h(i) = i.

Proposition 1.5. Fix n and fix i such that 1 ≤ i ≤ n. Suppose h is a Hessenberg
function with h(i) = i and that the function h′ defined by

h′(j) =
{

h(j) if j 6= i, and
i− 1 for i = j

is also a Hessenberg function. If X is nilpotent then H(X, h) = H(X, h′).

Proof. If g−1Xg ∈ Hh′ then g−1Xg ∈ Hh since Hh′ ⊆ Hh. Now assume g−1Xg ∈
Hh. We have

(g−1Xg)ei ∈ cei + 〈e1, . . . , ei−1〉
where ej are the standard basis vectors for Cn. Also

(g−1Xg)〈e1, . . . , ei−1〉 ⊆ 〈e1, . . . , eh(i−1)〉 ⊆ 〈e1, . . . , ei−1〉,
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since h(i− 1) < h(i) = i. Since X is nilpotent, applying g−1Xg to ei sufficiently
many (e.g. n) times should give zero. On the other hand we have

(g−1Xg)nei ∈ cnei + 〈e1, . . . , ei−1〉.
Therefore c = 0, and as a consequence g−1Xg lies in Hh′ . ¤

Comments from K. Rietsch greatly improved this proof. This lemma motivates
the following definition, also suggested by K. Rietsch.

Definition 1.6. For each linear operator X, the Hessenberg spaces H and H ′
are X-equivalent if H(X, H) = H(X, H ′). In this case, we write H ∼X H ′ and
say that H and H ′ are in the same X-equivalence class.

X-equivalence of Hessenberg functions is defined the same way.

The X-equivalence class of Hessenberg spaces (or functions) depends only on
the conjugacy class of X since H(X, H) ∼= H(g−1Xg,H) (see [T, Proposition
2.7]).

For instance, if X = 0 then there is only one X-equivalence class of Hessenberg
spaces. If X is nilpotent, then the Hessenberg function defined by h(i) = i for all i
is X-equivalent to the function defined by h′(i) = i−1 for all i. Alternatively, the
Hessenberg space consisting of all upper-triangular matrices is X-equivalent to
the space of all strictly upper-triangular matrices. (This fact is used frequently
in Springer theory.) We generalize this in the next corollary, whose proof is
immediate from Proposition 1.5.

Corollary 1.7. For each nilpotent linear operator X, there is a unique min-
imal element of each X-equivalence class of Hessenberg functions (respectively
Hessenberg spaces). This minimal element satisfies

• if there exists i such that h(i) = i, then h(i− 1) = i as well;
• if there exists a matrix

∑
cjkEjk in Hh and i such that the coefficient

cii 6= 0, then Eii and Ei−1,i are both in Hh.

Typically, we assume H and h are minimal in their X-equivalence classes.

2. Geometry and topology of Xh

In this section, we fix X to be the matrix E1n and study the Hessenberg
varieties

Xh = {Flags [g] : g−1E1ng ∈ Hh} = {Flags V1 ⊆ · · · ⊆ Vn : E1nVi ⊆ Vh(i)}.
We will show that these Hessenberg varieties are unions of Schubert varieties.
Loosely speaking, each Schubert variety comes from one “corner” of the Hessen-
berg space. We will identify explicitly these Hessenberg varieties, including which
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Schubert varieties arise and their dimensions. We will also show that many of
these Hessenberg varieties are not pure-dimensional.

Proposition 2.1. Xh is a union of Schubert varieties
⋃

Yw.

Proof. Each flag can be written in row echelon form as [uw] for some invertible
upper-triangular u and permutation matrix w. The flag [uw] is in Xh if and only
if w−1u−1E1nuw is in Hh. Direct calculation shows that u−1E1nu is a nonzero
scalar multiple of E1n for each upper-triangular u. Thus, the flag [uw] is in Xh if
and only if [w] is in Xh.

This means Xh is a union of Schubert cells, say Xh =
⋃

[Bw], and so Xh ⊆
⋃

Yw.
Since Xh is closed, it also contains the closures

⋃
[Bw] =

⋃
Yw. ¤

In general the variety H(X, h) is not a union of Schubert cells [Bw]. In fact,
if g−1Xg is another element of the conjugacy class of X, then typically at most
one of H(X, h) and H(g−1Xg, h) is a union of cells [Bw], even though the two
varieties are homeomorphic [T, Proposition 2.7]. For instance, suppose n = 3
and the Hessenberg function satisfies h(i) = i for each i. Each of H(E12, h)
and H(E13, h) is homeomorphic to two copies of P1 glued together at a point.
However, the variety H(E13, h) is the union of the Schubert varieties Ys1 ∪ Ys2 ,
while H(E12, h) is a one-dimensional closed subvariety of Ys2s1 .

For each i 6= j, let hij be the Hessenberg function defined by

hij(k) =
{

0 if k < j and
i if k ≥ j.

The corresponding Hessenberg space Hij is spanned by the matrix basis units
Ekl with k ≤ i and l ≥ j. In other words, Hij is the subspace of matrices which
are zero outside of the upper-right i× (n− j + 1) rectangle, as in Figure 4. For




i rows

{
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

︸ ︷︷ ︸
n-j+1

columns




Figure 4. Schematic diagram of Hij

example, Hn1 consists of all n × n matrices and H1n is just the span of E1n. If
the sun rises at the far left of the ith row, travels around the bottom left corner of
the matrix, and sets at the bottom of the jth column, then Hij is the shadow cast
by the matrix basis unit Eij during the course of the ‘day’. (A. Ottazzi created
this image in [O].)
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Lemma 2.2. For each pair i 6= j, let w be the permutation that has en in column
j, e1 in column i, and the other vectors inserted in decreasing order (en−1, en−2,
. . ., e2) in the remaining columns. Then XHij = Yw.

Proof. The proof has three parts. First, we show that if s is a permutation, then
[s] ∈ XHij if and only if s has e1 somewhere in its first i columns and en in its last
n− j + 1 columns. For each such s, we form the permutation s′ by moving e1 to
the ith column, moving en to the jth column, and keeping the other columns in
the same order as in s. We then show that s′ ≥ s. Finally, we show that w ≥ s′.

Suppose the matrix s has e1 in its kth column and en in its lth column. Since
s−1 = st, the matrix s−1 has e1 in its kth row. So

(1) s−1E1ns = Ekl.

This is in Hij if and only if k ≤ i and l ≥ j. We conclude that the flag [s] ∈ XHij

if and only if s−1e1 = ek for k ≤ i and s−1en = el for l ≥ j.

The permutation w satisfies this condition so XHij ⊇ Yw. We now show that
for any permutation s of this form, the flag [s] is in the variety Yw.

We begin by moving the column with en to the left or the column with e1 to
the right, as long as one of those moves is possible. Suppose l > j and either
the (l − 1)th column is not e1 or it is e1 and l − 1 6= i. The flag [ssl−1,l] is also
in XHij . Lemma 1.4 Part 2 showed ssl−1,l > s, so the corresponding Schubert
varieties satisfy Ys ⊆ Yssl−1,l

. (When k < i and either the (k + 1)th column is not
en or it is en but k + 1 6= j, use the flag [ssk,k+1] in a symmetric argument.)

A move of this sort will be impossible exactly when j < i and either

• i = k and l = k + 1 = i + 1 or
• l = j and k = j − 1 = l − 1.


 · · · e1 en · · ·




The diagram is a schematic for these cases: the vectors e1 and en are adjacent,
and the ith column is in place (respectively jth) while en is moving to the left
(respectively e1 to the right). Lemma 1.4 Part 2 shows that the permutation
obtained from s by exchanging its (i + 1)th and (i− 1)th columns is greater than
s in the Bruhat order (respectively j − 1 and j + 1).

Once e1 is to the right of en, successively multiply s on the right by sk,k+1 or
sl−1,l to obtain a permutation s′ with s′ ≥ s, so that s′(ei) = e1 and s′(ej) = en.

We now prove by induction that s′ ≤ w. Assume that the first t columns of s′
and w agree and the (t + 1)th does not. The (t + 1)th column of w is filled with
ew(t+1). Neither s′(t+1) nor w(t+1) is in {1, n} because s′(t+1) 6= w(t+1). Since
w and s′ agree in the first t columns, the column vector w(et+1) is none of es′(1),
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es′(2), . . ., es′(t), so there is a positive integer t1 such that s′(et+1+t1) = ew(t+1).
The permutation s′′ = s′st+1,t+1+t1 satisfies s′′ ≥ s′ by Lemma 1.4 Part 2. Since
neither e1 nor en moved, s′′ has s′′(ei) = e1 and s′′(ej) = en, and also agrees with
w in its first t + 1 columns. By induction, the claim follows. ¤

The following corollary restates the condition on w.

Corollary 2.3. For each pair i 6= j, let w be the largest permutation in the
Bruhat order that satisfies w−1E1nw = Eij. Then XHij = Yw.

We can factor w explicitly in terms of simple transpositions.

Corollary 2.4. Let w0 be the permutation with w0ek = en−k+1 for each k =
1, . . . , n. For each pair i 6= j, the Hessenberg variety XHij = Yw, where

w =
{

w0s12s23 · · · sj−1,jsn,n−1 · · · si+1,i if j < i and
w0s12s23 · · · sj−2,j−1sn,n−1 · · · si+1,i if j > i.

Proof. For each matrix M , the product Ms12s23 · · · sk,k+1 cyclically permutes
the first k + 1 columns of M , sending the first column to the (k + 1)th position
and moving each of the other columns one position to the left. Similarly, the
product Msn,n−1sn−1,n−2 · · · sk+1,k cyclically permutes the last n−k+1 columns,
moving the last column to the kth and moving the others one column to the right.
Cyclically permuting the first j (respectively j−1) columns and the last n− i+1
columns of w0 gives the permutation w of Lemma 2.2. ¤

This gives a closed formula for the dimension of XHij .

Corollary 2.5. For each i 6= j, the dimension of XHij is




(
n
2

)
− (j − 1 + n− i) if j < i and

(
n
2

)
− (j − 2 + n− i) if j > i.

Proof. The length of the permutation w0 is
(

n
2

)
. Let w = w0

∏
sk,k+1 be the

factorization from Corollary 2.4. Each simple transposition in this factorization
reduces the length of w0 by one, from Lemma 1.4 Part 1. ¤

2.1. The components of XH . It is usually difficult to identify the irreducible
components of Hessenberg varieties. However, when X = E1n, it can be done.

Proposition 2.6. For all H and H ′, we have XH∪H′ = XH ∪ XH′.
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Proof. The flag [w] is in XH∪H′ if and only if w−1E1nw is in H ∪ H ′. Since
w−1E1nw is a matrix basis unit, it is in H ∪H ′ if and only if either w−1E1nw is
in H or w−1E1nw is in H ′. This holds if and only if the flag [w] is in XH∪XH′ . ¤
Lemma 2.7. Let H and H ′ be Hessenberg spaces that are minimal in their E1n-
equivalence classes. Then XH ⊆ XH′ if and only if H ⊆ H ′.

Proof. We reduce to the case when XH and XH′ are Schubert varieties. Write
H =

⋃
Hij and H ′ =

⋃
H ′

i′j′ . Each Hij satisfies i 6= j since H is minimal in
its E1n-equivalence class (respectively i′ 6= j′). For each pair i 6= j, the matrix
Eij is in H ′ if and only if Eij ∈ H ′

i′j′ for some i′, j′. This holds if and only if
Hij ⊆ H ′

i′j′ . Consequently H ⊆ H ′ if and only if for each i, j there exist i′, j′ such
that Hij ⊆ H ′

i′j′ . We know XH =
⋃XHij and XH′ =

⋃XH′
i′j′

from Proposition
2.6. It suffices to show that XHij ⊆ XH′

i′j′
if and only if Hij ⊆ Hi′j′ .

Both XHij and XHi′j′ are a disjoint union of Schubert cells by Proposition 2.1.
This means the inclusion XHij ⊆ XHi′j′ holds if and only if each permutation flag
[s] in XHij is also contained in XHi′j′ . Equation 1 shows that [s] is in XHij if and
only if s−1E1ns = Ekl, where k and l satisfy the conditions k ≤ i and l ≥ j. It
follows that each permutation flag [s] in XHij is also in XHi′j′ if and only if i ≤ i′

and j ≥ j′, which is true if and only if Hij ⊆ Hi′j′ . ¤
Definition 2.8. A maximal decomposition of the Hessenberg space H is a union
H =

⋃
Hij so that no pair Hij, Hi′j′ satisfies Hij ⊆ Hi′j′.

If H is minimal in its E1n-equivalence class, then a maximal decomposition
H =

⋃
Hij further satisfies i 6= j for each Hij .

Corollary 2.9. Let H be minimal in its E1n-equivalence class. If H =
⋃

Hij is
a maximal decomposition, the components of XH are the Schubert varieties XHij .

Proof. Write XH =
⋃XHij as in Proposition 2.6. For each Hij , there is a unique

permutation wij such that [Bwij ] is dense in XHij by Lemma 2.2. For every
(i′, j′) 6= (i, j), Lemma 2.7 shows that [wi′j′ ] is not in XHij , and so [Bwi′j′ ]∩XHij

is empty. This means XHij is an irreducible component of XH . ¤
Corollary 2.10. Fix H, a minimal Hessenberg space in its E1n-equivalence class.
The Hessenberg variety XH is pure dimensional if and only if there exists an
integer k ∈ {1, 2, . . . , n − 1} and a subset I ⊆ {1, 2, . . . , n − k} such that either
H =

⋃
i∈I Hi,i+k or H =

⋃
i∈I Hi,i−k.

Proof. Let H =
⋃

Hij be a maximal decomposition and write XH as a union
of its irreducible components XHij . Each XHij is a Schubert variety that has

dimension
(

n
2

)
− (j − 1 + n− i) if j < i and

(
n
2

)
− (j − 2 + n− i) if j > i by
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Corollary 2.5. Given pairs (i, j) and (i′, j′), the varieties XHij and XHi′j′ have
the same dimension if and only if j − i = j′ − i′. ¤

This gives a collection of examples of nilpotent Hessenberg varieties that are
connected and not pure dimensional. For instance, the Hessenberg space H =
H41 ∪H54 of 5× 5 matrices gives a variety XH in GL5/B that is not pure.

3. A semisimple Hessenberg variety that is not pure dimensional

In this section, we describe another way that Hessenberg varieties can fail
to be pure dimensional. The next proposition generalizes an example that R.
MacPherson and I discovered.

Proposition 3.1. Fix X =
∑n−1

i=1 Eii. Let h be the Hessenberg function with
h(i) = n− 1 for all i ≤ n− 1, and h(n) = n. The variety H(X, h) is the disjoint
union of two components, one of which is homeomorphic to GLn−1/B and the
other of which is homeomorphic to a fiber bundle over Pn−2 with fiber GLn−1/B.
In particular, the Hessenberg variety H(X, h) is not pure dimensional.

Proof. By definition, each flag V• in H(X, h) satisfies XVn−1 ⊆ Vn−1. Since
X(

∑n
i=1 aiei) =

∑n−1
i=1 aiei, either

(1) en ∈ Vn−1 or
(2) Vn−1 = 〈e1, e2, . . . , en−1〉.

These conditions are closed and so define two closed subvarieties Y1 and Y2,
respectively, in GLn/B. The two conditions cannot be simultaneously satisfied
so H(X, h) is the disjoint union Y1 ∪ Y2. We now describe these subvarieties.

First we show that Y2
∼= GLn−1/B. The flag [g] satisfies Condition 2 if and

only if the matrix g is in

P =




GLn−1

∗
∗
...
∗

0 0 · · · 0C∗




.

In other words, the component Y2 is isomorphic to GLn−1/B via the isomorphism
that sends V1 ⊆ · · · ⊆ Vn−1 ⊆ Vn to the flag V1 ⊆ · · · ⊆ Vn−1 inside 〈e1, . . . , en−1〉.

Now we study Y1. Denote the Grassmannian of n−1-planes in Cn by G(n−1, n).
Write πn−1 : GLn/B −→ G(n − 1, n) for the projection that sends the flag
V1 ⊆ V2 ⊆ · · · ⊆ Vn to the subspace Vn−1. This is a continuous map; in fact, it is
the quotient map πn−1 : GLn/B −→ GLn/P .
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Restrict the map to πn−1|Y1 : Y1 −→ G(n− 1, n). The image πn−1(Y1) is

πn−1(Y1) = {Subspaces Vn−1 such that en ∈ Vn−1}.
This is isomorphic to the set of n− 2-dimensional subspaces in 〈e1, . . . , en−1〉, so
πn−1(Y1) ∼= G(n− 2, n− 1). Since G(n− 2, n− 1) ∼= Pn−2, we conclude that the
image πn−1(Y1) ∼= Pn−2.

We now identify the fiber (πn−1|Y1)
−1 (Vn−1) of each Vn−1 ∈ πn−1(Y1). The

flag W1 ⊆ · · · ⊆ Wn is in (πn−1|Y1)
−1 (Vn−1) if and only if Wn−1 = Vn−1. Every

flag in GLn/B satisfies Wn = Cn, so the fiber is characterized by

(πn−1|Y1)
−1 (Vn−1) = {Flags such that W1 ⊆ W2 ⊆ · · ·Wn−2 ⊆ Vn−1}.

This is the set of complete flags in Vn−1 and is homeomorphic to GLn−1/B.

Consequently, the map πn−1 : Y1 −→ πn−1(Y1) is a fiber bundle whose base
space is homeomorphic to Pn−2 and whose fiber is homeomorphic to GLn−1/B.

¤

For example, when n = 3 the Hessenberg variety H(X, h) is a disjoint union
of P1 and a P1-bundle over P1.

4. Generalizing to all Lie types

In this section, we discuss generalizations of these results to arbitrary Lie type.
Our exposition is brief; we assume our reader is familiar with the general theory.

Let G be a complex reductive linear algebraic group, g its Lie algebra, B a
fixed Borel subgroup, and b its Lie algebra. The full flag variety is G/B and its
elements are written [g]. Let T be a maximal torus contained in B and t be the
Cartan subalgebra associated to T . We will also use n−, the maximal nilpotent
subalgebra in the opposite Borel subalgebra b−. Let W be the Weyl group.

The positive roots in the root system corresponding to g are denoted Φ+ and
the negative roots are Φ−. The inner product on Φ is written 〈·, ·〉. We refer to the
length of roots, which can be either short or long. If α and β are two roots, then
α Â β means α − β is a sum of positive roots. (Note that this is not the partial
ordering where α > β means α−β is a positive root.) If α =

∑
ciαi is a (reduced)

sum of simple roots, then the support of α is the set supp(α) = {αi : ci 6= 0}.
Given α, we write Eα for a root vector corresponding to α.

A Hessenberg space H is a linear subspace of matrices such that [H, b] ⊆ H.
(This definition omits one condition from that found in [dMPS].) Suppose X is
in g and H is a Hessenberg space. The Hessenberg variety of (X, H) is given by

H(X, H) = {[g] ∈ G/B : g−1Xg ∈ H}.
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Proposition 4.1. Let Eθ be a weight vector for the highest weight θ. For each
Hessenberg space H, the variety H(Eθ,H) is a union of Schubert varieties.

This generalizes Proposition 2.1. The proof is the same as in Proposition 2.1:
the flag [bw] is in H(Eθ,H) if and only if w−1b−1Eθbw is in H, and the adjoint
action of B multiplies Eθ by a nonzero constant factor.

Definition 4.2. For each root α, define Hα to be minimal with respect to inclu-
sion among all Hessenberg spaces that contain the root vector Eα.

If α is positive then Hα is the span of the root vectors Eβ with β º α. However,
this is not true when α is negative. In that case, every positive root β satisfies
β º α, but Hα need not contain b.

Let N(supp(α)) = {αj : ∃αi ∈ supp(α) with 〈αj , αi〉 6= 0}. In other words,
N(supp(α)) consists of supp(α) as well as the simple roots that are joined to a
root in supp(α) by an edge in the Dynkin diagram for g.

Lemma 4.3. Let α ∈ Φ−. If H+
α = 〈Eβ : β ∈ Φ+, supp(β) ∩N(supp(α)) 6= ∅〉,

H−
α = 〈Eβ : β ∈ Φ− has β º α〉, and Tα = 〈[Eαi , E−αi ] : αi ∈ supp(α)〉, then

Hα = H−
α ⊕H+

α ⊕ Tα.

Proof. Recall that [Eβ , Eγ ] is a nonzero multiple of Eβ+γ if β + γ is a root, an
element Tβ of the Cartan subalgebra if γ = −β, and zero otherwise.

This identity implies that

H−
α =

⋂

Hess. spaces H

s.t. Eα ∈ H

H ∩ n−

and that the Cartan subalgebra t intersects [H−
α , b] exactly in Tα. The [b, ·]-

closure of Tα is H+
α .

We must show that [H−
α , b] ∩ b ⊆ Tα ⊕ H+

α . Suppose Eγ ∈ b and Eβ ∈ H−
α

satisfy γ +β ∈ Φ+. We will find a simple root αi ∈ supp(γ +β)∩N(supp(α)). If
the support of β is contained in the support of γ +β, then any αi ∈ supp(β) is as
desired, since supp(β) ⊆ supp(α) by definition of H−

α . If supp(β) 6⊆ supp(γ + β)
then we may write the support of γ as the (not necessarily disjoint) union
supp(γ) = supp(β) ∪ supp(γ + β). Suppose for every αi ∈ supp(γ + β) and
every αj ∈ supp(α) we have 〈αi, αj〉 = 0. Then the support of γ + β is not con-
nected to the support of α in the Dynkin diagram, and consequently the support
of γ + β is not connected to the support of β. In other words, the support of γ is
a disconnected subset of the Dynkin diagram. This contradicts the fact that the
support of each root is a connected subset of the Dynkin diagram (see [B, page
169]). So Eγ+β ∈ H+

α . ¤
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The next two results generalize Lemma 2.2.

Lemma 4.4. If α is a root of the same length as θ, there is a unique maximal
Weyl group element w that satisfies w−1θ = α.

Proof. Denote the stabilizer of θ in W by Stab(θ). Consider the left cosets
Stab(θ)\W . Each coset has a unique maximal element since Stab(θ) is para-
bolic. Also, each coset Stab(θ)u is determined by the root u−1θ. Since α and θ
are in the same W -orbit, there exists w with w−1θ = α. ¤

Proposition 4.5. Let α be a root of the same length as θ and let w be the
maximal Weyl group element with w−1θ = α. Then H(Eθ,Hα) = Yw.

Proof. For each element u in W , the flag [u] is in H(Eθ,Hα) if and only if
u−1Eθu ∈ Hα. Since u−1Eθu = Eu−1θ, the Hessenberg variety H(Eθ,Hα) is
a union of Schubert cells indexed by the elements in cosets of Stab(θ)\W . We
must show that if Eu−1θ ∈ Hα then w ≥ u in the Bruhat order.

The roots u−1θ and w−1θ have the same length. If u−1θ and w−1θ have the
same sign, then u−1θ º w−1θ if and only if w ≥ u by [St, Proposition 3.2]. Now
suppose u−1θ is positive and w−1θ is negative. Without loss of generality, let
u−1θ = αi be simple. If αi is in the support of w−1θ then siu

−1θ º w−1θ and so
w ≥ usi. Moreover, we know usi > u since usiαi ∈ Φ−. This gives w ≥ u.

If αi is not in the support of w−1θ then there exists an αj ∈ supp(w−1θ) such
that 〈αi, αj〉 6= 0 by Lemma 4.3. At least one simple root in supp(w−1θ) has
the same length as w−1θ and hence as αi. If the Dynkin diagram for g has a
multiedge, then the simple roots are long on one side of the multiedge and short
on the other. So the edge from αi to αj cannot be a multiedge. This means
that sjαi = siαj = αi + αj . The root sju

−1θ = αi + αj and so u > usj by [St,
Proposition 3.2]. Let u = vsj be a reduced factorization. Then sjsiv

−1θ = −αj

and w ≥ vsisj , again by [St, Proposition 3.2]. The factorization vsisj is reduced
because vsi > v ([St, Proposition 3.2]) and vsisj > vsi (because vsisjαj ∈ Φ−).
We conclude that w ≥ vsisj > u. ¤

5. Questions

We first ask about the relation between Schubert and Hessenberg varieties.

Question 5.1. Are all Schubert varieties Hessenberg varieties? If not, describe
explicitly the Schubert varieties that are also Hessenberg varieties.

The matrices in the Hessenberg spaces of Corollary 2.10 are said to be in banded
Hessenberg form, a form used in numerical analysis (see [dMPS]). We ask if this
algebraic property is related to the geometric condition of purity.
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Question 5.2. Let X be any linear operator. If H is in banded Hessenberg form,
is the Hessenberg variety H(X, H) necessarily pure-dimensional?

The next question arises because of the representations on the cohomology of
Springer fibers. We wonder whether the highest-weight Hessenberg varieties of
Sections 2 and 4 also carry interesting geometric actions.

Question 5.3. Does the cohomology of the highest-weight Hessenberg varieties
carry interesting group actions? Is there an interesting group action on the
highest-weight Hessenberg variety that permutes its irreducible components?

[dMPS] proved that regular semisimple Hessenberg varieties are smooth.

Question 5.4. Are all semisimple Hessenberg varieties smooth?
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