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Geometric Theory of Lattice Vibrations
and Specific Heat

Mikhail Shubin and Toshikazu Sunada

Abstract: We discuss, from a geometric standpoint, the specific heat of a
solid. This is a classical subject in solid state physics which dates back to
a pioneering work by Einstein (1907) and its refinement by Debye (1912).
Using a special quantization of crystal lattices and calculating the asymptotic
of the integrated density of states at the bottom of the spectrum, we obtain
a rigorous derivation of the classical Debye T 3 law on the specific heat at
low temperatures. The idea and method are taken from discrete geometric
analysis which has been recently developed for the spectral geometry of
crystal lattices.

1. Introduction

The primary purpose of this note is to discuss some dynamical properties of
solids, more specifically lattice vibrations in crystalline solids, from a geometric
view point. In particular, we are concerned with a mathematically sound compu-
tation of the specific heat, a typical thermodynamic quantity in solid state physics.
The main idea is to employ a technique in discrete geometric analysis developed
originally for the study of random walks on crystal lattices ([10], [11]), and math-
ematical apparatus such as von Neumann trace and direct integrals which make
the discussion more transparent than the existing ones.

Theoretical computation of the specific heat at low temperature had been one
of the central themes in quantum physics at the beginning of the last century (see
[13] and [4] for the history). The crucial point in the computation is to regard a
solid as a crystal lattice realized periodically in the space R3.

To explain what crystal lattices mean, let V be the set of constituent atoms in
a solid, and Φ : V −→ R3 be the injective map representing an arrangement of
atoms in equilibrium positions. Considering elements in V to be vertices, we join
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two elements in V by an (abstract) edge if they (as atoms) are bound by atomic
forces, and extend Φ to the set of edges as a piecewise linear map. We thus have
a graph X = (V, E) realized in R3 where E denotes the set of all oriented edges.
When Φ(X) is invariant under the action of a lattice L ⊂ R3 by translations, the
graph X (or its realization Φ(X)) is said to be a crystal lattice.

The inter-atomic forces allow the vibrations of atoms which involve small ex-
cursions from the equilibrium positions. We may describe the vibration by the
(linearized) equation of motion

d2f
dt2

= Df ,

where D is a certain linear difference operator of the “second order” on X involv-
ing masses of atoms and inter-atomic forces in the coefficients, and f = f(t, x)
stands for the displacement from the equilibrium position (thus the position of
an atom x at time t is Φ(x) + f(t, x)).

Following Planck’s idea on “energy quanta” originally applied to black-body
radiation (1900), or according to the quantum mechanics founded by Heisenberg
and Schrödinger (1925-26), physicists usually go forward as follows.

(1) Consider the lattice vibration as an infinite-dimensional system of harmonic
oscillators.

(2) Decompose the system into independent simple harmonic oscillators, and
calculate the distribution of vibration frequencies.

(3) Apply statistical mechanics to determine the macroscopic equilibrium state
(the Gibbs state) of the quantized lattice vibration, and compute the internal
energy U = U(T ) (per unit cell) where T is the absolute temperature. Then the
specific heat is given by

C(T ) =
∂U

∂T
.

(See any textbook of solid state physics, for instance, [7], [9], or a review paper
[3], for the detail of this procedure in which one may see a daring manner of
physicists to bring us effectively to the correct result. An exception is the book
[4] by Born and Huang, which, in the second half, is written in a strictly deductive
style.)

This set routine leads us to the expression

U(T ) = const +
∫ ∞

0

}
√

λ

e}
√

λ/KT − 1
dϕ(λ),(1)

where

h = 2π} = Planck constant,
K = Boltzmann constant,
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and ϕ(λ) is the (integrated) density of states satisfying the normalization condi-
tion ∫ ∞

0
dϕ(λ) = 3n (n = the number of atoms in a unit cell).

The function ϕ(λ) is closely related to the distribution of vibration frequencies
(actually,

√
λ/2π represents the frequency parameter, and hence }

√
λ stands for

“energy quanta”). As is easily seen, the behavior of the specific heat at low
temperature relies heavily on the asymptotic behavior of ϕ(λ) around λ = 0. In
the early stages of quantum physics, however, physicists had no rigorous methods,
in marked contrast to the case of the black-body radiation, to acquire precise
information on ϕ(λ) through the microscopic structure of a solid so that they
were forced to make daring hypothesis on the shape of ϕ(λ) (indeed, it was
in 1912 when the discrete structure of solids were confirmed by means of the
diffraction of X-rays).

The first substantial result was established by A. Einstein in 1907 (two years
after the publication of his three famous papers; [6]). He adopted a function ϕ(λ)
defined by

ϕ(λ) =

{
0 (λ ≤ λ0)
3n (λ > λ0)

with one characteristic frequency
√

λ0/2π, or equivalently
dϕ

dλ
= 3nδ(λ− λ0)

(i.e. replacing the vibration spectrum by a set of oscillators at a single frequency)
to claim

C(T ) = 3nK
(}√λ0

KT

)2 e}
√

λ0/KT

(e}
√

λ0/KT − 1
)2 .

In spite of the seemingly unrealistic model, this formula explains well not only
the law of Dulong and Petit at high temperature :

C(T ) ≡ 3nK,

which had been known since 1791 in the setting of classical mechanics, but also
the qualitative fact that, if T goes to zero, then so does C(T ) as experimental
results show (H. Nernst; 1910). Note, however, that Einstein’s formula for C(T )
has exponential decay as T ↓ 0, which turns out to be quite incorrect.

In 1912 ([5]), Debye proposed, without any knowledge of the lattice structure
of crystals as in Einstein’s case, to take the function

(2) ϕ(λ) =





0 (λ ≤ 0)
c0λ

3/2 (0 ≤ λ ≤ λD)
c0λ

3/2
D (λ ≥ λD)

,



748 Mikhail Shubin and Toshikazu Sunada

with a suitable positive constant c0. The quantity λD is taken so as to satisfy
∫ λD

0
dϕ(λ) = 3n.

Debye’s distribution ϕ may be inferred from the intuitive observation that
the continuum limit of a crystal lattice is a (uniform) elastic body, and that,
in the limit, the density of states for lattice vibrations may be replaced by the
one for elastic waves in a region of low frequencies. Actually, the constant c0 is
determined in such a way that the function c0λ

3/2 is the integrated density states
for elastic waves (see Section 10). This view is natural because to one not aware
of the atomic constitution of solids, a solid appears as an elastic continuum. In
particular, it is deduced that, if the elastic body is isotropic, then the constant
c0 is given by

c0 =
V
6π2

( 1
c3
l

+
2
c3
t

)
,

where

cl = the longitudinal phase velocity,

ct = the transverse phase velocity,

V = the volume of the unit cell

(as a matter of fact, the crystalline solids are never isotropic, so that the constant
c0 above should be replaced by an average of phase velocities over all directions
of propagation; see [4] or Section 7).

With his choice of the distribution ϕ, Debye gave the following neat formula
for the specific heat

C(T ) = 9nK
( T

ΘD

)3
∫ ΘD/T

0

x4ex

(ex − 1)2
dx.

The quantity ΘD is what we call the Debye temperature. It is defined by

ΘD =
}
K

√
λD.

In particular, it is found that, as T goes to zero,

C(T )∼ 12
5

π4nK
( T

ΘD

)3

∼ 2
15

π2V
( 1

c3
l

+
2
c3
t

)
K4}−3T 3 (in the isotropic case).

This is the T 3-law which agrees well with the experimental data.

Debye’s model (2) is still crude since the real shape of the distribution ϕ(λ)
turns out to be quite different from (2) in the region of high frequencies. As far
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as the T 3-law is concerned, however, we only need the asymptotic property

(3) ϕ(λ) ∼ c0λ
3/2 (λ ↓ 0).

To establish this asymptotic behavior in a rigorous way, we shall observe, on the
one hand, that ϕ(λ) is expressed as the von Neumann trace of the projection E(λ)
appearing in the spectral resolution of the operator D. On the other hand, we
see that D is decomposed into a direct integral over the unitary character group
of the lattice L (this corresponds to the decomposition of the lattice vibration
into independent simple harmonic oscillators). In these discussions, a crucial fact
is that D commutes with the action of the lattice on the crystal lattice.

A discrete analogue of trace formulae elucidates a close relation between the
function ϕ and the family of perturbed operators appearing in this direct integral
(actually the formula (1) is derived from this observation). Up to this point, we
do not require a detailed form of the operator D. To proceed further, we must
impose a special condition on the matrix of atomic force constants which seems
appropriate from both the nature of dynamics and the geometric view. This
condition combined with a standard perturbation technique allows us to establish
(3) without resorting to Debye’s continuum theory.

Overall, we shall follow, in a slightly different fashion, the journey which physi-
cists usually make to perform computation of the specific heat. Besides some
mathematical tools and ideas, the main difference is in the use of the terminol-
ogy in graph theory which has a great advantage: not only allows it to avoid the
redundancy of suffixes in the formulas, but also naturally brings geometric ideas
at our disposal. This is the reason why we describe the crystal lattice as a graph.

2. Crystal lattices

We shall use the following notations. Given an oriented edge e ∈ E of a graph
X = (V, E), we put

oe = the origin of e,

te = the terminus of e,

e = the inverse edge of e,

and write, for x ∈ V ,
Ex = {e ∈ E; oe = x}.

Let X = (V, E) be a crystal lattice realized in R3. We will always assume
that the graph X is connected. (This assumption is natural if we wish X to
imitate a single piece of a real crystal.) The lattice L acts freely on X by graph-
automorphisms through the map Φ. We write the action of L on V and E as
(σ, x) 7→ σx and (σ, e) 7→ σe, respectively. Hence Φ(σx) = Φ(x) + σ. We denote
by V0 (resp. E0) the quotient set of V (resp. E) by the action of L. Then a graph
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structure is induced on X0 = (V0, E0) in such a way that the crystal lattice X is
an infinite-fold abelian covering graph over X0 with the covering transformation
group L. The set V0 is obviously finite. We assume that E0 is also finite (thus we
are treating the case of finite range interaction). For the later purpose, we take
a fundamental set F in V for the L-action.

Assume that two atoms x and y are of the same kind if they are in the same
L-orbit, that is, if there exists σ ∈ L such that y = σx. Denote by m(x) the mass
of the atom x. As a function on V , m is L-invariant, and hence is regarded as a
function on V0.

We fix a unit cell, that is, a fundamental domain for the action of L on R3

by translations (for instance, take a fundamental parallelotope). The number of
atoms in a unit cell coincides with the number of vertices in X0, which we denote
by n. We write m(V0) =

∑
x∈V0

m(x), which is the total mass of atoms in the
unit cell.

We denote by a · b the standard inner product on R3. Let L∗ be the dual
lattice of L defined by

L∗ = {η ∈ R3; η · σ ∈ Z (σ ∈ L)}.
The lattice 2πL∗ is what physicists usually call the reciprocal lattice. Thus
2πη (η ∈ R3) play the role of wavenumber vectors in the physical context.

Examples (1) The cubic lattice X = (V, E) is a crystal lattice with V = Z3 ⊂
R3. Two vertices (m1,m2,m3), (n1, n2, n3) are joined by an edge if and only if∑3

i=1 |mi − ni| = 1. For the standard lattice L = Z3 acting on X in a natural
manner, the quotient graph X0 is the 3-bouquet graph consisting of a unique
vertex with three loop edges.

(2) The diamond lattice is defined as follows. Let e1, e2, e3 be the standard
basis of R3, and let L be the lattice generated by e1 + e2, e2 + e3, e3 + e1. Then
put

V = L ∪ (
L + (1/2, 1/2, 1/2)

)
.

Two vertices joined by an edge should have the forms

(m2 + m3,m3 + m1,m1 + m2), (n2 + n3 +
1
2
, n3 + n1 +

1
2
, n1 + n2 +

1
2
)

satisfying one of the following conditions

(i) m1 = n1, m2 = n2, m3 = n3,

(ii) m1 = n1 + 1, m2 = n2, m3 = n3,

(iii) m1 = n1, m2 = n2 + 1, m3 = n3,

(iv) m1 = n1, m2 = n2, m3 = n3 + 1.
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It is easily checked that the quotient graph X0 by the action of L on X is the
graph with two vertices joined by 4 multiple edges.

3. The equation of motion

The purpose of this section is to seek the form of the operator D. To this
end, we impose several conditions on the dynamics of lattice vibrations. The
discussion here is rather formal in the sense that we do not specify the domains
of linear operators which we introduce.

The lattice vibrations are supposed to be governed by a potential energy
uΦ(f) = u(Φ + f). Expand it for small f as

uΦ(f) = uΦ(0) + GΦ · f +
1
2
KΦf · f + · · · ,

where f ·g =
∑

x∈V f(x)·g(x), and KΦ is a linear operator acting on displacements
and satisfying

(4) KΦf · g = f ·KΦg.

The first order term GΦ ·f must be zero, and KΦf ·f ≥ 0 because of the stability of
the equilibrium positions. By omitting higher order terms as usual (i.e. neglecting
a coupling produced by “anharmonic” terms), we write

uΦ(f) = uΦ(0) +
1
2
KΦf · f ,

and get the equation of motion

(5) m(x)
d2f
dt2

(x) = −grad uΦ = −(KΦf)(x).

Since the atomic force acts between two atoms x and y if and only if they are
joined by an edge, we may write

−(KΦf)(x) =
∑

e∈Ex

AΦ(e)f(te) + BΦ(x)f(x),

where AΦ(e) and BΦ(x) are linear transformations of R3.

We impose a somewhat strong assumption on KΦ. We assume that, if Φ′ is
another realization obtained by a rigid motion of Φ, then the equation

m(x)
d2f ′

dt2
(x) = −(KΦ′f ′)(x)

is equivalent to (5) provided that Φ + f = Φ′ + f ′. This property leads to

KΦ′ = KΦ, KΦ′(Φ− Φ′) = 0.

We write K = KΦ, A = AΦ, B = BΦ.
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Applying KΦ′(Φ− Φ′) = 0 to the case Φ′ = Φ + v, (v ∈ R3), we get
∑

e∈Ex

A(e) + B(x) = 0,

or equivalently

−(Kf)(x) =
∑

e∈Ex

A(e)
(
f(te)− f(oe)

)
,

so that if we put

Df(x) =
1

m(x)

∑

e∈Ex

A(e)
(
f(te)− f(oe)

)
,

then the equation of motion is given by

d2f
dt2

= Df .

Applying also KΦ′(Φ− Φ′) = 0 to the case Φ′ = UΦ, U ∈ SO(3), we have
∑

e∈Ex

A(e)Uv(e) =
∑

e∈Ex

A(e)v(e),

where v(e) = Φ(te) − Φ(oe) which may be regarded as a function on E0 due to
the periodicity. Since {U − I; U ∈ SO(3)} spans M3(R), the space of all real
3× 3 matrices (see Lemma 3.1 for a proof), we conclude

∑

e∈Ex

A(e)Tv(e) = 0

for every T ∈ M3(R), or equivalently

(6)
∑

e∈Ex

A(e)⊗ v(e) = 0 (as a tensor),

that is ∑

e∈Ex

A(e)ijv(e)k = 0

for every i, j, k.

We call A(e) the matrix of atomic force constants. From the nature of crystals,
it is natural to assume that A(σe) = A(e) (σ ∈ L) (hence A(e) is regarded as
a matrix-valued function on E0). The symmetry condition KΦf · g = f · KΦg
is equivalent to A(e) = tA(e). If A(e) is symmetric, i.e. A(e) = A(e), then the
condition Kf · f ≥ 0 is equivalent to

∑

e∈E

A(e)
(
f(te)− f(oe)

) · (f(te)− f(oe)
) ≥ 0.
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From now on, we assume, together with (6), that A(e) is symmetric and pos-
itive definite (this condition is natural if we assume that the interaction among
atoms is a superposition of two-body interactions).

Example (1) (Monoatomic crystal lattices) This is the case that X0 is a bou-
quet graph (i.e. the case that the unit cell contains exactly one atom). If A(e) is
symmetric, then the condition (6) is satisfied since v(e) = −v(e).

(2) (The scalar model) This is the case that A(e) = a(e)I with a positive-
valued function a(e) on E such that a(e) = a(e). If

(7)
∑

e∈Ex

a(e)
(
Φ(te)− Φ(oe)

)
= 0,

then the condition (6) is satisfied. It should be interesting to point out that Φ
satisfying (7) is a discrete analogue of (vector-valued) harmonic functions, and
that Φ induces a “harmonic map” of X0 into the flat torus R3/L (see [12]).

We conclude this section with a proof for the following lemma which we have
employed to deduce the condition (6).

Lemma 3.1. Let T ∈ Mn(R) be a real n × n matrix. If n ≥ 3, then there exist
U1, . . . , UN ∈ SO(n) and real scalars c1, . . . , cN such that

T = c1(U1 − I) + · · ·+ cN (UN − I).

Proof. It is enough to prove that, if tr T (U−I) = 0 for every U ∈ SO(n), then
T = O (the zero matrix). Take a skew-symmetric matrix S. Then etS ∈ SO(n)
for t ∈ R, so that differentiating both sides of tr TetS = tr T , we find tr TS = 0.
Using

tr T ∗S = tr ST ∗ = −tr S∗T ∗ = −tr TS = 0,

we obtain tr (T − T ∗)S = 0. Thus T = T ∗. Without loss of generality, we may
assume T = diag(λ1, . . . , λn), a diagonal matrix. For U = (uij) ∈ SO(n),

tr T = tr TU = λ1u11 + · · ·+ λnunn,

so that
λ1 + · · ·+ λn = λ1u11 + · · ·+ λnunn.

Applying this to

U =




cos θ− sin θ O
sin θ cos θ
O In−2


 ,

we obtain
λ1 + · · ·+ λn = (λ1 + λ2) cos θ + λ3 + · · ·+ λn,

which implies that λ1 + λ2 = 0. In the same way, we have λi + λj = 0 for i 6= j.
Therefore we conclude that λ1 = · · · = λn = 0, and hence T = O as desired. ¤
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Remark If n = 2, then the claim of Lemma 3.1 is not true.

4. Continuum limit of a crystal lattice

The condition (6) was deduced by a rather forcible and formal argument. How-
ever, this condition turns out to be natural as we shall see below, once we agree
that a crystal lattice is a discretization of a (uniform) elastic body, or the other
way around, the continuum limit of a crystal lattice is an elastic body. We will
also see that (6) plays a significant role in the later discussion.

We shall infer what the continuum limit of the crystal lattice X should be by
comparing lattice vibrations with elastic waves. The outcome is used to give a
physical meaning to the constant c0, but is not required to establish the asymp-
totic of the density of states.

We first recall that, in general, an elastic body is characterized by the mass
density ρ and the elastic constant tensor Cαiβj satisfying Cαiβj = Ciαβj = Cαijβ =
Cβjαi (see [15]). An elastic wave f = f(t,x), t ∈ R, x ∈ R3, propagating in the
elastic body, is a solution of the wave equation

(8) ρ
∂2f
∂t2

=
3∑

i,j=1

∂

∂xi

(
Aij

∂f
∂xj

)
,

where, for each i, j, Aij is a matrix-valued function on R3 defined by

(Aij)αβ = Cαiβj (the (α, β)-component of the matrix Aij).

We easily see that tAij = Aji.

We assume that the elastic body obtained as the continuum limit is uniform
in the sense that ρ and Aij are constant. Symmetrizing Aij if necessary, we may
assume Aij = Aji.

It is natural, from the nature of mass density, to put ρ = m(V0)/V. To surmise
the form of the matrix Aij , take a smooth function f : R×R3 → R3, and define
fδ : R× V → R3 by setting

fδ(t, x) = f
(
δt, δΦ(x)

)
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(thus fδ is a discretization of f with respect to the space variable). Then

−(Kfδ)(t, x) =
∑

e∈Ex

A(e)
[
f(δt, δΦ(te))− f(δt, δΦ(oe))

]

= δ

3∑

i=1

∑

e∈Ex

v(e)iA(e)
∂f
∂xi

(
δt, δΦ(x)

)

+
1
2
δ2

3∑

i,j=1

∑

e∈Ex

v(e)iv(e)jA(e)
∂2f

∂xi∂xj

(
δt, δΦ(x)

)
+ · · · ,

where v(e) =
(
v(e)1, v(e)2, v(e)3

)
. Under the condition (6), the first term van-

ishes. Therefore, we have, for a sequence {xδ} in V with limδ↓0 δΦ(xδ) = x, and
a sequence {tδ} in R with limδ↓0 δtδ = t,

lim
δ↓0

−δ−2
(
Kfδ

)
(tδ, xδ) =

1
2

3∑

i,j=1

∑

e∈E0,x

v(e)iv(e)jA(e)
∂2f

∂xi∂xj
(t,x),

provided that {xδ} is in the orbit containing x ∈ F . On the other hand,

lim
δ↓0

δ−2m(xδ)
d2fδ
dt2

(tδ, xδ) = m(x)
∂2f
∂t2

(t,x).

Thus, taking the sum over the fundamental set F , and dividing by V, we may
presume that the equation of motion approaches the equation

ρ
∂2f
∂t2

=
1

2V

3∑

i,j=1

∑

e∈E0

v(e)iv(e)jA(e)
∂2f

∂xi∂xj

as the mesh of the lattice becomes finer. This implies that the (symmetrized)
elastic constant tensor of the elastic body corresponding to our crystal lattice is
given by

Aij =
1

2V

∑

e∈E0

v(e)iv(e)jA(e).

Remark The differential operator (the elastic Laplacian)

ρ−1
3∑

i,j=1

∂

∂xi

(
Aij

∂

∂xj

)

can be written as −d∗d, where

d : A0(R3,R3) −→ A1(R3,R3)

is the exterior differentiation acting on R3-valued differential forms, that is,

df =
3∑

i=1

∂f
∂xi

dxi.
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The operator d∗ is the formal adjoint of d with respect to the inner products on
Ai(R3,R3) (i = 0, 1) defined by

〈f ,g〉 =
∫

R3

f · g ρ dx (f ,g ∈ A0(R3,R3)),

〈ω, η〉 =
∫

R3

3∑

i,j=1

Aijωj · ηi dx (ω, η ∈ A1(R3,R3)),

where ω = (ω1, ω2, ω3), η = (η1, η2, η3).

We now return to the difference operator D. We easily see that D is an L-
equivariant linear operator of C(V,C3), the space of C3-valued functions on V .
If we define the Hilbert space `2(V, m) by

`2(V, m) = {f ∈ C(V,C3); ‖f‖2 :=
∑

x∈V

f(x) · f(x)m(x) < ∞},

then D restricted to the subspace `2(V, m) is a bounded self-adjoint operator of
`2(V, m). We call D the discrete elastic Laplacian. This naming is justified by
the expression

D = −d∗d,

where d : `2(V, m) → `2(E, A), a discrete analogue of the exterior differentiation
(or the coboundary operator in cohomology theory), is defined by

df(e) = f(te)− f(oe),

and

`2(E, A) = {η : E → C3; η(e) = −η(e),

‖η‖2 :=
1
2

∑

e∈E

A(e)η(e) · η(e) < ∞}.

Indeed, the explicit expression for d∗ is given by

(9) (d∗ω)(x) = − 1
m(x)

∑

e∈Ex

A(e)ω(e).
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This is checked by the following computation.

〈df , ω〉= 1
2

∑

e∈E

A(e)
(
f(te)− f(oe)

) · ω(e)

=
1
2

∑

e∈E

(
f(te)− f(oe)

) · tA(e)ω(e)

=
1
2

∑

e∈E

f(te) ·A(e)ω(e)− 1
2

∑

e∈E

f(oe) ·A(e)ω(e)

=−
∑

e∈E

f(oe) ·A(e)ω(e),

where we have used the assumption tA(e) = A(e). The last term is written as

−
∑

x∈V

f(x) ·
( 1

m(x)

∑

e∈Ex

A(e)ω(e)
)
m(x),

from which (9) follows.

Therefore the operator D is not only a discretization of the elastic Laplacian,
but also its conceptual analogue.

5. Hamiltonian formalism for lattice vibrations

This section is devoted to a brief explanation for the quantization of lattice
vibrations which is performed in a slightly different way from the current one in
the physical literature. To this end, we shall start with the Hamiltonian formalism
for lattice vibrations.

We put S = `2(V, m), and denote by 〈·, ·〉 the inner product on the Hilbert
space S. We shall regard S as a symplectic vector space with the symplectic form
ω defined by

ω(u, v) = Im〈u, v〉 (u, v ∈ S)
(Im z denotes the imaginary part of z ∈ C). Define the Hamiltonian H by

H(u) =
1
2
〈
√
−Du, u〉.

Then the Hamiltonian equation for H is given by
du

dt
= −√−1

√
−Du,

which is obviously equivalent to the equation
d2f
dt2

= Df . (The equivalence can

be established, for example, by the relation f = Re u).

We wish to quantize the Hamiltonian system (S, ω, H). To avoid the difficulty
arising from the infinite-dimensionality of S, we shall decompose (S, ω, H) into
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a direct integral of finite dimensional Hamiltonian systems. The idea, which
essentially dates back to Bloch’s work on periodic Schrödinger operators and
has been taken up in a different manner by physicists, is to use the irreducible
decomposition of the regular representation ρr of L on the Hilbert space

`2(L) = {f : L → C;
∑

σ∈L |f(σ)|2 < ∞}:

(10) (ρr, `
2(L)) =

∫ ⊕

bL
(χ,C)dχ,

where L̂ is the unitary character group of L, and dχ denotes the Haar measure
on L̂, which is normalized so that

∫
bL

dχ = 1.

Similarly to (10), we may construct a direct integral decomposition

(11) (S, ω, H) =
∫ ⊕

bL
(Sχ, ωχ,Hχ)dχ.

Namely, we take

Sχ = {u : V → C3; u(σx) = χ(σ)u(x)},
ωχ(u, v) = Im〈u, v〉χ,

Hχ(u) =
1
2
〈√−Dχu, u〉χ,

where
〈u, v〉χ =

∑

x∈F
u(x) · v(x)m(x)

is the scalar product in Sχ. Note that dim Sχ = 3n, and Sχ is an invariant
subspace (in fact, even an eigenspace) of the action of L in C(V,C3) (the space
of all C3-valued fuctions on V ). Late we will sometimes refer to the elements of
Sχ as Bloch functions, and to the components of different objects in the direct
integral decomposition above as the Bloch components.

Note that the action of L in Sχ is not irreducible (unlike the corresponding
subspace for the action of L in `2(L)). The isometry between S and the direct
integral ∫ ⊕

bL
Sχ dχ

is given as follows. For u ∈ S with finite support, define uχ ∈ Sχ by

(12) uχ(x) =
∑

σ∈L

χ(σ)−1u(σx).
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Then the extension of the correspondence u 7→ {uχ} gives rise to the desired
isometry. The inverse isometry is

(13)
{

sχ ∈ Sχ; χ ∈ L̂
}
7→ u(x) =

∫
bL

sχ(x)dχ,

where we assume that the function χ 7→ sχ is square-integrable on L̂.

The “twisted” operator Dχ is defined to be the restriction of D : C(V,C3) −→
C(V,C3) to Sχ ⊂ C(V,C3). It should be pointed out that, in physical terms, the
direct integral decomposition (11) corresponds to the “sum” over wavenumber
vectors.

Since d and d∗ are also decomposed as

d =
∫ ⊕

bL
dχ dχ,

d∗ =
∫ ⊕

bL
(d∗)χ dχ,

and (d∗)χ = (dχ)∗, we have Dχ = −d∗χdχ, and hence Dχ ≤ 0. Furthermore, if
χ 6= 1 (1 being the trivial character), then Dχ < 0. Note that 0 is an eigenvalue of
−D1 of multiplicity three whose eigenfunctions are constant, because we assumed
X to be connected (hence X0 is connected too). We enumerate the eigenvalues
of −Dχ as

0 ≤ λ1(χ) ≤ λ2(χ) ≤ · · · ≤ λ3n(χ).

The functions λi(χ) are continuous on L̂, and the first three eigenvalues λ1(χ),
λ2(χ), λ3(χ) are perturbations of the eigenvalue 0 = λ1(1) = λ2(1) = λ3(1) of
−D1, which are said to be acoustic branches, while other eigenvalues are said to
be the optical branches.

Remark. The spectrum σ(−D) coincides with

3n⋃

k=1

Image λk.

Therefore −D has a band spectrum in the sense that σ(−D) is a union of finitely
many closed intervals. In the case of monoatomic lattices, we only have acoustic
branches, and σ(−D) is an interval.

Choose an orthonormal basis e1, . . . , e3n of Sχ such that

−Dχei = λi(χ)ei.
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Then the R-basis {e1, . . . , e3n,
√−1e1, . . . ,

√−1e3n} yields a canonical linear co-
ordinate system (p1, . . . , p3n, q1, . . . , q3n) by setting

u =
3n∑

i=1

(qi +
√−1pi)ei.

In terms of this coordinate system, the Hamiltonian Hχ is expressed as

Hχ =
1
2

3n∑

i=1

√
λi(χ)

(
p2

i + q2
i

)
.

Note that Hχ,i =
1
2

√
λi(χ)

(
p2

i + q2
i

)
is the Hamiltonian of the simple harmonic

oscillator with the frequency
√

λi(χ)/2π. Therefore the quantized Hamiltonian
for Hχ is given by

Ĥχ =
1
2

3n∑

i=1

√
λi(χ)

(
− }2 ∂2

∂q2
i

+ q2
i

)
=

3n∑

i=1

Ĥχ,i.

The standard fact tells that the spectrum of the quantized Hamiltonian Ĥχ,i (χ 6=
1) consists of simple eigenvalues

Eχ,i,k = }
√

λi(χ)
(
k +

1
2

)
(k = 0, 1, 2, . . .).

The “quantum particle” with the energy Eχ,i,k is said to be a phonon.

6. Computation of the internal energy

Following a general recipe in quantum statistical mechanics (more precisely,
the Bose-Einstein statistics for phonons), we define the partition function for Ĥχ,i

by

Zχ,i(T ) =
∞∑

k=0

e−Eχ,i,k/KT =
e−}

√
λi(χ)/2KT

1− e−}
√

λi(χ)/KT
.

Then the internal energy of Ĥχ,i for the Gibbs distribution

pk = Zχ,i(T )−1e−Eχ,i,k/KT (k = 0, 1, 2, . . .)

is given by

Uχ,i(T ) =
∞∑

k=0

Eχ,i,kpk = }
√

λi(χ)

[
1
2

+
1

e}
√

λi(χ)/KT − 1

]
.



Geometric Theory of Lattice Vibrations and Specific Heat 761

In view of the additive property of the internal energy, it is natural to define
the internal energy of the lattice vibration (per unit cell) by

U(T ) =
∫
bL

3n∑

i=1

Uχ,i(T ) dχ,

which is expressed as

}
2

∫
bL

tr
√−Dχ dχ +

∫
bL

tr
}
√−Dχ

e}
√
−Dχ/KT − 1

dχ = U0 + U1(T ).

To transform this formula into one in terms of the density of states, we employ
the notion of von Neumann trace (or L-trace; see [1]), which is defined, for a
L-equivariant bounded linear operator T : S → S, as

trL T =
∑

x∈F
tr t(x, x)m(x),

where t(x, y) is the kernel function (matrix) of T , that is,

(14) T f(x) =
∑

y∈V

t(x, y)f(y)m(y).

Note that t(x, y) is a 3×3 complex matrix for fixed x and y, and the matrix-valued
function x, y 7→ t(x, y) is invariant under the diagonal action of L on V ×V given
by σ(x, y) = (σx, σy). In particular, the scalar function x 7→ tr t(x, x)m(x) is
L-invariant on V , hence the trace trL T in the definition above does not depend
upon the choice of the fundamental domain F .

We should point out that the notion of L-trace is introduced in a more general
setting, say in von Neumann algebras of type II1.

The L-trace is related to the direct integral decomposition. The following
Lemma is known in the theory of operator algebras (in a more general context),
but we will supply an elementary proof for convenience of the reader.

Lemma 6.1. (Trace Decomposition Formula) Let T : S → S be a bounded linear
operator commuting with the action of L, and

T =
∫ ⊕

bL
Tχ dχ

is its direct integral decomposition. Then

(15) trL T =
∫
bL

tr Tχ dχ.

Proof. First we will introduce some notations. Let us identify the unitary char-
acter group L̂ with the torus

JL = R3/L∗
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via the correspondence
χ ∈ R3 7→ χ′ ∈ L̂,

where
χ′(σ) = exp

(
2π
√−1χ · σ)

,

so that a small neighborhood U(1) of 1 in L̂ is identified with a neighborhood
U(0) of 0 in R3.

We will present T in terms of operators

T 0
χ : C(V0,C3) → C(V0,C3),

where C(V0,C3) is the Hilbert space of all C3-valued functions on V0, with the
scalar product

〈u, v〉 =
∑

x∈V0

u(x) · v̄(x)m(x),

dimC C(V0,C3) = 3n. The operator T 0
χ is defined as T 0

χ = U−1
χ TχUχ, where

Uχ : C(V0,C3) → Sχ is a unitary operator, given by

(Uχf)(x) = sχ(x) = e2π
√−1χ·Φ(x)f(π(x)),

where x ∈ V , π(x) is the canonical projection of x to V0 = V/L. It is easy to
check that sχ ∈ Sχ. Indeed,

sχ(σx) = exp
(
2π
√−1χ · Φ(σx)

)
f(π(σx))

= exp
(
2π
√−1χ · (Φ(x) + σ)

)
f(π(x))

= exp
(
2π
√−1χ · σ)

sχ(x),

as desired. The inverse operator

U−1
χ : Sχ → C(V0,C3)

is given by

(U−1
χ sχ)(π(x)) = e−2π

√−1χ·Φ(x)sχ(x),

where x ∈ V . (The left hand side is well defined because the right hand side is
easily seen to be L-invariant.)

The advantage of using the operators T 0
χ (compared with Tχ) is that they act

in the same space C(V0,C3) for all χ ∈ L̂.

Now let us present the operator T 0
χ by its kernel function (matrix) t0χ = t0χ(x̄, ȳ),

where x̄, ȳ ∈ V0, so that

(T 0
χf)(x̄) =

∑

ȳ∈V0

t0χ(x̄, ȳ)f(ȳ)m(ȳ).
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Let us choose a function u ∈ S with a finite support, and find its Bloch
components uχ (χ ∈ L̂), defined by (12), which can be also rewritten in the form

uχ(x) =
∑

σ∈L

e−2π
√−1χ·σu(σx).

The Bloch components of Tu are (Tu)χ = Tχuχ = UχT 0
χU−1

χ uχ. Let us calculate
them explicitly. We have

(U−1
χ uχ)(x) = e−2π

√−1χ·Φ(x)uχ(x) =
∑

σ∈L

e−2π
√−1χ·(Φ(x)+σ)u(σx)

=
∑

σ∈L

e−2π
√−1χ·Φ(σx)u(σx),

which is L-invariant (hence well defined on V0). Further, we find

(T 0
χU−1

χ uχ)(π(x)) =
∑

y∈F ,σ∈L

t0χ(π(x), π(y))e−2π
√−1χ·Φ(σy)u(σy)m(y)

=
∑

y∈V

t0χ(π(x), π(y))e−2π
√−1χ·Φ(y)u(y)m(y).

Therefore,

(Tχuχ)(x) = (UχT 0
χU−1

χ uχ)(π(x))

=
∑

y∈V

t0χ(π(x), π(y))e2π
√−1χ·(Φ(x)−Φ(y))u(y)m(y).

Taking into account (13), we see that

(Tu)(x) =
∫
bL
(Tχuχ)(x)dχ

=
∫
bL

∑

y∈V

t0χ(π(x), π(y))e2π
√−1χ·(Φ(x)−Φ(y))u(y)m(y)dχ.

This means that the kernel function of T is given by the formula

(16) t(x, y) =
∫
bL

e2π
√−1χ·(Φ(x)−Φ(y))t0χ(π(x), π(y))dχ.

Note that by the general properties of direct integrals

‖T : S → S‖ = ess sup{‖Tχ‖; χ ∈ L̂} = ess sup{‖T 0
χ‖; χ ∈ L̂}.

In particular, T is bounded if and only if the norms ‖Tχ‖ = ‖T 0
χ‖ are a.e. uni-

formly bounded for χ ∈ L̂, or, equivalently, the matrix elements t0χ(x̄, ȳ) are
uniformly bounded a.e. in χ for all x̄, ȳ ∈ V0.
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Now taking y = x in (16), applying matrix trace (to the 3×3 matrices in both
sides) and summing over x ∈ F , we obtain

trL T =
∑

x∈F
tr t(x, x) =

∫
bL

∑

x∈F
tr t0χ(π(x), π(x))dχ

=
∫
bL

tr T 0
χdχ =

∫
bL

tr Tχdχ,

which ends the proof. ¤

Remark. The kernel representation formula (16) also allows to provide a relation
between the smoothness of the function χ 7→ T 0

χ and the off-diagonal decay the
kernel t(x, y), i.e. its decay as |Φ(x) − Φ(y)| → ∞. More precisely, let us say
that a bounded linear operator T : S → S (commuting with the action of L) is
smooth, if the matrix elements t0χ(x̄, ȳ) are in C∞(L̂) with respect to χ, for any
x̄, ȳ ∈ V0. If T is smooth, then, integrating by parts, we can for any positive
integer N rewrite (16) as follows:

t(x, y) = (1 + |Φ(x)− Φ(y)|2)−N ×∫
bL e2π

√−1χ·(Φ(x)−Φ(y))
[
(1− 1

2π∆χ)N t0χ(π(x), π(y))
]
dχ,

where ∆χ denotes the Laplacian with respect to χ. It follows, that

(17) |t(x, y)| ≤ CN (1 + |Φ(x)− Φ(y)|2)−N , N = 0, 1, 2, . . . .

Vice versa, if these estimates hold, then we can calculate T 0
χ as the operator

U−1
χ TUχ, identifying elements of C(V0,C3) with L-invariant C3-valued functions

f on V , and then applying T to the Bloch function Uχf using the kernel (matrix)
representation of T in terms of t(x, y) (see (14)). This leads to the expression

(U−1
χ TUχf)(x) =

∑

y∈V

e−2π
√−1χ·(Φ(x)−Φ(y))t(x, y)m(y)f(y)

=
∑

y∈F

[∑

σ∈L

e−2π
√−1χ·(Φ(x)−Φ(σy))t(x, σy)

]
m(y)f(y),

where the sums converge due to (17). The latter expression is equivalent to the
following presentation (which is the inversion formula to (16)) for the matrix t0χ :

(18) t0χ(π(x), π(y)) =
∑

σ∈L

e−2π
√−1χ·(Φ(x)−Φ(σy))t(x, σy),

where the left hand side is well defined because the right hand side is L × L-
invariant on V × V , i.e L-invariant separately in x and y. We can also differenti-
ate (18) with respect to χ termwise , which implies the smoothness of the function
χ 7→ T 0

χ . ¤
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Remark. From (18) we also deduce

tr Tχ = tr T 0
χ =

∑

x∈F

∑

σ∈L

e−2π
√−1χ·(Φ(x)−Φ(σx))tr t(x, σx),

which is an analogue of the trace formula (see [16]).

Let

−D =
∫

λ dE(λ)

be the spectral resolution of −D. Then the integrated density of states is defined
by

ϕ(λ) = trL E(λ).

We find that ϕ is a nondecreasing function, and

ϕ(λ) =

{
0 (λ < 0)
3n (λ > ‖D‖) ,

so that ∫ ∞

0
dϕ(λ) = 3n.

We should note that, when we take a decreasing sequence of lattices

L = L0 ⊃ L1 ⊃ L2 ⊃ · · ·
with

⋂∞
i=0 Li = {0}, the function ϕ(λ) coincides with the limit

lim
i→∞

[#(L/Li)]
−1 ϕi(λ)

at continuity points of ϕ, where ϕi is the counting function of eigenvalues for the
periodic boundary value problem:

−Df = λf ,
f(σx) = f(x) (σ ∈ Li)

(see [16], [14]), that is, if λ1 ≤ · · · ≤ λN (N = #(V/Li)) are the eigenvalues for
the boundary problem above, then ϕi(λ) = #{λi ≤ λ}. Thus the function ϕ
deserves to be called the (integrated) density of states.

Now using

f(−D) =
∫
bL

f(−Dχ) dχ,

∫
bL

tr f(−Dχ)dχ = trL f(−D) =
∫

f(λ)dϕ(λ),(19)
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we get

U0 =
}
2

∫ ∞

0

√
λ dϕ(λ),

U1(T ) =
∫ ∞

0

}
√

λ

e}
√

λ/KT − 1
dϕ(λ),

C(T ) =
∂U1

∂T
=

∫ ∞

0

}2λ
KT 2 e}

√
λ/KT

(
e}
√

λ/KT − 1
)2 dϕ(λ).

U0 is what we call the zero-point energy, which indicates that vibrations in a solid
persist even at the absolute zero of temperature, a peculiar feature of quantum
mechanics.

Remark. (1) It is straightforward to see that

supp dϕ = spectrum(−D).

(2) We may consider integrated densities of states for other boundary condi-
tions. From the abelian nature of the crystal lattice, however, it follows that the
notion of density of states is independent of the particular boundary conditions
imposed.

(3) The partition function for the Hamiltonian Hχ,i in the classical statistical
mechanics is given by

Zχ,i(T ) =
∫

R2

exp
(
− Hχ,i(pi, qi)

KT

)
dpidqi

=
∫

R2

exp
(
−

√
λi(χ)

2KT

(
p2

i + q2
i

))
dpidqi

=
2Kπ√
λi(χ)

T,

and hence the internal energy is computed as

Uχ,i(T ) = KT.

From this, it follows that the internal energy of the solid (per the unit cell) in
the classical setting is given by

U(T ) =
∫
bL

3n∑

i=1

Uχ,i(T ) dχ = 3nKT,

which is nothing but the law of Dulong-Petit.



Geometric Theory of Lattice Vibrations and Specific Heat 767

7. Asymptotics of ϕ(λ) at λ = 0

Our task is now to establish asymptotics of U1(T ) and C(T ) as T goes to zero.
To this end, we need to study the asymptotics of ϕ(λ) as λ ↓ 0.

If we put
ϕχ(λ) = #{i;λi(χ) ≤ λ},

then, due to (19),

ϕ(λ) =
∫
bL

ϕχ(λ) dχ,

which, as is easily checked, is equal to

vol
({χ ∈ L̂; ϕχ(λ) = 1}) + 2vol

({χ ∈ L̂; ϕχ(λ) = 2})

+3vol
({χ ∈ L̂; ϕχ(λ) = 3})

= vol
({χ ∈ L̂; λ1(χ) ≤ λ < λ2(χ)})

+2vol
({χ ∈ L̂; λ2(χ) ≤ λ < λ3(χ)})

+3vol
({χ ∈ L̂; λ3(χ) ≤ λ})

=
3∑

α=1

vol
({χ; λα(χ) ≤ λ})

for sufficiently small λ > 0. Hence it suffices to establish the asymptotics of

vol
({χ; λα(χ) ≤ λ}) (α = 1, 2, 3).

We will use the notations introduced in the previous section and start with
the operator D. Note that D has a “finite radius of interaction”, that is, its
kernel function d(x, y) vanishes if |Φ(x) − Φ(y)| > R, where R > 0 is a constant
(which can be taken to be maxe∈E{|Φ(te) − Φ(oe)|}). In particular, D can be
naturally extended to all C3-valued functions on V . This allows to decompose
D into direct integral of the Bloch components Dχ explicitly by taking Dχ to be
the restriction of D on Sχ.

Let us also explicitly calculate the operator

D0
χ : C(V0,C3) −→ C(V0,C3).

We claim that

D0
χf(x) =

1
m(x)

∑

e∈E0,x

A(e)
{
e2π

√−1χ·v(e)f(te)− f(oe)
}
.

Indeed, let us first move to the Bloch space Sχ via the correspondence

f ∈ C(V0,C3) 7→ s(x) = exp
(
2π
√−1χ · Φ(x)

)
f(π(x)),
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and take

(Ds)(x) =
1

m(x)

∑

e∈Ex

A(e)
[
e2π

√−1χ·Φ(te)f(π(te))

−e2π
√−1χ·Φ(oe)f(π(oe))

]

= e2π
√−1χ·Φ(x)

× 1
m(x)

∑

e∈Ex

A(e)
[
e2π

√−1χ·(Φ(te)−Φ(oe))f(π(te))− f(π(oe))
]

= e2π
√−1χ·Φ(x) 1

m(x)

∑

e∈E0π(x)

A(e)
[
e2π

√−1χ·v(e)f(te)− f(oe)
]
.

Dividing by e2π
√−1χ·Φ(x), we get back to C(V0,C3) and obtain the desired ex-

pression for D0
χ.

Let us take χ ∈ R3. Since D0
tχ is a one-parameter family of symmetric matrices

depending analytically on t ∈ R (where |t| is small enough so that tχ ∈ U(0)),
one can apply the following result (see [8]).

Theorem 7.1. Let A(t) be an analytic family of symmetric matrices of degree
n. Then there exist analytic functions λ1(t), . . . , λn(t) (called analytic branches
of eigenvalues) and orthonormal basis u1(t), . . . , un(t) depending analytically on
t such that

A(t)ui(t) = λi(t)ui(t).

The acoustic branches λα(χ) are not necessarily analytic in χ because they
are possibly bifurcated, not only at χ = 1, but also at other χ. The theorem
above, however, says that one can find ε > 0 such that λα(tχ) (α = 1, 2, 3) are
real analytic in t ∈ [0, ε). To see this, take continuous branches µ1(t), µ2(t), µ3(t)
of eigenvalues of D0

tχ with µi(0) = 0, and let Iij = {t ∈ R; µi(t) = µj(t)} (i 6= j).
Then Iij is either discrete or R. Put

ε = min{|t|; t 6= 0, t ∈ Iij 6= R, i 6= j}.
If 0 < t < ε, then µi(t) 6= µj(t), or µi ≡ µj , so that µj(t) are analytic on [0, ε) for
all j = 1, 2, 3, and λα(tχ) coincides with one of µ1(t), µ2(t), µ3(t) on [0, ε).

Since µj(t) ≥ 0 for all t ∈ R, j = 1, 2, 3, we conclude that

sα(χ)2 := lim
t↓0

1
t2

λα(tχ) (sα(χ) ≥ 0)

exists. The quantity
(2π‖χ‖)−1sα(χ)

is said to be the acoustic phase velocity for the direction χ. It turns out to be
the phase velocity of elastic waves in the uniform elastic body corresponding to
the crystal lattice (see Section 10).
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Recall that we assume λ1(χ) ≤ λ2(χ) ≤ λ3(χ). From the definition of sα(χ)
we deduce that s1(χ) ≤ s2(χ) ≤ s3(χ), and it follows from Theorem 7.2 below
that sα(χ) is continuous in χ. We also have

sα(tχ) = tsα(χ) (t ≥ 0).

A perturbation argument leads to

Theorem 7.2. 1) sα(χ)2 (α = 1, 2, 3) are eigenvalues of the symmetric matrix

Aχ :=
2π2

m(V0)

∑

e∈E0

(χ · v(e))2A(e).

In particular, sα(χ) > 0 for χ 6= 0, and

s1(χ)2 + s2(χ)2 + s3(χ)2 = tr Aχ =
2π2

m(V0)

∑

e∈E0

(χ · v(e))2tr A(e).

2) sα(χ) are piecewise analytic in χ ∈ R3 in the sense that there exists a proper
real-analytic subset S in R3 such that sα is analytic on R3\S.

3) The Lebesgue measure of the set {χ ∈ R3; sα(χ) = 1} is zero.

Proof We put Dt = D0
tχ and λα(t) = λα(tχ). In view of Theorem 7.1, one

can find an orthonormal system f1,t, f2,t, f3,t ∈ C(V0,C3) depending analytically
on t ≥ 0 for small t, so that

(20) −Dtfα,t = λα(t)fα,t (α = 1, 2, 3).

Recall that fα,0 is a constant function. If we define eα(χ) by

eα(χ) = m(V0)1/2fα,0(x),

then we observe that {e1(χ), e2(χ), e3(χ)} forms an orthonormal basis of C3.

Differentiating both sides of (20) with respect to t at t = 0, we obtain

− 1
m(x)

∑

e∈E0x

A(e)
[
2π
√−1(χ · v(e))fα,0(te) + ḟα,0(te)− ḟα,0(oe)

]

= λ̇α(0)fα,0(x) + λα(0)ḟα,0(x).

Since fα,0 is constant, and λ̇α(0) = λα(0) = 0, by using (6), we have

1
m(x)

∑

e∈E0x

A(e)
(
ḟα,0(te)− ḟα,0(oe)

)
= 0

so that ḟα,0 is constant.
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Differentiating (20) twice, we obtain

− 1
m(x)

∑

e∈E0x

A(e)
[− 4π2(χ · v(e))2fα,0(te)

+4π
√−1χ · v(e)ḟα,0(te) + f̈α,0(te)− f̈α,0(oe)

]

= λ̈α(0)fα,0(x).

Using the fact that ḟα,0 is constant, and again (6), we have

− 1
m(x)

∑

e∈E0x

A(e)
[− 4π2(χ · v(e))2fα,0(te) + f̈α,0(te)− f̈α,0(oe)

]

= λ̈α(0)fα,0(x).

Here taking the inner product with fβ,0, and noting

〈Df̈α,0, fβ,0〉 = 〈f̈α,0, Dfβ,0〉 = 0,

we find

4π2
∑

e∈E0

(
χ · v(e)

)2
A(e)fα,0(te) · fβ,0(oe)

= λ̈α(0)
∑

x∈V0

fα,0(x) · fβ,0(x)m(x)

= λ̈α(0)δαβ = 2sα(χ)2δαβ ,

or, equivalently,
Aχeα(χ) · eβ(χ) = sα(χ)2δαβ ,

and hence sα(χ)2 is an eigenvalue of Aχ with the eigenvector eα(χ). Since we
assumed that A(e) is strictly positive for every e, we obtain also that sα(χ) > 0,
α = 1, 2, 3.

To show 2), let D = D(χ) be the discriminant of the cubic polynomial

det(zI −Aχ) = z3 + b(χ)z2 + c(χ)z + d(χ).

If D 6≡ 0, then sα(χ) (α = 1, 2, 3) are distinct and analytic on R3\S0 where

S0 = {χ ∈ R3; D(χ) = 0}.

In the case D ≡ 0, define the polynomial D1(χ) by

D1(χ) = 2b(χ)3 − 9b(χ)c(χ) + 27d(χ).

Note that the equation det(zI − Aχ) = 0 has a root of multiplicity one (hence
another root has multiplicity two) if and only if D1(χ) 6= 0. If D1 ≡ 0, then

s1(χ)2 = s2(χ)2 = s3(χ)2 = −1
3
b(χ) =

1
3

2π2

m(V0)

∑

e∈E0

(χ · v(e))2tr A(e),
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hence sα is analytic on R3\{0}. In the case D1 6≡ 0, define a proper analytic
subset S1 by

S1 = {χ ∈ R3; D1(χ) = 0}.
One can easily check that b(χ)2− 3c(χ) 6= 0 on R3\{0} and the roots of det(zI−
Aχ) = 0 are

9d(χ)− b(χ)c(χ)
2
(
b(χ)2 − 3c(χ)

) (multiplicity two),

−b(χ)3 + 4b(χ)c(χ)− 9d(χ)
b(χ)2 − 3c(χ)

(multiplicity one),

so that sα is analytic on R3\S1.

The assertion 3) easily follows from 2), if we take into account the explicit form
of Aχ and strict positivity of A(e).

This completes the proof of the theorem. ¤

Think of JL as the flat torus with the flat metric induced from the Euclidean
metric on R3. The normalized Haar measure on L̂ is identified with

vol(JL)−1dχ,

where dχ, in turn, denotes the Lebesgue measure on the Euclidean space R3.
Note that V = vol(JL)−1 is the volume of a unit cell.

Put
Aα(λ) = {χ ∈ R3; λα(χ) ≤ λ},

and denote by 1A the characteristic function for a subset A in R3. Then

vol({χ ∈ L̂; λα(χ) ≤ λ}) = V
∫

Aα(λ)
dχ = V

∫

R3

1Aα(λ)(χ) dχ

= Vλ3/2

∫

R3

1Aα(λ)(
√

λχ) dχ.

Since

1Aα(λ)(
√

λχ) =

{
1 if λ−1λα(

√
λχ) ≤ 1

0 otherwise,

we observe, due to Theorem 7.2, that

lim
λ↓0

1Aα(λ)(
√

λχ) = 1Aα(χ) a.e.

where
Aα = {χ ∈ R3; sα(χ) ≤ 1}.
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From this, it follows that

lim
λ↓0

vol({χ ∈ L̂; λα(χ) ≤ λ}λ−3/2

= V
∫

R3

1Aα(χ) dχ.

Using the polar coordinates (r,Ω) ∈ R+ × S2, we obtain
∫

R3

1Aα(χ) dχ =
∫

{(r,Ω); sα(Ω)r≤1}
r2drdΩ =

1
3

∫

S2

1
sα(Ω)3

dΩ.

In conclusion, we have

Theorem 7.3.

lim
λ↓0

ϕ(λ)λ−3/2 =
1
3
V

∫

S2

3∑

α=1

1
sα(Ω)3

dΩ.

Remark. The asymptotic formula for an acoustic branch
√

λα(rχ) ∼ rsα(χ) (r ↓ 0)

is said to be the linear dispersion law.

8. Rigorous derivation of the T 3-law

We are now ready to prove the T 3-law. Put

(21) c0 =
1
3
V

∫

S2

3∑

α=1

1
sα(Ω)3

dΩ.

We have shown in the previous section

ϕ(λ) ∼ c0λ
3/2 as λ ↓ 0.

Making the change of variables x = }
√

λ/KT in the integral

U1(T ) =
∫ ∞

0

}
√

λ

e}
√

λ/KT − 1
dϕ(λ),

we obtain

U1(T ) = }−3K4T 4

∫ ∞

0

x

ex − 1
(wT )−3dϕ

(
(wT x)2

)
,

where wT = KT/}. Using ϕ(λ) ∼ c0λ
3/2, we have

lim
T↓0

(wT )−3ϕ
(
(wT x)2

)
= c0x

3,
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and hence

lim
T↓0

U1(T )T−4 = 3}−3K4c0

∫ ∞

0

x3

ex − 1
dx

=
1
5
π4c0}−3K4.

Here we have used the well-known identity
∫ ∞

0

x3

ex − 1
dx = 3!ζ(4) = 3!

π4

90
=

π4

15
.

Similarly we have

C(T ) = }−3K4T 3

∫ ∞

0

x2ex

(ex − 1)2
(wT )−3dϕ

(
(wT x)2

)
,

hence

lim
T↓0

C(T )T−3 = 3}−3K4c0

∫ ∞

0

x4ex

(ex − 1)2
dx =

4
5
π4c0}−3K4c0

since ∫ ∞

0

x4ex

(ex − 1)2
dx = 4!ζ(4) =

4
15

π4.

Summarizing our computation, we have

Theorem 8.1. As T ↓ 0,

U1(T ) ∼ 1
5
π4c0}−3K4T 4,

C(T ) ∼ 4
5
π4c0}−3K4T 3.

9. Isotropic case

In order to compare our result with Debye’s asymptotic formula, we suppose
that the continuum limit of the crystal lattice is isotropic, that is, the symmetrized
elastic constant tensor

Aij =
1

2V

∑

e∈E0

v(e)iv(e)jA(e)

satisfies
3∑

i,j=1

(Aij)αβχiχj = (a + b)χαχβ + bδαβ‖χ‖2,
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where χ = (χ1, χ2, χ3), and a, b are positive constants which are what we call
Lame’s constants in the theory of elastic bodies. Recalling Aχ which was intro-
duced in Theorem 7.2, we obtain

Aχ =
3∑

i,j=1

4π2ρ−1χiχjAij (ρ = m(V0)/V).

The eigenvalues of Aχ are

4π2(a + 2b)ρ−1‖χ‖2 (multiplicity one),
4π2bρ−1‖χ‖2 (multiplicity two),

since
3∑

β=1

(Aχ)αβχβ = 4π2(a + 2b)ρ−1‖χ‖2χα,

and if x · χ = 0 for x = (x1, x2, x3), then
3∑

β=1

(Aχ)αβxβ = 4π2bρ−1‖χ‖2xα.

Therefore

(22) s1(χ) = s2(χ) = 2π

√
b

ρ
‖χ‖, s3(χ) = 2π

√
a + 2b

ρ
‖χ‖.

According to the theory of elastic waves, we say that cl =

√
a + 2b

ρ
is the longi-

tudinal phase velocity, and ct =

√
b

ρ
is the transverse phase velocity. In terms of

these phase velocities, we have, by substituting (22) for (21)

c0 =
V
6π2

( 1
c3
l

+
2
c3
t

)
.

We thus recover Debye’s result for the isotropic case.

10. Final remarks

In general, the “plane wave”

f(t,x) = exp
[√−1

(
2πx · χ± tsα(χ)

)]
eα(χ)

in a uniform elastic body is a solution of the elastic wave equation

ρ
∂2f
∂t2

=
3∑

i,j=1

Aij
∂2f

∂xi∂xj
.
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To get real solutions we can take real or imaginary parts (or their real linear
combinations). For example,

f(t,x) = cos
(
2πx · χ± tsα(χ)

)
eα(χ)

is a real plane wave which solves the same equation.

It is interesting to point out that the “discrete plane wave”

fχ(t, x) = exp
[√−1

(
2πχ · Φ(x)± t

√
λα(χ)

)]
gχ(π(x))

in the crystal lattice is a solution of the equation

d2f
dt2

= Df

provided that D0
χgχ = λα(χ)gχ. (The real discrete plane waves can be again

obtained by taking linear combinations of the real and imaginary parts, which
do not, however, have the cosine or sine forms because the operator D0

χ and the
eigenvectors gχ are not generally real.)

We easily observe that, for an acoustic branch λα(χ) with limδ↓0 gδχ = eα(χ),
we have

lim
δ↓0

fδχ(tδ, xδ) = exp
[√−1

(
2πx · χ± tsα(χ)

)]
eα(χ),

where the sequences {tδ} and {xδ} are supposed to satisfy limδ↓0 δtδ = t and
limδ↓0 δΦ(xδ) = x. This justifies the statement that the lattice vibrations approch
elastic waves in the continuum limit.

Finally, we shall check, using the von Neumann trace again, that the function
c0λ

3/2 coincides with the integrated density of states for the elastic waves (thus
justifying Debye’s observation in his continuum theory). For this, we put

D = ρ−1
3∑

i,j=1

Aij
∂2

∂xi∂xj
,

and let K(t,x,y) be the kernel function of the operator etD, namely it is the
fundamental solution of the parabolic equation

∂f
∂t

= Df .

Then the L-trace of etD is given as

trLetD =
∫

P
tr K(t,x,x) dx,

where P is a unit cell. We can easily show, by using the Fourier transformation,

K(t,x,y) = (2π)−3

∫

R3

e−tA(χ)+
√−1(x−y)·χ dχ,
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where

A(χ) = ρ−1
3∑

i,j=1

χiχjAij = (4π2)−1Aχ.

Therefore

trLetD

= V tr K(t,x,x) = (2π)−3V
∫

S2

dΩ
∫ ∞

0
r2 tr e−r2tA(Ω) dr

= (2π)−3V
∫

S2

dΩ
∫ ∞

0
r2

3∑

α=1

exp
(
− tr2

4π2
sα(Ω)2

)
dr.

Using the equality
∫ ∞

0
r2e−ar2

dr =
√

π

4
a−3/2, a > 0,

we get

trLetD =
√

π

4
Vt−3/2

∫

S2

3∑

α=1

sα(Ω)−3 dΩ.

If we denote by ϕ0(λ) the integrated density of states for elastic waves, that is,
L-trace of the projections in the spectral resolution of D, then

∫ ∞

0
e−λt dϕ0(λ) = trLetD =

3
4
√

πc0t
−3/2,

so that, taking the inverse Laplace transform, we obtain

ϕ0(λ) =
V
3

λ3/2

∫

S2

3∑

α=1

sα(Ω)−3 dΩ = c0λ
3/2

as desired (recall the identity
∫ ∞

0
e−λt d(λ3/2) =

3
4
√

πt−3/2).
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