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Abstract: This paper is a survey of our work based on the stratified Morse
theory of Goresky and MacPherson. First we discuss the Morse theory of
Euclidean space stratified by an arrangement. This is used to show that
the complement of a complex hyperplane arrangement admits a minimal
cell decomposition. Next we review the construction of a cochain complex
whose cohomology computes the local system cohomology of the comple-
ment of a complex hyperplane arrangement. Then we present results on the
Gauss-Manin connection for the moduli space of arrangements of a fixed
combinatorial type in rank one local system cohomology.

1. INTRODUCTION

Let V' be a complex vector space of dimension ¢ > 1. A hyperplane arrange-
ment A = {Hi,..., Hy,} is aset of n > 0 hyperplanes in V. Let M = V\UJ/_, H;
denote the complement. Introduce coordinates wuq,...,u; in V and, for each j,
1 < j < n, choose a degree one polynomial «; so that the hyperplane H; € A is
defined by the vanishing of ;. Let A = (A1,...,\,) be a set of complex weights
for the hyperplanes. Given A, we define a multivalued holomorphic function on
M by
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A generalized hypergeometric integral is of the form

/U@(u; A)n

where o is a suitable domain of integration and 7 is a holomorphic form on M,
see [AK]. When ¢/ =1, n =3 and oy = v, = v — 1,03 = u — x, this is the
Gauss hypergeometric integral. Selberg’s integral [Se| is another special case:
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where A(u) = [, j(uj — u;). Hypergeometric integrals occur in the representa-
tion theory of Lie algebras and quantum groups [SV2, [V]. In physics, these hy-
pergeometric integrals form solutions to the Knizhnik-Zamolodchikov differential
equations in conformal field theory [SV1, [V]. The space of integrals is identified
with a cohomology group, H*(M; L), of the complement, with coefficients in a
complex rank one local system. Associated to A, there is a rank one represen-
tation p : m (M) — C*, given by p(v;) = t;, where t = (t1,...,t,) € (C*)" is
defined by t; = exp(—2mi)\;), and v; is any meridian loop about the hyperplane
Hj of A, and a corresponding rank one local system £ = Ly = L on M. Equiv-
alently, weights A determine a flat connection on the trivial line bundle over M,
with connection one-form wy = dlog ®(u; A).

The first problem is to calculate the local system cohomology groups H?(M, £).
The methods used by Aomoto and Kita [AK], Esnault, Schechtman, and Viehweg
[ESV], Schechtman, Terao, and Varchenko [STV] and others are described in de-
tail in [OT2]. These use the twisted de Rham complex, (2°(x.A), V), of global
rational differential forms on V' with arbitrary poles along the divisor U?Zl H;,
with differential V(n) = dn + wx A 1. The cochain groups of this complex are
infinite dimensional. Conditions must be imposed on the weights in order to
reduce the problem to a finite dimensional setting. These are the nonresonance
conditions of [STV]. Under these conditions, the calculation may be reduced to
combinatorics and yields H9(M; L) = 0 for ¢ # £ and dim H*(M; L) = |e(M)],
where e(M) is the Euler characteristic of the complement. This approach pro-
vides less information for resonant weights, those for which the aformentioned
nonresonance conditions do not hold. By contrast, the results obtained below
using stratified Morse theory are valid for arbitrary weights.

Weights A give rise to a local system on the complement of every arrangement
that is combinatorially equivalent to .A. The resulting local system cohomology
groups comprise a flat vector bundle over the moduli space of such arrangements.
The second problem is to determine the Gauss-Manin connection in this cohomol-
ogy bundle. For instance, the Gauss hypergeometric function is defined on the
complement of the arrangement of three points in C. It satisfies a second order
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differential equation which, when converted into a system of two linear differen-
tial equations, may be interpreted as a Gauss-Manin connection on the moduli
space of arrangements of the same combinatorial type [OT2]. This idea has been
generalized to all arrangements by Aomoto [A2] and Gelfand [G]. The connection
is obtained by differentiating in the moduli space. For arrangements in general
position, and nonresonant weights, explicit connection matrices were obtained by
Aomoto and Kita [AK]. Unfortunately, this pioneering work is available only in
Japanese. The relevant matrices have been reproduced in [OT2, [CO3].

The (flat) Gauss-Manin connection in the cohomology bundle corresponds to
a representation of the fundamental group of the moduli space. The endomor-
phisms arising in the connection one-form, which we refer to as Gauss-Manin
endomorphisms, may be realized as logarithms of certain automorphisms. This
interpretation, used in [CO4], allows for local calculations, valid for all arrange-
ments and all weights. This paper is a survey of our work on these problems.

Section (2| presents basic results on the Morse theory of Euclidean space strat-
ified by an arrangement (of subspaces), following [GM, [C1]. In Section 3, we
use these results to give a proof of a theorem of Dimca and Papadima [DPI]
and Randell [Ra2], which asserts that the complement of a complex hyperplane
arrangement is a minimal space, admiting a cell decomposition for which the
number of g-cells is equal to the ¢-th Betti number for each ¢. In Section 4,
we review the stratified Morse theory construction from [C1, [CO1] of a finite
cochain complex (K*(A), A®), the cohomology of which is naturally isomorphic
to H*(M; L£). This leads to the construction of the universal complex (K®, A®(x))
for local system cohomology, where K¢ = A @c K9 and A = Clzi!,... 2.
We recall a combinatorial model for H*(M, C), called the Orlik-Solomon algebra,
A(A). The one-form wy corresponds to an element ay of the Orlik-Solomon alge-
bra. Multiplication by ax gives this algebra the structure of a cochain complex,
(A*(A),ay). The Aomoto complex is the universal complex for this cochain com-
plex. It is chain equivalent to the linearization of the universal complex. This
informs on the relationship between the characteristic varieties of complements
of arrangements (jumping loci for local system cohomology) and the resonance
varieties of arrangements (jumping loci for the cohomology of the Orlik-Solomon
complex).

In Section 5, we move from consideration of a fixed arrangement to the study
of all arrangements of a given combinatorial type. We define the moduli space of
arrangements with a fixed combinatorial type 7 and the set Dep(7") of dependent
sets in type 7. We present results concerning the homology of the moduli space.

In Section 6, we work with a smooth, connected component of the moduli space,
B(7). There is a fiber bundle 7 : M(7) — B(7) whose fibers, 7=1(b) = My,
are complements of arrangements Ay of type 7. Since B(7) is connected, My
is diffeomorphic to M. The fiber bundle 7 : M(7) — B(7) is locally trivial.
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Given a local system on the fiber, consider the associated flat vector bundle
74 : HY(L) — B(7), with fiber (79)~1(b) = HY(My; L) at b € B(7) for each g,
0 < ¢ < /. Fixing a basepoint b € B(7), the operation of parallel translation of
fibers over curves in B(7) in the vector bundle 7¢ : HY(L) — B(7) provides a
complex representation

e (B(T),b) — Autc(H(My; y)).

The loops of primary interest are those linking moduli spaces of codimension one
degenerations of 7. Such a degeneration is a type 7’ whose moduli space B(7”)
has codimension one in the closure of B(7'). In this case we say that 7 covers 7".

When 7 covers 7’ and v € 71(B(7), b) is a simple loop linking B(7”) in B(7),
write U4 (v) = exp(—27i€2). We denote this Gauss-Manin endomorphism in the
bundle 77 : HY(L) — B(7) by Q = Q%L(B(77),B(7)). The rest of this survey

reports on our results concerning these endomorphisms.

In Section [7, for each subset S of hyperplanes, we define an endomorphism w§
of the Aomoto complex of a general position arrangement of n hyperplanes in
C!. When T covers 7', we construct a suitable linear combination of these maps,
which induces an endomorphism of the Aomoto complex of type 7. The special-
ization y — A in the Aomoto complex then yields an endomorphism w3 (77, 7)
of the Orlik-Solomon complex A*(7) = A®*(A) of an arrangement A of type 7.
This leads to our main result, stated in more detail in Section [7.

Theorem ([CO4]). Let M be the complement of an arrangement A of type T
and let L be the local system on M defined by weights X. Suppose T covers T'.
Then there is a surjection £9 : AY(T) — HI(M,L) so that the Gauss-Manin
endomorphism Q%(B(T"),B(T)) in local system cohomology is determined by the
equation

1owi(T',T)=0Q%(B(T"),B(T)) o0&’ O

In Section 8, we report on the spectrum of the Gauss-Manin endomorphism.
The pair (7',7) determines a set of hyperplanes S C A and an integer r. We
call (S,r) the principal dependence. Let Ag = EHJ_GS Aj.

Theorem ([CO5]). Suppose T covers T' with principal dependence (S,r). Let

A be a collection of weights satisfying Ag # 0. Then the Gauss-Manin endomor-

phism Q%(B(T"),B(T)) is diagonalizable, with spectrum contained in {0, \g}. O
We illustrate these results with an example in Section [9.

2. MORSE FUNCTIONS FOR ARRANGEMENTS

Goresky and MacPherson developed stratified Morse theory in order to extend
the class of spaces to which Morse theory applies. This generalization may be
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used to study singular spaces, noncompact spaces, etc. The latter is illustrated
in Part III of their book [GM] using real subspace arrangements. The topology
of the complement of such an arrangement is analyzed by Morse theoretic means,
by considering the stratification of the ambient Euclidean space determined by
the arrangement and realizing the complement as one of the strata. We recall
some of their constructions and results needed in the sequel.

Let V be a real vector space of dimension ¢ > 1, and let A be an arrangement
of affine subspaces in V. An edge (or flat) of A is a nonempty intersection X
of elements of A. Let L = L(A) be the set of all edges of A. Unless otherwise
noted, we partially order the set L by reverse inclusion.

The arrangement A gives rise to a Whitney stratification S of V with a stratum

Sx=X\JVv
YCX
for each edge X € L. The complement M of A is the stratum corresponding to
the edge V' (the intersection of no elements of A). For any edge X, the closure of
Sx is X. Note that a complex hyperplane arrangement may be viewed as a real
subspace arrangement with even-dimensional strata.

For almost any point p € M, the function f: V — R given by
(2.1) f(u) = [distance(p, u)]?

is a Morse function on V' with respect to the stratification S, see [GM, 1.2.2]. For
r € R, let
M, ={ueM| f(u) <r}.

The function f has a unique critical point on each edge. It is a minimum. Fur-
thermore, Goresky and MacPherson show in [GM, IIL.3] that the Morse function
f is perfect: if v € R is a critical value and ¢ > 0 is sufficiently small, the
long exact homology sequence of the pair (M<yy¢, M<,—¢) splits into short exact
sequences

(2.2) 0— Hy(M<y—;Z) — Hy(M<yte; Z) — Hg(M<yte, M<y_; Z) — 0.

Using this, they calculate the homology H.(M;Z) in terms of the poset L (or-
dered by inclusion), see [GM, II1.1.3. Theorem A]. This result has prompted a
great deal of work on the cohomology of the complement of a subspace arrange-
ment, culminating with the determination of the cup product structure of this
cohomology ring by de Longeville and Schultz [dLS| and Deligne, Goresky, and
MacPherson [DGM].

One can produce a Morse function such as (2.1) that meets the strata of V'
according to codimension.

Definition 2.1. Let Z be a Whitney stratified subset of Euclidean space. A
Morse function f : Z — R is said to be weakly self-indexing with respect to the
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stratification {Sa} of Z if for each q, 0 < ¢ < dim Z, we have

‘max  {critical values of f | So} < min {critical values of f | Sg}.
codim So=¢—1 codim Sg=¢q

Proposition 2.2. Let A be an arrangement of subspaces in the real vector space

V. Then there is a positive definite quadratic form f:V — R which is a weakly

self-indexing Morse function with respect to the stratification {Ss} of V' given by

A, whose critical points consist of a unique minimum on each stratum. O

The proof of this result given in [C1, §1] shows that there are choices of co-
ordinates {u;} on V and positive constants {w;}, 1 < i < ¢ = dim V, for which
the quadratic form f(uy,ue,...,up) = Zle w;u? is a weakly self-indexing Morse
function with respect to the stratification determined by A. This provides an in-
ductive algorithm for the construction of a complete flag in V' that is transverse

to the arrangement A.

In the rest of this paper, we return to the special case of a complex hyperplane
arrangement where we can say more.

3. MINIMALITY

The notion of minimality has played a significant role in recent work on the
topology of arrangements, see for instance the work of Papadima and Suciu [PS],
Dimca and Papadima [DP1, DP2|, and Randell [Ra2].

Definition 3.1. A space X is said to be minimal if X has the homotopy type of
a connected, finite-type CW-complex W such that, for each q¢ > 0, the number of
q-cells in W is equal to the rank of Hy(X;Z).

Note that, for a minimal space X, all homology groups H,(X;Z) are finitely
generated and torsion-free. If X is a 1-connected space with the homotopy type of
a connected, finite-type CW-complex, and the homology of X is torsion-free, then
X is minimal by work of Anick [An]. However, many spaces (with torsion-free
homology) are not minimal. For instance, the complement of a non-trivial knot
does not admit a minimal cell decomposition.

Dimca and Papadima [DP1] and Randell [Ra2] used various forms of Morse
theory to show that the complement of a complex hyperplane arrangement is
minimal. This result may also be established using stratified Morse theory.

Theorem 3.2. Let A= {Hi,...,H,} be a complex hyperplane arrangement in
the complex vector space V =2 C*. Then the complement M = M(A) = V\UI, H;
18 a minimal space.
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Proof. Without loss of generality, assume that A is an essential arrangement in
C*, that is, A contains ¢ linearly independent hyperplanes. Then the edges of A
have codimensions 0 through ¢. The proof is by induction on ¢.

In the case £ = 1, A is a finite collection of points in V = C, and the comple-
ment M(A) has the homotopy type of a bouquet of circles, which is a minimal
space.

For general /7, let
(3.1) F: 0=F'lcFcFlcFic...cFlcr=v,

be a complete flag in V' = C’ that is transverse to the Whitney stratification
of V' determined by A. Choose coordinates {u;} so that, for each k < ¢ — 1,
F¥ = {upiy = --- = ug = 0}. Let f:V — R be a Morse function “about”
the flag F that is weakly self-indexing with respect to the stratification of V'
determined by A.

Since f is weakly self-indexing, there are constants a and b so that all critical
values of f on edges of codimension less than ¢ are smaller than a, and all critical
values of f on edges of codimension ¢ are in the interval (a,b). For such a and
b, M<y, is a deformation retract of the complement M of 4, and M N F~lisa
deformation retract of M<,. Since MNF*~1 is the complement of the arrangement
AN Ftin 71 = €41, by induction, M N F1 ~ Mc, is a minimal space.
So it suffices to show that M has the homotopy type of a space obtained from
M N F~1 by attaching by(M) f-cells, where by(M) = rank Hj,(M;Z) denotes the
k-th Betti number of M.

By the Lefschetz hyperplane section theorem of Hamm and Lé [HL] (see also
[GM]), M is obtained from M N F~! by attaching at least by(M) ¢-cells, and the
number of (-cells is equal to the rank of the homology group Hy(M,M N Ft1).
Using the fact that the Morse function f is perfect repeatedly, we see that the
long exact sequence of the pair (M,M N F~1) ~ (M<p, M<,) splits into short
exact sequences as in (2.2). In particular, we have Hy(M) = H,(M,M N Ft=1),
and M has the homotopy type of a space obtained from the hyperplane section
M N F=1 by attaching precisely by(M) f-cells. O

A similar proof of minimality was recently given by Yoshinaga [Y].

4. LOCAL SYSTEMS

As noted in the introduction, the cohomology of the complement of a complex
hyperplane arrangement with coefficients in a (complex) local system is of interest
in the study of multivariable hypergeometric integrals, among other applications.
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Let A be a hyperplane arrangement in the complex vector space V =2 C*. Let
p: (M) — GL,,(C) be a complex representation of the fundamental group of
the complement M of A, and denote by L the corresponding rank m local system
of coefficients on M. For such a local system, stratified Morse theory was used in
[C1] to construct a complex (K*(A),A®), the cohomology of which is naturally
isomorphic to H*(M; £). We recall this construction briefly.

Let F be a complete flag in V' which is transverse to the stratification deter-
mined by A as in (3.1). Let M? = F4NM for each q. Let K9 = HI(M4, M9, ),
and denote by AY the boundary homomorphism H9(M4, M9~1; £) — HITH(MI+1
M¢: L) of the triple (M3+1 M9, M3~1). The following compiles several results from
[C1].

Theorem 4.1. Let L be the complex local system on M corresponding to the
representation p : w1 (M) — GL,,(C).

1. For each q, 0 < q < £, we have H (MY, MI~L: L) = 0 if i # q, and
dime HY(M?,M?~1 £) = m - by(M).
2. The system of complex vector spaces and linear maps (K®, A*®),
KO A% g A e g1 AT K,
is a complex (A9 o A = 0). The cohomology of this complex is naturally
isomorphic to H*(M; L), the cohomology of M with coefficients in L. [

Corollary 4.2 (|C2]). For the rank m local system L, let 3, = dimc HY(M; L),
and write by = by(M). Then, for 0 < g < {, we have

qum'bqa

and
Bg—Bg—1+---E£Bo<m-(by—bg_1+---£by). [

These are the weak and strong Morse inequalities arising from the complex
(K*,A®) since dimg K9 = m-b,. In particular, for any complex local system, the
cohomology groups H%(M; L) are finite dimensional, resolving a question raised
by Aomoto and Kita [AK] in the context of rank one local systems.

Remark 4.3. Let W be the minimal CW-complex resulting from (inductive) ap-
plication of Theorem 3.2. The complex (K*, A®) may be realized as the cellular
(co)chain complex of W with coefficients in the local system L.

In the rest of this paper we focus on rank one local systems. Let A =
(A1,...,Ap) be a set of complex weights for the hyperplanes of A. Let t; =
exp(—2mi);) and t = (t1,...,t,) € (C*)". Associated to A, we have a rank one
representation p : m (M) — C*, given by p(v;) = t;, where 7; is any meridian
loop about the hyperplane H; of A, and a corresponding rank one local system
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L = Ly = Lx on M. Note that weights A and X’ yield identical representations
and local systems if A — X' € Z".

The dimensions of the terms, K9, of the complex (K*®, A®) are independent of
the local system L. For a rank one local system, they are given by dim K? =
by(M). In this context, write A®* = A®(t) to indicate the dependence of the
comipllex on t, and view these boundary maps as functions of t. Let A =
(C[ +1

x],...,x, ] be the ring of complex Laurent polynomials in n commuting

variables.

Theorem 4.4 (|[CO1)). For an arrangement A of n hyperplanes with complement
M, there ezists a universal complex (K®, A®(x)) with the following properties:

1. The terms are free A-modules, whose ranks are given by the Betti numbers
of M, K% ~ Aba(A),

2. The boundary maps, AY(x) : K9 — K91 are A-linear.

3. Foreacht € (C*)", the specialization x +— t yields the complex (K*®, A®(t)),
the cohomology of which is isomorphic to H*(M; Ly), the cohomology of M
with coefficients in the local system associated to t. O

The entries of the boundary maps A%(x) are elements of the Laurent polyno-
mial ring A, the coordinate ring of the complex algebraic n-torus. Via the spe-
cialization x — t € (C*)", we view them as holomorphic functions (C*)" — C.
Similarly, for each ¢, we view A%(x) as a holomorphic map A? : (C*)" — Mat(C),
t — AY(t) from the complex torus to matrices with complex entries.

Remark 4.5. Let W be the minimal CW-complex resulting from application of
Theorem 3.2, and let W be the universal cover of W. The complex (K®, A*(x))
may be realized as Hom®(Cy(W), A), where G = 71 (W) = 71 (M), Co(W) is the
(cellular) chain complex of W, and A = C[Z"] is the G-module corresponding
to the action of G on the abelianization G/[G,G] = Hi(W) = Z" by (left)

translation. In [DP2], Dimca and Papadima show that the complex Co(W) is
itself an invariant of the arrangement A.

The universal complex K® is closely related to another universal complex de-
fined by Aomoto [A2] using the Orlik-Solomon algebra A(A). This graded al-
gebra, isomorphic to the cohomology H*(M;C) (see [OS, (OT1]), is the quotient
of the exterior algebra F(A) generated by 1-dimensional classes e;, 1 < j < n,
by a homogeneous ideal I(A). Let [n] = {1,...,n}. Refer to the hyperplanes
by their subscripts and order them accordingly. Given S C [n], denote the flat
ﬂjeS H; by NS. If NS # 0, call S independent if the codimension of NS in V'
is equal to |S|, and dependent if codim(NS) < |S|. If S = (ji1,42,...,7q), let
es = ej ej, -+ - €j, denote the corresponding basis element of the exterior algebra.
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Define deg = Y1

pzl(—l)p_les\{jp}. The ideal I(.A) is generated by

{0eg | S is dependent} U{eg | NS = 0}.

For S C [n], let ag denote the image of eg in A(A) = E(A)/I(A). The algebra
A(A) has a C-basis called the nbc basis. A subset S of [n] is a circuit if it is
a minimally dependent set: S is dependent but every nontrivial subset of S is
independent. Call T' = (j; < --- < jp) C [n] a broken circuit if there exists k € [n]
so that k& < j; and (k,T) is a circuit. The nbc basis consists of all elements ag
of A(A) corresponding to subsets S of [n] which contain no broken circuit [OT1].

Let ax = 77 \ja; € AY(A) and note that axay = 0 because A(A) is a
quotient of an exterior algebra. Thus we have a complex (A®(A),ay). Let y =
{y1,...,yn} be a set of indeterminates in one-to-one correspondence with the
hyperplanes of A. Let R = C[y] be the polynomial ring in y. Define a graded
R-algebra: A* = A*(A) = R®c A*(A). Let ay = >3 y; ®a; € Al. The
complex (A*(A), ay)

(4.1) 0— A%A) 2L AN A) 25 2L AN A) — 0
is called the Aomoto complez. Its specialization y +— A is the complex (A®*(A), ax).

Theorem 4.6 ([CO1]). For any arrangement A, the Aomoto complex (A®, ay) is
chain equivalent to the linearization of the universal complex (K®, A®(x)) at the
point 1 =(1,...,1) € (C*)". O

For certain classes of arrangements, the boundary maps of the universal com-
plex (K®, A®(x)) may be described explicitly. See, for instance, Hattori [H] for
general position arrangements. In the case where the arrangement is defined by
real equations, progress on this problem has been recently made by Yoshinaga
[Y]. However, for an arbitrary arrangement, these boundary maps are not known.
Consequently, while the complex (K*®, A®(t)) computes local system cohomology
in principle, we do not know how to calculate the groups H4(M; Ly) explicitly for
arbitrary weights.

It is an interesting question to determine the stratification of the space of
all weights with respect to the local system cohomology groups. Each point
t € (C*)" gives rise to a local system £ = L¢ on the complement M. Define the
characteristic varieties

29 (M) = {t € (C)" | dim HI(M; L¢) > m}.

These loci are algebraic subvarieties of (C*)™, which are invariants of the ho-
motopy type of M. See Arapura [Ar] and Libgober [L1] for detailed discussions
of these varieties in the contexts of quasiprojective varieties and plane algebraic
curves. The characteristic varieties are closely related to the resonance varieties.
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Each point A € C" gives rise to an element ay € A' of the Orlik-Solomon
algebra A® = A®*(A). Define the resonance varieties

RL(A) ={X e C" | dim HY(A® ay) > m}.

These subvarieties of C" are invariants of the Orlik-Solomon algebra A(A). See
Falk [F] and Libgober and Yuzvinsky [LY] for detailed discussions of these vari-
eties.

Theorem 4.7 ([CO1]). Let A be an arrangement in C* with complement M
and Orlik-Solomon algebra A®. For each q and m, the resonance variety R, (A)
coincides with the tangent cone of the characteristic variety ¥%, (M) at the point

1=(1,...,1) € (C*)". O

The characteristic varieties are known to be unions of torsion-translated subtori
of (C*)", see [Ar]. In particular, all irreducible components of ¥{,(M) passing
through 1 are subtori of (C*)™. Consequently, all irreducible components of the
tangent cone are linear subspaces of C".

Corollary 4.8. For each q and m, the resonance variety R, (A) is the union of
an arrangement of subspaces in C". O

For ¢ = 1, these results were established by Cohen and Suciu [CS], see also Lib-
gober and Yuzvinsky [L1, LY]. For the discriminantal arrangements of Schecht-
man and Varchenko [SV2], they were established in [C3]. In particular, as con-
jectured by Falk [F, Conjecture 4.7], the resonance varieties Ri,(A) were known
to be unions of linear subspaces in these instances. Corollary [4.8 above resolves
this conjecture positively for all arrangements in all dimensions. Theorem 4.7
and Corollary 4.8 have been obtained by Libgober in a more general situation,
see [L2].

There are examples of arrangements for which the characteristic varieties con-
tain (positive dimensional) components which do not pass through 1 and hence
cannot be detected by the resonance variety, see Suciu [Su]. In some of these
cases, the local system cohomology is nontrivial, while the cohomology of the
Orlik-Solomon complex vanishes.

5. MODULI SPACES

In the rest of the paper we pass from consideration of a fixed arrangement to
the study of all arrangements of a given combinatorial type. Fix a pair (¢,n)
with n > ¢ > 1 and consider families of essential ¢-arrangements with n linearly
ordered hyperplanes. In order to define the notions of combinatorial type and
degeneration, we must allow for the coincidence of several hyperplanes. We call
these new objects multi-arrangements. If there is no coincidence, we call the
arrangement simple.
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Introduce coordinates ui,...,up in V and choose a degree one polynomial
o = bjo+ Zizl b; ruy for the hyperplane H; € A so Hj is defined by o; = 0.
Note that «; is unique up to a constant. Embed V' in projective space CP*
and call the complement of V' the infinite hyperplane, Hy 1, defined by ug = 0.
We call Ao, = A|J Hp41 the projective closure of A. It is an arrangement in
CP'. Give H, 1 the weight A4 = — Z}Ll Aj. We agree that the hyperplane at
infinity, Hy11, is largest in the ordering. We may therefore view the projective
closure of the arrangement as an (n + 1) x (£ + 1) matrix of complex numbers

biobi1--- by
bao ba1 -+ bay
(5.1) b=1| & :
bn,O bn,l tee bn,f

10 -0

whose rows correspond to the hyperplanes of As,. Thus (CPY)” may be viewed
as the moduli space of all ordered multi-arrangements in CP! with n hyperplanes
together with the hyperplane at infinity.

Given an arrangement A, the set S = (j1,...,7,) is dependent (in the pro-
jective closure) if the corresponding row vectors of (5.1)) are linearly dependent.
Let Dep(A)q be the set of dependent g-tuples and let Dep(A) = |, Dep(A)q.
Two essential simple arrangements are combinatorially equivalent if and only if
they have the same dependent sets. We call 7 their combinatorial type and write
Dep(7). Note that an arbitrary collection of subsets of [n + 1] is not necessar-
ily realizable as a dependent (or independent) set. For example, the collection
{123,124, 134} is not realizable as a dependent set, since these dependencies im-
ply the dependence of 234.

The combinatorial type is, in fact, determined by Dep(7 )¢+1, see, for instance,
Terao [T]. Given a subset J C [n + 1] of cardinality ¢ + 1, let A;(b) denote the
determinant of the (£ 4 1) x (¢ + 1) submatrix of b whose rows are specified by
J. Given a realizable type 7, the moduli space of type 7 is

X(T) = {b e (CP)" | Aj(b) =0 for J € Dep(T)¢s1, As(b) # 0 else}.

If G is the type of a general position arrangement, then Dep(G) = @ and the
moduli space X(G) is a dense, open subset of (CP)". Define a partial order
on combinatorial types as follows: 7 > 7' <= Dep(7) C Dep(7’). The
combinatorial type G is the maximal element with respect to this partial order.
Write 7 > 7' if Dep(7) C Dep(7'). If T > T', we say that 7 covers 7' and
T’ is a degeneration of T if there is no realizable combinatorial type 7" with
T >T" > T'. In this case we define the relative dependence set

Dep(7’,T) = Dep(7") \ Dep(T).
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Let
Y(T) = {b € (CP")" | As(b) # 0 for J ¢ Dep(T)ps1}-
Then the moduli space of type 7 may be realized as
X(T)={beY(T)|A;s(b) =0 for J € Dep(7)p+1}-

Note that X(G) = Y(G). For any other type 7, the moduli space X(G) may be
realized as

X(G)={beY(T)| As(b) #0 for J € Dep(7 )p41}-

If T # G, then X(7) and X(G) are disjoint subspaces of Y (7). Let i7 : X(G) —
Y(7T) and j7 : X(7) — Y(7) denote the natural inclusions. We showed in [CO3]
that for any combinatorial type 7, the inclusion iz : X(G) — Y(7) induces a
surjection (i7)s : H1(X(G)) — H1(Y(T)).

For the type G of general position arrangements, the closure of the moduli space
is X(G) = (CP*)". The divisor D(G) = X(G) \ X(G) is given by D(G) = U, D,
whose components, Dy = {b € (CP*)” | Aj(b) = 0}, are irreducible hypersurfaces
indexed by J = {j1,...,Je+1}.- Choose a basepoint ¢ € X(G), and for each ¢ + 1
element subset J of [n+ 1], let d; be a generic point in D ;. Let I’y be a meridian
loop based at ¢ in X(G) about the point d; € D;. Note that ¢ € Y(7) and
that Iy is a (possibly null-homotopic) loop in Y(7) for any combinatorial type
7. We showed in [CO3| that for any combinatorial type 7', the homology group
H,(Y(T)) is generated by the classes {[I's] | J & Dep(7)¢4+1}. In particular, the
homology group H;(X(G)) is generated by the classes [I's], where J ranges over
all £+ 1 element subsets of [n + 1].

It is easy to see that the moduli space X(7") has complex codimension one in
the closure X(7) if and only if 7 covers 7’. The next theorem is essential for
later results.

Theorem 5.1 ([CO3]). Let T be a combinatorial type which covers the type T'.
Let b’ be a point in X(T"), and v € 1 (X(T),b) a simple loop in X(T) about b’.
Then the homology class [7y] satisfies

(5.2) G- = >, ms-[0],
JeDep(T',T)

where my is the order of vanishing of the restriction of Ay to X(T) along X(T").
Il

6. GAUSS-MANIN CONNECTIONS

The moduli space X(7') is not necessarily connected. The existence of a com-
binatorial type whose moduli space has at least two components follows from
examples of Rybnikov [Ry]. Let B(7) be a smooth component of the moduli
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space. Corresponding to each b € B(7), we have an arrangement Ay, combi-
natorially equivalent to A, with hyperplanes defined by the first n rows of the
matrix equation b -0 = 0, where o = (Luy--- W)T. Let M, = M(A) be the
complement of Ay,. Let

M(7) = {(b,u) € (CPY)" x C* | b e B(7) and u € My},

and define 77 : M(7) — B(7) by mr(b,u) = b. Since B(7) is connected by
assumption, a result of Randell [Ral] implies that 77 : M(7) — B(7) is a
bundle, with fiber 7' (b) = My

For each b € B(7), weights A define a local system £, on My. Since w7 :
M(7) — B(7) is locally trivial, there is an associated flat vector bundle 77 :
HY(L) — B(7), with fiber (79):*(b) = H9(My;Lp) at b € B(7) for each g,
0 < ¢ < {. Fixing a basepoint b € B(7), the operation of parallel translation of
fibers over curves in B(7) provides a complex representation

(6.1) Wl m(B(T),b) — Autc(HY(Mp; Ly)).

The cohomology of the Morse theoretic complex K*(Ap,) is isomorphic to the
cohomology of M, with coefficients in the local system Lp. The fundmental
group of B(7) acts by chain automorphisms on this complex, see [CO2, Cor. 3.2],
yielding a representation

o7 m(B(T),b) — Autc(K*(Ap)).

Theorem 6.1. The representation UL : 7 (B(T),b) — Autc(HY(Mp; Ly)) is
induced by the representation ¥% : w1 (B(T),b) — Autc(K*(Ap)). O

The vector bundle 7?7 : HY(L) — B(7) supports a Gauss-Manin connection
corresponding to the representation (6.1). Over a manifold X, there is a well
known equivalence between complex local systems and complex vector bundles
equipped with flat connections, see [D] Ko]. Let V. — X be such a bundle, with
connection V. The latter is a C-linear map V : E2(V) — £1(V), where £P(V)
denotes the complex p-forms on X with values in 'V, which satisfies V(fo) =
odf + fV (o) for a function f and o € £°(V). The connection extends to a map
V : EP(V) — EPTL(V) for p > 0, and is flat if the curvature V o V vanishes. Call
two connections V and V' on V isomorphic if V' is obtained from V by a gauge
transformation, V' = g o Vo g~ ! for some g : X — Hom(V, V).

The aforementioned equivalence is given by (V,V) +— VV, where VV is the
local system, or locally constant sheaf, of horizontal sections {o € £°(V) | V(o) =
0}. There is also a well known equivalence between local systems on X and finite
dimensional representations of the fundamental group of X. Note that isomorphic
connections give rise to the same representation. Under these equivalences, the
local system on X = B(7) induced by the representation ¥ corresponds to
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a flat connection on the vector bundle 79 : HY(L) — B(7), the Gauss-Manin
connection.

Let v € m(B(7),b), and let g : S' — B(7) be a representative loop. Pulling
back the bundle 77 : HY(L) — B(7) and the Gauss-Manin connection V, we
obtain a flat connection g*(V) on the vector bundle over the circle corresponding
to the representation of 71(S',1) = (¢) = Z given by ¢ — V1 (). This vector
bundle is trivial since any map from the circle to the relevant classifying space
is null-homotopic. Specifying the flat connection ¢*(V) amounts to choosing a
logarithm of UZ (). The connection g*(V) is determined by a connection 1-form
dz/z ® QL (v), where the connection matrix QZ(v) corresponding to 7 satisfies
Ui(v) = exp(—27iQ%(v)). If v and 4 are conjugate in m1(B(7),b), then the
resulting connection matrices are conjugate, and the corresponding connections
on the trivial vector bundle over the circle are isomorphic. In this sense, the
connection matrix Q4-() is determined by the homology class [y] of 7.

In the special case when 7 covers 7’ and v € 71 (B(7),b) is a simple loop
linking B(Z") in B(7), we denote the corresponding Gauss-Manin connection
matrix in the bundle 79 : H9(L£) — B(7) by Q%(B(7”),B(T)). The relationship
between the homology classes of the loop v and the loops I'; in the moduli space
of a general position arrangement exhibited in Theorem 5.1 suggests an analogous

relationship between the corresponding Gauss-Manin endomorphisms.

For nonresonant weights A, this relationship is pursued in [CO3|. In this sit-
uation, the local system cohomology is concentrated in the top dimension, and
is isomorphic to the cohomology of the Orlik-Solomon complex, H*(M;Ly) =
HY(A*(A),ax). Moreover, there is a surjection P : HY(A(G),ex) — HY(A*(A), ax)
from the cohomology of the Orlik-Solomon complex of a general position arrange-
ment to that of A, see [CO3|, Theorem 6.5].

Theorem 6.2. Let T be a combinatorial type which covers the type T'. Let
A be a collection of weights which are nonresonant for type T (and hence for
type G). Then the Gauss-Manin endomorphism Q%(B(7"),B(7T)) is determined
by the equation

POLBT)BT)=( Y msQLBT)BG)) P,
J€Dep,, 1 (T',T)

where T is the combinatorial type of an arrangement for which J is the only
dependent set of size £ + 1, and Q%(B(T;),B(G)) € End H(A(G), ex) is the cor-
responding Aomoto-Kita Gauss-Manin connection matriz. O

For arbitrary weights A, Theorems 5.1 and 6.2/ motivated the construction of
formal connections in the Aomoto complex of a general position arrangement in
[CO4]. These are discussed in Section [7.
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The Gauss-Manin connection in local system cohomology has combinatorial
analogs. We have the vector bundle A9 — B(7), whose fiber at b is A%(Ay),
the ¢-th graded component of the Orlik-Solomon algebra of the arrangement Ay,.
The nbc basis provides a global trivialization of this bundle. Given weights A,
the cohomology of the complex (A®(Ap),ax) gives rise to the flat vector bundle
H?(A) — B(7) whose fiber at b is the g-th cohomology group of the Orlik-
Solomon algebra, H4(A®*(Ap),ax). Like their topological counterparts, these al-
gebraic vector bundles admit flat connections. If 7 covers 7', denote the corre-
sponding connection matrix in this cohomology bundle by Q% (B(7”),B(7)).

7. FORMAL CONNECTIONS

To determine the endomorphisms Q%(B(7”),B(7)) and Q% (B(7"),B(T)), we
define formal connections in the Aomoto complex, (A®(G),ay)), of the general
position arrangement of n ordered hyperplanes in C/. We embed the arrange-
ment in projective space as described above and call the resulting type Goo. The
symmetric group X,41 on n + 1 letters acts on A®(G), the rank ¢ truncation of
the exterior algebra in n variables, by permuting the hyperplanes of G, and
on R by permuting the variables y;, where y,;1 = —Z?zl y;. In the basis
{e; | 1 < j < n} for the exterior algebra, the action of o € X, 41 is given by
o(e;) = eg(y if o(n+1) =n +1, and by

ole =4 oy Mol =nl
€o(i) — Co(n+l) if 0(7‘) #n+1,
if o(n 4+ 1) # n+ 1. Denote the induced action on the Aomoto complex by
¢o : A*(G) — A%(9),
¢O’(e’i1 T €y ® f(yb s 7yn)) = U(ei1) T U(eip) ® f(ya(1)7 SRR ya(n))

Lemma 7.1. For each o € ¥,11, the map ¢, is a cochain automorphism of the
Aomoto complex (A*(G), ey). O

If T'= (i1,...,ip) C [n] is a p-tuple, then we write er = e; ---¢e;,. Recall
that der = Z?Zl(—l)J_leT\{ij}. For j € [n], let (5,T) = (j,1,...,ip) be the
(p + 1)-tuple which adds j to T as its first entry. For S = (s1,...,s,) C [n+ 1],
let 0g denote the permutation (511 522 o S’i) Write S = T if S and T are equal
sets.

Definition 7.2. Let T C [n] be a p-tuple, S C [n+1] have size ¢+1, and j € [n].
If S = So = [q + 1], define the endomorphism &%, : (A*(G),ey) — (A*(G),ey) by
yiOeiry if p=q and So = (5,T),
(I)go (er) = < eyder ifp=q+1and Sy =T,
0 otherwise.
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If S # Sy, define 0g = gZ)US OJ):% o ¢;SI.

Proposition 7.3 ([CO4]). For every subset S of [n+1], the map &% is a cochain
homomorphism of the Aomoto complex (A*(G),ey)). O

The formal connection endomorphisms wg are defined for the Aomoto complex
of the general position type G. Our aim is to show that certain linear combinations
of these induce endomorphisms of the Aomoto complex of type 7 for all pairs of
types 7', T where T covers 7'. This involves multiplicities. Given S C [n + 1],
let Ng(7) = Ng(b) denote the submatrix of (5.1) with rows specified by S. Let
rank Ng(7') be the size of the largest minor with nonzero determinant. Define
the multiplicity of S in T by

mg(T) = |S| — rank Ng(7).

It is not hard to see that this definition of multiplicity agrees with the analytic
definition in Theorem [5.1. Let
ST T)= > ms(T)- s
S€Dep(7',7)

For an arrangement A, the Orlik-Solomon algebra depends only on the combi-
natorial type 7, so we write A(A) = A(T). If A C V = C, then A9(T) = 0
for ¢ > ¢. Tt follows that A(7) may be realized as a quotient of the rank ¢
truncation of the exterior algebra E(.A), which is itself the Orlik-Solomon alge-
bra A(G) of the combinatorial type of a general position arrangement. Denote
the rank ¢ truncation of the Orlik-Solomon ideal I(A) by I(7) = I(A) N A(G).
Thus A(7) = A(G)/I(T). The ideal I(7) gives rise to a subcomplex 1°(7") of the
Aomoto complex A®*(G), and we have an exact sequence of cochain complexes

0= 1°(T) = A*(G) — A*(T) — 0.

Theorem 7.4 ([CO4]). If T covers T', then o(T',T)(1*(T)) C 1*(T) so there is
a commutative diagram

(I(T),ey) —— (A*(G),ey) —— (A*(T),ay)
J/LD(T/7T)‘|.(T) J/Q(T/;]') J/UJ(TI,T)
(I(T),ey) —— (A*(G),ey) —— (A%(T),ay)
where v : 1°(T) — A®*(G) is the inclusion, p : A*(G) — A*(T) = A*(G)/I*(T) is
the natural projection, and w(7T',T) : A*(T) — A*(T) is the induced map. O
We call the map w(7’,7T) the universal Gauss-Manin endomorphism.

It follows that for given weights A, the specialization y +— A in the chain endo-
morphism w(7’,7) defines a chain endomorphism w3 (7', 7T) : A*(T) — A*(T).
Let k7 = ker[ay : AY(T) — A9TY(T)], and write A9(T) = k% @® A9(T)/k?. Define
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pl: AYT) — H1(A*(T),ax) to be the natural projection k? — H9(A*(7T),ay)
on £, and trivial on A%(7)/k?. The map w3 (7', 7) induces an endomorphism

(T, T) : HY(A*(T), ax) — HY(A*(T), ax)
determined by the equation p? o wi (7", 7) = QL(T',T) o p.

Theorem 7.5 (|[COA4]). Let M be the complement of an arrangement of type
T and let L be the local system on M defined by weights X. Suppose T covers
T'. Then the connection endomorphism Q% (B(T"),B(T)) is determined by the
equation

plowi (T, T)=Q%(B(T"),B(T)) o p?.
and hence Q4 (B(T"),B(T)) = Q4(T",T). O

Now consider the endomorphisms QF(B(7”),B(7)) of the local system coho-
mology groups H?(M; £). Recall from Theorem [4.1] that this cohomology is natu-
rally isomorphic to the cohomology of the Morse theoretic complex (K*(A), A®).
As above, let 37 = ker[A? : K9(A) — K% (A)], and write K9(A) = 9 @
K1(A)/s9. Define ¢? : K9(A) - HY(M; L) to be the natural projection »? —
H1(M; L) on »%, and trivial on K9(A)/s1.

Theorem 7.6 ([CO4]). Let M be the complement of an arrangement of type T
and let L be the local system on M defined by weights X. Suppose T covers T'.
Then there is an isomorphism 79 : AYT) — K9(A) so that the Gauss-Manin
endomorphism Q%L(B(T"),B(T)) in local system cohomology is determined by the
equation

plorlowi (T, T)=QLB(T"),B(T))oplor? O
8. SPECTRUM

The eigenvalues of the Gauss-Manin connection satisfy:

Theorem 8.1 ([CO2|). The eigenvalues of the universal Gauss-Manin endo-
morphism wi(T',T) are integral linear forms in the variables yi,...,yn. Thus
for any system of weights X, the eigenvalues of the Gauss-Manin endomorphism
in local system cohomology, Q%(B(T"),B(T)), are integral linear combinations of
the weights X. O

In [CO5] we determined the spectra of these Gauss-Manin endomorphisms.
Recall the collection Dep(7). Here it suffices to work with a smaller collection of
dependent sets

Dep(T); = {S € Dep(T), | () Hj # 0}.
JjeS
Let Dep(7)* = |J,Dep(7);. If S € Dep(7)*, then codim((;cq Hj) < [S]. If
7' is a combinatorial type for which Dep(7)* C Dep(7")*, let Dep(7',7)* =
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Dep(7')* \ Dep(7)*. If |S| > £+ 2, then S € Dep(7) but S € Dep(7)* if and
only if every subset of S of cardinality ¢ + 1 is dependent.

Denote the cardinality of S by s = |S|. For 1 <r < min(¢, s — 1), consider the
combinatorial type 7 (S,r) defined by

T € Dep(7T(S,r))* < |TNS|>r+1.

This type is realized by a pencil of hyperplanes indexed by S with a common sub-
space of codimension r, together with n — s hyperplanes in general position. Note
that for » = 1 the hyperplanes in S coincide, so 7(S,r) is a multi-arrangement.

Theorem 8.2 ([CO5)). Let 7' be a degeneration of a realizable combinatorial type
T. For each set S; € Dep(T',T)*, let r; be minimal so that Dep(T (S;,r;))* C
Dep(7")*. Given the collection {(S;,r;)} there is a unique pair (S,r) with r =
min{r;}, Dep(7(S,r))* C Dep(7’)*, and for every pair (S;,r;) where r; = r,
S; C S. O

Let 7' be a degeneration of 7. We call the pair (S,r) which satisfies the
conditions of Theorem 8.2 the principal dependence of the degeneration. Define

@*(S,r) = > mx(S,7) - &%,
KeDep(T(S,r))*

where mpg(S,r) is the multiplicity of K in type 7(S,r). We showed in the
proof of [CO5, Thm. 5.1] that the endomorphisms &*(S,r) and ©*(7',7) of
A*(G) induce the same endomorphism in A*(7), w*(S,r) = w* (7', 7). It follows
from Theorem [7.6 that for all weights X, the endomorphism w} (S, r) induces the
Gauss-Manin endomorphism Q7(B(77), B(7)). Write As =35 A;.

Theorem 8.3 ([CO5|). Suppose T covers T' with principal dependence (S,r).
Let X be a collection of weights satisfying Ag # 0. Then @5(S,r) : AYG) —
AY(G), the specialization of @1(S,r) at X, is diagonalizable, with eigenvalues 0
and \g.

1. The O-eigenspace has dimension

T
2 ()G5)-C)6)
= \p)\g—p rJ\a—r

2. The Ag-eigenspace has dimension
min(g,s) s\ (n—s s—1\[/n—s
> ()Go0)+ ()62
L5t \p/ \a—p rJ\g-r

Our last result was stated in [CO5H] only for nonresonant weights but applies
in full generality:
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Theorem 8.4 ([CO5|). Suppose T covers T' with principal dependence (S,r).
Let X be a collection of weights satisfying As # 0. Then the Gauss-Manin
endomorphism Q%(B(T"),B(T)) is diagonalizable, with spectrum contained in
{0, As}. O

9. A SELBERG ARRANGEMENT

Let S be the combinatorial type of the Selberg arrangement A in C? with
defining polynomial Q(A) = ujuz(u; — 1)(ug — 1)(u1 — uz2) depicted in Figure 1l
See [A1, SV2, Ka] for detailed studies of the Gauss-Manin connections arising in
the context of Selberg arrangements.

12 5 1 2
4
3 345
A A

FiGURE 1. A Selberg Arrangement and One Degeneration

Let £ be the complex rank one local system on the complement M of A
corresponding to the point t = (t1,...,t5) € (C*)°. For any such local sys-
tem on the complement of this arrangement, there is a choice of weights A =
(A1, ..., X5) € C° so that t; = exp(—27i\;) for each j, and the local system coho-
mology H*(M; £) is isomorphic to the cohomology of the Orlik-Solomon complex
(A*(S), ax). Consequently, if S’ is a degeneration of S, it suffices to compute the
Gauss-Manin endomorphism Q% (B(S'),B(S)) = Q%(B(S'),B(S)) = QL(S'S).

Let G be the combinatorial type of a general position arrangement of five
lines in C2. The nbc bases for the Orlik-Solomon algebras A(G) and A(S) give
rise to bases for the corresponding Aomoto complexes. The Aomoto complex
(A*(G), ey) is (dual to) the rank two truncation of the standard Koszul complex of
Y =1, ..., Ys in the polynomial ring R = C[y]. The Aomoto complex (A*(S), ay)
of the Selberg arrangement is given by

AY(S) 2 AL(S) 2 A%(S),

where A%(G) = R, AY(G) = R®, and A%(G) = R®. Recall that y; = > jesYj- The
boundary maps of this complex have matrices

—y3—ys—ys 0 0 O
0 0 0 —ys—vya—ys
[Y1voysyays] and  |yi5 0 —ys y2 0 O
0 yvy1 0 0 w5 —ys
—y3 0 213 0 —y4 you
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The projection p : A*(G) — A®(S) is given, in the nbc bases, by

0 if J={1,2} or J = {3,4},
a1’5 — a1,3 if J = {3, 5},
a2,5 — CL274 if J = {4, 5},

ajy otherwise.

ples) =

Let &’ denote the combinatorial type of the (multi)-arrangement A’ shown
in Figure [1, a codimension one degeneration of §. The principal dependence
of this degeneration is (S,r), where S = 345 and r = 1. The corresponding
endomorphism @®(S,r) : A*(G) — A®(G) is given by

W(S,7r) = W34 + W35 + W45 + @134 + Wag4 + W46 + D135 + D235 + W3se
+ 145 + Wous + Wase + 2W345.

The matrices of this chain endomorphism are @%(S,r) = 0,

00 0 0 O
00 0 0 O
&S, 1) =00 yas —ya—ys5|
00—ys yss —ys
00—y3—ya ysa

oo 0o 0 0 0 0 0 0 O]
Oyss —ya—ys 0 0 0O O O O
O-ysyss —ys 0 0 O O O O
O—ys—yayzs 0O O O O O O
-2 00 0 O ws —wa—ys 0 0 0
CEN=100 0 0 —ysyss -y 0 0 0
00 0 0 —ys—yayss O 0 O
00 0 0 0 0 0 yus 0 O
00 0 0 0 0 0 0 yss O
00 0 0 0 0 0 0 0 yss

A calculation with the projection p : A®*(G) — A®(S) yields the induced endo-
morphism w*(S’,S) = w*(S,7) : A*(S) — A*(S), given explicitly by w®(S',S) =
0, (S, S) = (S, r), and

(a5 —ya—ys 0 0 0 ]

Y3y —ys 0 0 0
2 of —y3s—ysaysa 0 0O O
S,S) =

CEE =107 0 0 yus —wa—us

0 0 0 —y3uwyss —¥ys

0 0 0 —y3—ya Y34 |
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Weights A = (A1, A2, A3, A\g, A5) are nonresonant for type S if
AL, A2, A3, A1, As, A6, Ai3s, A2as, A126, Asae € Z>o,

where A\; = > ;A and \¢ = —A5. The nbc basis for H2(A*(S),ay) =
HQ(M,,C) is {77274,772,5}, where M2, = ()\2(12 + Maq + )\5@5))\]'&]', see [FTJ The
projection map p? : A%(S) — H?(A*(S),ay) is given by

(A3m2,4 — AM(m2,4 +m25))/ (M AsAizs)  if {4, 5} = {1,3},

—n2,4/(AMA4) if {i,7} ={1,4},

9 ) (Masmea + A(n2a +m2,5)) /(M AsAiss) i {4, 5} = {1,5},
p~(ai;) = o

_(772,4 + 772,5)/()\2)‘3) if {Z7]} - {27 3}7

(A2am2,4 + Aam25) /(A2 Aaaas) if {i,7} = {2,4},

L (As5m2,4 + Aasm2.5) /(A2 A5 Aa45) if {i,7} = {2,5}.

A calculation with the endomorphism w3(S',S) = w?(S’ ,S)‘yHA and this
projection yields

2/ o IR PSR P VDY 0
2(5.5) = 0 A3+ A+ A5

A collection of weights A is resonant for type S if Ay = Ay, A2 = A3, A5 = Ag,
and A1 + Ao+ A5 = 0. Let A be a collection of nontrivial, resonant weights. Then
A1 # 0 or Ay # 0. For such weights, one can check that a; —as —az + a4 € AY(S)
represents a basis for H'(A*(S), ay), and that dim H?(A*(S),ax) = 3. By The-
orem 8.4, the spectrum of the Gauss-Manin endomorphism Qf(S’,S) is con-
tained in {0, Ag45}, provided A3y5 # 0. However, the resonance conditions above
imply that Asys = 0. Accordingly, one can check directly that the endomor-
phism Q}(S,S) : HY(A*(S),an) — H'(A*(S),a) induced by w}(S',S) =
w* (&', S|y, is trivial. One can also show that, for an appropriate choice of
basis for H2(A*(S), ay), the projection A%(S) — H?(A®*(S),ax) has matrix

[ A = e ]
A2 A2 Ao
0 0 X
A=A =A |
A1 A2 Ao
A 0 O

and that the endomorphism Q3(S’,S) : H*(A*(S),ax) — H?*(A*(S), ay) induced
by w (S, S) is trivial as well.
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