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1. Introduction

This note which can be viewed as a complement to [9], presents a self-contained
overview of basic properties of nested complexes and their two dual polyhedral
realizations: as complete simplicial fans, and as simple polytopes. Most of the
results are not new; our aim is to bring into focus a striking similarity between
nested complexes and associated fans and polytopes on one side, and cluster
complexes and generalized associahedra introduced and studied in [7, 2] on the
other side.

First a very brief history (more details and references can be found in [10, 9]).
Nested complexes appeared in the work by De Concini - Procesi [3] in the context
of subspace arrangements. More general complexes associated with arbitrary
finite graphs were introduced and studied in [1] and more recently in [10]; these
papers also present a construction of associated simple convex polytopes (dubbed
graph associahedra in [1], and De Concini - Procesi associahedra in [10]). An
even more general setup developed by Feichtner - Yuzvinsky in [6] associates a
nested complex and a simplicial fan to an arbitrary finite atomic lattice. In the
present note we follow [5] and [9] in adopting an intermediate level of generality,
and studying the nested complexes associated to building sets (see Definition 2.1
below).

Feichtner and Sturmfels in [5] show that the simplicial fan associated to a
building set is the normal fan of a simple convex polytope, while Postnikov in [9]
gives an elegant construction of this polytope as a Minkowski sum of simplices.
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In this note we develop an alternative approach, constructing the polytope di-
rectly from the fan; this construction is completely analogous to that in [2]. The
main role in this approach is played by the link decomposition property (Propo-
sition 3.2 below) asserting that the link of any element in a nested complex can
be naturally identified with a nested complex of smaller rank. This result pro-
vides a unified method for establishing properties of nested complexes and their
polyhedral realizations by induction on the rank of a building set.

The note is structured as follows. Section 2 introduces (basically following
[9]) building sets and associated nested complexes. Section 3 presents the link
decomposition property (Proposition 3.2). In this generality it seems to be new;
for the graph associahedra it appeared in [10]. Section 4 contains some struc-
tural properties of nested complexes, all of them derived in a unified way from
Proposition 3.2.

In Section 5 we show that any nested complex can be realized as a smooth
complete simplicial fan (Theorem 5.1 and Corollary 5.2); we refer to this fan as
the nested fan. This construction has appeared in [6, 4, 5]. However, it is not so
easy to extract from these papers a proof that the nested fan is well-defined; this
is why we prefer to give a simple self-contained proof.

In Section 6, we prove (Theorem 6.1) that the nested fan is the normal fan of a
simple polytope Π, which we call the nested polytope. The argument is completely
parallel to that in [2]; in particular, it leads to a specific realization of Π which
can be shown to be the same as the realization given in [9].

The concluding Section 7 discusses the special class of graphical building sets,
those giving rise to graph associahedra [1, 10]. We give a simple characterization
of graphical building sets (Proposition 7.3). For them an analogy with cluster
complexes becomes sharper: in particular, the corresponding nested complex is
a clique complex (Corollary 7.4).

2. Nested complexes

We start by recalling basic definitions from [9, Section 7].

Definition 2.1 ([9], Definition 7.1). Let S be a nonempty finite set. A building
set (or simply a building) on S is a collection B of nonempty subsets of S satisfying
the conditions:

(B1) If I, J ∈ B and I ∩ J 6= ∅, then I ∪ J ∈ B.
(B2) B contains all singletons {i}, for i ∈ S.

The nested complex associated to a building B is defined as follows. Let Bmax ⊂
B be the set of maximal (by inclusion) elements of B. We refer to the elements
of Bmax as the B-components. In view of (B1) and (B2), the B-components
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are pairwise disjoint, and their union is S. We define the rank of B by setting
rk(B) = |S| − |Bmax|.
Definition 2.2 (cf. [9], Definition 7.3). A subset N ⊂ B − Bmax is called nested
if it satisfies the following condition: for any k ≥ 2 and any I1, . . . , Ik ∈ N such
that none of the Ii contains another one, the union I1 ∪ · · · ∪ Ik is not in B. The
simplicial complex on B − Bmax formed by the nested sets is called the nested
complex and denoted N (B).

In particular, the 1-simplices of N (B) are pairs {I, J} ⊂ B such that:

(2.1) either I ⊂ J , or J ⊂ I, or I ∪ J /∈ B
(in view of (B2), in the last case I and J are disjoint). Note that our definition of
nested sets is different from the one in [9, Definition 7.3]: Postnikov’s nested sets
are obtained from ours by adjoining the set Bmax. Of course this does not affect
the poset structure of the nested complex; an advantage of the present version is
that our nested sets form a simplicial complex.

3. Link decomposition

Let B be a building on S, and N (B) the associated nested complex. For every
C ∈ B − Bmax, let

(3.1) N (B)C = {N ′ ⊂ B − Bmax − {C} : N ′ ∪ {C} ∈ N (B)}
denote the link of C in N (B); this is a simplicial complex on the set {I ∈
B − Bmax − {C} : {C, I} ∈ N (B)}. Our main tool in studying the structure of
N (B) is the recursive description of N (B)C given in Proposition 3.2 below. To
state it, we need some preparation.

Definition 3.1. Let C be a nonempty subset of S.

• The restriction of B to C is the building on C defined by

(3.2) B|C = {I ⊂ C : I ∈ B}.
• The contraction of C from B is the building on S − C defined by

(3.3) C\B = {I ⊂ S − C : I ∈ B or C ∪ I ∈ B}.

The fact that both B|C and C\B are indeed buildings, is immediate from
Definition 2.1.

Let S1, . . . , Sk be disjoint finite sets, and let Bi be a building on Si for i =
1, . . . , k. The product B1 × · · · × Bk is defined as the building on S1 t · · · t Sk

formed by the elements of all the Bi. Clearly, the nested complex N (B1×· · ·×Bk)
is naturally isomorphic to the product N (B1)× · · ·×N (Bk). In particular, every
building B on S decomposes as a product B|S1×· · ·×B|Sk

, where S1, . . . , Sk are the
B-components; therefore, N (B) can be identified with N (B|S1)× · · · × N (B|Sk

).
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Proposition 3.2 (Link Decomposition). For every C ∈ B−Bmax, the link N (B)C

is isomorphic to N (B|C × C\B).

Proof. Fix C ∈ B − Bmax and abbreviate B′ = B|C × C\B. Let

B0 = {I ∈ B − Bmax − {C} : {C, I} ∈ N (B)}
be the ground set of N (B)C . In view of (2.1), B0 is the disjoint union of the
following three sets:

B1 = {I ∈ B − {C} : I ⊂ C};(3.4)

B2 = {I ∈ B − Bmax − {C} : C ⊂ I};(3.5)

B3 = {I ∈ B − Bmax : C ∩ I = ∅, C ∪ I /∈ B}.(3.6)

Now to every I ∈ B0 = B1 ∪ B2 ∪ B3 we associate a subset I ′ ⊂ S by setting

(3.7) I ′ =

{
I if I ∈ B1 ∪ B3;

I − C if I ∈ B2.

Remembering the definitions, we see that B1 is the ground set of the nested
complex N (B|C), and B3 is a subset of the ground set of N (C\B) formed by those
I ′ ⊂ S−C for which C∪I ′ /∈ B. Furthermore, the correspondence I 7→ I ′ = I−C
identifies B2 with the remaining part of the ground set of N (C\B), formed by
those I ′ ⊂ S − C for which C ∪ I ′ ∈ B. Thus, the correspondence I 7→ I ′ is a
bijection between the ground sets of N (B)C and N (B′). To prove Proposition 3.2,
it remains to show the following:

The correspondence I 7→ I ′ induces an(3.8)
isomorphism of complexes N (B)C and N (B′).

Thus, we need to show the following: for any distinct I1, . . . , Ik ∈ B0, the
set {C, I1, . . . , Ik} is nested for B if and only if {I ′1, . . . , I ′k} is nested for B′.
First suppose {I ′1, . . . , I ′k} is not nested for B′. Without loss of generality, we
can assume that k ≥ 2, none of the I ′i contains another one, and I ′1 ∪ · · · ∪
I ′k ∈ B′. Choosing the smallest possible k with this property and using property
(B1) in Definition 2.1, we can further assume that the I ′i are pairwise disjoint.
Remembering the definition of B′, we see that either all the I ′i are contained
in C, or all the I ′i are contained in S − C. In the former case, Ii = I ′i for all i,
so we have I1 ∪ · · · ∪ Ik ∈ B, implying that {C, I1, . . . , Ik} is not nested for B.
Now suppose that all the I ′i are contained in S − C. Remembering (3.3), we
see that the condition I ′1 ∪ · · · ∪ I ′k ∈ B′ means that at least one of the subsets
I ′1 ∪ · · · ∪ I ′k and C ∪ I ′1 ∪ · · · ∪ I ′k belongs to B. If I ′i = Ii for all i = 1, . . . , k, we
again conclude that {C, I1, . . . , Ik} is not nested for B. Therefore suppose that
Ii = C ∪ I ′i for some i. If Ij = C ∪ I ′j for some i 6= j, then Ii ∪ Ij ∈ B by property
(B1) in Definition 2.1, and so {C, I1, . . . , Ik} is not nested for B in this case as
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well. Finally, if Ij = I ′j for j 6= i, then I1, . . . , Ik are pairwise disjoint, and their
union belongs to B, again implying that {C, I1, . . . , Ik} is not nested for B.

The converse implication (if {C, I1, . . . , Ik} is not nested for B then {I ′1, . . . , I ′k}
is not nested for B′) follows by reversing the above arguments. ¤

4. Some applications of the link decomposition

Proposition 4.1. The nested complex N (B) is pure of dimension rk(B)−1, that
is, all maximal nested sets are of the same cardinality rk(B).

Proof. Proceed by induction on rk(B). The statement is trivial if rk(B) = 0: in
this case, B consists of the singletons, and N (B) is just empty. Now assume that
rk(B) ≥ 1, and let N ⊂ B−Bmax be a maximal nested set. Let C ∈ N . Inspecting
Definition 3.1, we see that |(B|C×C\B)max| = |Bmax|+1 (the B-components that
are disjoint from C remain intact, while the component S′ containing C splits into
the two (B|C×C\B)-components C and S′−C). Thus, rk(B|C×C\B) = rk(B)−1.
Using Proposition 3.2 and the induction assumption, we conclude that

|N | = 1 + rk(B|C × C\B) = rk(B),

as claimed. ¤

Proposition 4.2. For every maximal nested set N and every I ∈ N , there is
precisely one maximal nested set N ′ such that N ∩N ′ = N − {I}.

Proof. First assume that rk(B) = 1. Then B consists of all singletons in S and
just one two-element set {i, j}. Thus, the only two maximal nested sets are
N = {I} and N ′ = {J}, where I (resp. J) is the singleton {i} (resp.{j}). So our
assertion holds.

Now let rk(B) > 1. Choose any C ∈ N − {I}. To prove Proposition 4.2, it
suffices to show that the assertion holds for the link N (B)C . It remains to apply
Proposition 3.2 and induction on rk(B). ¤

Definition 4.3. The dual graph of the nested complex N (B) has maximal nested
sets as vertices, with N and N ′ joined by an edge whenever |N ∩N ′| = |N | − 1.

The following property is immediate from Proposition 4.2.

Proposition 4.4. The dual graph of N (B) is regular of degree rk(B).

We now give a more detailed description of the edges of the dual graph.

Proposition 4.5. Let N1 and N2 be two maximal nested sets in N (B) joined by
an edge in the dual graph, and let N1 ∩N2 = N1 − {I1} = N2 − {I2}. Then the
following properties hold:
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(1) Neither of I1 and I2 contains another one.
(2) If I1 ∩ I2 6= ∅ then all the B|I1∩I2-components belong to N1 ∩N2.
(3) There exist pairwise disjoint I3, . . . , Ik ∈ N1∩N2 such that (I1∪I2)∩Ii = ∅

for 3 ≤ i ≤ k, and I1 ∪ · · · ∪ Ik ∈ (N1 ∩N2) ∪ Bmax (note that the family
{I3, . . . , Ik} can be empty).

Proof. As before, we proceed by induction on rk(B). If rk(B) = 1 then I1 = {i}
and I2 = {j}, with {i, j} the only non-singleton member of B. This makes the
properties (1)− (3) obvious.

So we assume that rk(B) > 1, choose C ∈ N1 ∩N2, and assume that (1)− (3)
hold for the building B′ = B|C × C\B and its maximal nested sets N ′

1 and N ′
2

corresponding to N1 and N2 as in Proposition 3.2. Thus, for i ∈ {1, 2}, we have
N ′

i = {I ′ : I ∈ Ni − {C}}, where the correspondence I 7→ I ′ is given by (3.7).
For the sake of convenience, we refer to the properties (1) − (3) for the sets N ′

1

and N ′
2 as (1′)− (3′). So we need to show that (1′)− (3′) imply (1)− (3).

First of all, by the definition of B′, every J ∈ B′ is contained in either C or
S − C. Hence (3′) implies that either both I ′1 and I ′2 are contained in C or both
are contained in S − C. Remembering (3.7), we see that (1′) implies (1).

To prove (2) suppose that J = I1 ∩ I2 6= ∅. There are three possibilities to
consider:

• J is strictly contained in C.
• J contains C.
• J is disjoint from C.

If J is strictly contained in C then both I1 and I2 belong to the set B1 in
(3.4). By (3.7), we have I ′i = Ii for i ∈ {1, 2}, hence I ′1 ∩ I ′2 = J . Again by (3.7),
B|J = B′|j , and so (2′) implies (2).

If J contains C then both I1 and I2 belong to the set B2 in (3.5). By (3.7), we
have I ′i = Ii −C for i ∈ {1, 2}, hence J ′ = I ′1 ∩ I ′2 = J −C. If J ′ = ∅ then J = C
is the only B|J -component, making (2) trivial. So suppose J ′ is nonempty, and
let J1, . . . , Jp be the B′|J ′-components. By property (B1) in Definition 2.1, there
can be at most one of the Ji such that C ∪Ji ∈ B. If C ∪Ji /∈ B for all i, then the
B|J -components are C, J1, . . . , Jp; if say C ∪ J1 ∈ B, then the B|J -components
are C ∪ J1, J2, . . . , Jp. In both cases, (2) follows from (2′), as desired.

It remains to prove (3). Since by Proposition 3.2, every member of N ′
1 ∩ N ′

2

is of the form I ′ for I ∈ (N1 ∩ N2) − {C}, we assume that (3′) holds with the
subsets I ′3, . . . , I

′
k ∈ N ′

1 ∩N ′
2 in place of I3, . . . , Ik ∈ (N1 ∩N2)− {C}.

By the definition of B′, (3′) implies that I ′1, . . . , I
′
k either are all contained in C,

or all contained in S − C. In the former case, I ′i = Ii for i = 1, . . . , k, hence (3)
follows at once from (3′). So suppose that I ′i ⊂ S − C for i = 1, . . . , k.
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Since by (3′) the sets I ′1, I
′
3, . . . , I

′
k belong to N ′

1, they form a nested set, hence
C ∪ I ′i ∈ B for at most one index i ∈ {1, 3, . . . , k}. By the same token, C ∪ I ′i ∈ B
for at most one index i ∈ {2, 3, . . . , k}. In other words, Ii = C∪I ′i for at most one
index i among {1, 3, . . . , k}, and at most one among {2, 3, . . . , k}, while Ii = I ′i
for the rest of the indices. Therefore the conditions that I3, . . . , Ik are pairwise
disjoint, and that (I1 ∪ I2) ∩ Ii = ∅ for 3 ≤ i ≤ k, follow from the corresponding
conditions for the I ′i.

To finish the proof, it remains to consider the following two cases:

• Ii = I ′i for i = 1, . . . , k.
• Ii = C ∪ I ′i for some i ∈ {1, . . . , k}.

First suppose Ii = I ′i for i = 1, . . . , k. Then the condition that I ′1 ∪ · · · ∪
I ′k ∈ (N ′

1 ∩ N ′
2) ∪ B′max means that either I1 ∪ · · · ∪ Ik ∈ (N1 ∩ N2) ∪ Bmax, or

C ∪ I1 ∪ · · · ∪ Ik ∈ (N1 ∩N2) ∪ Bmax. In the former (resp. latter) case, (3) holds
for I3, . . . , Ik (resp. for I3, . . . , Ik, Ik+1 = C).

Finally, if Ii = C∪I ′i for some i ∈ {1, . . . , k} then I1∪· · ·∪Ik = C∪I ′1∪· · ·∪I ′k ∈
B by property (B1) in Definition 2.1. Therefore, I ′1 ∪ · · · ∪ I ′k = (I1 ∪ · · · ∪ Ik)′,
hence I1 ∪ · · · ∪ Ik ∈ (N1 ∩N2) ∪ Bmax, finishing the proof. ¤

Let D be a nested set of cardinality rk(B) − 2. As in [8, Section 2.1], we call
the induced subgraph of the dual graph whose vertices are the maximal nested
sets containing D, the geodesic loop associated to D. The geodesic loop can be
identified with the dual graph of the link of D in N (B). By a repeated application
of Proposition 3.2, a geodesic loop is the dual graph of some complex N (B′)
with rk(B′) = 2. Thus, by Proposition 4.4, any geodesic loop is a 2-regular
graph, hence a disjoint union of cycles. More precisely, we have the following
opportunities.

Proposition 4.6. Any geodesic loop is a d-cycle for some d ∈ {3, 4, 5, 6}.

Proof. We can assume that rk(B) = 2, hence a geodesic loop in question is the
dual graph of N (B). Without affecting this graph, we can assume that there
are no singleton B-components of S. An easy inspection then leaves us with the
following options for B.

(D1) S = {1, 2, 3}; B consists of the singletons and S. The dual graph is a
3-cycle with vertices (= maximal nested sets)

{{1}, {2}}, {{2}, {3}}, {{1}, {3}}.
(D2) S = {1, 2, 3, 4}; B consists of the singletons, {1, 3} and {2, 4}. The dual

graph is a 4-cycle with vertices

{{1}, {2}}, {{2}, {3}}, {{3}, {4}}, {{1}, {4}}.
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(D3) S = {1, 2, 3}; B consists of the singletons, {1, 2}, and S. The dual graph
is a 4-cycle with vertices

{{1}, {1, 2}}, {{2}, {1, 2}}, {{2}, {3}}, {{1}, {3}}.
(D4) S = {1, 2, 3}; B consists of the singletons, {1, 2}, {2, 3}, and S. The dual

graph is a 5-cycle with vertices

{{1}, {1, 2}}, {{2}, {1, 2}}, {{2}, {2, 3}}, {{3}, {2, 3}}, {{1}, {3}}.
(D5) S = {1, 2, 3}; B consists of all nonempty subsets of S. The dual graph is

a 6-cycle with vertices

{{1}, {1, 2}}, {{2}, {1, 2}}, {{2}, {2, 3}}, {{3}, {2, 3}}, {{3}, {1, 3}}, {{1}, {1, 3}}.
¤

We conclude this section by using Proposition 3.2 to obtain a recursion for the
f -vector of a nested complex. For k ≥ 0, let fk(N (B)) denote the number of
nested k-subsets of N (B) (so that, in particular, f0(N (B)) = 1, and f1(N (B)) =
|B| − |Bmax|). Let

f(N (B)) =
∑

k≥0

fk(N (B))xk

be the corresponding generating function. The following result is an analogue of
[7, Proposition 3.7].

Proposition 4.7. (1) We have f(N (B1 × B2)) = f(N (B1))f(N (B2)).
(2) For every k ≥ 1, we have

(4.1) kfk(N (B)) =
∑

C∈B−Bmax

fk−1(N (B|C × C\B)) .

Equivalently,

df(N (B))
dx

=
∑

C∈B−Bmax

f(N (B|C))f(N (C\B)) .

Proof. Part (1) is immediate from the definitions. To prove (2) count in two
different ways the number of pairs (C,N), where C ∈ B−Bmax, and N is a nested
k-set containing C. On the one hand, each N contributes k to this count, so the
number in question is equal to kfk(N (B)); on the other hand, by Proposition 3.2,
each C contributes fk−1(N (B|C×C\B)), adding up to the right hand side of (4.1).
¤

It would be interesting to compare the recursion for the f -vector given by (4.1)
with the one in [9, Theorem 7.11 (3)].
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5. Nested fans

We now realize the nested complex N (B) associated to a building B on a finite
set S as a smooth complete simplicial fan in a real vector space of dimension rk(B).
Let RS (resp. ZS) be a real vector space (resp. a lattice) with the distinguished
basis {ei : i ∈ S}. For a subset I ⊂ S, we denote

eI =
∑

i∈I

ei ∈ ZS ⊂ RS .

Let V denote the quotient space of RS modulo the linear span of the vectors
eC for C ∈ Bmax (recall that Bmax stands for the set of all B-components of S,
that is, the maximal elements of B). Thus, dim V = rk(B). Let π : RS → V
denote the projection, and let L = π(ZS) ⊂ V be the standard lattice in V . We
abbreviate eI = π(eI) ∈ L.

Theorem 5.1. (1) For every maximal nested set N , the vectors eI for I ∈ N
form a Z-basis in L.

(2) Every vector v ∈ L has a unique expansion (referred to as the nested ex-
pansion) v =

∑
I∈B−Bmax

cIeI such that all coefficients cI are nonnegative
integers, and the set {I : cI > 0} is nested.

Proof. (1) It suffices to show that any maximal nested set N satisfies:

(5.1) The vectors eI for I ∈ N ∪ Bmax form a Z-basis in ZS .

We proceed by induction on |N | = rk(B) (see Proposition 4.1). If rk(B) = 0
then N is empty, and B = Bmax consists of the singletons, making (5.1) trivial.
If rk(B) > 0, choose any C ∈ N and apply the induction assumption to the
building B′ = B|C × C\B on S and the maximal nested set N ′ ∈ N (B|C × C\B)
corresponding to N as in Proposition 3.2. Replacing (B, N) with (B′, N ′) changes
the vectors in (5.1) as follows: for each I ∈ N ∪ Bmax that strictly contains C,
replace eI with eI−C = eI − eC . Clearly, this transformation and its inverse
preserve the set of Z-bases in ZS , and we are done.

(2) Any v ∈ L can be uniquely expressed as v = π(
∑

i∈S ciei), where all ci are
nonnegative integers, and mini∈C ci = 0 for every C ∈ Bmax. Let S1 ⊃ S2 ⊃ · · ·
be the decreasing sequence of subsets of S given by Sj = {i ∈ S : ci ≥ j}. Then
we have

(5.2) v =
∑

j≥1

∑

I∈(B|Sj
)max

eI .

Collecting similar terms in (5.2) yields an expansion of v into a nonnegative
integer linear combination of the eI for I ∈ B − Bmax. It is easy to see that this
expansion is nested, i.e., the contributing sets I form a nested set.
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Now let v =
∑

I∈B−Bmax
cIeI be a nested expansion, and let N = {I : cI > 0}

be the corresponding nested set. Let I1, . . . , Ik be the maximal (by inclusion)
elements of N , and let S1 = I1∪· · ·∪Ik. As an easy consequence of the definition
of a nested set, the sets I1, . . . , Ik are the B|S1-components; in particular, we see
that S1 does not contain any B-component. Applying the same construction to
the vector v′ = v −∑k

j=1 eIj , and continuing in the same manner, we conclude
that the nested expansion of v that we started with, is given by (5.2). This proves
the uniqueness of a nested expansion, and concludes the proof of Theorem 5.1.
¤

For every nested set N ∈ N (B), let R≥0N denote the cone in V generated by
the vectors eI for I ∈ N . Theorem 5.1 has the following geometric corollary.

Corollary 5.2. The cones R≥0N for N ∈ N (B) form a smooth complete simpli-
cial fan in V .

We call the fan in Corollary 5.2 the nested fan associated to B, and denote it
by ∆(B). Corollary 5.2 follows from Theorem 5.1 by fairly standard arguments
(see e.g., [7, Section 3.4, proof of Theorem 1.10]). For the reader’s convenience,
here is a self-contained proof.

Proof of Corollary 5.2. By Theorem 5.1 (1), every cone R≥0N for N ∈ N (B) is
simplicial and is generated by a part of a Z-basis in the lattice L; in other words,
if these cones form a fan, then this fan is simplicial and smooth. To check that
the nested fan is well defined, we need to show that

(5.3) R≥0N1 ∩ R≥0N2 = R≥0(N1 ∩N2) (N1, N2 ∈ N (B)) ;

the completeness property asserts that

(5.4)
⋃

N∈N (B)

R≥0N = V .

Let us first show (5.4). The existence of a nested expansion in Theorem 5.1
(2) means that

⋃
N∈N (B) Z≥0N = L, and so the union

⋃
N∈N (B)Q≥0N is the

Q-vector space generated by L. Therefore, the union
⋃

N∈N (B)R≥0N is dense
in V ; since it is also closed, (5.4) follows.

Turning to (5.3), we need to show that

R≥0N1 ∩ R≥0N2 ⊂ R≥0(N1 ∩N2)

(the reverse inclusion is trivial). Clearly, it suffices to show the following:

(5.5) If N1, N2 ∈ N (B) and R>0N1 ∩ R>0N2 6= ∅, then N1 = N2,

where R>0N stands for the set of all positive linear combinations of the vectors
eI for I ∈ N . Let RN denote the linear span of the cone R≥0N . Since each of
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the cones R≥0N1 and R≥0N2 is generated by a part of a Z-basis in L, the vector
subspace RN1 ∩RN2 ⊂ V is defined over Z. The intersection R>0N1 ∩R>0N2 is
an open polyhedral cone in RN1 ∩ RN2. Therefore, if R>0N1 ∩ R>0N2 6= ∅ then
Z>0N1 ∩Z>0N2 6= ∅, and so N1 = N2 by the uniqueness of a nested expansion in
Theorem 5.1 (2). ¤

As a standard consequence of Corollary 5.2, we get the following corollary.

Corollary 5.3. The dual graph (see Definition 4.3) of any nested complex is
connected.

6. Nested polytopes

Theorem 6.1. The nested fan ∆(B) in Corollary 5.2 is the normal fan of a
simple convex polytope Π(B), which can be explicitly realized as the set of all
tuples (xi)i∈S of real numbers satisfying:

∑

i∈C

xi = 0 (C ∈ Bmax) ,(6.1)

∑

i∈I

xi ≤ |I| (2|C|−1 − 2|I|−1) (I ∈ B − Bmax, I ⊂ C ∈ Bmax) .(6.2)

Before proving Theorem 6.1, we recall relevant facts on normal fans (see [11]
or [2, Section 2.1]).

Definition 6.2. Let Π be a full-dimensional simple convex polytope in a real
vector space V ∗. The support function of Π is a real-valued function F on the
dual vector space V given by

F (v) = max
ϕ∈Π

〈v, ϕ〉 .

The normal fan of Π is the complete simplicial fan in V whose cones are in the
following inclusion-reversing bijection with the faces of Π: each face Σ ⊂ Π gives
rise to the cone

CΣ = {v ∈ V : 〈v, ϕ〉 = F (v) for ϕ ∈ Σ} ,

whose codimension is equal to dim(Σ).

Now let ∆ be a complete simplicial fan in V , and let R be a set of representa-
tives of 1-dimensional cones in ∆. The following proposition (cf. [2, Lemma 2.1])
gives a criterion for ∆ to be the normal fan of a simple convex polytope Π ⊂ V ∗.

Proposition 6.3. The following conditions are equivalent:

(1) ∆ is the normal fan of a full-dimensional simple convex polytope Π in V ∗.
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(2) There exists a real-valued function F on R satisfying the following system
of linear inequalities. For each pair of adjacent maximal cones C and C′
in ∆, let {e} = (R∩C)− (R∩C′) and {e′} = (R∩C′)− (R∩C), and write
the unique (up to a nonzero real multiple) linear dependence between the
elements of R ∩ (C ∪ C′) in the form

(6.3) mee + me′e
′ −

∑

v∈R∩C∩C′
mvv = 0 ,

where me and me′ are positive real numbers. Then

(6.4) meF (e) + me′F (e′)−
∑

v∈R∩C∩C′
mvF (v) > 0 .

Under these conditions, one can choose the polytope Π to be defined by the fol-
lowing system of linear inequalities:

(6.5) Π = {ϕ ∈ V ∗ : 〈e, ϕ〉 ≤ F (e) for e ∈ R} .

Proof of Theorem 6.1. We apply the criterion in Proposition 6.3 to the nested
fan ∆(B). We retain the notation in Section 5. Thus, the ambient space V of
∆(B) is the quotient space of RS modulo the linear span of the vectors eC for
C ∈ Bmax. Therefore, the dual space V ∗ is naturally identified with the space of
real tuples (xi)i∈S satisfying (6.1). It remains to show that the linear inequalities
(6.2) can be identified with those in (6.5), for an appropriate choice of the set of
representatives R, and the function F on R satisfying (6.4).

By the definition of the nested fan, the set R ⊂ V in Proposition 6.3 can be
chosen as follows: R = {eI : I ∈ B − Bmax}. Applying Proposition 4.5 and using
the notation introduced there, we see that every relation of the form (6.3) can be
written as follows:

(6.6) eI1 + eI2 −
∑

J∈(B|I1∩I2
)max

eJ +
k∑

i=3

eIi − eI1∪···∪Ik
= 0 .

The corresponding inequality (6.4) takes the form

(6.7)
k∑

i=1

F (eIi)−
∑

J∈(B|I1∩I2
)max

F (eJ)− F (eI1∪···∪Ik
) > 0 .

Note that all the sets participating in (6.7) are contained in I1∪· · ·∪Ik ∈ B, hence
they are contained in the same B-component C. Thus, to prove Theorem 6.1, it
suffices to show that (6.7) holds for the function F given by

F (eI) = |I| (2|C|−1 − 2|I|−1)

for all participating subsets I. In other words, using the abbreviation

fn(m) = m(2n−1 − 2m−1) ,
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it is enough to show that, for any positive integer n, this function satisfies

(6.8)
k∑

i=1

fn(pi)−
∑̀

j=1

fn(qj)− fn(r) > 0

for all nonnegative integers pi, qj , and r not exceeding n and such that

(6.9)
k∑

i=1

pi −
∑̀

j=1

qj − r = 0,
∑̀

j=1

qj < min(p1, p2) .

To prove (6.8), note that, for every positive integers a and b, we have

(6.10) fn(a) + fn(b)− fn(a + b) = a (2a+b−1 − 2a−1) + b (2a+b−1 − 2b−1) > 0 .

It follows that, under the assumptions (6.9), we have
k∑

i=3

fn(pi) > fn(r)− fn(r −
k∑

i=3

pi) ;

therefore, in proving (6.8) we can assume that k = 2. Again using (6.10), we can
also assume that each nonzero qj is equal to 1. Thus, (6.8) simplifies as follows:

(6.11) fn(p1) + fn(p2)− `fn(1)− fn(r) > 0 for p1 + p2 = ` + r, ` < min(p1, p2),

which, after further simplification, reduces to showing that

(6.12) r2r−1 − p12p1−1 − p22p2−1 > 0 for r > max(p1, p2).

To finish the proof, it remains to note that

r2r−1−p12p1−1−p22p2−1 > ((r−1)2r−2−p12p1−1)+((r−1)2r−2−p22p2−1) ≥ 0 ,

as required. ¤

In view of Proposition 4.6, Theorem 6.1 has the following corollary.

Proposition 6.4. Every two-dimensional face of the nested polytope is a d-gon
for d ∈ {3, 4, 5, 6}.

7. Graphical buildings

Definition 7.1 ([9], Example 7.2). Let Γ be a graph on the set of vertices S.
Define the graphical building B(Γ) as the set of all nonempty subsets C ⊂ S of
vertices such that the induced subgraph Γ|C is connected.

A graphical building is indeed a building since it clearly satisfies conditions
(B1) and (B2) in Definition 2.1. Remembering Definition 3.1, we obtain the
following proposition.

Proposition 7.2. Suppose B is a graphical building on S.
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(1) For any nonempty C ⊂ S, the restriction B|C is graphical.
(2) For any C ∈ B, the contraction C\B is graphical.

Proof. Part (1) is clear since B|C = B(Γ|C). To show (2), it is enough to notice
that C\B = B(Γ′), where Γ′ is the graph obtained from the induced subgraph
Γ|S−C by adjoining all edges {s, t} such that each of s and t is connected by an
edge in Γ with some vertex from C. ¤

We now provide a characterization of graphical buildings.

Proposition 7.3. For a building B, the following conditions are equivalent:

(1) B is graphical.
(2) If J, I1, . . . , Ik ∈ B are such that J ∪ I1 ∪ · · · ∪ Ik ∈ B, then J ∪ Ii ∈ B for

some i.

Proof. The implication (1) =⇒ (2) is obvious. To prove (2) =⇒ (1), note that an
arbitrary building B gives rise to a graph Γ on the set of vertices S, with s, t ∈ S
joined by an edge whenever {s, t} ∈ B. Repeatedly using conditions (B1) and
(B2) from Definition 2.1, we obtain the inclusion B(Γ) ⊂ B. It remains to show
that the reverse inclusion B ⊂ B(Γ) holds if B satisfies (2).

Let C ∈ B. If p = |C| ≤ 2 then C ∈ B(Γ) by the definition of Γ; so suppose
that p > 2. Repeatedly using (2), we conclude that the elements s1, . . . , sp of C
can be ordered in such a way that {s1, . . . , sk} ∈ B for k = 1, . . . , p. In particular,
using induction on p, we can assume that {s1, . . . , sp−1} ∈ B(Γ). Again using (2)
with J = {sp}, and I1, . . . , Ik being the singletons {s1}, . . . , {sp−1}, we see that
sp is joined by an edge in Γ with some si for 1 ≤ i < p. It follows that C ∈ B(Γ),
as desired. ¤

We conclude with several results showing that an analogy between the nested
complexes and the cluster complexes in [7, 2] becomes sharper for graphical build-
ings.

First, as an immediate consequence of Proposition 7.3, the nested complex of
a graphical building has the following “clique” property.

Corollary 7.4. For a graphical building B, a subset N ⊂ B − Bmax is nested if
and only if any I, J ∈ N satisfy (2.1).

Second, for graphical buildings the property (3) of Proposition 4.5 can be
strengthened as follows.

Corollary 7.5. Suppose B is graphical, and let N1 and N2 be two maximal nested
sets in N (B) joined by an edge in the dual graph, so that N1 ∩N2 = N1−{I1} =
N2 − {I2}. Then, in addition to properties (1) and (2) of Proposition 4.5, we
have: I1 ∪ I2 ∈ (N1 ∩N2) ∪ Bmax.
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Proof. It suffices to show that, for B graphical, the family {I3, . . . , Ik} in Propo-
sition 4.5 (3) must be empty. Suppose this is not true, and choose k ≥ 3 to be
the smallest possible. Then Ii∪Ij /∈ B for 3 ≤ i < j ≤ k (otherwise, replacing the
pair {Ii, Ij} with one set Ii ∪ Ij would produce a smaller value of k). Applying
the characterization in Proposition 7.3, we obtain that at least one of the sets
I1 ∪ Ik and I2 ∪ Ik is in B. But then if, say I1 ∪ Ik ∈ B then I1 and Ik cannot
belong to a nested set N1, providing the desired contradiction. ¤

Recall that the condition that N1∩N2 = N1−{I1} = N2−{I2} in Corollary 7.5
means that the corresponding cones R≥0N1 and R≥0N2 are adjacent in the nested
fan (see Corollary 5.2).

Corollary 7.6. In the situation of Corollary 7.5, the linear relation (6.6) takes
the form

(7.1) eI1 + eI2 −
∑

J∈(B|I1∩I2
)max

eJ − eI1∪I2 = 0 ;

in particular, the vector eI1 + eI2 belongs to R≥0(N1 ∩N2).

Finally, for graphical buildings, Proposition 6.4 takes the following stronger
form.

Proposition 7.7 ([10], Section 2.8). If B is graphical then every two-dimensional
face of the nested polytope Π(B) is a d-gon for d ∈ {4, 5, 6}.

Proof. In view of Propositions 3.2 and 7.2, every two-dimensional face of Π(B)
corresponds to the nested complex of a graphical building of rank 2. Such com-
plexes were listed in the proof of Proposition 4.6. It remains to observe that the
only one among them for which the corresponding nested polytope is a triangle
(case (D1)) is non-graphical. ¤

To illustrate the above results, let us compare the nested fans and polytopes
associated with rank 2 building sets in cases (D2) and (D3) in the proof of Proposi-
tion 4.6. Both cases are shown in Figure 1. In case (D2) the building is graphical,
while in (D3) it is not. In the former case, the relations (7.1) take the form

e1 + e3 = 0 = e2 + e4 ,

while in the latter, we have (see (6.6))

e1 + e2 = e12 = −e3 .

As a geometric consequence, in (D2) the nested polytope is a square, while in (D3)
it is a trapezoid.

Much more examples and pictures can be found in [9, Section 8].
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Figure 1. The nested fan and polytope in cases (D2) and (D3).
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