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Abstract: Atiyah proved that the moment map image of the closure of an
orbit of a complex torus action is convex. Brion generalized this result to
actions of a complex reductive group. We extend their results to actions of
a maximal solvable subgroup.
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Introduction

Let M be a compact Kähler manifold and L a Hermitian line bundle over M
whose curvature form is the Kähler form. In addition, let G be a compact Lie
group and τ a Kählerian action of G on (M, L). From this action one gets a
moment map Φ: M → g∗ and a holomorphic action τC of the complexified Lie
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group GC on (M, L). In particular, any Borel subgroup B of GC acts on M and
L, and the main goal of this paper is to prove a Kirwan type convexity theorem
for the moment images of B-invariant subvarieties of M . Let T be the maximal
torus of G contained in B and let t∗+ be the closed Weyl chamber in t∗ which is
positive with respect to B. Our main result, which is described in more detail in
Section 2, asserts

Theorem. If X is a B-invariant irreducible closed analytic subvariety of M , the
moment image of X in g∗ intersects t∗+ in a convex polytope.

This result is a B-analogue of well-known convexity theorems of Atiyah and
Brion, which we will review in Section 1, partly as a motivation for our result and
partly because the techniques used by Brion to prove his GC-convexity theorem
will be used in our proof as well.

One other major ingredient in our proof is a B-analogue of a fundamental
result in geometric invariant theory. This B-analogue asserts that if s is a global
holomorphic section of L which is an eigensection for the action of B and which
does not vanish at a point x, then the norm of s, restricted to the closure of
the B-orbit through x, takes its maximum at a point y such that Φ(y) is in
the chamber t∗+. This theorem and variants of it will be discussed in Section 3.
The final ingredient of our proof, a rationality statement concerning the moment
image, is explained in Section 4.

Our main result has some interesting applications to “complex Morse theory”.
It is well known that a generic component of the moment map is a Morse-Bott
function, and Carrell and Sommese have shown that the unstable manifolds of
this Morse-Bott function are complex submanifolds and that their closures are
analytic subvarieties. Moreover, as we show in Section 5, for a “dominant” choice
of a moment map component these varieties are B-invariant. (For instance,
for a flag variety the unstable manifolds are the Bruhat cells: the B-orbits.)
Hence their moment images intersected with t∗+ are convex polytopes. In other
words, the Morse-Bruhat-Carrell-Sommese decomposition of M gets reflected in
a “stratification” of the Kirwan polytope.

1. Convexity results of Atiyah and Brion

The main result of this paper is a nonabelian generalization of a theorem about
torus actions proved by Atiyah in [1]. Let (M, ω) be a compact Kähler manifold
and τ a Kählerian action of the torus T = (S1)n on M . From τ one gets a
holomorphic action τC of the complex torus TC = (C∗)n. If τ has fixed points,
there is a moment map Φ: M → t∗, and Atiyah’s theorem asserts:

1.1. Theorem. Let X = TCx be the closure of the TC-orbit through a point
x ∈ M . Then the moment image of X is a convex polytope. More explicitly,
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Φ(X) is the convex hull of the set Φ(XT ), where XT denotes the set of fixed
points of τ |X.

If ω is the curvature form of a T -equivariant Hermitian holomorphic line bun-
dle L on M , there is an alternative description of Φ(X). The space of global
holomorphic sections Γ(M, L) decomposes under the action of T into a direct
sum of weight spaces, Γ(M, L) =

⊕
λ∈Λ Γ(M, L)λ, where Λ = Hom(T,U(1)) is

the weight lattice of T . (As usual, we will identify Λ with a subgroup of t∗ by
identifying the weight λ with the functional T1λ/(2π

√−1).) Atiyah’s description
of Φ(X) is equivalent to:

1.2. Theorem. Let x ∈ M and let X = TCx. Suppose L is generated by its global
sections. Then Φ(X) is the convex hull of the subset

{λ ∈ Λ | ∃s ∈ Γ(M, L)λ, s(x) 6= 0 }
of t∗.

It is this version of Atiyah’s theorem which we’ll generalize below. First, how-
ever, we mention some of its consequences.

1.3. Corollary. Let X be an arbitrary T -invariant irreducible closed subvariety
of M and let i : X → M be the inclusion map.

(i) Φ(X) is the convex hull in t∗ of the set

{λ ∈ Λ | ∃s ∈ Γ(M, L)λ, i∗s 6= 0 }.
(ii) Φ(X) is the convex hull in t∗ of the set Φ(XT ).
(iii) Φ(X) is an integral convex polytope.
(iv) The set consisting of all x in X for which Φ(TCx) = Φ(X) is nonempty

and Zariski open in X.
(v) The collection of polytopes Φ(X), where X ranges over all TC-invariant

irreducible closed subvarieties of M , is finite.

A special case of Corollary 1.3 is a convexity theorem of Atiyah for Schubert
varieties. Suppose T is a Cartan subgroup of a connected compact Lie group,
G. Let GC be the complexification of G, let B ⊇ T be a Borel subgroup of
GC and let M be the full flag variety GC/B. For any µ ∈ Λ let Cµ be the
one-dimensional B-module with weight µ and let Lµ = GC ×B Cµ be the cor-
responding GC-homogeneous line bundle over M . The curvature form ωµ (with
respect to the G-invariant Hermitian metric on Lµ defined by the absolute value
on C) is nondegenerate if and only if the weight µ is regular. It is well known
that ωµ is Kähler if and only if µ ∈ − Int t∗+, where t∗+ is the closed Weyl chamber
in t∗ which is positive with respect to B. A moment map Φµ for the G-action is
found by composing the maps

(1) M = GC/B −→ G/T −→ g∗,
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where the first map is the inverse of the diffeomorphism G/T → M induced by
the inclusion G → GC and the second map is defined by gT 7→ gµ. In fact, Φµ

is a G-equivariant symplectomorphism from M onto the coadjoint orbit through
µ. Let W = NG(T )/T be the Weyl group of (G,T ). The T -fixed points in M
are precisely the cosets wB with w ∈ W . Every orbit of the left B-action on M
passes through a unique T -fixed point. The Schubert variety Xw is by definition
the closure of the B-orbit through the T -fixed point wB. The Bruhat order on W
is defined by v ≤ w if and only if Xv ⊆ Xw. Thus (Xw)T = { vB | v ≤ w }. Since
the T -moment map M → t∗ is just the composition of Φµ and the projection
g∗ → t∗, one obtains from Corollary 1.3(ii):

1.4. Theorem ([1]). The projection onto t∗ of the Schubert variety Xw is equal
to the convex hull of the set { vµ | v ≤ w }.

Theorem 1.2 and its various corollaries have been generalized by Brion to
nonabelian groups in the setting of complex projective varieties. Namely let G,
T and B be as above and let N = [B,B] be the unipotent radical of B. Let τ
be an action of G on CPn coming from a unitary representation of G on Cn+1.
Then G acts on the polynomial algebra S =

⊕
r≥0 Sr, where Sr = Γ(CPn, Lr)

and L = O(1) is the canonical hyperplane bundle. Let Λ+ = Λ ∩ t∗+ be the
semigroup of dominant weights of (G,T ). For λ ∈ Λ+ and r ∈ N let Sλ,r be the
isotypical G-submodule of Sr of highest weight λ. The set SN consisting of all
N -invariant polynomials is a subalgebra of S which is preserved by the action of
T . Let us put SN

λ,r = (Sλ,r)N ; then

SN =
⊕{

SN
λ,r

∣∣ (λ, r) ∈ Λ+ ×N
}

is a bigrading of the algebra SN by weight and degree. Let X be any GC-invariant
irreducible closed subvariety X of CPn and let I(X) be the homogeneous ideal of
S consisting of all polynomials vanishing on X. Then I(X)N is a homogeneous
ideal of SN and the quotient algebra A(X) = SN/I(X)N is Λ+ × N-graded.
Brion defines

C(X) = {λ ∈ Λ⊗Q | A(X)rλ,r 6= 0 for some r > 0 }.
In other words, a rational weight λ ∈ Λ ⊗ Q is in C(X) if and only if there
exist a positive integer r such that rλ is integral and a section s ∈ SN

rλ,r such
that s does not vanish on X. The set C(X) is contained in the intersection
of the chamber t∗+ with the Q-vector space Λ ⊗ Q. The assumption that X
is irreducible implies that A(X) has no zero divisors and hence that C(X) is
convex over the rationals. A theorem of Hadziev and Grosshans (see e.g. [15,
Kapitel III.3.2] says that the algebra SN is finitely generated. Since A(X) is the
image of the map SN → (S/I(X))N induced by the quotient map S → S/I(X),
A(X) is likewise finitely generated. By selecting a finite system of homogeneous
generators { ai ∈ A(X)λi,ri

| i = 1, 2, . . . , k }, one sees immediately that C(X) is



Convexity for B-varieties 641

the convex hull of the rational weights λ1/r1, λ2/r2, . . . , λk/rk. Thus C(X) is
a convex polytope over Q. Now let Φ: CPn → g∗ be the moment map for the
action of G on CPn. Brion proves:

1.5. Theorem ([4]). Let X be a GC-invariant irreducible closed subvariety of
CPn. Then the intersection ∆(X) = Φ(X) ∩ t∗+ is equal to the closure of C(X),
and C(X) is equal to the set of rational points in ∆(X). Hence ∆(X) is a rational
convex polytope.

(This result builds on prior work by Ness and Mumford [16]; cf. also Guillemin
and Sternberg [11].) In particular, for every x ∈ CPn the set ∆(GCx) is a rational
convex polytope. Brion also proves nonabelian analogues of the other assertions
in Corollary 1.3. (However, in contrast to the abelian case, ∆ is not necessarily
an integral polytope. This is why the powers of L must be incorporated in the
definition of the set C(X).)

2. Convexity theorems for B-varieties

Our main observation is that these results of Brion are also true for B-invariant
subvarieties of GC-manifolds. Namely let M be a compact complex manifold,
L → M a positive Hermitian holomorphic line bundle with Hermitian connection
∇ and curvature form ω, and τ an action of G on L by line bundle automor-
phisms which preserve the complex structure on M and the Hermitian structure
on L. The group of all line bundle automorphisms which preserve the holomor-
phic structure on L is a complex Lie group; and therefore the G-action extends
uniquely to a GC-action by holomorphic line bundle automorphisms on L. More-
over, since the action of G on L preserves its Hermitian structure, the action of G
on M preserves ω. The space C∞(M, L) of all smooth sections of L is a G-module
in a natural way. Let L(ξ)s denote the Lie derivative of a section s ∈ C∞(M, L)
along ξ ∈ g. As observed by Kostant [14, Theorem 4.3.1], the first-order operators
∇(ξM ) and L(ξ) have the same principal symbol, and the zeroth order operator
L(ξ) − ∇(ξM ) is given by multiplication by an imaginary-valued function. The
map φ : g → C∞(M,R) defined by

(2) φ(ξ) =
1

2π
√−1

(L(ξ)−∇(ξM ))

satisfies dφ(ξ) = ι(ξM )ω and is G-equivariant. Therefore the map Φ: M → g∗
defined by 〈Φ, ξ〉 = φ(ξ) is a moment map for the G-action on M .

As in Section 1 we consider the algebra of sections S =
⊕

r≥0 Γ(M, Lr) and its
subalgebra SN , which has a grading

SN =
⊕{

SN
λ,r

∣∣ (λ, r) ∈ Λ+ ×N
}
.
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We introduce, for any B-invariant irreducible closed analytic subvariety X of M ,
the homogeneous ideal I(X) of all sections vanishing on X, the quotient algebra
A(X) = SN/I(X)N , and the set of rational weights

C(X) = {λ ∈ Λ⊗Q | A(X)rλ,r 6= 0 for some r > 0 }.
(Sometimes we shall write C(X, L) instead of C(X) to emphasize the dependence
of this set on the linearization L.) As before, C(X) is contained in the chamber t∗+
and is the convex hull of a finite subset of Λ⊗Q. Now define ∆(X) = Φ(X)∩ t∗+.
In Sections 3 and 4 we will prove the following assertion, which is the main result
of this paper.

2.1. Theorem. Let X be a B-invariant irreducible closed subvariety of M . Then
∆(X) is equal to the closure of C(X), and C(X) is equal to the set of rational
points in ∆(X). Hence ∆(X) is a rational convex polytope.

2.2. Remarks. (i) By Kodaira’s embedding theorem, M embeds holomorphi-
cally into the projective space associated to Γ(M, Lr)∗ for sufficiently large r. It is
easy to see that the Kodaira map is GC-equivariant. Therefore M is a projective
GC-variety. However, the Kodaira map is rarely symplectic. Thus the symplectic
form ω is usually not the restriction of the Fubini-Study form, nor is the moment
map Φ usually the restriction of the standard moment map on projective space.

(ii) Here is a heuristic argument in favour of Theorem 2.1. Let Mimpl be the
imploded cross-section of M . This is a certain stratified symplectic space with a
Hamiltonian T -action on the strata. (See [9].) It can be identified with ProjSN ,
the “quotient” of M by the N -action. Any B-invariant subvariety X of M maps
to a TC-invariant subvariety Y of Mimpl, whose T -moment map image is equal
to ∆(X). But the image of Y is convex by Atiyah’s theorem. Therefore ∆(X) is
convex. It is possible to give a rigorous argument along these lines, but we will
present a shorter and more direct proof.

(iii) In contrast to the G-invariant case, the intersection Φ(X)∩ t∗ is not Weyl
group invariant. We do not know how Φ(X) intersects the chambers of t∗ other
than t∗+. See however Remark 3.4 for some partial information.

(iv) If X is GC-invariant, the map SN → (S/I(X))N is surjective (this follows
from the reductivity of GC) and thus A(X) = (S/I(X))N . However, this may
fail if X is merely B-invariant, in which case the algebra (S/I(X))N may have
undesirable properties.

Theorem 2.1 implies that ∆(Bx) is a rational convex polytope for every point
x ∈ M . For those points at which B acts freely, a somewhat different description
of these polytopes can be found in [10, Section 4.5], where we prove

2.3. Theorem. Let x ∈ M and suppose that B acts freely at x. Then

(3) ∆(Bx) = t∗+ ∩
⋂

n∈N

ΦT (TCnx),
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where ΦT : M → t∗ is the T -moment map, i.e. the composition of Φ with the
projection g∗ → t∗.

(In [loc. cit., Theorem 4.5.1] B denotes the negative Borel relative to the cham-
ber t∗+. The difference arises from the opposite sign convention for the moment
map adopted there.) A similar result, for moment polytopes of GC-invariant
subvarieties, was proved by Franz [8]. Notice that by Atiyah’s theorem each of
the sets ΦT (TCnx) is a convex polytope and only a finite number of distinct poly-
topes can occur in the intersection (3). Hence (3) is a convex polytope. However,
our proof of Theorem 2.1 will be independent of Theorem 2.3.

The proof of Theorem 2.1 involves the following result, which is of interest in
its own right:

2.4. Theorem. Let X be a B-invariant irreducible closed subvariety of M and
let i : X → M be the inclusion map. Suppose s ∈ SN

rλ,r satisfies i∗s 6= 0. Let x be
a point on X where ‖i∗s‖ takes its maximum value. Then Φ(x) = λ.

We mention a few consequences of Theorem 2.1. As in the torus and reductive
cases, ∆(X) = ∆(Bx) for “most” x in X:

2.5. Corollary. Let X be a B-invariant irreducible closed subvariety of M . The
set U consisting of all x in X for which ∆(X) = ∆(Bx) is nonempty and Zariski
open in X.

Proof. It follows from Theorem 2.1 that

(4) U = {x ∈ X | C(X) = C(Bx) }.
Let λ1, λ2, . . . , λl be the vertices of C(X). For each i put

Ui = {x ∈ X | λi ∈ C(Bx) }
=

{
x ∈ X

∣∣ s(x) 6= 0 for some r > 0 and some s ∈ SN
rλi,r

}
.

It follows from (4) that U = U1 ∩U2 ∩ · · · ∩Ul. Each Ui is nonempty and Zariski
open, X is irreducible, and therefore U is nonempty and Zariski open. ¤

By induction on the dimension this implies the following result.

2.6. Corollary. The collection of polytopes ∆(X), where X ranges over all B-
invariant irreducible closed subvarieties of M , is finite.

Corollary 2.5 applies to GC-invariant subvarieties X. In particular:

2.7. Corollary. The collection of x ∈ M for which ∆(Bx) = ∆(GCx) = ∆(M)
is nonempty and Zariski open.
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We refer to the following properties as the lower semi-continuity of the function
x 7→ ∆(Bx).

2.8. Corollary. Let x be an arbitrary point of M and define

M≥x = { y ∈ M | ∆(By) ⊇ ∆(Bx) },
M≤x = { y ∈ M | ∆(By) ⊆ ∆(Bx) },
Mx = { y ∈ M | ∆(By) = ∆(Bx) }.

Then M≥x is open, M≤x is closed, and Mx is locally closed in the Zariski topology
on M .

Proof. Theorem 2.1 shows that M≥x = { y ∈ M | C(By) ⊇ C(Bx) } (and analo-
gous identities for M≤x and Mx). The proof that M≥x is open is now similar to
the proof of Corollary 2.5. (Use the vertices of C(Bx) instead of those of C(X).)
The closedness of M≤x then follows from the observation that

M≤x = M −
⋃
{M≥y | y 6∈ M≤x }.

Finally, Mx = M≥x ∩M≤x, so Mx is locally closed. ¤

3. The norm of an N-invariant holomorphic section

In this section we will prove Theorem 2.4 and part of Theorem 2.1. The group
GC acts complex linearly on the space of smooth global sections C∞(M, L).
Therefore L(

√−1 ξ)s =
√−1L(ξ)s for all s ∈ C∞(M, L). Let J be the complex

structure on M . Since G acts holomorphically on M , we have (
√−1 ξ)M = JξM

for all ξ ∈ g. Now suppose s is a holomorphic section of L. Then, by the
Cauchy-Riemann equation, ∇(JξM )s =

√−1∇(ξM )s. Thus from (2) we get

(5) L(
√−1 ξ)s−∇(

(
√−1 ξ)M

)
s =

√−1
(L(ξ)−∇(ξM )

)
s = −2π φ(ξ)s.

For arbitrary ξ ∈ gC let us write Re ξ = (ξ + ξ̄)/2 and Im ξ = (ξ − ξ̄)/2
√−1 ,

where ξ̄ is the complex conjugate of ξ relative to the compact real form g of gC.
Also let us write φC : gC → C∞(M,C) for the complexification of the moment
map φ : g → C∞(M,R), given by φC(ξ) = φ(Re ξ) +

√−1 φ(Im ξ) for ξ ∈ gC.
Then (2) and (5) imply

L(ξ)s−∇(ξM )s = 2π
√−1 φC(ξ)s

for all ξ ∈ gC and all s ∈ Γ(M, L). Now suppose that, for some ξ ∈ gC, s is an
eigensection for the operator L(ξ) with eigenvalue c ∈ C. Then

∇(ξM )s =
(
c− 2π

√−1 φC(ξ)
)
s,

and hence

L(ξM )‖s‖2 = 2 Re〈∇(ξM )s | s〉 =
(
2Re c + 4π φ(Im ξ)

)‖s‖2,
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where 〈· | ·〉 denotes the Hermitian inner product on L and ‖·‖ the associated
(pointwise) norm. This proves the following assertion.

3.1. Proposition. Let s be a global holomorphic section of L. Let k be a complex
Lie subalgebra of gC and suppose s transforms under k according to a character
χ : k → C. Then

L(ξM )‖s‖2 =
(
2Re χ(ξ) + 4π φ(Im ξ)

)‖s‖2

for all ξ ∈ k.

3.2. Remarks. (i) The same formula holds for sections of Lr, provided we
replace φ with rφ.

(ii) The formula holds not only for global holomorphic sections, but also for
holomorphic sections defined over a k-invariant analytic subvariety of M .

There are two important special cases of this identity. First let k = gC and
χ = 0. Then we get, for every G-invariant holomorphic section s and ξ ∈ g,

(6) L(
(
√−1 ξ)M

)‖s‖2 = 4π φ(ξ)‖s‖2.

Recall that x ∈ M is semistable if there exist r > 0 and s ∈ Γ(M, Lr)G such that
s(x) 6= 0. Let x be semistable and Y = GCx. If y ∈ Y is a point where ‖s |Y ‖
attains its maximum, then (6) implies Φ(y) = 0. This proves the inclusion “⊆”
of the following theorem, in which M ss denotes the set of semistable points.

3.3. Theorem. M ss =
{

x ∈ M
∣∣ 0 ∈ Φ(GCx)

}
.

The reverse inclusion “⊇” of this theorem was proved in [12, Theorem 5.6]
under the assumption that 0 is a regular value of Φ, in [13, Theorem 8.10] and in
[16, Section 2] under the assumption that ω is the restriction to M of the Fubini-
Study symplectic form and Φ the standard moment map, and in [17, Proposition
2.4] in the general case.

A second important case of Proposition 3.1 is when k = b, the Borel subalgebra
of gC. Let pr : b → g be the restriction to b of the real linear projection Im: gC →
g. Let R be the root system of (G,T ) and R+ the set of positive roots. Then

b = tC ⊕ n = t⊕√−1 t⊕
⊕

α∈R+

gα.

Hence pr sends t to 0 and maps
√−1 t bijectively onto t. Since ḡα = g−α, pr

maps n bijectively onto the Ad-invariant complement

h =
⊕

α∈R+

(gα ⊕ g−α) ∩ g

of t. In particular, pr is onto.
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The space of global sections is a B-module, so if s ∈ Γ(M, L) is an eigensection
for b with character χ : b → C, then χ exponentiates to a character of B. The
two restriction maps

Hom(B,C×) −→ Hom(TC,C×) −→ Hom(T,U(1)) = Λ

are isomorphisms, because B = TCN and [B,B] = N is unipotent. Therefore

χ(ξ) = 2π
√−1 λ

(
ξ1 +

√−1 ξ2

)
= 2π

√−1 λ(ξ1)− 2π λ(ξ2)

for a unique λ ∈ Λ. (Here we decompose ξ ∈ b as ξ1 +
√−1 ξ2 + ξ3 with ξ1,

ξ2 ∈ t and ξ3 ∈ n.) This implies that Re χ(ξ) = −2πλ(ξ2). Extending λ to an
element of g∗ by setting λ = 0 on h, and recalling that pr ξ3 ∈ h, we obtain
Re χ(ξ) = −2πλ(pr ξ). Thus Proposition 3.1 takes the form

L(ξM )‖s‖2 = 4π
(−λ(pr ξ) + φ(pr ξ)

)‖s‖2

for all ξ ∈ b and all N -invariant holomorphic sections s of weight λ. Similarly,
for s ∈ SN

rλ,r we have

(7) L(ξM )‖s‖2 = 4πr
(−λ(pr ξ) + φ(pr ξ)

)‖s‖2.

Proof of Theorem 2.4. Let x be a point in X where the function ‖i∗s‖ attains its
maximum. Then L(ξM )‖s‖2 = 0 for all ξ ∈ b, since X is B-invariant. Moreover,
s(x) 6= 0 because i∗s 6= 0. Hence φ(pr ξ)(x) = λ(pr ξ) by (7). Since pr : b → g is
surjective, this implies Φ(x) = λ. ¤
3.4. Remark. Although for large r the restriction map Γ(M, Lr) → Γ(X, Lr)
is surjective, the induced map on N -invariants, Γ(M, Lr)N → Γ(X, Lr)N , may
not be. (See Remark 2.2(iv).) Nevertheless, it follows from Remark 3.2(ii) that
Theorem 2.4 is also valid for sections s ∈ Γ(X, Lr)N that do not extend to global
N -invariants. Hence, if rλ ∈ Λ is any weight of TC occurring in Γ(X, Lr)N ,
whether dominant or not, then λ ∈ Φ(X). This proves the following assertion:
let A′(X) ⊇ A(X) be the Λ×N-graded algebra (S/I(X))N and put

C′(X) =
{

λ ∈ Λ⊗Q
∣∣ A′(X)rλ,r 6= 0 for some r > 0

}
.

Then C′(X) is convex over Q and is a subset of Φ(X) ∩ t∗.

Theorems 2.4 and 3.3 enable us to establish one half of Theorem 2.1.

3.5. Theorem. C(X) is equal to the set of rational points in ∆(X).

Proof. The inclusion C(X) ⊆ ∆(X) ∩ (Λ ⊗Q) follows from Theorem 2.4. Now
let λ ∈ ∆(X) be a rational point. Then λ = Φ(x) for some x ∈ X, and r0λ ∈ Λ+

for some positive integer r0. Without loss of generality we may replace r0λ with
λ, L with Lr0 , and Φ with r0Φ. Then Φ(x) = λ ∈ Λ+. Let

pλ = b⊕
⊕{

g−α

∣∣ α ∈ R+, λ(α∨) = 0
}
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be the parabolic subalgebra of gC associated with λ and Pλ the parabolic sub-
group of GC generated by exp pλ. Let Y = GC/Pλ be the corresponding flag
variety and L−λ = (GC×C−λ)/Pλ the Hermitian holomorphic line bundle on Y
determined by −λ. Here C−λ is the one-dimensional Pλ-module with character
−λ. The curvature form ω−λ of L−λ is Kähler and a moment map Φ−λ for the
G-action is found, as in (1), by composing the maps

Y = GC/Pλ −→ G/Gλ −→ g∗.

Here Gλ = Pλ∩G is the centralizer of λ (considered as an element of g∗), the first
map is the inverse of the diffeomorphism G/Gλ → Y induced by the inclusion
G → GC, and the second map is defined by gGλ 7→ −gλ. Let us consider the
product M ′ = M × Y with the Kähler form ω′ = ω + ω−λ as a Hamiltonian G-
manifold with the diagonal G-action. The moment map on M ′ is Φ′ = Φ + Φ−λ,
so from Φ(x) = λ we see that Φ′(x, 1Pλ) = 0. Now ω′ is the curvature form of
the Hermitian holomorphic line bundle L′ = L £ L−λ and so, by Theorem 3.3,
there exist r > 0 and s′ ∈ Γ(M ′, (L′)r)G satisfying

(8) s′(x, 1Pλ) 6= 0.

By the Borel-Weil theorem, Γ(Y, L−λ) ∼= V ∗
λ , the dual of the irreducible G-module

Vλ with highest weight λ. Accordingly, the Künneth formula yields isomorphisms
of TC-modules

Γ(M ′, (L′)r)G ∼=
(
Γ(M, Lr)⊗ Γ(Y, L−rλ)

)G ∼=
(
Γ(M, Lr)⊗ V ∗

rλ

)G

∼= Hom(Vrλ,Γ(M, Lr))G ∼= Γ(M, Lr)N
rλ = SN

rλ,r.

A concrete isomorphism ρ : Γ(M ′, (L′)r)G → SN
rλ,r is given by restricting invariant

sections of (L′)r to the first factor M ∼= M × {1Pλ}, as indicated in the pullback
diagram

Lr

²²

//Lr £ C−rλ
//

²²

(L′)r

²²

M

s

BB

//M × {1Pλ} // M ′.

s′
[[

Explicitly, if s′ ∈ Γ(M ′, (L′)r)G, then ρ(s′) is the section of Lr defined by
ρ(s′)(y) ⊗ 1 = s′(y, 1Pλ) for all y ∈ M . It is easy to check that ρ(s′) is N -
invariant and transforms according to rλ under the TC-action. Conversely, a
section s ∈ SN

rλ,r can be extended in a unique GC-equivariant way to a global
section ε(s) of (L′)r, given by the formula ε(s)(y, gPλ) = g(s(g−1y)⊗1) for y ∈ M
and g ∈ GC. It is easy to verify that ε(s) is well-defined and that the extension
map ε : SN

rλ,r → Γ(M ′, (L′)r)G is the inverse of the restriction map ρ.

Taking s′ as in (8) and putting s = ρ(s′) we find s ∈ SN
rλ,r satisfying s(x) 6= 0.

Thus λ ∈ C(X). This proves ∆(X) ∩ (Λ⊗Q) ⊆ C(X). ¤
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4. Denseness of the rational points

In this section we will finish the proof of Theorem 2.1 by establishing the
following result.

4.1. Theorem. C(X) is dense in ∆(X).

The proof is a variation on the proof of Theorem 3.5, namely a semistability
argument involving a product M ×Yn. However, for our present purposes Yn will
not be a rational coadjoint orbit, but a member of a sequence (Yn)n≥1 of rational
Kähler G-manifolds “converging” to an irrational coadjoint orbit.

This auxiliary sequence of spaces is manufactured as follows. Let λ be any
point in the closed Weyl chamber t∗+. The chamber is a polyhedral cone and
hence is a disjoint union of (relatively open) faces. Let σ denote the unique face
containing λ, let t∗σ be the linear span of σ and let Λσ be the lattice Λ ∩ t∗σ. The
centralizer Gσ = Gλ of σ is a connected subgroup of G containing the maximal
torus T . The root system of (Gσ, T ) is the set Rσ consisting of all roots α ∈ R
such that λ(α∨) = 0, and so the complexification of the Lie algebra gσ has root-
space decomposition

(gσ)C = tC ⊕
⊕

α∈Rσ

gα.

From this we see that t∗σ is the annihilator in g∗σ of the ideal [gσ, gσ] of gσ, and
therefore is canonically isomorphic to the dual of the Lie algebra tσ of the torus
Tσ = Gσ/[Gσ, Gσ]. This implies that the canonical map

Hom(Tσ,U(1))
∼=−→ Hom(Gσ,U(1)) ↪−→ Hom(T,U(1)) = Λ

sends the weight lattice of Tσ isomorphically onto the subgroup Λσ of Λ. We
will use this natural isomorphism to identify Hom(Tσ,U(1)) with Λσ. Now let
(∆n)n≥1 be any sequence of polytopes in t∗ subject to the following requirements:

(i) ∆n ⊆ σ for all n;
(ii) ∆m ⊆ ∆n for m ≥ n;
(iii)

⋂∞
n=1 ∆n = {λ};

(iv) for each n there exists a positive integer dn such that the dilated polytope
dn∆n is a regular lattice polytope in t∗σ with respect to the lattice Λσ.

(Recall that for any free abelian group F a regular lattice polytope is a subset P of
the vector space F ⊗Z R which is the convex hull of a finite subset of F and each
vertex v of which has the property that the cone over P with apex v is spanned by
a basis of F .) Let (Y ◦

n , ω◦n) be the symplectic toric Tσ-manifold associated with
∆n, as constructed by Delzant [7]. This is a compact Kähler manifold equipped
with a Kählerian Tσ-action and a Tσ-moment map Φ◦n, whose image is exactly ∆n.
The form dnω◦n is integral and so there exists a unique T -equivariant Hermitian
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holomorphic line bundle L◦n over Y ◦
n whose curvature form is equal to dnω◦n.

Since Tσ is just the abelianization of Gσ, we can regard Y ◦
n as a Hamiltonian

Gσ-manifold and L◦n as a Gσ-equivariant line bundle. We can boost Y ◦
n to a

Hamiltonian G-manifold Yn by the familiar process of symplectic induction: put
Yn = (T ∗G× Y ◦

n )//Gσ, where Gσ acts on T ∗G by right multiplication and by the
given action on Y ◦

n , and where the double slash indicates symplectic reduction
at the zero level. The left G-action on T ∗G descends to a G-action on Yn and
the Gσ-moment map Φ◦n induces a G-equivariant map Φn : Yn → g∗, which is a
moment map for the G-action with respect to the reduced symplectic form ωn.
The line bundle L◦n induces a Hermitian line bundle Ln on Yn with curvature form
dnωn and, finally, the holomorphic structures on Y ◦

n and L◦n induce G-invariant
holomorphic structures on Yn, resp. Ln. (In fact, there are isomorphisms of
complex GC-manifolds

Yn
∼= GC ×Pλ Y ◦

n and Ln
∼= GC ×Pλ L◦n,

where the parabolic subgroup Pλ acts on Y ◦
n and L◦n via the Levi factor (Gλ)C.)

By construction, the G-manifold Yn has moment polytope ∆(Yn) = Φn(Yn)∩t∗+ =
∆n.

Proof of Theorem 4.1. Let λ ∈ ∆(X). We need to show that there exists a se-
quence (λn)n≥1 in C(X) converging to λ. We choose a sequence of polytopes
(∆n)n≥1 satisfying requirements (i)–(iv) above and we let (Yn)n≥1 be the corre-
sponding sequence of Hamiltonian G-manifolds. Let Y −

n denote the symplectic
manifold opposite to Yn and let M ′

n be the G-manifold M × Y −
n , furnished with

the Kähler form ω′n = ω − ωn, the moment map Φ′n = Φ− Φn and the line bun-
dle L′n = Ldn £ L∗n. Note that the equivariant curvature form of L′n is equal to
dn(ω′n + Φ′n). Choose any x in X such that Φ(x) = λ. Since λ ∈ ∆n = ∆(Yn),
there exists yn ∈ Yn such that Φ′n(x, yn) = 0. Therefore Theorem 3.3 (applied to
the symplectic manifold (M ′

n, dnω′n)) guarantees the existence of a positive integer
rn and a section s′n ∈ Γ

(
M ′

n, (L′n)rn
)G such that s′n(x, yn) 6= 0. Let p1 : M ′

n → M
and p2 : M ′

n → Yn denote the Cartesian projections. The natural maps

Γ
(
M ′

n, (L′n)rn
) ∼=−→ Hom

(
p∗2L

rn
n , p∗1L

dnrn
)

∼=−→ Hom
(
Γ(Yn, Lrn

n ),Γ(M, Ldnrn)
)

are G-equivariant isomorphisms. Hence, by Schur’s lemma, there exist a domi-
nant weight µ and direct summands Eµ and Fµ of the G-modules Γ(M, Ldnrn),
resp. Γ(Yn, Lrn

n ), such that Eµ and Fµ are irreducible of highest weight µ and such
that the image of s′n in Hom(Fµ, Eµ)G does not vanish at the point (x, yn). There-
fore, if sE and sF are highest weight vectors in Eµ, resp. Fµ, we have sE(x) 6= 0
and sF (yn) 6= 0. This shows that the point µ/rn is contained in both C(Yn, Ln)
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and C(X, Ldn). In particular, by Theorem 3.5,

µ/rn ∈ C(Yn, Ln) ⊆ ∆(Yn, dnωn),

and hence µ/rn ∈ dn∆n, since ∆(Yn, ωn) = ∆n. We conclude that the point
λn = µ/dnrn is contained in ∆n ∩ C(X, L). Requirements (ii)–(iii) now ensure
that limn→∞ λn = λ. ¤

A useful corollary of these results is the following extension of Theorem 3.3.
Let us call a point x ∈ M unipotently semistable if there exist r > 0 and s ∈
Γ(M, Lr)N such that s(x) 6= 0, in other words, if the set C(Bx) is nonempty. By
Theorem 4.1, ∆(Bx) is the closure of C(Bx), so unipotent semistability can be
characterized thus:

4.2. Theorem. A point x is unipotently semistable if and only if ∆(Bx) is non-
empty.

5. “Schubert” varieties

In this section we will describe some subvarieties of M to which Theorem 2.1
applies. Let MT

1 , MT
2 , . . . , MT

k be the connected components of the T -fixed point
set MT . For j = 1, 2, . . . , k, let α1j , α2j , . . . , αc(j),j be the nonzero weights of the
isotropy representation of the maximal torus T on the tangent space at any point
of MT

j , where c(j) is the complex codimension of MT
j . Let P be the complement

of the rational hyperplane arrangement defined by this collection of weights:

P = { ξ ∈ t | αij(ξ) 6= 0 for all j = 1, 2, . . . , k and i = 1, 2, . . . , c(j) }.
The connected components of P are the action chambers of τ . We fix, once
and for all, an action chamber P+ which intersects the Weyl chamber t+. Pick
an element ξ ∈ P+ and put η =

√−1 ξ ∈ √−1 t. For each y ∈ M the limit
x = limt→−∞ exp(tη)y exists and is fixed under ξ. Since ξ ∈ P, this implies that
x ∈ MT . The unstable manifold of MT

j is defined as the set

Wj =
{

y ∈ M
∣∣ lim

t→−∞ exp(tη)y ∈ MT
j

}
.

Generalizing results of BiaÃlynicki-Birula [2, 3], Carrell and Sommese [5, 6] showed
that Wj is a complex submanifold of M , whose closure Xj = W j is an analytic
subvariety in which Wj is Zariski open. Moreover, the map πj : Wj → MT

j which
sends y to limt→−∞ exp(tη)y is a holomorphic fibration, the fibres of which are
complex affine spaces. Let us call Xj a generalized Schubert variety of M . The
varieties Wj and Xj and the fibration πj are defined by making a choice of an
element ξ of the action chamber; however, one can show that they don’t depend
on ξ but only on the action chamber. (See e.g. [10, Section 3.6].) In particular,
we may, and will, assume that ξ ∈ P+ ∩ Int t+. Then the parabolic subgroup
associated with ξ is equal to B, which implies the following result.
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5.1. Proposition. Let 1 ≤ j ≤ k. Then

(i) the unstable manifold Wj and the generalized Schubert variety Xj are
B-invariant;

(ii) the map πj is B-invariant;
(iii) for every x ∈ MT

j the fibre Wj,x = π−1
j (x) and its closure Xj,x = W j,x

are B-invariant.

Proof. It follows immediately from the definition that the submanifold Wj and
the map πj are TC-invariant. Let

n =
⊕

α∈R+

gα

be the decomposition of the Lie algebra of N into weight spaces with respect to
the T -action, R+ being the set of positive roots of the root system R of (G,T ). Let
ζ ∈ n and write ζ =

∑
α∈R+

ζα with ζα ∈ gα. Then Ad(exp tη)ζ =
∑

α e2πα(η)tζα.
Since ξ ∈ Int t+, we have α(η) > 0 and hence

ζ(t) = Ad(exp tη)ζ −→ 0 and exp ζ(t) −→ 1

as t → −∞. In particular, if y ∈ Wj and n = exp ζ ∈ N ,

exp(tη)ny = exp(tη)n exp(−tη) exp(tη)y = exp ζ(t) exp(tη)y −→ πj(y)

as t → −∞. This shows that Wj and πj are N -invariant. Since B = TCN ,
both are B-invariant as well. It follows immediately that Xj , Wj,x and Xj,x are
B-invariant. ¤

This shows that one can apply Theorem 2.1 to the generalized Schubert va-
rieties Xj and their subvarieties Xj,x. As might be expected, for most x in the
fixed-point component MT

j the polytopes ∆(Xj) and ∆(Xj,x) are the same.

5.2. Corollary. Let 1 ≤ j ≤ k. The set of all x ∈ MT
j such that ∆(Xj) = ∆(Xj,x)

is a nonempty Zariski open subset of MT
j .

Proof. Define

U = { y ∈ Wj | ∆(By) = ∆(Xj) } and C = {x ∈ MT
j | ∆(Xj,x) = ∆(Xj) }.

We claim that

(9) πj(U) = C.

Indeed, let y ∈ U and put x = πj(y). Then By is contained in Xj,x since Xj,x is
B-invariant, and therefore

∆(Xj) = ∆(By) ⊆ ∆(Xj,x) ⊆ ∆(Xj),

i.e. x ∈ C. This shows that πj(U) is a subset of C. Conversely, let x ∈ C. By
Corollary 2.5, there exists y ∈ Wj,x such that ∆(By) = ∆(Xj,x). Hence ∆(By) =
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∆(Xj), i.e. y ∈ U . This shows that C is contained in πj(U), which proves (9).
By Corollary 2.5, U is nonempty and Zariski open in Wj and therefore, by a
theorem of Chevalley, its image πj(U) = C is constructible in MT

j . Furthermore,
C is open in the classical topology, since πj is a submersion. Hence C is Zariski
open. ¤

However, frequently the polytopes ∆(Xj) are not very exciting. More inter-
esting polytopes turn up when we restrict the G-action on M to a subgroup.
Particularly interesting is the case of the flag variety M = GC/B. Here the Wj ’s
are just the B-orbits in M , so the Xj ’s are the classical Schubert varieties. Let
us now view M as a G1-space with respect to a closed connected subgroup G1 of
G. Let us suppose B is chosen in such a way that it contains a Borel subgroup
B1 of (G1)C, so that the Xj ’s are B1-invariant. If G1 is the maximal torus T of
G, one gets from Theorem 2.1 Atiyah’s Theorem 1.4, and if one takes G1 to be
an arbitrary closed subgroup of G one gets a nonabelian version of this theorem.
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