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1. Introduction

Let K be a global field of characteristic p and let Fq ⊂ K denote the algebraic
closure of Fp in K. We fix an elliptic curve E/K with non-constant j-invariant
and a torsion-free subgroup Σ ⊆ E(K) of rank r > 0. We write V for the open
set of places v of K such that the special fiber Ev is an elliptic curve and, for v in
V , we let Σv ⊂ Ev(kv) be the image of Σ under reduction modulo v, where kv is
the residue field of K at v. We fix a finite set of (rational) prime numbers S which
is large enough to include the exceptional primes which we will define explicitly
in section 2.4 and section 3), and we let G(Σ, S) denote the subset of v ∈ V such
that Σv contains the prime-to-S part of Ev(kv). For every n > 0, we write Vn for
the subset of v ∈ V such that deg(v) = n and let Gn(Σ, S) = Vn ∩ G(Σ, S).

Theorem 1. Suppose r ≥ 6. There exist constants a, b satisfying 0 < a < b < 1
and depending only on r and S and for each n ≥ 1, there exists δn(Σ, S), depending
on r, S and the isomorphism class of Gal(K(E[`])/K) for ` 6∈ S such that

a ≤ δn(Σ, S) ≤ b, |Gn(Σ, S)| = δn(Σ, S)|Vn|+ o(qn/n)

for all n.

We prove the theorem in section 4.3. The rest of the paper establishes pre-
liminary results. We remark that for a fixed K, r and S, there are only finitely
many possibilities for the entire set {δn(Σ, S) : n > 0}, as will follow from our
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results. However, the limit δn(Σ, S) as n →∞ does not exist in general. Rather
one must consider an increasing sequence n1, n2, . . . such that ni divides ni+1 in
order to obtain a limit. Different sequences will lead to different limits. This is
in contrast with the number field analogue in which the analogous δn converge
and therefore can be taken independent of n.

The number field analogue of the above theorem was conjectured by Lang and
Trotter (for r = 1) and proved by Gupta and Murty ([GM]) for r ≥ 18 under
GRH. Our proof of theorem 1 follows the function-field analogue of the strategy in
[GM]. A literal translation of their argument, together with the improved error
bounds of [MS], allows one to prove an analogue of their theorem for r ≥ 10.
The proof proceeds in several stages, and in one of these stages we replace the
use of K(E[`]) with a smaller subextension of K, which we define in section 2.2.
This allows us to extend the argument to r ≥ 6. It is conceivable that these
extensions might be used in the number field case to lower the bound on r. We
hope to return to this question in a later paper. The case of constant j-invariant
and r = 1 was treated by the second author in [V]. One can always construct
examples where the hypotheses of the theorem apply by passing to an extension
of K, if necessary. If one insists on examples over the rational function field Fq(t),
these have been constructed by Ulmer ([U]).

2. `-adic Galois Theory

Throughout this section K is an arbitrary field and ` is a fixed rational prime
which is invertible in K. We fix an elliptic E/K and write L = K(E[`]). There
is an embedding Γ = Gal(L/K) → GL2(Z/`), which is well-defined, up to con-
jugation, and is given by identifying Aut(E[`]) with GL2(Z/`). Moreover, for a
fixed primitive `th root of unity ζ, the quotient det(Γ) is the Galois group of the
cyclotomic extension K(ζ)/K. We call the kernel of Γ → det(Γ) the subgroup of
geometric elements, or simply the geometric Galois group of L/K. In all but the
last section we assume that it is SL2(Z/`). In the last section we consider the
case when the geometric Galois group is a proper subgroup of SL2(Z/`).

2.1. Kummer Theory. In this section we additionally assume ` > 2. Recall
L = K(E[`]) and Γ = Gal(L/K) contains SL2(Z/`).

Lemma 1. The natural map E(K)/`(E(K)) → E(L)/`(E(L)) is injective.

Proof. For every finite extension F/K there is a natural embedding of E(F )/`(E(F ))
into the Galois cohomology group H1(F, E[`]), hence it suffices to show that
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the restriction map H1(K,E[`]) → H1(L,E[`]) is injective. By the inflation-
restriction sequence, the kernel of the restriction map is H1(Γ, E[`]). Let Z be
the center of Γ; it is a normal subgroup of order prime to ` and E[`]Z = 0. It
follows that H1(Γ, E[`]) = 0, proving the lemma. ¤

For any P ∈ E(K), we write P/` for the ` 2 points Q such that [`]Q = P . The
extension K(P/`)/K is Galois and contains L, and we write H = Gal(L(P/`)/L),
G = Gal(K(P/`)/K). There is a short exact sequence of groups

1 −→ H −→ G −→ Γ −→ 1.

We regard E[`] as a Γ-module and write E[`] o Γ for the semi-direct product.
There is an embedding G → E[`] o Γ, which is unique up to conjugation in
E[`]o Γ, and H = G ∩ E[`].

Lemma 2. For every P ∈ E(K)− `(E(K)), G = Gal(K(P/`)/K) is isomorphic
to E[`]o Γ.

Proof. A priori G is a subgroup of E[`]oΓ which maps surjectively to Γ. No line
of E[`] is stabilized by Γ, so H = G∩E[`] is either trivial or all of E[`]. Lemma 1
implies that P is not in `(E(L)), hence H = E[`]. ¤

The lines K ⊂ E[`] correspond bijectively to cyclic `-isogenies φ : Eφ → E,
where Eφ is some elliptic curve. Given K, φ is the dual of the canonical map
E → E/K and, given φ : Eφ → E, K is the kernel of the dual isogeny E → Eφ.

Lemma 3. Let P, Q ∈ E(K). The following are equivalent:

(1) 〈P 〉 ≡ 〈Q〉 mod `(E(K));
(2) 〈P 〉 ≡ 〈Q〉 mod `(E(L));
(3) 〈P 〉 ≡ 〈Q〉 mod φ(Eφ(L)) for every cyclic `-isogeny φ : Eφ → E;
(4) 〈P 〉 ≡ 〈Q〉 mod φ(Eφ(L)) for some cyclic `-isogeny φ : Eφ → E.

Proof. The first two statements are equivalent by lemma 1. The second statement
implies the third. Given an `-isogeny φ : Eφ → E we have an exact sequence

0 → E[φ̂] → E[`] → Eφ[φ] → 0

and the cohomology sequence gives the short exact sequence

0 → H1(L,E[φ̂]) → H1(L,E[`]) → H1(L,Eφ[φ]).

For isogenies φ1 6= φ2, the intersection H1(L,E[φ̂1]) ∩H1(L,E[φ̂2]) is trivial, as
H1(L,E[`]) is a direct sum of these two subgroups, therefore the composite map

(1) E(L)/`(E(L)) → H1(L,E[`]) → H1(L,Eφ1 [φ1])⊕H1(L,Eφ2 [φ2])
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is injective. It is the direct sum of the boundary maps corresponding to the
cohomology sequence of

0 → Eφi
[φi] → Eφi

φi→ E → 0

These maps induce embeddings E(L)/φiEφi
(L) → H1(L,Eφi

[φi]). If we assume
the third statement of the lemma holds, then 〈P 〉 ≡ 〈Q〉 in all the terms of (1),
hence the second statement holds. The last two statements of the lemma are
equivalent because Γ acts transitively on the isogenies and fixes P and Q. ¤

One useful aspect of this lemma is that, in some circumstances, it allows us
to replace L with the field of definition K(φ), for a fixed φ of our choosing
(cf. section 2.2). We can also apply the lemma to the Galois theory of ‘`-descent’
of E/K.

Theorem 2. Let P, Q ∈ E(K). The following are equivalent:

(1) K(P/`) = K(Q/`);
(2) 〈P 〉 ≡ 〈Q〉 mod `(E(K)).

Otherwise K(P/`) ∩K(Q/`) = L.

Proof. The statement follows easily from lemma 2 when P or Q lies in `(E(K)),
so we assume that P, Q ∈ E(K) − `(E(K)). We also assume there exists F ⊂
K(P/`) ∩ K(Q/`) which is a non-trivial extension of L of degree `. F is not
Galois over K because E[`] o Γ has no normal subgroups of order `, hence
K(P/`) = K(Q/`). Gal(L(P/`)/L) = Gal(L(Q/`)/L) is isomorphic to E[`],
so the Galois group Gal(F/L) is isomorphic to Eφ[φ] for some cyclic `-isogeny
φ : Eφ → E. The kernel of the restriction map H1(L,Eφ[φ]) → H1(F, Eφ[φ]) is
isomorphic to Z/`, and it is generated by the image of P, Q under the bound-
ary map E(L) → H1(L,Eφ[φ]). Therefore 〈P 〉 ≡ 〈Q〉 mod φ(Eφ(L)), hence
〈P 〉 ≡ 〈Q〉 mod `(E(K)) by lemma 3, so we have the implication (1) ⇒ (2). The
converse implication is clear. ¤

For any d ≥ 0, Γ acts diagonally on E[`]d, and we write E[`]d o Γ for the
semi-direct product.

Corollary 1. If the image of P1, . . . , Pr ∈ E(K) in E(K)/`(E(K)) generates a
d-dimensional subspace, then Gal(K(P1/`, . . . , Pr/`)/K) ' E[`]d o Γ.

In general we will apply this for fixed P1, . . . , Pr and varying ` in the proof of
theorem 1. One can prove analogous results for any cyclic `-isogeny.
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Theorem 3. Let φ : Eφ → E be a cyclic `-isogeny. For P ∈ E(K) let P/φ denote
the set of ` points Q such that φ(Q) = P . If the images of P1, . . . , Pr ∈ E(K) in
E(K(φ))/φ(Eφ(K(φ))) generate a d-dimensional subspace, then

Gal (K(φ, P1/φ, . . . , Pr/φ)/K(φ)) ' Eφ[φ]d o det(Γ).

We will be most interested in applying this with r = 1 in the proof of lemma 7.

2.2. Cyclotomic Twist. In this section we fix a cyclic `-isogeny φ : Eφ → E.
We let K = Ker(φ̂) = φ(Eφ[`]) and write B ⊂ Γ for the unique Borel subgroup
stabilizing K. We may assume, without loss of generality, that B is the subgroup
of upper-triangular matrices. Then the `-Sylow subgroup U ⊂ B is the subgroup
of upper-unipotent matrices. We choose a second Borel subgroup B̂ 6= B. The
intersection C = B ∩ B̂ is a (split) Cartan subgroup, and B is then canonically
isomorphic to the semi-direct product U o C. Up to conjugation by an element
of U , we may assume, without loss of generality, that B̂ is the subgroup of lower-
triangular matrices, so C ⊂ Γ is the subgroup of diagonal matrices. We write
K̂ ⊂ E[l] for the unique line stabilized by B̂, and we note that K 6= K̂, hence
φ̂ : K̂ → Eφ[φ] is an isomorphism.

We define T̂ , T ⊂ C, respectively, to be the subgroups which act trivially on
K, K̂, respectively. We note that the semi-direct products U o T, U o T̂ ⊂ B are
each stable under conjugation by U , hence are independent of our choice of B̂. We
define the geometric subgroup G = Ĝ ⊂ C to be the kernel of C → det(C). The
fixed field of G is the cyclotomic extension K(φ, ζ)/K(φ), where ζ is a primitive
`th root of unity. The multiplication maps T × G → C and T̂ × Ĝ → C are
isomorphisms, so there are canonical isomorphisms G → Gal(K(φ,Eφ[φ])/K(φ))
and Ĝ → Gal(K(φ̂, E[φ̂])/K(φ̂)). In summary, we have the lattice of Galois
extensions shown in figure 1.

The extension N/K is an instance of the ‘balanced-Γ1(`)-moduli problem’ of
(7.4.3) of [KM]. That is, it classifies pairs of embeddings Z/` → E[`], Z/` →
Eφ[`] of the trivial Galois module Z/`. Similarly, F̂ /K is an instance of the
‘Γ1(`)-moduli problem’ of loc. cit., which classifies embeddings of Z/` into E[`].
The inclusion of fields F̂ → N corresponds to ‘remembering’ the embedding
Z/` → Eφ[`]. One can also consider embeddings µµ` → E[`], where µµ` is the Ga-
lois module of `th roots of unity. By Cartier duality these correspond to quotients
E[`] → Z/`, hence embeddings Z/` → Eφ[`]. The extension F/K corresponds
to an instance of this other ‘moduli problem,’ and F → N corresponds to ‘re-
membering’ the embedding Z/l → E[`]. As ‘moduli problems,’ these last two
are isomorphic if and only if µµ` and Z/` are isomorphic Galois modules; that is,
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Figure 1
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they classify the same objects if and only if K(ζ) = K. Otherwise F̂ is an easily
described ‘cyclotomic twist’ of F (and vice versa).

We observe that F/K, F̂ /K are geometric extensions, because det(U o T ) =
det(U o T̂ ) = det(Γ). On the other hand, the extension N = F (ζ) = F̂ (ζ) of
F, F̂ , respectively, is ‘purely arithmetic’. Hence we can extract the ‘Cartesian
square’ of Galois field extensions in figure 2 from the lattice in figure 1. There is
a canonical isomorphism between Galois groups for either pair of parallel edges,
and there is one, T → T̂ , induced by the isomorphisms T → det(C) and T̂ →
det(C). Composing the canonical maps T → T̂ and T̂ → G gives a 1-cocycle
σ ∈ H1(T, G) ⊂ H1(F, G). One can easily verify that T̂ ⊂ C is the graph of σ in
T ×G = C, hence F̂ is the ‘cyclotomic twist’ corresponding to σ.
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Figure 3
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2.3. Lang-Trotter Conjugacy Classes. We continue to use the notation of
the previous two sections. We fix a free subgroup Σ = 〈P1, . . . , Pr〉 ⊂ E(K) of
rank r. We assume its image is an r-dimensional subspace of E(K)/`(E(K)), so
that K(E[`],Σ/`) is Galois over K with group E[`]r o Γ (by corollary 1). Then
for every φ, we have the lattice of Galois extensions in figure 3.

We define the Lang-Trotter elements of Γ associated to φ by

C(φ) = {τ ∈ U o T : τ = 1 or τ 6∈ U}.
That is, C(φ) ⊂ U oT is the subset of semisimple elements. We define C(φ,Σ) to
be the inverse image of C(φ) under the natural map E[φ̂]r o (U o T ) → U o T .
It is important to note that every element of C(φ,Σ) acts trivially on F (Σ/φ)
(cf. beginning of section 4.3). The subsets of Lang-Trotter conjugacy classes are
the unions C = ∪φC(φ), C(Σ) = ∪φC(φ,Σ) over all φ. One can easily show that
for every δ ∈ det(Γ),

|{c ∈ C(Σ) : det(c) = δ}| =
{

`r+1(` + 1) if δ 6= 1

`(`r + `r−1 − 1) if δ = 1
.

When δ = 1 we remark that C(φ) = C(φ′) = {1} and C(φ,Σ)∩C(φ′,Σ) = {(0, 1)}
for φ 6= φ′. We note that for every δ there is at least one element of E[`]r o Γ
which does not lie in C(Σ) and whose image in Γ has determinant δ.
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For the rest of this section we fix a place v of K which is unramified in L and
let n = deg(v). The prime decomposition of v in the extension L/K is relatively
easy to describe, mainly because the latter is Galois. Let w be any prime of
L lying over v and let D(w) ⊂ Γ denote the decomposition group. There are
[Γ : D(w)] primes w over v, all of degree f = |D(w)|. Γ acts transitively on the w

over v, and the induced action on {D(w)} is conjugation. On the other hand, the
prime decomposition of v in K(φ) is more difficult to describe because K(φ)/K

is not a Galois extension. We will refrain from describing the general case, and
instead will assume that the Frobenius conjugacy class Frv ⊂ Γ is contained in
C ⊂ Γ.

For any prime w over v, we write w for the prime in K(φ) under w. The
decomposition group D(w) ⊂ B is the intersection D(w)∩B, hence w has degree
[D(w) : D(w)] over v If f = 1, then D(w) is trivial, hence v decomposes as a
product of ` + 1 primes of degree n in K(φ). On the other hand, if f > 1, then
D(w) is contained in a unique split Cartan subgroup C(w) ⊂ Γ; C(w) is the
centralizer of D(w) in Γ. Therefore D(w) = D(w) if and only if C = C(w) ⊂ B,
otherwise D(w) = {1}. Finally, C has index two in its normalizer N(C) and the
intersection B ∩N(C) is contained in C. Therefore the w such that D(w) ⊂ B

lie in two B-orbits, one for each element of the intersection Frv ∩ C, hence there
are two w of degree n and the remaining w are of degree nf .

2.4. Geometrically-Degenerate Case. In this section we relax the condition
that ∆ = Gal(L/K) contain the subgroup SL2(Z/`). More precisely, we assume
the geometric subgroup, ∆ ∩ SL2(Z/`), is a proper subgroup of SL2(Z/`). We
fix a free subgroup Σ = 〈P1, . . . , Pr〉 ⊂ E(K) and let H = Gal(K(Σ/`)/K). In
order to keep with notation of the previous sections, we write Γ ⊂ GL2(Z/`) for
the inverse image of det(∆) ⊂ (Z/`)×. Then ∆ is a proper subgroup of Γ and H

is a proper subgroup of G = E[`]r o Γ.

For every Borel subgroup B ⊂ Γ, we write U o T ⊂ B for the ‘semi-Borel
subgroup’ of section 2.3, and K ⊂ E[`] for the line stabilized by B. The Lang-
Trotter elements associated to B are the semisimple elements C(B) ⊂ U o T ,
and the set of elements associated to Γ is the union C = ∪B C(B) over all B. We
recall that U o T stabilizes K, so the semi-direct product Kr o (U o T ) exists.
Then we define C(B,Σ) to be the inverse image of C(B) under the natural map
Kr o (U oT ) → U oT and C(Σ) ⊂ G to be the union ∪BC(B,Σ). We define the
Lang-Trotter conjugacy classes C(H) ⊂ H as the intersection H ∩ C(Σ).

Because ∆ is a proper subgroup of Γ such that det(∆) = det(Γ), one can
easily show that |C(H)| is maximized when H = E[`]r oC for some split Cartan
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subgroup C ⊂ Γ. Therefore, in general,

(2) |{c ∈ C(H) : det(c) = δ}| ≤ |{c ∈ C(E[`]r o C) : det(c) = 1}|
≤ `(`r + `r−1 − 1),

for any δ ∈ det(Γ). A priori, every element of H or simply every element of a fixed
determinant δ ∈ det(Γ) may be a Lang-Trotter element, in which case we call `

exceptional and therefore assume it is contained in the set S (cf. introduction)
This applies to ` 6= p and the case ` = p is discussed in the next section. For any
fixed E/K the function-field analogue of Serre’s theorem implies that there are
only finitely many exceptional `. In fact, by theorem 1 of [CH] there is constant
`0, depending only on the genus of K, such that ` ≤ `0 if ` is exceptional and
` 6= p.

3. p-adic Galois Theory

In this section we fix a global field K of char p and an elliptic curve E/K

with non-constant j-invariant. Then E[p] is isomorphic to Z/p over an algebraic
closure of K. There is a canonical cyclic p-isogeny V : Eφ → E over K, the
so-called Verschiebung; the dual isogeny V̂ : E → Eφ is the (p-)Frobenius While
K(E[p])/K is inseparable in general, the extension L = K(Eφ[φ])/K is Galois
and geometric, and there is an embedding of ∆ = Gal(L/K) into (Z/p)×.

Lemma 4. The canonical map H1(K, Eφ[V ]) → H1(L,Eφ[V ])∆ is an isomor-
phism.

Proof. The order of ∆ is prime to p, so we consider the Hochschild-Serre sequence

0 −→ H1(∆, Eφ[V ]) −→ H1(K,Eφ[V ]) −→ H1(L,Eφ[V ])∆ −→ H2(∆, Eφ[V ]).

The first and last terms vanish, so the sequence degenerates to the desired iso-
morphism. ¤

From the lemma we infer that P ∈ V (Eφ(K)) if and only if P ∈ V (Eφ(L)),
which is what we need to prove the following theorem.

Theorem 4. Let P1, . . . , Pr ∈ E(K). Suppose the image of 〈P1, . . . , Pr〉 in
E(K)/V (Eφ(K)) is an r-dimensional subspace. Then

Gal(K(P1/V, . . . , Pr/V )/K) ' Eφ[V ]r o∆.

Finally, we define the Lang-Trotter conjugacy classes in Eφ[V ]r o∆ to be the
subgroup Eφ[V ]r. Therefore, if ∆ = 1, then we say that p is exceptional and



172 Chris Hall and José Felipe Voloch

therefore must be added to our set S (cf. introduction). Contrary to the `-adic
case, where there is a natural determinant det : ∆ → (Z/`)×, there are two
natural maps det : ∆ → (Z/p)× that we must consider: the identity map and the
trivial map. In fact, the latter is what we want if we insist that det(Γ) should
be the Galois group of the scalar part of L/K, hence is trivial because L/K is
geometric.

4. Chebotarev Argument

4.1. Notation. We write f(x) = O(g(x)), as usual, to indicate that there is a
constant c > 0 such that f(x) < c · g(x), for all x. Moreover, we assume that
c depends at most on the genus of K, deg(S), and the ‘regulator’ R = det(Σ).
We remark that the only place R appears is in the proof of lemma 9. We write
f(x) = o(g(x)) to indicate that f(x)/g(x) tends to 0 as x tends to ∞.

4.2. Weil and Murty-Scherk Bounds. There is a finite set of places S of K

such that K(Σ/`)/K, a fortiori K(E[`])/K, is unramified away from S for every
` 6= p. On the other hand, if V : E(p) → E is the Verschiebung, then K(Σ/V )/K

is unramified away from a divisor of degree O(p deg(S)). In particular, every
extension we encounter in this section will be unramified away from a divisor of
uniformly bounded degree d, even tamely ramified, hence the following lemma
will be useful.

Lemma 5. If F/K is a tame extension which is unramified away from a divisor
of degree at most d, then the genus of F is O([F : K]).

Proof. This follows immediately from the Riemann-Hurwitz formula for the ex-
tension F/K:

2 · genus(F )− 2 = [F : K](2 · genus(K)− 2) + (ramification part).

The ramification term part is at most d([F : K]− 1). ¤

Let V denote the open complement of S and Vn ⊂ V the subset of v such that
deg(v) = n. One effective Chebotarev theorem we need is a simple form of the
Weil bound.

Theorem 5 (Weil). Suppose F/K is a tame, finite Galois and geometric ex-
tension, which is unramified away from S, and L/K is a subextension. Let Wn

denote the subset of places w of L of degree n. Then for any n ≥ 1,

|{w ∈ Wn : w splits completely in F/L}| = 1
[F : L]

|Wn|+ O([L : K]
qn/2

n
).
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We note that the geometric assumption is crucial, for otherwise none of the points
in Wn split completely for general n. The factor [L : K] in the error term accounts
for the genus of L.

Suppose L/K is a geometric subextension of the finite Galois extension F/K.
Let G = Gal(F/L). For every place w of L, unramified in F , there is a well-
defined conjugacy class Frw ⊂ G, the so-called Frobenius class. Let Fqm ⊂ F be
the algebraic closure of Fq ⊂ K. By assumption Fqm ∩ L = Fq, and there is a
short exact sequence

1 −→ Gal(F/FqmL) −→ G −→ Gal(Fqm/Fq) −→ 1.

We write G(qn) ⊂ G for the subset of elements whose image in Gal(Fqm/Fq) is
the nth power of the Frobenius element. It is closed under conjugation by any
element of G. Similarly, for any union of conjugacy classes C ⊂ G, we write C(qn)
for the intersection C ∩G(qn).

Theorem 6 (Murty-Scherk). Suppose F/K is a tame, finite Galois extension
which is unramified away from S, and L/K is a geometric subextension. Let
G = Gal(F/L) and let Wn denote the subset of places w of L of degree n. Suppose
C ⊂ G is a union of conjugacy classes. Then for n ≥ 1,

|{w ∈ Wn : Frw ⊂ C(qn)}| = |C(qn)|
|G(qn)| |Wn|+ O([L : K] · |C(qn)|1/2qn/2/n).

Except for the tameness condition, this is essentially theorem 2 in [MS]. As
before, the factor [L : K] in the error term accounts for the genus of L.

4.3. Proof of Theorem 1. We write Vn for the subset of places v of K such
that deg(v) = n. Let L denote the rational primes excluding S and let F denote
the positive integers which are a square-free product of primes in L. We write
Gn ⊂ Vn for the subset of places v which are good with respect to L, that is, for
which Σv contains the prime-to-S part of Ev. Similarly, for any f ∈ F, we write
Bn(f) ⊂ Vn for the subset of v which are bad with respect to every ` dividing f .

For every ` ∈ L, ` 6= p, we write K` for the extension K(Σ/`)/K. Similarly,
for ` = p, we write Kp for the extension K(Σ/V )/K, where V : E(p) → E is
the Verschiebung. In either case we let G` denote Gal(K`/K) and C` ⊂ G` the
subset of Lang-Trotter conjugacy classes. For every v ∈ Vn, we write Frv ⊂ G`

for the Frobenius conjugacy class. If we write C` = ∪φC(φ,Σ) (cf. section 2.3),
then it follows from the definition of C(φ,Σ) that Frv ∩ C(φ,Σ) is non-empty if
and only if φ is defined over the residue field Fq(v) and Σv is contained in the
image φ(Eφ,v) (in the special fiber Ev); that is, Frv ⊂ C` if and only if v ∈ Bn(`).
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For every f = `1 · · · `m ∈ F, we write Gf for the Galois group of the compositum
K`1 · · ·K`m/K. For every i, there is a natural map Gf → G`i

, and we define
Cn ⊂ Gf to be the maximal subset whose image lies in C`i

for all i. Then
Frv ⊂ Cf if and only if v ∈ Bn(f).

Given x > 0, let L(x) denote the ` ∈ L such that ` ≤ x, and F(x) the f ∈ F

such that ` ∈ L(x) for every ` which divides f . Given y > x > 0, let L(x, y)
denote the complement L(y) − L(x). We write Gn(x) for the v ∈ Vn which
are good with respect to every ` ∈ L(x). One way to compute the density of
Gn(x) ⊂ Vn is to apply a standard inclusion-exclusion argument and show that

|Gn(x)| =
∑

f∈F(x)

µ(f) |Bn(f)|,

where µ : F → {±1} is the Mobius function. Let Bn(x, y) denote the set of
v ∈ Vn which lie in Bn(`) for some ` ∈ L(x, y). We make the trivial observation
that Bn(`), Bn(`,∞) are empty for ` > qn +2qn/2 +1, because ` must divide the
order of Ev, hence |Gn| = |Gn(x)| for x sufficiently large. On the other hand, for
any x > 0, one can still show that

|Gn| ≥ |Gn(x)| − |Bn(x,∞)|.

In general, the expected density of Bn(f) ⊂ Vn is given by the constant δn(f) =
|Cf (qn)|/|Gf (qn)| (cf. theorem 6), so we write

|Bn(f)| = δn(f)|Vn|+ εf .

Similarly, the expected density of Gn(x) ⊂ Vn is given by ∆n(x) =
∏

`∈L(x)(1 −
δn(`)), so we write

|Gn(x)| = ∆n(x)|Vn|+ ε(x).

A priori Gn(x) and ∆n(x) depend on L, but L is fixed for the entire section, so
we omit the dependence from the notation. By the results of 2.3 it follows that
δn(`) is bounded above and below by multiples of 1/(`r+1mn(`)), where mn(`) is
the order of the multiplicative group generated by qn mod `, which was denoted
det(Γ) in 2.3. In fact, one can explicitly write down δn(`) in terms of these
quantities. It follows from this estimate that ∆(x) converges as x → ∞ and we
define δn(Σ, S), appearing in theorem 1, as the limit. We further define a, b as the
lower and upper bound for this limit obtained from the bound just mentioned for
δn(`) and the estimates 1 ≤ mn(`) ≤ l − 1.

We estimate |ε(x)| using the identity ε(x) =
∑

f∈F(x) µ(f) εf , and in turn, we
estimate |εf | using the following lemma.
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Lemma 6. For every f ∈ F, we have

εf = Bn(f)− δn(f)|Vn| = o(f (r+2)/2qn/2/n).

Proof. The lemma is an application of theorem 6 to Kf/K. Applying the result
of sections 2.3 and 2.4, we see that |Cf (qn)| ≤ 2f r+2, for every f ∈ F(x). ¤

The lemma is useful only when x is sufficiently small. In fact, it suffices to
take x = xn = n log(q)/(2r + 6).

Corollary 2. |ε(xn)| = o(qn/n).

Proof. For every f ∈ F(xn), we note that

log(f) ≤
∑

`∈L(xn)

log(`) ≤ |L(xn)| log(xn) ≤ xn + o(xn),

and in particular, log(f) ≤ 2xn for n sufficiently large. Applying this to the error
term of the lemma gives

|εf | = o(f (r+2)/2qn/2/n) = o(qn(r+2)/(2r+6)qn/2/n) = o(qn(2r+5)/(2r+6)/n).

We also note that |F(xn)| = 2|L(xn)| ≤ exn = qn/(2r+6), hence

|ε(xn)| ≤
∑

f∈F(xn)

|εf | = qn/(2r+6) · o(qn(2r+5)/(2r+6)/n) = o(qn/n).

¤

By the corollary we have ∆n(x)|Vn| − δn(Σ, S)|Vn| = o(qn/n) and thus, to
complete the proof of theorem 1, it suffices to show that Bn(xn,∞) = o(qn/n),
because then

|Gn| = |Gn(xn)|+ o(qn/n) = δn(Σ, S)|Vn|+ o(qn/n).

We proceed in three stages by defining yn = qn/4/ log(qn) and zn = qn/4 log log(qn),
decomposing L(xn,∞) into three disjoint intervals

L(xn,∞) = L(xn, yn) ∪ L(yn, zn) ∪ L(zn,∞),

and utilizing the inequality

|Bn(xn,∞)| ≤ |Bn(xn, yn)|+ |Bn(yn, zn)|+ |Bn(zn,∞)|.
We complete the proof by showing, in the following three lemmas, that each of
the terms on the right are o(qn/n). In each case we use the inequality

|Bn(x, y)| ≤
∑

`∈L(x,y)

|Bn(`)|,
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but we must use different arguments to bound the sum on the right.

Lemma 7 (Small `). |Bn(xn, yn)| = o(qn/n).

Proof. For every ` ∈ L(xn, yn), we fix a cyclic `-isogeny φ : Eφ → E. We
note that, by theorem 2 of [CH], there is a constant `0 = O(1) such that Γ =
Gal(K(E[`])/K) contains SL2(Z/`) for every ` 6= p, ` > `0. We may assume,
without loss of generality, that xn ≥ max{`0, p}. The implied constant may be
chosen, depending only on genus(K) and deg(S), to account for the failure of
this assumption, and there are only finitely many n and degenerate Γ one must
worry about. We write B ⊂ Γ for the Borel subgroup corresponding to φ and
identify it with Gal(K(E[`])/K(φ)). For every w ∈ |K(φ)|, we write Frw ⊂ B for
the Frobenius conjugacy class.

If ` does not divide qn − 1, then we showed in section 2.3 that, for every
v ∈ Bn(`), there is a unique w ∈ |K(φ)| of degree n and lying over v such that
Frw ⊂ C(φ) ⊂ B. For i = 1, . . . , r, we write Bn,i(`) for the subset of v ∈ Bn(`)
such that w splits completely in K(φ, Pi/φ). In particular, applying theorem 5
we have

|Bn(`)| ≤
r∑

i=1

|Bn,i(`)| = r(qn/`2 + O(`qn/2))/n.

On the other hand, if ` divides qn − 1 and v ∈ Bn(`), then Frv = {1} ⊂ Γ.
Therefore v splits completely in K(φ,Eφ[φ])/K, and theorem 5 implies

|Bn(`)| ≤ r(qn/(`2 + `) + O(`qn/2))/n ≤ r(qn/`2 + O(`qn/2))/n.

Combining the results for all ` ∈ L(xn, yn) we have

|Bn(xn, yn)| ≤
∑

`∈L(xn,yn)

|Bn(`)| ≤ r(qn(
∑

`∈L(xn,yn)

1/`2) + (yn − xn)O(ynqn/2))/n.

We note that
∑

`∈L(xn,yn) 1/`2 = o(1), because xn tends to infinity as n does, and
yn = o(qn/4), hence |Bn(xn, yn)| = o(qn/n) as desired. ¤

Lemma 8 (Medium `). |Bn(yn, zn)| = o(qn/n).

Proof. We fix ` ∈ L(yn, zn) and use the notation of the previous lemma. If ` does
not divide qn − 1 and v ∈ Bn(`), then we let w ∈ |K(φ)| be the canonical point
over v as before. We write B′n,i(`) for the subset of v ∈ Bn(`) such that w splits
completely in K(φ,Eφ[φ]). Applying theorem 5 gives

|B′n,i(`)| = (qn/` + O(`qn/2))/n.
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On the other hand, if ` divides qn − 1, we let B′n,i(`) be the subset of v ∈ Vn

which split completely in K(φ,Eφ[φ]). By another application of theorem 5 we
have

|B′n,i(`)| = (qn/`2 + O(qn/2))/n ≤ (qn/` + O(`qn/2))/n.

Combining the results for all ` ∈ L(yn, zn) gives

|Bn(yn, zn)| ≤ (qn(
∑

l∈L(yn,zn)

1/`) + |L(yn, zn)|O(`qn/2))/n.

Using the standard estimate
∑

`≤x 1/` = log log(x)+c+o(1), where c is a constant,
gives

∑

l∈L(yn,zn)

1/` = log log(zn)− log log(yn) + o(1)

= log
(

n log(q) + 4 log log log(qn)
n log(q)− 4 log log(qn)

)
+ o(1) = o(1).

By the prime number theorem,

|L(yn, zn)| ≤ |L(zn)| ≤ zn/ log(zn) + o(zn/ log(zn)),

hence

|L(yn, zn)|O(`qn/2) = O

(
4(log log(qn))2

log(qn) + 4 log log log(qn)
qn

)
= o(qn).

This entails that |Bn(yn, zn)| = o(qn/n), as desired. ¤

Lemma 9 (Large `). |Bn(zn,∞)| = o(qn/n), for r ≥ 6.

Proof. For every v ∈ V , let Σv denote the image of Σ in Ev. Just as in the
number field case, Σ is endowed with a quadratic form given by the canonical
height pairing and we can argue in the same way as lemma 14 of [GM] to obtain
that the number of v ∈ V such that |Σv| < y is O(y(r+2)/r), where the implied
constant depends on the regulator R = det(Σ). Their proof actually proves more,
namely that the sum of deg v over the v’s with |Σv| < y is O(y(r+2)/r). From the
definition it follows that, for every v ∈ Bn(zn,∞), we have

|Σv| = O(qn/zn) = o(q3n/4),

therefore

|Bn(zn,∞)| = o((q3n/4)1+2/r)/n = o(q(3r+6)n/4r/n).

The lemma follows by observing that (3r + 6)/4r ≤ 1 if r ≥ 6. ¤
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