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On Hessian Measures for Non-Commuting
Vector Fields

Neil S Trudinger

Abstract: Previous results on Hessian measures by Trudinger and Wang are
extended to the subelliptic case. Specifically we prove the weak continuity of
the 2-Hessian operator, with respect to local L1 convergence, for a system of
m vector fields of step 2 and derive gradient estimates for the corresponding
k-convex functions, 1 ≤ k ≤ m.

1. Introduction

In the paper [18], we introduced the notion of k-convexity, k = 1 . . . n, for
functions u defined on domains Ω in Euclidean space, Rn. Namely, for u ∈ C2(Ω),
we call u k-convex in Ω if

(1.1) Fj [u] := Fj(D2u) := Sj(λ) ≥ 0,

for j = 1 . . . k, where λ = (λ1, . . . , λn) are the eigenvalues of the Hessian matrix
D2u of second derivatives of u and Sj denotes the jth elementary symmetric
function, that is

(1.2) Sj(λ) =
∑

i1<...<ij

λi1 . . . λij , j = 1 . . . n.

When there is no confusion we use the same notation Fj for both the operator and
the function on Rn×Rn. Equivalently, u is k-convex in Ω if u is subharmonic with
respect to the operator Fk and this is the basis for our definition of k-convexity
for non-smooth functions in our sequel papers [19], [20], [21]. The core result in
our paper [19], is that the mapping u 7→ Fk[u] is weakly continuous as a mapping
from L1

loc(Ω) to Mloc(Ω), the space of locally finite measures in Ω, that is for any
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subdomain Ω′ ⊂⊂ Ω, η ∈ C0
0 (Ω′) and positive constant ε, there exists a constant

δ such that

(1.3)
∣∣∣∣
∫

Ω
η (Fk(u)− Fk(v))

∣∣∣∣ < ε

whenever ∫

Ω′
|u− v| < δ,

∫

Ω′
|u + v| < 1,

for arbitrary k-convex u and v. This result enables us to define for any locally
integrable k-convex function u, the Hessian measure, µk[u], as an extension of
Fk[u]. In our first paper [18], we only proved the continuity of µk from C0 (Ω)
to Mloc (Ω) but this was enough for the cases k > n

2 , which included the Monge-
Ampére measure when k = n. The weak continuity of the Monge-Ampére mea-
sure is a fundamental result of Aleksandrov (see eg. [16]).

In this paper we extend our results in [19] to the case of non-commuting vector
fields but only prove the corresponding weak continuity for the case k = 2. Our
approach follows [19], with some help from [20] and [21], and is inspired by the
recent paper [8] on the special case of the Heisenberg group H1, by Gutiérrez
and Montanari, where the more restrictive approach in [18] was adequate. To
formulate the main theorem, we let X = X1 . . . Xm denote a system of vector
fields in Rn, that is first order differential operators of the form

(1.4) Xi =
n∑

j=1

bijDj

with coefficients bij ∈ C∞ (
Ω̄

)
(although weaker regularity will suffice). Then,

for k = 1 . . . m, we call a function u ∈ C2 (Ω), k-convex, with respect to X if

(1.5) Fj [u] := Fj(X2
s u) := Sj(λ) ≥ 0, j = 1 . . . k

where now λ = (λ1 . . . λm) denote the eigenvalues of the symmetric Hessian,

(1.6) X2
s u =

[
1
2
(XiXj + XjXi)u

]

i,j=1...m

.

Our hypotheses on the vector fields X1 . . . Xm are that:

(i) they are anti-self adjoint, namely

X∗
i = −Xi, i = 1 . . .m;

(ii) they satisfy the Hormander condition, namely the Lie algebra generated
by them spans Rn and

(iii) the second commutators formed from any two vector fields vanish.

These conditions will be automatically satisfied by the vector fields generating
an homogeneous group of Heisenberg type. We can now state the main theorem.
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Theorem 1.1. The mappings

(1.7) u 7→ F2[u] + α
∑

i<j

[Xi, Xj ]2u,

for u 2-convex in Ω, are weakly continuous from L1
loc (Ω) to Mloc (Ω), for any

constant α.

As mentioned above, the special case of the Heisenberg group H1, given by

X1u = D1u− 1
2
x2D3u,

X2u = D2u +
1
2
x1D3u,(1.8)

[X1, X2]u = D3u,

is proved in [8]. Here L1
loc (Ω) convergence is equivalent to local uniform conver-

gence in Ω and the proof is much simpler.

Theorem 1.1 enables us to assign a Borel measure µ2[u] to any L1
loc(Ω) limit

of smooth 2-convex functions, which extends F2[u] and is weakly continuous.
Letting Φ2(Ω) denote the space of such functions we also see that the commutators
[Xi, Xj ]u ∈ L2

loc(Ω) for u ∈ Φ2(Ω).

This paper is arranged as follows. In the next section we generalize the basic
divergence identity of Gutiérrez and Montanari [8], [9] on Heisenberg groups to
vector fields satisfying conditions (i) and (iii). A more complete treatment in
Carnot groups, with applications to monotonicity, is given by Danielli, Garofalo,
Nhieu and Tournier in [5]; (see also [7]). In Section 3, we employ our approach
in [19] to obtain integral estimates for the subelliptic gradient Xu under condi-
tions (i) and (ii), Theorem 3.1. As we cannot extend all of our argument in [19],
we have to rely strongly on the subelliptic potential estimates in [21]. In Sec-
tion 4, we carry out the arguments, again adapting [19] to the non-commutative
case, to conclude the local boundedness and weak continuity of the functionals in
Theorem 1.1, thereby completing the proof. Finally in Section 5, we extend our
previous results to the classes φk(Ω) of L1

loc limits of k-convex functions. Addi-
tional remarks at the ends of Sections 4 and 5 treat the removal of condition (iii)
and more general definitions of k-convexity.

We are grateful for useful comments and discussions with N. Chaudhuri, X-J
Wang, A. Montanari and T. Nguyen.

2. Divergence structure and monotonicity

It is well known that if the vector fields X1 . . . Xm commute, then

(2.1) XiF
ij
k (X2u) = 0, j = 1 . . .m,
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where

(2.2) X2u = X2
s u = [XiXju]i,j=1...m

and

(2.3) F ij
k (r) :=

∂

∂rij
Fk(r)

The identity (2.1), which means that the columns of the linearized coefficient
matrix (2.3) are divergence free, was the basis for our approach in [18], [19].
Now suppose, more generally, that the second commutators formed from any two
vector fields vanish, that is for any i, j = 1 . . .m,

0 = [Xi, [Xi, Xj ]]
= Xi[Xi, Xj ]− [Xi, Xj ]Xi

= XiXiXj − 2XiXjXi + XjXiXi

= Xj(XiXi) + Xi(XiXj − 2XjXi).

Then, defining for any real matrix r ∈ Rn × Rn,

F2(r) :=
1
2

{
(rii)2 − rijrji +

1
2
(rij − rji)2

}
(2.4)

= F2[r] +
3
4

∑

i<j

(rij − rji)2,

we have the identity

(2.5) XiF
ij
2 (X2u) = 0,

where

F ij
2 (r) =

∂F2

∂rij
(r)(2.6)

= (trace r)δij + rij − 2rji,

which extends (2.1) in the case k = 2. The identity (2.5) was discovered by
Gutiérrez and Montanari [8], [9] for the Heisenberg groups Hn, (see also [5], [7]).
From (2.5), we infer the monotonicity formula for the operator F2 defined by

(2.7) F2[u] = F2(X2u),

extending Lemma 2.1 in [18] for k = 2.

Lemma 2.1. Let u, v ∈ C2(Ω)∩C0(Ω̄) satisfy u ≤ v in Ω, u = v on ∂Ω with the
operator F2 degenerate elliptic with respect to their sum u + v, that is

F ij
2 (X2(u + v))ξiξj = F ij

2 (X2(u + v))ξiξj(2.8)
≥ 0
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for all ξ ∈ Rm. Then, if the vector fields X1 . . . Xm satisfy conditions (i) and
(iii), we have

(2.9)
∫

Ω
F2[v] ≤

∫

Ω
F2[u]

Proof. By integration by parts and the identity (2.5), we have, for u, v ∈ C2(Ω̄),
∫

Ω
(F2[u]−F2[v]) =

∫ 1

0
dt

∫

Ω
F ij

2 [X2(tu + (1− t)v)]XiXj(u− v)

=
∫ 1

0
dt

∫

∂Ω
F ij

2 (Xi.γ)Xj(u− v)

=
∫ 1

0
dt

∫

∂Ω
F ij

2 (Xi.γ)(Xj .γ) |D(u− v)|
≥ 0

Here γ denotes the outer unit normal to ∂Ω and

Xi.γ = bijγj .

The general case u, v ∈ C0
(
Ω̄

) ∩ C2 (Ω) follows by approximation. ¤

More general version of Lemma 2.1 are presented in [5]. For weak continuity
with respect to C0 (Ω) and for groups of Heisenberg type we may proceed exactly
as in [18]. In the next section we present the basic gradient estimates for k-
convex functions needed to handle the general case, for which we will not need
Lemma 2.1.

3. Gradient Estimates

In this section we provide the necessary gradient estimates for our proof of
weak continuity. For these we do not have to restrict to the case k = 2 and
moreover we only need to assume the vector fields X1 . . . Xm satisfy conditions
(i) and (ii). First we note that since k-convexity implies 1-convexity, k-convex
functions u are subharmonic with respect to the sub-Laplacian associated with
X1 . . . Xn, that is

(3.1) ∆Xu := XiXiu ≥ 0

in Ω. From (3.1) we infer immediately a bound from above, namely, for any
Ω′ ⊂⊂ Ω,

(3.2) sup
Ω′

u ≤ C

∫

Ω
|u|

where the constant C depends on X1 . . . Xm and dist(Ω′, ∂Ω). As we are only
dealing with local estimates in this paper, we will always assume, without loss of
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generality, that u ∈ L1(Ω). Following [19], our treatment of gradient estimates
depends on the relation between k-convexity and the subelliptic p-Laplacian op-
erators ∆p defined by

(3.3) ∆pu = Xi(|Xu|p−2 Xiu)

for p > 1.

Lemma 3.1. Let u be k-convex in Ω. Then u is subharmonic with respect to ∆p

for p− 1 ≤ k (m− 1) / (m− k).

Proof. Although this is just the special case l = 1 in Lemma 4.2 of [19], we include
it for completeness as it is simpler than the cases l > 1. We use the notation

(3.4) Sk,i(λ) = Sk(λ)|λi=0

so that

(3.5) Sj,i(λ) ≥ 0

for all j ≤ k − 1, if Sj(λ) ≥ 0, for all j = 1, . . . k, [19]. It follows then that

(3.6) 0 ≤ Sk(λ) = Sk,i(λ) + Sk−1,i(λ)λi, i = 1, . . . m,

whence

−λi≤ Sk,i

Sk−1,i
(λ)(3.7)

≤ (m− k)
k(m− 1)

S1,i(λ)

by MacLaurins’ inequality for ratios of elementary symmetric functions. Conse-
quently, if u is k-convex,

∆pu = Xi(|Xu|p−2 Xiu)(3.8)

= |Xu|p−2

{
∆Xu + (p− 2)

XiuXju

|Xu|2 XiXju

}

≥ |Xu|p−2 {
∆Xu + (p− 2) λmin

(
X2

s u
)}

≥ 0,

for p− 1 ≤ k (m− 1) / (m− k), by taking λ1 . . . λm in (3.7) to be the eigenvalues
of X2

s u. ¤

Note that Lemma 3.1 also includes the case k = m, p = ∞, when ∆p is the
subelliptic ∞-Laplacian

(3.9) ∆∞u = XiuXjuXiju

Our gradient estimates now follow immediately from [21] but to express them we
need the concept of homogeneous dimension. For our purposes here, we define



On Hessian Measures for Non-Commuting Vector Fields 153

the C-C (Carnot-Caratheodory) metric induced from the vector fields X1 . . . Xm

by
d(x, y) = inf{T > 0|∃ a sub-unitary γ : [0, T ] → Rn

(3.10) with γ(0) = x, γ(T ) = y},
where a piecewise C1 curve γ : [0, T ] → Rn is said to be sub-unitary, with respect
to X1 . . . Xm, if for every ξ ∈ Rn and t ∈ (0, T ),

(3.11)
∣∣γ′(t).ξ

∣∣2 ≤
m∑

i=1

(Xi(γ(t)).ξ)2.

Let BR(x) denote the C-C ball {y ∈ Rn|d(x, y) < R}, and let Ω be a bounded
domain in Rn. The the fundamental result of Nagel, Stein and Wainger [15]
asserts that there exist positive constants C, R0 and positive integer Q, depending
on X and Ω such that

(3.12) |BtR(x)| ≥ CtQ |BR(x)|
for any x ∈ Ω, t ∈ (0, 1) and R < R0, where || denotes the Lebesgue volume. The
number Q (≥ n), is chosen as the least integer for which (3.12) holds and is called
the homogeneous dimension of X in Ω. For (3.12) we only need the Hormander
condition (ii) and we could replace it more generally in this paper by simply the
validity of (3.12).

Theorem 3.1. For any k-convex function u in Ω, and subdomain Ω′ ⊂⊂ Ω, we
have the estimates

(3.13) ||Xu||Lq(Ω′) ≤ C

(∫

Ω
|u|

)

(3.14)
∫

Ω′
|Xu|r ∆Xu ≤ C

(∫

Ω
|u|

)1+r

for 1 ≤ q < Qk(m − 1)/(Q − 1)(m − k), 0 ≤ r < m(k − 1)/(m − k) where C
depends on Ω, Ω′, X1 . . . Xm and q or r as appropriate.

Proof. The estimate (3.13) follows from Lemmas 3.1 and [21], Lemma 3.9. For
(3.14), we have from Lemma 3.1,

(3.15) |Xu|r ∆Xu ≤ m(k − 1)
m(k − 1)− r(m− k)

∆pu

and since

(3.16)
∫

Ω
η∆pu ≤

∫

Ω
|Xη| |Xu|p−1 ,

for any η ≥ 0,∈ C1
0 (Ω), we infer (3.14) from (3.13). ¤
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By using the subelliptic Sobolev inequality [2], [11], we obtain corresponding
Lp estimates, namely

(3.17) ||u||Lp(Ω′) ≤ C||u||L1(Ω)

where

1 ≤ p <
Qk(m− 1)

(Q− 1)m− (Q + m− 2)k

for (Q− 1)m ≥ (Q + m− 2)k and p = ∞ if (Q− 1)m < (Q + m− 2)k. For this
last case we have a Hölder estimate [12], [21],

(3.18) sup
Ω′

|u(x)− u(y)|
|d(x, y)|α ≤ C||u||L1(Ω)

where

α =
k(Q + m− 2)−m(Q− 1)

k(m− 1)
,

if k < m (α < 1 if k = m).

4. Weak Continuity

In this section, we complete the proof of Theorem 1.1. First we prove a local
bound for F2. For convenience we use the notation

(4.1) E2[u] =
∑

i<j

([Xi, Xj ]u)2 ,

so that

(4.2) F2[u] = F2[u] +
3
4
E2[u]

Lemma 4.1. Let u ∈ C2(Ω) be 2-convex in Ω with respect to X1, . . . Xm, satis-
fying hypotheses (i) to (iii). Then, for any subdomain Ω′ ⊂⊂ Ω, we have

(4.3)
∫

Ω′
F2[u] ≤ C

(∫

Ω
|u|

)2

,

where C depends on dist(Ω′, ∂Ω), X1, . . . Xm.

In particular, Lemma 4.1 provides a local L2 estimate for the commutators
[Xi, Xj ]u.
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Proof. Letting η > 0 ∈ C1
0 (Ω) be a cut-off function, we have

∫

Ω
η2F2[u] =

1
2

∫

Ω
η2F ij

2 XiXju(4.4)

=−1
2

∫

Ω
F ij

2 Xiη
2Xju

=−1
2

∫

Ω

{
F ij

2 Xiη
2Xju +

3
2
[Xi, Xj ]uXiη

2Xju

}

≤C

∫

Ω

{∣∣Xη2
∣∣ |Xu|∆Xu + ηE

1
2

2 [u] |Xη| |Xu|
}

.

Consequently,

(4.5)
∫

Ω
η2F2[u] ≤ C

∫

Ω

{∣∣Xη2
∣∣ |Xu|∆Xu + |Xη|2 |Xu|2

}

and (4.3) follows from Theorem 3.1. ¤

Proof of Theorem 1.1. Letting u and v be 2-convex in Ω, ut = tu + (1− t)v, 0 ≤
t ≤ 1 and η ≥ 0,∈ C2

0 (Ω), we now have

∫

Ω
η (F2[u]−F2[v])(4.6)

=
∫ 1

0
dt

∫

Ω
ηF ij

2 [ut]XiXj(u− v)

=
1
2

∫

Ω
ηF ij

2 [u + v]XiXj(u− v)

= −1
2

∫

Ω
F ij

2 XiηXj(u− v)

= −1
2

∫

Ω

{
F ji

2 + 3[Xi, Xj ](u + v)
}

XiηXj(u− v)

=
1
2

∫

Ω

{
F ij

2 XiXjη(u− v)− 3[Xi, Xj ](u + v)XiηXj(u− v)
}

=
1
2

∫

Ω
F ij

2 [u + v](XiXjη)(u− v)

+
3
4

∫

Ω
[Xi, Xj ](u + v) {(XiXjη)(u− v)− 2XiηXj(u− v)}

:=
1
2
I1 +

3
4
I2
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The estimation of the integral I1 is similar to the corresponding term in the
commuting case [19]. Namely

|I1|=
∣∣∣∣
∫

Ω
F ij

2 [u + v](XiXjη)(u− v)
∣∣∣∣(4.7)

≤
∫

Ω
∆X(u + v)

∣∣X2η
∣∣ |u− v| .

Denoting

(4.8) δ =
∫

Ω
|u− v| , K =

∫

Ω
|u + v| ,

we have, for any ε > 0,

|u− v| < ε

except on a set Aε of measure |Aε| ≤ δ/ε. We then estimate for a further cut-off
function η̃ ∈ C1

0 (Ω), 0 ≤ η̃ ≤ 1,
∫

Ω
η̃∆X(u + v)(u− v)+(4.9)

≤ ε

∫

Ω
η̃∆X(u + v) +

∫

Ω
η̃(u− v − ε)+∆X(u + v)

= ε

∫

Ω
η̃∆X(u + v)−

∫

Aε

Xi(u + v)Xi

{
η̃(u− v − ε)+

}

≤C
(
ε + |Aε|1−

2
q

)

≤C

{
ε +

(
δ

ε

)1− 2
q

}

by Theorem 3.1, where q is chosen so that

2 < q <
2Q(m− 1)

(Q− 1)(m− 2)

and C depends on η̃, K, δ, X1, . . . Xm. It then follows that

(4.10) |I1| ≤ C

{
ε +

(
δ

ε

)1− 2
q

}

where C depends on η, K, δ, X1, . . . Xm. To estimate I2, we first use the bound
for E2 in Lemma 4.1, to obtain

(4.11) I2 ≤ C

{∫

supp η
|X(u− v)|2 + |u− v|2

} 1
2

,
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where C depends on η, K, δ, X1, . . . Xm. The first part of the above integral may
be estimated similarly to I1, since

∫

Ω
η̃ |X(u− v)|2 =−

∫

Ω
Xi(η̃Xi(u− v))(u− v)(4.12)

≤
∫

Ω
{|Xη̃| |X(u− v)|+ η̃∆X(u− v)} |u− v|

≤
∫

Ω
η̃∆X(u− v) |u− v|+ C

{∫

supp η̃
|u− v|2

} 1
2

,

while the second parts of (4.11) and (4.12) are handled readily by the estimate
(3.17). It follows that

(4.13) I2 ≤ C

{
ε +

(
δ

ε

)1− 2
q

} 1
2

.

With appropriate choice of δ, we then conclude Theorem 1.1 from the estimates
(4.10) and (4.13). ¤

Remark. By inspection of the above proofs, we see that condition (iii) may
be weakened to only requiring that the vector fields

Yj :=
m∑

i=1

[Xi, [Xi, Xj ]], j = 1 . . . m,

lie in the span of Xi, [Xi, Xj ], i, j = 1 . . .m. Without condition (iii) additional
terms

(4.14) −1
2

∫

Ω
η2Xu.Y u

and

(4.15) −1
2

∫

Ω
ηX(u− v).Y (u + v) +

1
2

∫

Ω
(u− v)Xη.Y (u + v)

will arise in the right hand sides of (4.4) and (4.6) respectively and these are then
automatically controlled. More general hypotheses are clearly possible. Note also
that if Y commutes with X, then the quantity

(4.16) F ∗
2 [u] := F2[u] +

1
2
Xu.Y u
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also satisfies the monotonicity property (2.9). For the Engel group, this was first
observed in [7]. More generally if we integrate by parts in (4.15), we find∫

Ω
ηX(u− v).Y (u + v)(4.17)

=−
∫

Ω
η(u + v)Y.X(u− v) + (u + v)Y η.X(u− v)

=
∫

Ω
η{X(u + v).Y (u− v) + (u + v)Z(u− v)}

−
∫

Ω
(u + v){Y η.X(u− v)−Xη.Y (u− v)}

where Z is the vector field given by

(4.18) Z = X.Y − Y.X = 0.

Inserting (4.17) into (4.6) and (4.15) we may infer weak continuity results, in the
absence of condition (iii), with respect to stronger topologies. For example F2

will be weakly continuous with respect to L1
loc(Ω) on 2-convex functions, with

uniformly bounded X- and Y -gradients in L∞loc(Ω) and L1
loc(Ω) respectively.

Finally without hypothesis (iii) in Lemma 2.1, we obtain, from the proof,∫

Ω
(F2[u]−F2[v])≥−1

2

∫

Ω
Y (u + v).X(u− v)

=−1
4

∫

Ω
{Y (u + v).X(u− v) + Y (u− v).X(u + v)}

so that in general

(4.19)
∫

Ω
(F ∗

2 [u]−F ∗
2 [v]) ≥ 0.

See [5] for a more thorough analysis of monotonicity. In a similar fashion, we
may combine (4.15) and (4.17) in (4.6) to conclude,∫

Ω
η(F ∗

2 [u]−F ∗
2 [v]) =

1
2
I1 +

3
4
I2 +

3
4

∫

Ω
(u− v)Xη.Y (u + v)(4.20)

− 1
4

∫

Ω
(u− v)X(u + v).Y η .

5. General k-convex functions

For our purposes here, we define a function u ∈ L1
loc(Ω) to be k-convex in Ω,

with respect to the system of vector fields X = (X1 . . . Xm) if, for any Ω′ ⊂⊂
Ω, there exists a sequence of k-convex functions in C2 (Ω′) converging to u in
L1

loc (Ω′). We designate the general class of k-convex functions in Ω by φk (Ω).
The estimates of the preceeding sections then extend as regularity properties and
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imbeddings of φk (Ω). In particular if the system X satisfies conditions (i) and
(ii), we have from Theorem 3.1 that the distributional derivatives Xu ∈ Lq

loc (Ω)
for

(5.1) 1 ≤ q <
Qk(m− 1)

(Q− 1)(m− k)

and that φk(Ω) imbeds continuously in the Sobolev space,

(5.2) S1,q
loc (Ω) =

{
u ∈ L1

loc (Ω) |Xu ∈ Lq
loc(Ω)

}
,

as defined, for example, in [2], [21]. Moreover for

(5.3) k >
(Q− 1)m

(Q + m− 2)
,

we see from (3.18) that φk(Ω) imbeds continuously in the Hölder space C0,α(Ω)
where

(5.4) α =
k(Q + m− 2)−m(Q− 1)

k(m− 1)
,

if k < m (α < 1 if k = m). It follows from [14] that we can also take α = 1 when
k = m and X generates the Lie algebra of a Carnot group.

For k ≥ 2, the symmetric Hessian X2
s u consists of signed Radon measures.

This follows exactly as in the Euclidean case [3], [19] but it may also be observed
directly from the degenerate ellipticity of F2,

(5.5) ∆XuI −X2
s u ≥ 0.

By taking limits, we see that the above quantities are measures if u ∈ φk(Ω).
If we also assume X satisfies (iii), we obtain from Lemma 4.1, that the commu-
tators [Xi, Xj ]u ∈ L2

loc(Ω) for u ∈ φk(Ω), k ≥ 2. Hence the full Hessian X2u

comprises Radon measures. From Theorem 3.1, we also infer that φk(Ω), k ≥ 2,
imbeds continuously into the Euclidean Sobolev space W 1,2

loc (Ω) if condition (iii)
is strengthened to all second order commutators vanishing. Also if X generates
the Lie algebra of a Carnot group as in [1], then from the Hölder estimate (3.18)
and the weak differentiability result in [1] we conclude that functions in φk(Ω)
will be twice differentiable almost everywhere in Ω, with respect to the system
X, if k satisfies (5.3). This extends the corresponding result for the convex case
k = m in [5], [9], [14] and the Euclidean case k > n/2 in [3].

Finally we may define the Hessian measure µ2[u], with respect to X, for any
function u ∈ φ2(Ω) by

(5.6)
∫

Ω
ηdµ2[u] = lim

m→∞

∫

Ω
ηdµ2[um]

where η ∈ C0
0 (Ω), supp η ⊂ Ω′ ⊂⊂ Ω and {um} ⊂ C2(Ω′) is a sequence of k-

convex functions converging to u in L1
loc(Ω

′). By Theorem 1.1 µ2 is well defined
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and weakly continuous with respect to convergence in L1
loc(Ω), that is if {um} ⊂

φ2(Ω), converges to u ∈ φ2(Ω) in L1
loc(Ω), the corresponding sequence of measures

{µ2[um]} converges weakly to µ2[u]. Note that the case α = 1
2 in Theorem 1.1

also shows that the sum of the principal 2 × 2 minors of the full Hessian X2u
also extends as a weakly continuous measure on φ2(Ω). From Lemma 2.1, we
also conclude a more general monotonicity property, namely that if u, v ∈ φ2(Ω)
satisfy u ≤ v in Ω, u = v continuously on ∂Ω, then

(5.7) µ2[v](Ω) +
3
4
E2[v] ≤ µ2[u](Ω) +

3
4
E2[u].

General subharmonic functions. More generally we may define subharmonic
functions along the lines of [19], [20], [21]. In particular we define an upper-
semicontinuous function u : Ω 7→ [−∞,∞) to be subharmonic with respect to the
operator Fk if u satisfies Fk[u] ≥ 0 in the viscosity sense, that is for any quadratic
polynomial q for which the difference u− q has a finite local maximum at a point
y ∈ Ω, we have Fk[q](y) ≥ 0. For smooth vector fields and k = 1, this is also
equivalent to our definition in [21], which corresponds to the traditional definition
of subharmonicity. A k-convex function, as defined above by approximation, will
be equivalent to a subharmonic function and moreover the estimates of Section 3
extend to the class of proper subharmonic functions. For Carnot groups of step 2,
it follows from [14] that proper subharmonic functions will also be k-convex but
we would expect this characterization to hold more generally. The equivalence of
various definitions in the convex case, k = m, for Carnot groups is treated in the
papers [4], [10], [13], [14].
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