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Introduction

The theory of height functions provides a powerful tool for studying the arith-
metic of morphisms φ : PN → PN . For example, if φ is a morphism of degree d ≥ 2
over a number field K, then the standard height estimate

h
(
φ(P )

)
= d · h(P ) + O(1) for all P ∈ PN (K̄)

combined with the fact that there are only finitely many K-rational points of
bounded height leads immediately to a proof of Northcott’s Theorem [18] stating
that φ has only finitely many K-rational preperiodic points.

The situation is more complicated if φ : PN → PN is only required to be a
rational map. An initial difficulty arises because there may be orbits Oφ(P )
that “terminate” because some iterate φn(P ) arrives at a point where φ is not
defined. In this paper we study morphisms φ : AM → AN of affine space whose
extension φ̄ : PM → PN need not be a morphism. (For the application to dynam-
ics, we take M = N .)

Example 1. The simplest automorphisms of A2 with interesting dynamics are the
Hénon maps

φ : A2 → A2, φ(x, y) =
(
y, ax + f(y)

)
, with a ∈ C∗ and f(y) ∈ C[y].

The dynamics of these maps have been extensively studied ever since Hénon [4]
introduced them as examples of systems R2 → R2 having strange attractors.
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There are still many open questions regarding the geometric dynamics of Hénon
maps, see for example [2, §2.9] or [6].

The extent to which a rational map φ̄ : PM → PN fails to be a morphism is
measured by its locus of indeterminacy Z(φ). Classically, a birational map φ̄ :
PN → PN , i.e., a rational map with a rational inverse, is said to be regular if

Z(φ) ∩ Z(φ−1) = ∅.
A regular affine automorphism is an automorphism φ : AN → AN whose natural
extension φ̄ : PN → PN to PN is regular. The geometry and arithmetic of
regular affine automorphisms has been the object of considerable study, see for
example [8, 13, 16, 19]. More generally, we define a collection of morphisms
(polynomial maps)

φ1, . . . , φr : AM → AN

to be jointly regular if their extensions φ̄1, . . . , φ̄r : PM → PN satisfy

Z(φ1) ∩ · · · ∩ Z(φr) = ∅.
Thus with this definition, a birational map φ : PPN → PN is regular if the
pair {φ, φ−1} is jointly regular.

Before stating our first result, which gives a height estimate for jointly regular
maps, we remind the reader of two definitions. The height of an affine point P ∈
AN (Q̄) is defined using the natural inclusion AN (Q̄) ⊂ PN (Q̄), thus

h(P ) = h
(
[1, x1, . . . , xN ]

)
for P = (x1, . . . , xN ) ∈ AN (Q̄).

Also, the degree of an affine morphism φ : AM → AN is the largest total degree
of the monomials that appear in the coordinate functions of φ. Equivalently, the
degree of φ is d if

φ̄∗OPN (1) = OPM (d).

Theorem 1. Let φ1, . . . , φr : AM → AN be a collection of jointly regular mor-
phisms defined over Q̄ and let di = deg(φi). There is a constant C = C(φ1, . . . , φr)
so that for all P ∈ AN (Q̄),

(1)
1
d1

h
(
φ1(P )

)
+

1
d2

h
(
φ2(P )

)
+ · · ·+ 1

dr
h
(
φr(P )

) ≥ h(P )− C.

An immediate corollary is an analogous estimate for regular affine automor-
phisms.

Corollary 2. Let φ : AN → AN be a regular affine automorphism defined over Q̄,
i.e., φ is a polynomial map with a polynomial inverse such that φ and φ−1 are
jointly regular. Let d1 = deg(φ) and d2 = deg(φ−1). Then for all P ∈ AN (Q̄),

1
d1

h
(
φ(P )

)
+

1
d2

h
(
φ−1(P )

) ≥ h(P )− C(φ).
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Kawaguchi [8] has suggested an improvement in the lower bound in Corollary 2
and has given a proof in dimension 2. Although the improvement may appear to
be minor, it has important consequences for the construction of canonical height
functions. (See also [9, 10].)

Conjecture 3. Let φ : AN → AN be a regular affine automorphism defined
over Q̄. Let d1 = deg(φ) and d2 = deg(φ−1). Then for all P ∈ AN (Q̄),

1
d1

h
(
φ(P )

)
+

1
d2

h
(
φ−1(P )

) ≥
(

1 +
1

d1d2

)
h(P )− C(φ).

Under suitable conditions on the degrees of the maps, the height estimate
given in Theorem 1 implies that the set of points with finite orbits form a set of
bounded height. This application is our second main result.

Theorem 4. Let φ1, . . . , φr : AN → AN be a collection of jointly regular mor-
phisms defined over Q̄, and let Φ be the monoid of maps generated by φ1, . . . , φr

under composition. For any point P ∈ AN , let Φ(P ) =
{
ψ(P ) : ψ ∈ Φ

}
be the

full orbit of P under the maps φ1, . . . , φr, and let

PrePer
(
Φ,AN (Q̄)

)
=

{
P ∈ AN (Q̄) : Φ(P ) is finite

}

be the set of (strongly) preperiodic points for Φ.

Assume that the degrees di = deg(φi) of the maps satisfy

(2) δ :=
1
d1

+
1
d2

+ . . . +
1
dr

< 1.

Then
PrePer

(
Φ,AN (Q̄)

)
is a set of bounded height.

We briefly describe the history of estimates of the sort given in Corollary 2
and Conjecture 3, which in turn imply boundedness as in Theorem 4. The first
result of this type was a proof of Conjecture 3 by the author [20] for Hénon
maps of degree 2 in dimension 2. The proof involves an explicit construction
of a blowup of P2 so that φ and φ−1 extend to morphisms. Denis [1] found an
ingenious way to prove a weaker height estimate without using blowups that still
suffices to prove Theorem 4. Denis’s argument applies in particular to all regular
affine automorphisms in dimension 2. Marcello [12, 13, 16] (see also [14, 15, 17])
extended Denis’s work and proved a height bound of the form

h
(
φ(P )

)
+ h

(
φ−1(P )

) ≥ min{d1, d2}h(P )− C(φ)

for regular affine automorphisms of arbitrary dimension. Although again not
quite as strong as Corollary 2, it is strong enough to prove Theorem 4 for such
maps.
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Kawaguchi [8] returns to the idea of resolving rational maps via blowups and
gives two proofs of Conjecture 3 for all regular affine automorphisms in dimen-
sion 2. The first uses an ingeneious intersection theory argument and the second
uses an explicit resolution of Hénon maps by Hubbard, Papadopol and Veselov [7].

The present paper was motivated by an (unsuccessful) attempt to prove Con-
jecture 3 for regular affine automorphisms of arbitrary dimension. Thus aside
from its intrinsic interest, the author hopes that Theorem 1 may help to clar-
ify the extent to which any proof of the conjecture must make use of both the
invertibility of φ and the joint regularity of φ and φ−1.

1. A height bound for jointly regular morphisms

In this section we recall some basic definitons, set some notation, and then
prove Theorem 1.

For a rational map of projective varieties φ̄ : V → W , let

Z(φ̄) = the locus of indeterminacy of φ.

See [3, Example 7.17.3] for the precise definition. Later we will give an explicit
description for the maps that we are studying.

Definition 1. Let φ̄i : V → Wi for 1 ≤ i ≤ r be a collection of rational maps
between projective varieties. We say that the set {φi}1≤i≤r is jointly regular if

Z(φ̄1) ∩ Z(φ̄2) ∩ · · · ∩ Z(φ̄r) = ∅.

Let φ : AM → AN be a morphism, say given by polynomials

φ = [F1, F2, . . . , FN ] with F1, . . . , FN ∈ K[X1, . . . , XM ].

The degree of φ is the maximal degree of the monomials appearing in polynomi-
als F1, . . . , FN . If deg(φ) = d, we let

F̄i(X0, X1, . . . , XM ) = Xd
0Fi

(
X1

X0
,
X2

X0
, . . . ,

XM

X0

)
for i = 1, 2, . . . , N

and define the homogeniziation of φ to be the map

φ̄ = [F̄1, F̄2, . . . , F̄N ].

Then φ̄ is a rational map φ̄ : PM → PN extending the affine morphism φ : AM →
AN .

With this notation, we define

F̄ ∗
i (X1, . . . , XM ) = F̄i(0, X1, . . . , XM ).
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Thus F̄ ∗
i is the degree d part of F̄i. (The value of d should be clear from the

context. Note that d is the degree of φ, not necessarily the degree of Fi.) Then
the locus of indeterminacy of φ is easily seen to be

Z(φ) =
{
P ∈ PM : F̄ ∗

1 (P ) = F̄ ∗
2 (P ) = · · · = F̄ ∗

N (P ) = 0
}
.

Proof of Theorem 1. Write

φi = (Fi1, Fi2, . . . , FiN ) for i = 1, 2, . . . , r.

Let
di = deg(φi) and D = d1d2 . . . dr.

We combine the homogenizations of φ1, . . . , φN into a single map

ψ : PM → PrN ,

ψ =
[
XD

0 , F̄
D/d1

11 , . . . , F̄
D/d1

1N , F̄
D/d2

21 , . . . , F̄
D/d2

2N , . . . , F̄
D/dr

r1 , . . . , F̄
D/dr

rN

]
.

We claim that ψ is a morphism. Clearly ψ is well defined at any point with
X0 6= 0. And for X0 = 0 we have

F̄ij(0, X1, . . . , XM ) =
[
0, F̄ ∗

ij(X1, . . . , XM )D/di

]
1≤i≤r
1≤j≤N

,

from which we see that

Z(ψ) = Z(φ1) ∩ Z(φ2) ∩ · · · ∩ Z(φr) = ∅.
This proves that ψ is a morphism, and its degree is equal to D, so standard
properties of height functions (see [11, Chapter 4] or [5, Theorem B.2.5(b)]) give
the estimate

(3) h
(
ψ(P )

) ≥ Dh(P ) + O(1) for all P ∈ PM (Q̄).

In the other direction, we use that fact that for any point

Q = [Z, Y11, . . . , Y1N , Y21, . . . , Y2N , . . . , Yr1, . . . , YrN ] ∈ PrN (Q̄)

with Z 6= 0 there is an elementary inequality

(4) h(Q) ≤
r∑

i=1

h
(
[Z, Yi1, Yi2, . . . , YiN ]

)
.

To see this, first divide all of the coordinates by Z, let Uij = Yij/Z, then use the
fact that for any absolute value | · |,

max
{
1, |U11|, . . . , |U1N |, |U21|, . . . , |U2N |, . . . , |Ur1|, . . . , |UrN |

}

≤
r∏

i=1

max
{
1, |Ui1|, . . . , |UiN |

}
.
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Applying (4) with Q = ψ(P ) for a point P ∈ AM (Q̄) and using (3) yields
r∑

i=1

D

di
h
(
φi(P )

) ≥ Dh(P ) + O(1),

which completes the proof of Theorem 1. ¤

Example 2. Let φ1(x, y) = (x2, xy) and φ2(x, y) = (x, y2). The homogenizations
of φ1 and φ2 are

φ̄1([X0, X1, X2]) = [X2
0 , X2

1 , X1X2],

φ̄2([X0, X1, X2]) = [X2
0 , X0X1, X

2
2 ].

Notice that Z(φ̄1) =
{
[0, 0, 1]

}
and Z(φ̄2) =

{
[0, 1, 0]

}
are disjoint, so {φ1, φ2}

is a jointly regular set of maps. We consider points of the form P = (0, b) ∈ A2

with b ∈ Z. In homogeneous coordinates P = [1, 0, b], so

φ̄1(P ) = [1, 0, 0] and φ̄2(P ) = [1, 0, b2].

Hence
1
2
h
(
φ1(P )

)
+

1
2
h
(
φ2(P )

)
=

1
2
h
(
(0, 0)

)
+

1
2
h
(
(0, b2)

)
= 0 + log |b| = h(P ).

This shows that the estimate (1) in Theorem 1 cannot be improved, in the sense
that the lower bound cannot be replaced by (1 + ε)h(P )− C with ε > 0 unless
some further restriction is placed on the maps φ1, . . . , φr. In Section 3 we continue
the discussion of the extent to which Theorem 1 can be strengthened.

2. An application to arithmetic dynamics

As in the previous section, we begin with some definitions and notation, after
which we prove Theorem 4.

Fix an integer r ≥ 1 and let φ1, . . . , φr : S → S be functions from some set S
to itself. For each k ≥ 0, let Wk be the collection of ordered k-tuples chosen
from {1, 2, . . . , r},

Wk =
{
(i1, i2, . . . , ik) : ij ∈ {1, 2, . . . , r}} = {1, 2, . . . , r}k,

and let
W∗ =

⋃

k≥0

Wk.

Thus W∗ is the collection of words on r symbols.

For any I = (i1, i2, . . . , ik) ∈ Wk, let φI denote the corresponding composition
of the functions φ1, . . . , φr,

φI = φi1 ◦ φi2 ◦ · · · ◦ φik .
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Definition 2. We denote the monoid of maps S → S generated by φ1, . . . , φr

under composition by
Φ =

{
φI : I ∈ W∗

}
.

Let P ∈ S. The Φ-orbit of P is

Φ(P ) =
{
ψ(P ) : ψ ∈ Φ

}
.

The set of (strongly) Φ-preperiodic points of S is the set

PrePer(Φ, S) =
{
P ∈ S : Φ(P ) is finite

}
.

We are now ready to prove Theorem 4, which is our principal application of
Theorem 1. We recall that Theorem 4 says that if φ1, . . . , φr form a jointly regular
collection of affine morphisms whose degrees di satisfy

δ :=
1
d1

+
1
d2

+ . . . +
1
dr

< 1,

then the set of strongly preperiodic points of φ1, . . . , φr is a set of bounded height.

Proof of Theorem 4. Theorem 1 tells us that there is a constant C so that

(5) h(Q)− C ≤
r∑

i=1

1
di

h
(
φi(Q)

)
for all Q ∈ AN (Q̄).

We fix a point P ∈ AN (Q̄). For each map ψ ∈ Φ, we apply (5) to the point ψ(P )
to get

(6) 0 ≤
r∑

i=1

1
di

h
(
φiψ(P )

)− h
(
ψ(P )

)
+ C.

We define a map µ : W∗ → R by the following rule:

µI = µ(i1,i2,...,ik) =
1

d
#{j:ij=1}
1 · d#{j:ij=2}

2 · · · d#{j:ij=r}
r

.

Notice that these are the numbers that appear in the multonomial expansion

(7) δk =
(

1
d1

+
1
d2

+ . . . +
1
dr

)k

=
∑

I∈Wk

1
di1di2 · · · dik

=
∑

I∈Wk

µI .

We now apply (6) with ψ = φI , multiply both sides by µI , and sum over
all k-tuples I with k ≤ K. This yields

(8) 0 ≤
K∑

k=0

∑

I∈Wk

µI

( r∑

i=1

1
di

h
(
φiφI(P )

)− h
(
φI(P )

)
+ C

)
.
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We first evaluate the sum over C. Using the multinomial formula (7) for the
inner sum and the assumption (2) that δ < 1, we find that

K∑

k=0

∑

I∈Wk

µI =
K∑

k=0

(
1
d1

+
1
d2

+ . . . +
1
dr

)k

=
K∑

k=0

δk ≤ 1
1− δ

.

If I = (i1, . . . , ik) ∈ Wk is a k-tuple, it is convenient to adopt the notation iI
for the k + 1-tuple (i, i1, . . . , ik). Notice that with this notation, the definition
of µ tells us that

(9) µiI =
µI

di
for all I ∈ W∗ and all 1 ≤ i ≤ r.

The following calculation shows that most of the terms in (8) telescope to zero:
( K−1∑

k=0

∑

I∈Wk

µI

r∑

i=1

1
di

h
(
φiφI(P )

))−
( K∑

k=1

∑

I∈Wk

µIh
(
φI(P )

))

=
(K−1∑

k=0

∑

I∈Wk

r∑

i=1

µI

di
h
(
φiφI(P )

))−
(K−1∑

k=0

∑

I∈Wk

r∑

i=1

µiIh
(
φiφI(P )

))

=
K−1∑

k=0

∑

I∈Wk

r∑

i=1

(
µI

di
− µiI

)
h
(
φiφI(P )

)

= 0 from (9).

The remaining terms in (8) are

0 ≤
( ∑

I∈WK

µI

r∑

i=1

1
di

h
(
φiφI(P )

))− h(P ) +
C

1− δ
.

Now suppose that P ∈ PrePer
(
Φ,AN (Q̄)

)
is preperiodic. Then the points

φiφI(P ) take on only finitely many values as i and I vary, so their height is
bounded independently of i and I by

h
(
Φ(P )

)
:= sup

Q∈Φ(P )
h(Q).

Hence

h(P ) ≤
( ∑

I∈WK

µI

r∑

i=1

1
di

)
h
(
Φ(P )

)
+

C

1− δ
.

As above, we can use the multinomial expansion (7) to calculate the sum,

∑

I∈WK

µI

r∑

i=1

1
di

=
∑

I∈WK

r∑

i=1

µiI =
∑

I∈WK+1

µI = δK+1.
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This gives the inequality

h(P ) ≤ δK+1 · h(
Φ(P )

)
+

C

1− δ
.

By assumption, h
(
Φ(P )

)
is finite and δ < 1, so letting K →∞ shows that h(P )

is bounded by a constant that depends only on the maps φ1, . . . , φr. ¤

Applying the theorem to a pair {φ, φ−1} consisting of a regular affine auto-
morphism and its inverse, we recover Marcello’s theorem.

Corollary 5. (Marcello [13, 16]) Let φ : AN → AN be a regular affine automor-
phism of degree at least 2 defined over Q̄, i.e., φ has a polynomial inverse and φ
and φ−1 are jointly regular. Then Per

(
φ,AN (Q̄)

)
is a set of bounded height.

Proof. This follows immediately from Theorem 4 applied to the jointly regular
maps {φ, φ−1} unless both φ and φ−1 have degree 2. If they do both have degree 2,
then we use the fact [19] that φ2 is regular, deg(φ2) = deg(φ)2, and Per(φ) =
Per(φ2) and apply the theorem to φ2. (Although not needed for the proof, we
remark that deg φ = deg φ−1 is only possible for even values of N , in which case
one must also have dim Z(φ) = dim Z(φ−1) = (N − 2)/2. See [19].) ¤

3. Further questions

Let φ1, . . . , φr : AN → AN be morphisms defined over Q̄ with di = deg(φi) as
usual. Define the height expansion factor of φ1, . . . , φr to be the quantity

κ(φ1, . . . , φr) = lim inf
P∈AN (Q̄)
h(P )→∞

1
h(P )

r∑

i=1

1
di

h
(
φi(P )

)
.

It has the following properties:

• If φ1, . . . , φr are jointly regular, then κ(φ1, . . . , φr) ≥ 1. This is a weak form
of Theorem 1.

• There exist jointly regular maps φ1, φ2 so that κ(φ1, φ2) = 1. This follows
from Example 2.

• Suppose that φ1 is an automorphism (not necessarily regular) and let φ2 =
φ−1

1 . Then Kawaguchi [8, Proposition 4.2] proves that

κ(φ1, φ2) ≤ 1 + (d1d2)−1.

• Suppose that φ1 is a regular automorphism and let φ2 = φ−1
1 . Then Conjec-

ture 3 and Kawaguchi’s result imply that

κ(φ1, φ2) = 1 + (d1d2)−1.

For N = 2, Kawaguchi [8, Theorem 3.6] proves this unconditionally.
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Question 1. Are there natural conditions on φ1, . . . , φr that imply κ(φ1, . . . , φr) >
1? In particular, is κ > 1 if

φ1, . . . , φr : AN −→ AN

are jointly regular and finite (i.e., everywhere finite-to-one)?

It is also interesting to ask whether there are natural conditions under which
the monoid of maps generated by a collection of affine morphisms φ1, . . . , φr

has only finitely many complex preperiodic points. Clearly we need to require
that r ≥ 2, but in addition, the maps must be independent in some sense. For
simplicity, we consider the case of maximal independence, as in the following
definition.

Definition 3. Let φ1, . . . , φr : S → S be maps from a set to itself and let Φ be
the monoid generated by φ1, . . . , φr under composition. We say that φ1, . . . , φr

are totally independent if the map

W∗ −→ Map(S, S), I 7−→ φI ,

is injective. In other words, φ1, . . . , φr are totally independent if they satisfy no
nontrivial relations under composition.

Now let φ1, . . . , φr : AN → AN be morphisms defined over C of degree di =
deg(φi), and consider the following four properties:

(1) φ1, . . . , φr are totally independent.
(2) φ1, . . . , φr are jointly regular.
(3) d−1

1 + d−1
2 + · · ·+ d−1

r < 1.
(4) r ≥ 2.

Question 2. Let φ1, . . . , φr : AN → AN be affine morphisms satisfying proper-
ties (1)–(4). Can Φ have nonisolated preperiodic points? Does PrePer

(
Φ,AN (C)

)
contain only finitely many (isolated) points?
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[4] M. Hénon, A two-dimensional mapping with a strange attractor, Comm. Math. Phys. 50
(1976), no. 1, 69–77.

[5] Marc Hindry and Joseph H. Silverman, Diophantine geometry: An introduction, Graduate
Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000.



Height Bounds for Jointly Regular Affine Maps 145
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