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Involutions on the Barnes-Wall Lattices and their
Fixed Point Sublattices, I.

Robert L. Griess Jr.

Abstract: We study the sublattices of the rank 2d Barnes-Wall lattices
BW2d which occur as fixed points of involutions. They have ranks 2d−1 (for
dirty involutions) or 2d−1± 2k−1 (for clean involutions), where k, the defect,
is an integer at most d

2 . We discuss the involutions on BW2d and determine
the isometry groups of the fixed point sublattices for all involutions of defect
1. Transitivity results for the Bolt-Room-Wall group on isometry types of
sublattices extend those in [PO2d]. Along the way, we classify the orbits of
AGL(d, 2) on the Reed-Muller codes RM(2, d) and describe cubi sequences
for short codewords, which give them as Boolean sums of codimension 2
affine subspaces.
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1. Introduction

We continue to study the Barnes-Wall lattices BW2d and their isometry groups,
which are the Bolt-Room-Wall groups BRW+(2d) ∼= 21+2d

+ Ω+(2d, 2) for d ≥
2, d 6= 3 and WE8 for d = 3. In particular, we classify involutions in BRW+(2d)
and determine properties of their fixed point sublattices, including automorphism
groups. For background, we analyze words of the Reed-Muller code RM(d, 2) in
some detail and in particular determine the orbits of AGL(d, 2).

We shall be using the Barnes-Wall-Ypsilanti uniqueness theory as developed in
[PO2d]. We recommend this article for background and terminology. Notational
warning: O(L) means orthogonal group on a quadratic space L but O(G) means
O2′(G) for a finite group G.

The main results of this article are described below. See 3.18, 3.19

Theorem 1.1. The orbits for the action of AGL(d, 2) on the Reed-Muller code
RM(2, d) are as follows (for each category, there is one orbit for each allowed
value of k):

Short sets of defect k = 0, . . . , bd
2c, which are of the form S1+· · ·+Sk, where the

Si are affine codimension 2 spaces which are linearly coindependent with respect to
an origin in their common intersection; such a set has cardinality (or Hamming
weight) 2d−1 − 2d−k−1.

Long sets, which are complements of short sets.

Midsets, of cardinality 2d−1, which are either affine hyperplanes (defect 0) or
nonaffine midsets of the form S +H, where H is an affine hyperplane and S is a



Involutions on the Barnes-Wall Lattices ... 991

short set of weight 2d−1− 2d−k−1, for a unique k ∈ {1, . . . , bd−1
2 c}. (Note: k 6= d

2
here.)

Some background in the structure of BRW groups is required to state our main
results. We refer the reader to the Appendix for a summary and notations. For
definitions of clean and dirty, see 9.3 and for defect, see 9.5.

Theorem 1.2. (i) When d is odd, the conjugacy classes for involutions in the
BRW group BRW+(2d) are represented by the transformations:

(Split Case) εX , where X is a codeword as listed in 1.1, one for each value of
the defect, k ≤ d−1

2 .

(Nonsplit Case) ηd,2k,ε, for k = 1, . . . , d−1
2 , ε = ±.

(ii) When d is even, the conjugacy classes for involutions in the BRW group
BRW+(2d) are represented by the transformations:

(Split Case) εX , where X ranges over the codewords listed in 1.1, but one for
each value of the defect, k, together with the single clean involution ετ

Y , where
Y is a short codeword with defect k = d

2 and τ is an outer automorphism of
BRW+(2d).

(Nonsplit Case) ηd,2k,ε, for k = 1, . . . , d
2 , where ε = ± except for k = d

2 when
ε = + only.

The next result extends transitivity results in [PO2d] to a wider class of sub-
lattices.

Procedure 1.3. (Conjugacy for involution fixed point sublattices and
recognition criteria for such.) Two RSSD sublattices M1,M2 of BW2d are in
the same orbit of G2d if and only if their associated involutions are conjugate. We
may use 1.2 as a guide to orbits of BRW+(2d) on RSSD sublatttices. In particu-
lar, whether two given RSSD sublattices are in the same orbit of BRW+(2d) may
be decided within the lattice by surveying a family of RSSD sublattices of BW2d .
It is unnecessary to examine the explicit representation of the group BRW+(2d).
See 4.1.

Definition 1.4. In general, if X is a subobject of Y , the inherited group means
the image in Sym(X) of StabAut(Y )(X).

In the next result, this applies to the containment Lε(t) ≤ L := BW2d .

Theorem 1.5. Consider a clean involution t of defect 1 on L := BRW+(2d).

When the trace of t is positive, the rank of L+(t) is 2d−23. The automorphism
group is inherited when d ≥ 2, d 6= 3 and for d = 3 it is WB6.
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When the trace of t is negative, the rank of L+(t) is 2d−2 and the fixed point sub-
lattice is a scaled version of BW2d−2, whose automorphism group is BRW+(2d−2)
if d 6= 5 and is WE8 if d = 5.

Theorem 1.6. The automorphism groups of the involution fixed point sublattices
is inherited when the involution is dirty, split, of defect 1 and when d ≥ 5 is odd.

Theorem 1.7. The automorphism groups of the involution fixed point sublattices
is not inherited when the involution is nonsplit of defect is 1 and d ≥ 5. The fixed
point sublattices are isometric to ssBW2d−2 ⊥ ssBW2d−2.

The author thanks Alex Ryba for many useful discussions. The author has
been supported by NSA grant USDOD-MDA904-03-1-0098.

2. Notation and terminology

We mention some special terminology, definitions and notation; see [PO2d].

BW2d , the Barnes-Wall lattice in dimension 2d [PO2d]
BRW 0(2d,±) Bolt, Room and

Wall group, [PO2d]
clean an element of BRW 0(2d,±)

not conjugate to its negative
D, a lower dihedral group a dihedral group of order 8

in the lower group R
defect of an involution 9.5
density, commutator density [PO2d]
determinant of a lattice, L |D(L)|
diagonal 3.14
dirty an element of BRW 0(2d,±)

conjugate to its negative
D(L), discriminant group of an integral lattice L D(L) = L∗/L
L∗, the dual of the lattice L {x ∈ Q⊗ L|(x, L) ≤ Z}
εS 3.14
fourvolution a linear transformation

whose square is −1
G = G2d BRW+(2d)
inherited 1.4
lower in R
R = R2d O2(BRW+(2d))
SSD, semiselfdual, RSSD, relatively semiselfdual applies to certain sublattices

of an integral lattice; there
are associated involutions,

sBW, sBW2k scaled copy of some BW2k
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∼= √
sBW2k for some

integer s > 0.
ssBW, ssBW2d (for a sublattice of BW2d) suitably scaled copy of BW2k

= a scaled BW2k with scale
2h, h = d−k

2 for d− k even;
h = d−k−1

2 for d− k odd,
d even; h = d−k−1

2 + 1 for
d− k odd, d odd.

total eigenlattice, Tel(E), T el(L,E) the sum of the eigenlattices
of an elementary abelian
2-group or involution E
on the lattice L

upper in G but not in R

Conventions. Our groups and most endomorphisms act on the right, of-
ten with exponential notation. Group theory notation is mostly consistent with
[Gor, Hup, G12]. The commutator of x and y means [x, y] = x−1y−1xy and the
conjugate of of x by y means xy := y−1xy = x[x, y]. These notations extend to
actions of a group on an additive group.

Here are some fairly standard notations used for particular extensions of groups:
pk means an elementary abelian p-group; A.B means a group extension with nor-
mal subgroup A and quotient B; pa+b+... means an iterated group extension, with
factors pa, pb, . . . (listed in upward sense); A:B,A·B mean, respectively, a split
extension, nonsplit extension.

3. Preliminaries

3.1. Groups.

Definition 3.1. The Dickson invariant is a natural homomphism O+(2d, 2) →
Z2 which has the property that it is nontrivial on orthogonal transvections. (For
an exact definition, see [Dieud]). The kernel is the subgroup Ω+(2d, 2). Elements
of the latter group are called even and elements of O+(2d, 2) which are not even
are called odd.

This notion extends to the full holomorph 21+2d.O+(2d, 2) in GL(2d,C), so
that the BRW group BRW+(2d) is considered its even subgroup [GrMont].

Notation 3.2. From now on, d ≥ 2, G2d := BRW+(2d), R2d := O2(G2d).
Reference to d will typically be suppressed and we use G for G2d and R for R2d .

Lemma 3.3. Let t be an isometry of V , a vector space in characteristic 2 with
an alternating bilinear form. Then [V, t] = Im(t− 1) is totally isotropic.
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Proof. Let x, y ∈ V . Then (x(t−1), y(t−1)) = (x, y)−(x, yt)−(xt, y)+(xt, yt).
Since we are in characteristic 2 and t is an isometry, the first and last terms cancel.
Since t2 = 1, the middle two terms cancel. ¤

Remark 3.4. When t leaves invariant a quadratic form associated to the alter-
nating bilinear form, the totally isotropic space of 3.3 may be totally singular or
not.

Notation 3.5. Let R be an extraspecial group and H a subgroup of R which
contains Z(R). Then H has a central product decomposition, H = AB, where
A = Z(H) and B = Z(R) or B is extraspecial. Clearly, A ∩ B = Z(R). The
group B is not unique if A > Z(R), but the set of such B forms an orbit under
StabAut(R)(H) if A is elementary abelian. We call such a decomposition of H a
CMZ-decomposition (for complement modulo the center) and such a B is called
a CMZ-subgroup.

Lemma 3.6. An involution t which acts on an extraspecial group R ∼= 21+2d
+ as

an even automorphism fixes a noncentral involution if d ≥ 2.

Proof. If t is inner, this is obvious. Suppose that t acts nontrivially on the
Frattini factor of R. Since [R, t] is not contained in Z(R) and is normal in R,
Z(R) ≤ [R, t]. Also, [R, t] is abelian (by 3.3). Since t inverts a set of generators
for [R, t], it inverts [R, t], so centralizes Ω1([R, t]). Also, [R, t] is noncyclic since
for even orthogonal transformations, the space of fixed points is even dimensional
(see 9.5). This completes the proof. ¤

Lemma 3.7. Let t be an upper involution in the automorphism group of an
extraspecial 2-group of plus type. Then t centralizes a maximal elementary abelian
subgroup if and only if its image in the outer automorphism group is even and
[R, t] is elementary abelian.

Proof. The necessity follows from the well-known facts that Ω+(2d, 2) has two
orbits on maximal totally singular subspaces and that they are fused by O+(2d, 2)
[GrElAb].

We now prove sufficiency. We may assume that the order of the extraspecial
group R is 21+2d, for d ≥ 2 (there are no even upper involutions for d = 1). Let
t be an upper involution.

The action of t fixes a noncentral involution u ∈ R, by 3.6. So, t acts on
CR(u)/〈u〉 ∼= 21+2(d−1)

+ . If u 6∈ [R, t], then t acts evenly on this extraspecial
group and we finish by induction. Therefore, we are done if t fixes an involution
outside [R, t], so suppose that none exist. Then since R has plus type, [R, t] has
order 2d+1. Since t inverts [R, t], we are done since [R, t] is elementary abelian
by hypothesis, so is maximal elementary abelian. ¤
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Proposition 3.8. We are given V = F2d with quadratic form q and associated
bilinear form (·, ·) so that V = I ⊕ J is a decompostion into maximal totally
singular d-dimensional subspaces. Define Inv(V, I) to be the set of involutions t
in G, the orthogonal group for q, so that t is trivial on I and V/I and [V, t] = I.
Then

(0) Inv(V, I) 6= ∅ if and only if d is even.

(1) Assume that d is even. Then Inv(V, I) is in bijection with these two sets:

(1.a) the set of 2d× 2d matrices of the form I2d + N , where N has rank d and
is supported in the upper right d× d submatrix, which is alternating.

(1.b) The set of all sequences v1, w1, . . . , vd, wd with each vj ∈ J,wj ∈ I so that
[vi, t] = wi for all i and (vi, wj) = 0 except for {i, j} of the form {2k − 1, 2k} for
k = 1, . . . , d

2 in which case (vi, wj) = 1.

Proof. For (0), use 9.5. The proof of (1) is formal. ¤

Definition 3.9. A natural BRW subgroup of G is a subgroup of the form CG(S),
where S is a plus type extraspecial subgroup of R. Natural BRW subgroups occur
in pairs, each member being the centralizer in G of the other.

We need to discuss normalizers of lower elementary abelian subgroups in G
and centralizers of clean upper involutions.

Proposition 3.10. Let E be a lower elementary abelian group of order 2a+b,
where 2a = |Z(R) ∩ E|. Let N := NG(E) and C := CG(E). Suppose that b ≥ 1.
Then N and C have the following structure.

There are subgroups S, T ≤ R and P ≤ G so that

(a) T and S are extraspecial of respective orders 21+2(d−b), 21+2b (though T = 1
if b = d), [T, S] = 1 and R = TS;

(b) EZ(R) is maximal elementary abelian in S; it follows that TEZ(R) =
CR(E).

(c) the group P := CN (CR(E)/EZ(R)) ∩ NN (E0), where E0 complements
Z(R) ∩ E in E, satisfies P ∩ S = EZ(R) and P/T ∼= 2(b

2)+b(2d−2b):GL(2b, 2);

(d) CC(S) = CG(S) is the natural BRW -subgroup containing T ;

(e) CP (T )S/S has the form 2(b
2):GL(2b, 2).

(f) C = O2(P )CG(S);

(g) if a = 0, N = CP and if a = 1, N = CSP .
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Definition 3.11. Given an involution t in an orthogonal group over a field of
characteristic 2, a MNS-subspace for t (minimal nonsingular) is a nontrivial, non-
singular subspace which is t-invariant, and no proper subspace of it has these
properties.

Lemma 3.12. Let t be an involution in the orthogonal group Ωε(2e, 2) and S a
MNS-subspace for t. Suppose that t acts nontrivially on S.

Either S has dimension 2 and a basis u, v so that ut = v and (u, v) = 1, so
that u and v are both singular or both nonsingular;

or S has dimension 4 and a basis u1, u2, v1, v2 of singular vectors so that vt
1 =

v2, u
t
1 = u2 and the Gram matrix for this basis is




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


. Furthermore both

of the above spaces are MNS-subspaces.

Proof. We may suppose that dim(S) ≥ 4 and that for every singular vector
v ∈ S, (v, vt) = 0, then try to get the last conclusion. We note that S is spanned
by its singular vectors.

Take a singular vector v1 not fixed by t and define v2 := vt
1. Choose a singular

vector u1 ∈ S so that (v1, u1) = 1 and (v2, u1) = 0. Using t-invariance, we find

that the sequence v1, v2, u1, u2 := ut
1 has Gram matrix




0 0 1 0
0 0 0 1
1 0 0 b
0 1 b 0


. This matrix is

nonsingular, whence S has dimension just 4. Now, if b 6= 0, span{v1 +u2, u1 +v2}
is a 2-dimensional MNS-subspace. Therefore, b = 0. Since S(t − 1) is totally
singular, S is minimal. ¤
Lemma 3.13. Let u be an involution in Ω+(2e, 2) of defect e. There exists a
maximal totally singular subspace F so that F ∩ F u = 0.

Proof. Take a MNS-subspace for S. Then t acts nontrivially on S since the
defect is e. Also, t leaves invariant the summands of the decomposition S ⊥ S⊥.
We are therefore done by induction if we check it for the cases of 3.11. This is
trivial for the 2-dimensional case and for the 4-dimensional case, take the span
of the second and third basis elements. ¤
Notation 3.14. On the rational vector space spanned by a Barnes-Wall lattice,
we take a sultry frame F containing a basis labeled by affine space Fd

2 [PO2d].
For a subset S of the index set, define the orthogonal involution εS to be the
map which is −1 at frame elements labeled by a member of S and 1 on the
other frame elements. The set of such linear maps, for S ∈ RM(2, d), forms the
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diagonal group, denoted E or Ed. It is a subgroup of BRW+(2d). The defect of
the codeword c is the defect of the involution εc.

Definition 3.15. Recall that an involution in the BRW group BRW+(2d) is dirty
if it is conjugate to its negative and otherwise, it is clean; 9.3. These properties
are equivalent to having nonzero, zero trace, respectively, on the natural 2d-
dimensional module. Furthermore, if the trace is nonzero, it has the form ±2d−k,
where k is the defect 9.5 of the involution. We call such an involution a (d, k)-
involution. Any involution in the lower coset of such is also called a (d, k)-
involution. (This terminology applies to dirty involutions in such a coset.)

The dimension of the space of commutators of a defect k diagonal involution
with the translation group of AGL(d, 2) is 2k since the translation group can be
interpreted as a complement in R2d to the diagonal subgroup corresponding to
RM(1, d). The terms clean and dirty apply to codewords, according to whether
the corresponding involutions are clean or dirty.

The term absolute clean trace or positive clean trace applies to any element of
BRW+(2d) and means, the absolute value of the trace of any clean element in
its lower coset. So, the absolute clean trace is a power of 2 even if the element is
dirty. We let D and C, respectively, denote the set of dirty and clean codewords
in RM(2, d).

Proposition 3.16. Let u ∈ G be a clean (d, k)-involution, k > 0. Then

(i) CG(u) has the following form: it is a subgroup of NG(E), where E =
[R, u] is a rank 2k + 1 elementary abelian group as in 3.10; CG(u) corresponds
to the natural Sp(2k, 2) subgroup of NG(E)/CG(E) ∼= GL(2k, 2) associated to the
identification of R/CR(E) with E/Z(R) derived from commutation with t;

(ii) The involution uR ∈ G/R has centralizer CG(u)R/R.

Proof. (i) It is clear from 3.10 that CG(u) has this form, except possibly for the
replacement of GL(2k, 2) by Sp(2k, 2). It is clear that commutation by u gives
a linear isomorphism of S/E onto E/Z(R) which makes these two spaces into
dual modules for CG(u). The action of CG(u) is therefore symplectic on both. It
suffices to show that there is a subgroup of CG(u) which acts on both as the full
group Sp(2k, 2).

We take an elementary abelian subgroup F of S so that FZ(R) = F × Z(R)
is maximal elementary abelian and so that F ∩ F u = 1 (see 3.13). Then u acts
on H := CCG(u)(T ) ∩ NG(F ) ∩ NG(F u), which has shape 2 × GL(2(d − k), 2)
(the shape is clearly of the form 2.GL(2k, 2) but is actually a direct product; see
[PO2d] or the Appendix). Clearly, CH(u) has shape 2× Sp(2k, 2).

(ii) This follows from noticing that the set of clean elements in uR is just the
union of the R-conjugacy class of u with the R-conjugacy class of −u. ¤
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Remark 3.17. The exact structure of centralizers for dirty involutions is not
needed in this article, but we give a sketch.

There are three main kinds of dirty involutions: lower involutions (defect 0);
upper split (positive defect, with elementary abelian commutator subgroup on
R); (upper) nonsplit (positive defect, with exponent 4 commutator subgroup on
R).

The centralizer of a lower involution has shape [2× 21+2(d−1)]22(d−1).Ω+(2(d−
1), 2).

Let t be a dirty split upper involution. Then t = ru, where u is an upper
involution and r is a lower involution from R \ [R, u]. The structure of CG(u)
is discussed in 3.16. We have CG(t) ≤ CG(u), CR(t) has index 2 in CR(u) and
CG(t)R/R is a natural subgroup of CG(u)R/R of shape 22(d−2k):Ω+(2(d−2k), 2).

Let t be a nonsplit involution. Let S be a maximal extraspecial subgroup
of CR(t). Then CR(S) ≥ [R, t] = [CR(S), t]. Also, CR(t) = S × E, where E
is elementary abelian and a complement in Ω1([R, t]) to Z(R). We say t has
plus type or minus type according to the type of the extraspecial group S. Now,
NG([R, t]) ≥ R and NG([R, t])/R modulo its unipotent radical has the form
Ω+(2(d− 2k), 2)×GL(2k − 1, 2). The image of CG(t) in the latter quotient has
the form Ω+(2(d− 2k), 2)×O(2k − 1, 2).

3.2. The codes RM(2, d) and the diagonal group. Our vector spaces are
finite dimensional. We shall mix styles at times, so that a codeword may be
written in lower case (when we think of it as a vector) or upper case (if we think
of it as a geometric structure, like an affine subspace).

Notation 3.18. The Reed-Muller code RM(k, d) is the binary code indexed
by affine space Fd

2 and spanned by all affine subspaces of codimension k. Its
dimension is

∑k
i=0

(
d
i

)
.

Definition 3.19. A midset is a codeword in RM(2, d) of size 2d−1. A midset
is nonaffine if it is not a codimension 1 affine subspace. A codeword is short if
its weight is less than 2d−1. A codeword is long or tall if its weight is more than
2d−1.

Lemma 3.20. Let t ∈ G be an involution so that [R, t] is elementary abelian and
E a given diagonal group. Then there is a conjugate of t in E, unless possibly
d is even and t has defect d

2 , in which case there exists another diagonal group
containing t.

Proof. Use 3.7 and the fact that CR(t) is nonabelian if and only if CR(t) con-
tains representatives of both G-conjugacy classes of maximal elementary abelian
subgroups of R. ¤
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Notation 3.21. We will study the action of AGL(d, 2) on Fd
2 and various codes.

Let T := T (d, 2) denote the translation subgroup and GL(d, 2) the stabilizer of
some origin (understood from context).

Definition 3.22. Linear subspaces Ui of a vector space are independent if their
sum is their direct sum. Linear subspaces Ui of a vector space are coindependent
if their annihilators in the dual space are independent.

This definition extends to a collection of affine subspaces Ui of a vector space,
provided their common intersection is nonempty. One then chooses any origin in⋂

i Ui and uses the above definition (which is independent of choice of origin).

Lemma 3.23. Suppose that we have k ≥ 1 linearly coindependent codimension
2 affine subspaces S1, . . . , Sk in Fd

2 with nonempty common intersection. Then
|S1 + · · ·+ Sk| = 2d−1 − 2d−k−1. (Note: k ≤ d

2 here.)

Proof. Let a(d, k) be 2d−1−2d−k−1. We use induction on k. The result is trivial
for k = 1, 2. We may assume that the spaces contain a common origin, so are
linear.

Assume that k ≥ 3 and that the formula holds by induction for k − 1. We
have Sk ∩ (S1 + · · ·+ Sk−1) = S1 ∩Sk + · · ·+ Sk−1 ∩Sk, which, by induction on d

and coindependence in Sk
∼= Fd−2

2 , has cardinality a(d− 2, k− 1). It follows that
|S1 + · · ·+ Sk| = 2d−2 + a(d, k − 1)− 2a(d− 2, k − 1) = a(d, k). ¤

Definition 3.24. A set of codimension 2 subspaces as in 3.23 is called a cubi
sequence of codimension 2 spaces. Their Boolean sum is called a a cubi sum. 1

Notation 3.25. Let c be a clean codeword of defect k. Let

Cubi(c) := {(S1, . . . , Sk)|
k⋂

i=1

Si 6= ∅, S1, . . . , Sk are coindependent affine

codimension 2 subspaces, and
k∑

i=1

Si = c},

the set of cubi expressions of c, i.e. the set of ordered cubi sequences as above
whose sum is c.

Corollary 3.26. Given any integer j ∈ [0, d
2 ], there is an involution of defect j

in the diagonal group.

Proof. If j = 0, take a lower involution. Suppose j > 0. Then take εS1+···+Sj ,
in the notation of 3.23. ¤

1We chose the term cubi because our theory suggested the remarkable cubi sculpture series
by David Smith. See also the footnote at 3.34.
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Next, we show explicitly how to realize a dirty class associated to the clean
class within the diagonal group.

Lemma 3.27. Given d ≥ 3 and k ≥ 1 and a length k cubi sequence in Fd
2, there

exist hyperplanes whose sum with the cubi sum has cardinality 2d−1. In fact,
any hyperplane which neither contains nor avoids the cubi intersection meets this
condition.

Proof. Let S1, . . . , Sk be our cubi sequence and let U :=
⋂k

i=1 Si. Let N be the
set of hyperplanes which neither contain U nor avoid U . Then |N | = 2d+1−22k+1.
This is positive for d ≥ 3 and k ≥ 1.

Let H ∈ N . Then the spaces Si ∩ H have codimension 2 in H. They are
coindependent with respect to H since H ∩U has codimension 1 in U . Therefore,
3.23 gives |H ∩ (S1 + · · · + Sk)| = |(S1 ∩H) + · · · + (Sk ∩H)| = 2d−2 − 2d−k−2.
Consequently, |H+S1+· · ·+Sk| = 2d−1+2d−1−2d−k−1−2(2d−2−2d−k−2) = 2d−1.
¤
Remark 3.28. The codeword of weight 2d−1 constructed in the proof of 3.27 is
not a hyperplane, since the Boolean sum of two distinct nondisjoint hyperplanes
is a hyperplane and |S1 + · · ·+ Sk| < 2d−1.

We next need to work from a nonaffine midset to the class of clean codewords
that it comes from.

Definition 3.29. Let d ≥ 3. Given a nonaffine midset a, a hyperplane h so that
a+h is clean is called a cleansing hyperplane for h. It follows that if a has defect
k, and h is cleansing, then |a ∩ h| = 2d−2 ∓ 2d−k−2. (Note that d − k ≥ 2 for
d ≥ 3.)

Lemma 3.30. Every coset of RM(1, d) in RM(2, d) contains a clean codeword.

Proof. Take a nontrivial coset, say u + RM(1, d) and take a complement S in
RM(1, d) to the 1-space spanned by the universe. The subgroup of the diagonal
group corresponding to S has 1-dimensional fixed point sublattice, so the sum
of the traces of its elements is 2d. Assume that the lemma is false. Then every
element of 〈u, S〉 \ S gives a diagonal map of trace 0. Therefore the sum of the
traces for the subgroup of the diagonal group corresponding to 〈u, S〉 is 2d, which
is impossible since this number must be divisible by 21+d. ¤
Lemma 3.31. If c ∈ RM(2, d) is clean, the number of its conjugates by R is
22k, where c has defect k.

Proof. This is just the correspondence of the R-orbit of c under the action
of conjugation on RM(2, d) with the cosets of CR(c) in R, together with the
definitions of defect and cleanliness. ¤
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Proposition 3.32. In a given coset c+RM(1, d), where c is clean and has defect
k, the number of clean codewords is 22k+1 and the number of dirty codewords is
2d+1 − 22k+1.

Proof. If c ∈ RM(2, d), the number of its transforms by R is 22k, by 3.31. The
coset c+RM(1, d) also contains the same number of transforms of the complement
c + Fd

2, which is also clean.

We use the irreducible module for G, which is a 2d-dimensional complex vector
space, and the trace function Tr on it. The previous paragraph implies that the
sum s(c) :=

∑
v∈c+RM(1,d) Tr(v)2 is at least 2 · 22k+2(d−k) = 22d+1

Since the group RM(1, d) acts on the 2d-dimensional complex vector space so
as to afford all linear characters nontrivial on the center, each with multiplicity
1, it follows from orthogonality relations for the group generated by R and c that
each s(c) = 22d+1. The coset therefore has 22k+1 clean elements and 2d+1−22k+1

dirty elements. ¤
Corollary 3.33. The number of cleansing hyperplanes for a dirty codeword s ∈
RM(2, d) is 22k+1, where k is the defect of any clean involution in the coset
s+RM(1, d). Thus the set N of 3.27 is the full set of noncleansing hyperplanes.

Example 3.34. Let d = 4, k = 1 and let S be a defect 1 (nonaffine) midset.
There are 8 cleansing hyperplanes. Write S = A + H, where A is short and H
a cleansing hyperplane of S (this involves half the cleansing hyperplanes). Then
A is a 4-set (hence an affine hyperplane) and S ∩H is a 2-set. This set is stable
by translation with elements of the core. Therefore, S is a union of four cosets
of S ∩ H. The assignment H 7→ S ∩ H is one-to-one from the set of cleansing
hyperplanes such that S +H is short. By counting, this is a bijection. The union
of any two sets S∩H, as H varies, is an affine 2-space. Therefore, S is the disjoint
union of a pair of disjoint, nonparallel affine 2-spaces, in three different ways. 2

Corollary 3.35. Given cleansing hyperplanes H1,H2 for the dirty codeword S,
if H1 ∩ S = H2 ∩ S, then H1 = H2, i.e., for cleansing hyperplanes, H, the map
H 7→ H ∩ S is monic.

Proof. If H1 and H2 are distinct, then, since they meet, their sum is a hy-
perplane. Since H1 + H2 is contained in the complement of S, it equals the
complement of S. This is a contradiction since S is not affine. ¤
Procedure 3.36. We now have a procedure to determine the orbit of a dirty
codeword. It depends only on examining the code, not the action of the group
AGL(d, 2). Call such a codeword v. Add to v all of the 2d+1−2 affine hyperplanes.
A nonempty set of these will be cleansing and the corresponding sums will have

2These configurations also suggest the David Smith cubi theme; see 3.24.
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weight of the form 2d−1± 2d−k−1, which will give the defect k. This procedure is
exponential in d.

Lemma 3.37. Two short (resp. long) clean codewords of the same defect are in
the same orbit under AGL(d, 2). A short clean codeword is a cubi sum.

Proof. We interpret these codewords by their actions on the commutator quo-
tient of R. The result follows from transitivity of the natural action of GL(d, 2)
on alternating matrices of the same rank. ¤
Lemma 3.38. Suppose that we are given (S1, . . . , Sk) ∈ Cubi(c) as in 3.25.
The subspace

⋂k
i=1 Si has dimension d − 2k and is the subgroup of the group of

translations which fixes c. This subspace depends on c only, not on a choice from
Cubi(c).

Proof. Clearly, the above intersection is a linear subspace and translations by
it fix each Si, hence also fix c. Since the space of commutators of the translation
group with c has dimension 2k, no translations outside this subspace fixes c.
Therefore, this intersection depends on c only. ¤
Lemma 3.39. The stabilizer in AGL(d, 2) of the clean codeword c of defect k
is transitive on Cubi(c), and the the stabilizer of a member of Cubi(c) has shape
2d−2k.22k(d−2k)[(

∏k
i=1 GL(2, 2))×GL(d− 2k, 2)].

Proof. The initial 2d−2k refers to the group of translations which stabilize⋂k
i=1 Si. The result follows from transitivity of GL(d, 2) on ordered direct sums

of k 2-spaces in the dual. ¤
Definition 3.40. The core of a clean codeword is

⋂k
i=1 Si, where (S1, . . . , Sk) ∈

Cubi(c). The definition is independent of choice from Cubi(c), by 3.38.

Theorem 3.41. The stabilizer of a clean codeword of defect k in AGL(d, 2) is a
group of the form [2(1+2k)(d−2k)]:[Sp(2k, 2)×GL(d− 2k, 2)]. It has two orbits on
Fd

2, namely the core and its complement.

Proof. The second statement follows from the structure of the stabilizer, which
we now discuss.

We may think of our clean codeword c as a cubi sum for cubi sequence
(S1, . . . , Sk). Choose an origin in the core 3.40, i.e., the (d − 2k)-space U :=
S1 ∩ · · · ∩ Sk.

Let H be the stabilizer of c in AGL(d, 2). Then Ht := H∩T is transitive on U .
The last paragraph implies that H = HtH0 where H0 is the stabilizer of the origin.
So, Ht corresponds to U and H0 lies in the stabilizer in GL(d, 2) of the subspace
U , a parabolic subgroup P of the form 22k(d−2k):[GL(2k, 2)×GL(d−2k, 2)]. Note
that O2(P ) is a tensor product of irreducibles for the two factors, so is irreducible.
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We next argue that H0 is a natural 22k(d−2k):[Sp(2k, 2) × GL(d − 2k, 2)]-
subgroup of P .

Consider CG(t), where t is the diagonal matrix εc. Then we have the CMZ
decomposition 3.5 for CR(t) and a related one for R: R = R1R0, where [R0, R1] =
1, CR(t) = C1R0, where R0 is extraspecial, and C1 ≤ R1 and C1 is elementary
abelian and contains Z(R). There is a corresponding product J0J1 of commuting
natural BRW subgroups, with Ri = O2(Ji), i = 1, 2. We have |C1| = 22k+1 and
C1 = [R, t] = [R1, t]. The action of t preserves R1 and the maximal elementary
abelian subgroup C1. Also, t acts on NJ1(C1) ∼= 21+4k2(2k

2 )GL(2k, 2). There is a
pair of maximal elementary abelian subgroups B1, B2 so that R1 = B1B2, B1 ∩
B2 = Z(R) and t interchanges B1 and B2 (see 3.13).

Choose Di ≤ Bi so that Bi = D1 × Z(R) and t interchanges D1 and D1. The
common stabilizer of D1 and D2 in Aut(R1) has the form 2 × GL(2k, 2). The
action of t has fixed point subgroup of the form 2 × Sp(2k, 2) because D1 and
D2 are in t-invariant duality. Therefore, the image of H in the left factor of
P/O2(P ) ∼= GL(2k, 2) × GL(d − 2k, 2) contains a copy of Sp(2k, 2). Since the
image of H in the left factor stabilizes a nondegenerate form, the image is exactly
Sp(2k, 2).

We claim that the stabilizer of c in AGL(d, 2) contains the natural GL(d−2k, 2)
subgroup which commutes with the above copy of Sp(2k, 2). This follows since
the stabilizer of a member of Cubi(c) involves a copy of GL(d− 2k, 2) which acts
faithfully on the core and commutes with the action of the above Sp(2k, 2), which
acts trivially on the core and faithfully on a complement to the core (meaning,
on a linear complement, assuming the origin is chosen from the core).

The claim implies that H maps onto the right factor of P/O2(P ) ∼= GL(2k, 2)×
GL(d − 2k, 2). It follows that O2(P ) is an irreducible module for H (a tensor
product of irreducibles for the factors Sp(2k, 2) and GL(d− 2k, 2)), whence H ∩
O2(P ) is either 1 or O2(P ). The latter group preserves all cosets of U in Fd

2 and
each Si is a union of such cosets, whence O2(P ) ≤ H. ¤

Lemma 3.42. Two dirty codewords of the same defect are in the same orbit
under AGL(d, 2).

Proof. This is obvious from 3.27 and how the stabilizer of the core in AGL(d, 2)
acts on Fd

2. ¤

Remark 3.43. The main theorems 1.1 and 1.2 follow from 3.37, 3.42, 9.14, 9.13.
Note that, as a corollary, we get the well-known result that the minimum weight
codewords in RM(2, d) are the affine codimension 2 subspaces.

Proposition 3.44. Let c be a clean codeword of defect k.
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(i) The stabilizer in AGL(d, 2) of the coset c + RM(1, d) is T (d, 2)S, where
T (d, 2) is the full translation group and S is the stabilizer of c in AGL(d, 2) (see
3.41).

(ii) Let s ∈ c+RM(1, d) be a dirty codeword. The commutator space [T (d, 2), s]
has dimension 2k The stabilizer of s in AGL(d, 2) is a subgroup of S of index
2d+1 − 22k+1 of shape [2(1+2k)(d−2k−1)][Sp(2k, 2) × AGL(d − 2k − 1, 2)]. It is
StabS(h), where h = s + c is an affine codimension 1 subspace which meets the
core of c in a codimension 1 subspace of it. The initial 21·(d−2k−1) corresponds to
translations by the intersection of the core of c with a cleansing hyperplane.

Proof. (i) This is clear since the set of clean elements in c + RM(1, d) is just
the set of 22k T (d, 2)-transforms of c.

(ii) Since s is dirty, d− 2k > 0.

Consider the set P of all pairs (s, r) ∈ c + RM(1, d) so that s is dirty, r is
short and clean (whence s+r is a hyperplane, so is a cleansing hyperplane; 3.29).
We refer to 3.41. Let H be the stabilizer of this coset in AGL(d, 2). Then H
acts transitively on P, which has cardinality (2d+1 − 22k+1)22k, so StabH((s, r))
has index 2d+1 − 22k+1 in StabH(r), which has form [2(1+2k)(d−2k)]:[Sp(2k, 2) ×
GL(d− 2k, 2)].

Now, consider a hyperplane h in Fd
2 which meets U in a codimension 1 subspace

of U . By 3.27, r+h is a midset, so (r+h, r) ∈ P. Since H(r+h,h) stabilizes h, it fol-
lows that H(r+h,r), hence every H(s,r), has the form [2(d−2k−1)+2k(d−2k)]:[Sp(2k, 2)×
AGL(d− 2k − 1, 2)]. ¤

4. The conjugacy classes of involutions in G2d and orbits on RSSD
sublattices

We continue to let G := G2d , R := R2d and let t ∈ G be an involution. We
summarize the conjugacy classes of involutions.

Suppose that t centralizes a maximal elementary abelian subgroup (so is in
a diagonal group). For each maximal elementary abelian subgroup E of CR(t),
we have representatives of bd

2c clean classes of upper involutions in a diagonal
group CG(E). Upper involutions of the same defect and trace are conjugate in G
except for the case where d is even and the involutions have full defect d

2 . Two
such involutions are clean and are conjugate if and only if their traces are equal
and maximal elementary abelian subgroups in their lower centralizers are in the
same orbit under the even orthogonal group.
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Suppose that t does not centralize a maximal elementary abelian subgroup.
Then [R, t] is abelian of exponent 4 and has order 21+2k for some k ≥ 1. It is
now clear from 9.14, 9.13, that t is conjugate to some η2k,±; see 9.7.

Procedure 4.1. In [PO2d], we showed that two RSSD sublattices in BW2d which
had the same rank, but unequal to 2d−1 (the clean case), are in the same orbit
under BRW+(2d) with the exception of two orbits for maximal defect d

2 . Also,
[PO2d] treats the case of rank 2d−1 sublattices which are fixed points of lower
involutions. We now give a procedure for determining when two RSSD sublattices
are in the same orbit of BRW+(2d) which depends only on examining a restricted
set of sublattices, not the whole group BRW+(2d). Besides the two given RSSD
sublattices, we need to examine only the ones associated to lower involutions,
which may be constructed directly, by induction.

Recall that for d > 3, the lower involutions in BRW+(23) are those RSSD
involutions associated to ssBW2d−1 sublattices [PO2d].

Here we deal with the general dirty case, i.e., rank 2d−1, which represents
many orbits. Their associated RSSD involutions are dirty, so if diagonalizable
are conjugate to elements of the diagonal group supported by a midsize codeword.
We assume that d > 3.

We are given a dirty RSSD sublattice. Multiply this involution by all lower
involutions.

Suppose that a nonempty set of such products are clean involutions with com-
mon defect k ∈ [0, d

2 ]. Since the defect k is less than d
2 , k determines the orbit

of the sublattice, by 3.44. If k = d
2 , there are two orbits, depending on which

maximal elementary abelian lower group corresponds to the RSDD involution.

Suppose that no such product is clean. Then the involution is some η2k,±. The
subgroups CR(t) and [R, t] determine k and the sign ± and so the orbit of the
sublattice.

For completeness, we treat the case d = 3.

Proposition 4.2. In BW23
∼= LE8, the orbits of WE8 on RSSD sublattices are

(i) those of BRW+(23) on RSSD sublattices of even rank, i.e., one for rank 2,
three for rank 4 and one for rank 6; and (ii) four orbits, of respective ranks 1,
3, 5, 7, which are sublattices generated by a root, a set of three orthogonal roots,
and the annihilators of such sublattices.

Proof. Note that the determinant 1 subgroup of WE8 contains a natural BRW+(23)
subgroup of odd index. For rank 2 and 6 sublattices, we are in the clean cases in
BRW+(23). For rank 4, we are in the dirty cases, of which there are just three,
associated to a nonsplit involution (see 9.15(ii)), to a lower involution and an
upper dirty involution.



1006 Robert L. Griess Jr.

There are two orbits of WE8 on 4-sets of mutually orthogonal pairs consisting
of roots and their negatives. One of these 4-sets spans a sublattice of BW23

which is a direct summand and the other spans a sublattice properly contained
in a D4-sublattice. These cases correpond in the above sense to the nonsplit and
lower cases. The third case gives rank 4 sublattices not spanned by roots (9.15).

Now consider the case of odd rank fixed point sublattice, M . It suffices to do
the ranks 1 and 3 cases. We use a lemma that if g is in a Weyl group and V is
the natural module, then g is a product of reflections for roots which lie in [V, r]
[Car]. At once, this implies that the rank 1 lattice here is spanned by a root.
Suppose now that rank(M) = 3. Let Φ be the set of roots in M . If there is a pair
of nonorthogonal linearly independent roots, then Φ has type A3 or A2A1. Since
D(M) is an elementary abelian 2-group, neither of these is possible. We conclude
that Φ has type A1A1A1. Since M is even, it must equal the sublattice spanned
by Φ. We are done since WE8 has a single orbit on subsets of three orthogonal
roots in a root system of type E8. ¤

Remark 4.3. For simplicity, discuss the main theorems for ranks at most 3 so
that we may later use the assumption d ≥ 4, as needed.

When d = 1, the fixed point sublattice of any involution is 0 or a rank 1 lattice.

Assume d = 2. The dirty involutions in BW22 and their fixed point sublattices
are analyzed in 9.15. If t ∈ BRW+(22) is clean, its fixed point sublattice has
rank 1 or 3. In these respective cases, the sublattice is spanned by a vector of
norm 2 or 4 or is the orthogonal of such a rank 1 sublattice, so is a root lattice
of type B3 or C3. See the proof of 4.2.

When d = 3, all fixed point sublattices are accounted for in the proof of 4.2.
They are all orthogonal direct sums of indecomposable root lattices.

4.1. Containments in RM(2, d).

Lemma 4.4. Let A,B ∈ RM(2, d) and suppose that 0 6= A < B 6= Fd
2. Let Xc

denote the complement of the subset X of Fd
2. Then one of the following holds:

(i) A is a codimension 2 subspace and B is a midset; or Bc is a codimension
2 subspace and Ac is a midset.

Furthermore, (i) happens for affine hyperplanes B for any d ≥ 3, and for
nonaffine midsets B exactly when B has defect 1 and d ≥ 3, respectively.
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(ii) A is short and B is long, of respective cardinalities 2d−1 − 2d−k−1. 2d−1 +
2d−r−1, where (k, r) = (1, 1), (1, 2), (2, 1) or (2, 2). We summarize:

(k, r) |A| |B| |A + B|
(1, 1) 2d−1 − 2d−2 = 2d−2 2d−1 + 2d−2 = 2d−23 2d−1

(2, 1) 2d−1 − 2d−3 = 2d−33 2d−1 + 2d−2 = 2d−23 2d−33
(1, 2) 2d−1 − 2d−2 = 2d−2 2d−1 + 2d−3 = 2d−35 2d−33
(2, 2) 2d−1 − 2d−3 = 2d−33 2d−1 + 2d−3 = 2d−35 2d−2

Note that cases (1,2) and (2,2) are dual in the sense that A and A + B may
be interchanged. Note that the case (1,1) corresponds to (i) for the midset A+B
containing Bc. Note also that A in case (1,2) and A + B in case (2,2) are
codimension 2 affine spaces.

Proof. If B is a midset, and A is not a codimension 2 affine subspace, then
A < B implies that A has cardinality 2d−1 − 2d−k−1 for an integer k and A is a
cubi sum in the sense of 3.37. Since A + B = A \ B is also a codeword, it has
cardinality 2d−1− 2d−r−1 for an integer r ≥ 1. It follows that k = r = 1. Then A
and Ac are affine codimension 2 subspaces. Therefore, if B is a midset, (i) holds.

It is obvious that (i) happens in an essentially unique way when B is an affine
hyperplane. Assume B is a midset but not affine. The codimension 2 affine
subspaces A and A′ whose union is B are not translates of each other. Let A′′ be
a translate of A′ which meets A nontrivially. The intersection has codimension 1
or 2 in each of A or A′′ and it is an exercise to show that for codimension 1, this
situation does happen in an essentially unique way, and that it does not happen
for k = 2 (reason: such subspaces are affinely coindependent and so an associated
linear system expressing their intersection has a solution).

Assume that neither A nor B is a midset. In case both are long, we may
replace with complements to assume both are short. In any case, we may assume
that A is short, of cardinality 2d−1 − 2d−k−1, for some integer k, 0 < k ≤ d

2 .

First assume that B is short, say of cardinality 2d−1− 2d−r−1, for r > k. Then
A + B has cardinality 2d−k−1 − 2d−r−1 = 2d−r−1(2r−k − 1). Since A + B is
short, there exists an integer s ≤ d

2 so that 2d−r−1(2r−k − 1) = 2d−1 − 2d−s−1 =
2d−s−1(2s−1). If both sides are powers of 2, then r = k+1, s = 1 and d−r−1 =
d− s− 1 implies that r = s = 1 and k = 0, a contradiction. Therefore both sides
are not powers of 2 and so r = s and s = r − k and so s = r and k = 0, a final
contradiction.

Therefore B is long, of cardinality 2d−1 + 2d−r−1, for r > 0. Then A + B has
cardinality 2d−r−1 + 2d−k−1. Since r ≥ 1, k ≥ 1, this number is at most 2d−1 and
is less than 2d−1 if (r, k) 6= (1, 1).
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Suppose that r = k. Then 2d−r−1 + 2d−k−1 = 2d−r is 2d−1 or 2d−2, implying
r = k = 1, r = k = 2, respectively.

Suppose that r < k. Then A + B is short and there exists an integer s ≤ d
2 so

that 2d−r−1 + 2d−k−1 = 2d−1 − 2d−s−1, and 2d−k−1(2k−r + 1) = 2d−s−1(2s − 1).
Now, 2k−r+1 is odd, so it follows that s = k, k−r = 1 and s = 2. So, k = 2, r = 1.

Suppose that r > k. Then A + B is short and there exists an integer s ≤ d
2 so

that 2d−r−1 + 2d−k−1 = 2d−1 − 2d−s−1, and 2d−r−1(2r−k + 1) = 2d−s−1(2s − 1).
It follows that s = r, r − k = 1 and s = 2. So, k = 1, r = 2. ¤

4.2. About defect 1 midsets.

Lemma 4.5. Let d ≥ 3. Suppose that B is a midset of defect 1. Then B contains
affine hyperplanes of codimension 2. Suppose that A is an affine codimension 2
space contained in B. There exists a unique hyperplane H so that B ∩H = A.
(The other two hyperplanes which contain A are cleansing hyperplanes for B
3.29.)

Proof. Let A and A′ be any pair of disjoint codimension 2 subspaces. Then
A + A′ is a midset and it has defect 0, 1 or 2 if A′ has a translate which meets A
in codimension 0, 1 or 2, respectively. The first statement follows from 3.32 and
transitivity of AGL(d, 2) on midsets of a given defect 3.42.

For the second, consider the three hyperplanes H1,H2,H2 which contain A.
Suppose that H1∩B > A. Then |H1+B| = |H1|+|B|−2|H1∩B| = 2d−2|H1∩B| <
2d−1, whence H1 is a cleansing hyperplane, and so |H1+B| = 2d−1−2d−1−1 = 2d−2

and |H1 ∩ B| = 1
2(2d−1 + 2d−1 − ·2d−2) = 2d−33. This means that at most two

of the Hi meet B in a set larger than A. Therefore, since Hi \ A for i = 1, 2, 3,
partition Fd

2 \A, exactly two of the Hi meet B in a set larger than A and so there
exists an H which meets B in A, and by above counting, it is unique. ¤

5. More group theory for BRW groups

We list some assumed results from group theory.

Lemma 5.1. (i) A faithful module for
∏k

1 Sym3 in characteristic 2 has dimension
at least 2k.

(ii) A faithful module for Sp(2k, 2) in characteristic 2 has dimension at least
2k.

Proof. Let K1×· · ·×Kk be the natural direct product of Ki
∼= Sp(2, 2) ∼= Sym3

in Sp(2k, 2). Clearly, (i) implies (ii). We prove (i).
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We may assume that the field F is algebraically closed and that k ≥ 2. Let M
be a module of minimal dimension. Consider the decomposition M = M ′ ⊕M ′′,
where M ′ = [M, O3(K1)] and M ′′ = CM (O3(K1)).

Clearly, dim(M ′) is a positive even integer. Suppose M ′′ 6= 0. Then by
induction applied to the action of K2 × · · · × Kk on M ′′, we have dim(M ′′) ≥
2(k − 1) and we are finished. Suppose M ′′ = 0. Then we may decompose
M ′′ = P ⊕ Q where P and Q represent the two distinct linear characters of
O3(K1). The actions of K2 × · · · × Kk on P and Q are faithful and equivalent
since P and Q are interchanged by elements of K1. We now finish by induction.
¤
Lemma 5.2. Let F2m

2 have a nonsingular quadratic form of type ν = ± and let
sv(m, ν), av(m, ν) denote the number of singular and nonsingular vectors in the
case of type ν = ±. Then sv(m, ν) = (2m − ν1)(2m−1 + ν1) and av(m, ν) =
(2m − ν1)2m−1.

Proof. Well-known. Note that sv(m, ν) + av(m, ν) + 1 = 22m. ¤
Lemma 5.3. Let k ≥ 2. Let U be the essentially unique 2k + 1 dimensional
F2-module for Sp(2k, 2) with socle of dimension 1 and quotient the natural 2k-
dimensional module. Then (i) U is the natural module for O(2k + 1, 2); (ii) The
orbits of Sp(2k, 2) on U consist of the two 1-point orbits lying in the radical, and
the singular points and the nonsingular points. Each of the latter orbits form
coset representatives for the nontrival cosets of the radical.

Proof. This is mainly the 1-cohomology result [Poll], plus a standard interpre-
tation of Ext1. ¤

5.1. For clean involutions. We use the following notation throughout this sub-
section.

Notation 5.4. We have the clean upper involution t of defect k ≥ 1. Take a
CMZ decompostion CR(t) = PZ. Denote by qt the quadratic form on Z = Zt

described in 5.3. The subscript indicates dependence on the involution, t. Call
z ∈ Z singular or nonsingular, according to the value of qt(z).

Lemma 5.5. Use the notation of 5.4. For all k ≥ 1, the set map x 7→ [x, t] takes
R \ CR(t) to the set of nonsingular vectors in Z with respect to the invariant
quadratic form.

For k ≥ 2, the action of CG(t) as Sp(2k, 2) on Z is indecomposable; the upper
Löwey series has factors of dimensions 1, 2k.

Proof. Let f be the commutator map R → Z defined by f(x) := [x, t]. Every
coset of Z(R) in Z contains an element of Im(f). If f(x) = f(y), we have 1 =
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f(x)f(y) = [x, t][y, t], which is congruent to f(xy) modulo 〈−1〉. If f(xy) ∈ 〈−1〉,
then xy ∈ CR(t). Therefore f maps R/CR(t) isomorphically onto Z/〈−1〉. Also,
the image of f is a set of cardinality 22k which contains 1 and is invariant under
CR(t), which acts on Z as Sp(2k, 2), i.e., Im(f) is a CR(t)-invariant transversal
to Z(R) in R.

We compute that (*) f(xy) = [xy, t] = [x, t]y[y, t] = f(x)yf(y).

We claim that Z is an indecomposable module for Sp(2k, 2). Suppose it is
decomposable. Then Im(f) must be either a subspace of Z complementing Z(R)
or essentially a coset of some CR(t)-invariant subspace, say Z0, namely it is the
set Y which is the notrivial coset with −1 replaced by 1. Then there exists a
homomorphism h : R → Z0 with the property that f(x) = −h(x) if x 6∈ CR(t)
and h(x) = 1 if x ∈ CR(t).

It can not be a subspace since [R, t] is normal in R. So, the second alternative
applies to Im(f). Now, we shall get a contradiction, using (*).

Note that we have an alternating bilinear form g on Z with values in Z(R),
defined by g(a, b) := [a′, t, b′] where priming on a ∈ Z means an element a′ ∈ R
so that f(a′) = a. It helps to think of the Hall commutator identity [x, y−1, z]y

[y, z−1, x]z[z, x−1, y]x = 1.

There is a g-totally singular subspace of dimension k+1 in Z, say W . Assuming
that Im(f) = Y , we take any elements a, b, c in R so that abc = 1 and none of
a, b, c is in CR(t). Then f(a)f(b)f(c) = (−1)3h(a)h(b)h(c) = −1. From (*), we
get f(c) = f(ab) = f(a)bf(c). Now choose a, b, c so that f(a), f(b), f(c) ∈ W
(this is possible since k ≥ 2). Then g(f(a), f(b)) = 1 implies that f(a)b = f(a),
which implies that f(c) = f(a)f(b), in contradiction with f(a)f(b)f(c) = −1.
This proves that Z is indecomposable.

At this point, we know that Im(f) is one of two orbits for Sp(2k, 2) in Z,
the singular one and the nonsingular one. We claim that it is the singular one.
Suppose otherwise. Take W and a, b, c as above. Then (*) implies that (in
additive notation) the sum of two orthogonal nonsingular vectors is nonsingular,
a contradiction. ¤

Definition 5.6. Let φ be a linear character of Z which is nontrivial on Z(R).
Then Ker(φ) is a nonsingular quadratic space by restriction of qt 5.4. Its type is
plus or minus, according to the Witt index of the restriction of qt.

Lemma 5.7. Consider X := {(ϕ, z)|ϕ ∈ Hom(Z,F2), z ∈ Z} and let Yε,ζ,η :=
{(ϕ, z) ∈ X|ϕ(Z(R)) 6= 1, z 6= 1, qt(z) = ζ, type(ϕ) = ε, ϕ(z) = η}, for ζ, η ∈ F2.
Then C(t) is transitive on Yε,ζ,η, for ζ, η = 0, 1.

The orbit lengths are

|Yε,0,0| = (22k−1 + ε2k−1)sv(k, ε);
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|Yε,0,1| = (22k−1 + ε2k−1)av(k, ε);

|Yε,1,0| = (22k−1 + ε2k−1)av(k, ε);

|Yε,1,1| = (22k−1 + ε2k−1)sv(k, ε).

Note that rows 2 and 3 are equal and rows 1 and 4 are equal.

Proof. It is well-known that C(t)/O2(C(t)) ∼= Sp(2k, 2) acts with two orbits on
characters of Z which take nontrivial value on Z(R). These orbits have respective
stabilizers the natural subgroups Oε(2k, 2) and respective lengths 22k−1 + ε2k−1.
The rest follows from 5.2. ¤
Notation 5.8. Let t ∈ G be an involution. Then CG(t) acts on each eigenlattice
Lε(t). Its image in O(Lε(t)) is denoted Gε.

Lemma 5.9. The action of CG(t) on L±(t) is irreducible. The center of Gε is
just {±1}.

Proof. The second statement follows from orthogonality of the representation
plus absolute irreducibility, which we now prove. We prove irreduciblity for a
natural subgroup of CG(t) of the form AB, where [A,B] = 1, A ∼= 21+2(d−k), Z ≤
B,B/Z ∼= Sp(2k, 2); see 3.5, 5.5. Every faithful irreducible of A has dimension
2d−2k. The central involution of R is in Z and so every irreducible of B on
Q⊗ L involves an orbit of characters of Z of cardinality 22k−1 ± 2k−1, and both
orbit lengths occur with multiplicity 2d−2k. Therefore, just two irreducibles for
AB occur in Q⊗ L, and they have respective dimensions 2d−2k(22k−1 ± 2k−1) =
2d−1 ± 2d−k−1. The conclusion follows. ¤
Lemma 5.10. Assume t is clean with positive trace. Let z ∈ Z, z 6= ±1. The
trace of z on L±(t) is ±2d−k−1 if z is qt-singular and is ∓2d−k−1 if z is qt-
nonsingular.

Proof. We use the subgroup denoted AB in the proof of 5.9. For AB, the module
Lε(t) decomposes as a tensor product of irreducibles. It suffices to prove that the
trace of z on the tensor factor irreducible for B is ±2k−1,∓2k−1, respectively.

Note that 22k − 1− sv(k, ε) = (2k − ε)(2k − ε− (2k−1 + ε)) = (2k − ε)2k−1.

We use 5.2 to deduce that

|Yε,0,0| = 2k−1(2k + ε)sv(k, ε) = 2k−1(2k + ε)(2k − ε)(2k−1 + ε)

and

|Yε,0,1| = 2k−1(2k + ε)(22k − 1− sv(k, ε)) = 2k−1(2k + ε)(2k − ε)2k−1.

Let Φε := {ϕ|ϕ(Z(R)) 6= {1}}. A given singular z ∈ Z is in the kernel of
2k−1(2k−1 + ε) = 22k−2 + ε2k−1 characters in Φε and outside the kernel of 22k−2
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characters in Φε. It follows that the trace of z on Lε(t) is ε2k−1. Singular
and nonsingular elements of Z \ Z(R) are paired by congruence modulo Z(R).
Therefore, nonsingular elements have trace −ε2k−1. ¤

5.2. For dirty involutions. We assume the following notation throughout this
subsection.

Notation 5.11. Let t be a dirty split upper involution of defect k. A UL fac-
torization of t is an expression t = u`, where u is a clean involution and ` is a
lower involution (note that all of t, u, ` commute). Write UL(t) for all pairs (u, `)
as above. Let U(t) be the set of u and let L(t) be the set of ` which arise this
way. We have |{UL(t)}| = 21+2(d−2k)+2k − 21+2k.

We get a result for traces of u and ` on Lε(t) which is similar to 5.10.

Lemma 5.12. On Lε(t), the trace of z ∈ Z \ Z(R) is 0 and the trace of ` is
±2d−k−1, for all ` ∈ L(t).

Proof. We assume ε = + (the other case is similar). It suffices to consider the
sublattices L(a, b), where u acts as a and ` acts as b. Recall that the eigenlattices
for ` are ssBW2d−1 lattices, for which we may use 5.7 to compute the traces for
z. Without loss, we may assume that z has nonnegative traces. We get:

sublattice rank multiplicity of multiplicity of
+1 for z −1 for z

L(+1,+1) 2d−2 + 2d−k−2 2d−3 + 2d−k−2 2d−3

L(+1,−1) 2d−2 + 2d−k−2 2d−3 + 2d−k−2 2d−3

L(−1,+1) 2d−2 − 2d−k−2 2d−3 − 2d−k−2 2d−3

L(−1,−1) 2d−2 − 2d−k−2 2d−3 − 2d−k−2 2d−3

¤

6. About inherted groups

We continue to use the notations G := G2d , R := R2d . See the ancestor section
of [PO2d] for discussion.

Notation 6.1. We use bars for images under restriction CG(t) → O(Lε(t)). As
in 5.8, we write Gε for the image of CG(t) in O(Lε(t)) under the restriction
homomorphism.

Lemma 6.2. Suppose that Z is an elementary abelian subgroup of R containing
Z(R) and that rank(Z) = s + 1. Let Lλ be the eigenlattice for L, defined by the
linear character λ of Z, which is assumed to be nontrivial on Z(R). The set F
of such λ has cardinality 2s.
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There is a finite subgroup of the orthogonal group O(Q ⊗ Lε(t)) of the form∏
λ Rλ with the property that Rλ acts on Lλ as a lower group and acts trivially

on Lµ for µ 6= λ. We have |∏λ Rλ| = 2s(1+2(d−s)).

(i) When s = 1, CG(Z) ≥ ∏
λ Rλ.

(ii) When s = 2, CG(Z)∩∏
λ Rλ is an index 22(d−2) subgroup of

∏
λ Rλ with the

property that if J is any 3-set in F , then the projection of CG(Z) to
∏

λ∈J Rλ is
onto. The kernel of this homomorphism is just Z(Rµ), where µ ∈ F is the index
missing from J .

Lemma 6.3. Let I ⊆ F be any nonempty collection of characters as in 6.2 and
let J := J(I) be the direct summand of L determined by span{Jν |ν ∈ I}. If
λ ∈ I and g ∈ CG(Z) acts trivially on Jλ, then g acts on J as an element of the
group

∏
λ Rλ, defined in 6.2.

Proof. If µ, ν are any two distinct indices so that Lµ and Lν are stable under
h ∈ G, then if h acts trivially on Lµ modulo its first lower twist, then h does the
same on Lν . By considering all distinct pairs of indices µ, ν ∈ I, we deduce that
g acts on J as a member of

∏
η∈I Rλ. See [PO2d] ¤

Corollary 6.4. Use the notation of 6.3. Assume that s = 2, I has cardinality 3
and NO(J)(Z) = NG(Z)CO(J)(Z). Then NO(J)(Z) is inherited.

Proof. 6.3 and 6.2(ii). ¤
Corollary 6.5. Let t ∈ G be an involution and let Z := Z(CR(t)).

(i) Suppose that t is a clean involution of defect 1. Then NO(Lε(t))(Z) is in-
herited.

(ii) Suppose that t is a split dirty involution of defect 1. Then NO(Lε(t))(Z) is
inherited.

Proof. Note that defect 1 implies that s = 2, in the notation of 6.2. (i): This
follows from 6.4.

(ii): Let t be such an involution. Let t = u` be a UL-factorization 5.11. We
define Zu as Z(CR(u)) and define Z := Z(CR(t)) = Zu × 〈`〉. A character value
analysis shows that elements of Zu have 0 trace on Lε(t) and elements of the
coset Zu` have nonzero trace 5.12. Therefore, NO(Lε(t))(Zu) ≥ NO(Lε(t))(Z).

We shall use 6.4 to prove that NO(Lε(t))(Zu) is inherited by showing that the
latter group induces only Sp(2, 2) on Z. Assume that this is false. We have an
action of AGL(2, 2) ∼= Sym4 on Z. Let H be the linear group which NO(Lε(t))(Zu)
induces on Zu. The action of NCG(t)(Zu) on Zu preserves the coset Zu \ Z and
has orbits modulo Z(R) of lengths 1 and 3. Its orbits on Zu \ Z must have
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lengths 1,1,3,3 since elements in that coset have nonzero trace on Lε(t) so are not
conjugate to their negatives. It follows that a Sylow 2-group S of NO(Lε(t))(Zu)
fixes an element, say `, in this coset. If x ∈ Z \ Z(R), then there exists g ∈ S
so that xg = −x, since we are assuming an action of AGL(2, 2) on Z. It follows
that (x`)g = −x`, which is a contradiction since (x`, xu) is a UL factorization of
t (because xu ∈ uZ = uR consists of clean elements). ¤

7. The split defect 1 cases

7.1. The clean defect 1 case.

Definition 7.1. Suppose that M is an integral lattice and X is a SSD lattice.
Define SSD(M, X) to be the subgroup of O(M) generated by the SSD involutions
associated to sublattices of M which are isometric to X.

This is clearly a normal subgroup of O(M).

We continue to use the notation 3.5. Since the defect is 1, rank(Z) = 3. The
case d = 3 is treated in 4.2, so we assume d ≥ 4.

Remark 7.2. In the notation of 7.1, if X is SSD and det(M) = 1, then M ∩X⊥
is SSD. This will apply for us when M ∼= BW2d and d is odd.

Lemma 7.3. Suppose that d > 3. Let t be a clean involution of defect 1 and
positive trace. Then SSD(L+(t), ssBW2d−1) = Z.

Proof. A sublattice X of L+(t) which is isometric to ssBW2d−1 is SSD in the
overlattice L. By [PO2d], the associated SSD involution is lower (here, we are
using d > 3), so lies in CR(t). Since TrL+(t)(εX) 6= 0 (see 5.10), εX ∈ Z, the only
elements of CR(t) which have nonzero trace on L+(t). The action of CG(t) on
Z is that of O(2k + 1, 2) on its natural module 5.5. Therefore, every element of
Z \ Z(R) is such an SSD involution. ¤
Lemma 7.4. Suppose that d > 3. Let t be a clean involution of defect 1 and
positive trace. Then O(L+(t)) is inherited.

Proof. By 7.3, Z is normal in O(L+(t)). Now use 6.4 ¤
Remark 7.5. If t is a clean involution of defect 1 and positive trace, L−(t) ∼=
ssBW2d−1 , whose automorphism group is known.

7.2. The split dirty defect 1 case.

Lemma 7.6. Suppose that d > 3 and d is odd. Let t be a split dirty involu-
tion of defect 1. Then SSD(Lε(t), ssBW2d−2) = CR(t) and Z is a subgroup of
Z(SSD(Lε(t), ssBW2d−2)) which is normal in O(Lε(t)).
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Proof. We may suppose that t = εb for a defect 1 midset b ∈ RM(2, d) and we
may assume that ε = +. Since d is odd, a ssBW2d−2 sublattice is SSD. Let X
be such a sublattice of Lε(t). Its associated involution in O(L) is conjugate to
an involution of the form εc ∈ E , where the codeword c is an affine codimension
2 subspace.

Since εc acts nontrivially on L+(t), c ∩ b = ∅ Let b′ be the complement of b.
We may consider the involution εh where h is a hyperplane so that h∩ b′ = c(see
4.5). Then εc acts on L+(t) as εh, which is a lower involution.

Define K to be the normal subgroup of O(L+(t)) generated by all εX , where
X is a SSD sublattice isometric to ssBW2d−2 . This is a subgroup of CR(t) which
is normal in CG(t) and contains εh, so is not contained in Z(R). The normal
subgroups are 1, Z(R), Z, 〈Z, `〉, CR(t), where ` ∈ L(t) is any lower part of a
UL-factorization. For all such normal subgroups, Y not contained in Z(R), we
claim that Z is normal in NO(L+(t))(Y ). This is obvious except when Y is one of
the latter two cases. In those cases, Z(Y ) = 〈Z, `〉. In the action on L+(t), the
elements of Z \Z(R) have trace 0 and the elements of Z` have nonzero trace (see
5.12). The claim follows and so does the lemma since K is normal in O(L+(t)).
¤
Lemma 7.7. Suppose that d > 3 and d is odd. Let t be a split dirty involution
of defect 1. Then O(Lε(t)) is inherited.

Proof. Use 7.6 and 6.5(ii). ¤
This completes the proof of 1.6.

8. The nonsplit defect 1 case

The style of proof here is rather different. The smallest value of d for this case
is d = 2. Involutions in BRW+(22) ∼= WF4 are discussed in 9.15. Involutions in
BRW+(23) are discussed in 4.2(i), the even rank sublattice cases.

Lemma 8.1. If t is a nonsplit involution of defect 1, L/2L is a free F2〈t〉-module,
i.e., the Jordan canonical form for t consists of 2d−1 blocks of degree 2.

Proof. The result may be checked directly for d ≤ 2 since we know Tel(t)
and Tel(t) + 2L/2L is the fixed point space for the action of t on L/2L (see
[PO2d]). The idea is to use induction on d plus the fact that t leaves invariant
the summands of a decomposition L = L±(u)⊕L±(v), where u, v generate a lower
dihedral group which centralizes t. This proves that L is a free Z〈t〉-module, so
reduction modulo 2 has the claimed structure. ¤
Lemma 8.2. Let t be a nonsplit involution of defect 1. Then Lε(t) is doubly
even for d ≥ 4, i.e., 1√

2
Lε(t) is an even integral lattice.
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Proof. When d = 4, L±(u) ∼=
√

2LE8 , so the property is clearly true. By 8.1,
we have Tel(t) = 2L+ [L, t]. For x, y ∈ L, (x(t− 1), y(t− 1)) = (x, y)+ (xt, yt)−
(x, yt) − (xt, y) = 2(x, y) − 2(x, yt) ∈ 2Z. It follows that (Tel(t), T el(t)) ≤ 2Z.
We take x = y. We want (x, xt) ∈ 2Z to conclude that x(t−1) has norm divisible
by 4. This will follow if it is so for a spanning set. Consider the summands of
a decomposition L = L±(u)⊕ L±(v), where u, v generate a lower dihedral group
which centralizes t. For x ∈ L±(u), which is a ssBW2d−1 , x(t − 1) has norm
divisible by 4 for d ≥ 5, by induction. ¤
Lemma 8.3. Let t be a nonsplit involution of defect 1 in BRW+(24). Then
Lε(t) ∼=

√
2BW22 ⊥ √

2BW22
∼=
√

2LD4 ⊥
√

2LD4.

Proof. Let L = BW24
∼= LE8 . We follow the strategy in the proof of 4.2. Then

there exists a lower dihedral group D ≤ CR(t). Let u, v be involutions which
generate D. Then by 2/4-generation [PO2d], L = L±(u)⊕ L±(v), all summands
are ssBW23

∼=
√

2LE8 lattices which are t-invariant and on them t acts like a
nonsplit dirty involution. It follows that each L±(w)ε(t) is isometric to

√
2LA4

1
, for

any noncentral involution w ∈ D. Reasoning as in 4.2, we argue that Tel(t) has
index 28 in L and det(Tel(t)) = 216det(L) = 224. From 8.2, we know that Tel(t)
is doubly even. Therefore, each Lε(t) is doubly even and has determinant 212.
Therefore, there is an even integral lattice, P , so that Lε(t) ∼=

√
2P , det(P ) = 24

and P contains a sublattice Q isometric to LA8
1
, of index 4 in P .

Let r1, . . . , r8 be an orthogonal basis of roots for Q. Any nontrivial coset of
Q in P consists of even norm vectors, so contains an element of shape 1

2

∑
i∈I ri,

where I ⊆ {1, 2, 3, 4, 5, 6, 7, 8} and |I| = 4 or 8 (note that exp(P/Q) 6= 4 since
vectors of shape

∑8
i=1±1

4ri have norm 1).

Let I, I ′ be any two 4-sets which arise as above. We claim that they are
disjoint. Assume otherwise. Since P is even, I ∩I ′ is a 2-set. Then P is isometric
to LD6 ⊥ LA1 ⊥ LA1 , whence CR(t) fixes the unique indecomposable orthogonal
summand isometric to LD6 . This is impossible since CR(t) contains a subgroup
of shape 21+4

+ , whose faithful irreducibles have dimension divisible by 4. We
conclude that there exists a partition J ′, J ′′ of {1, 2, 3, 4, 5, 6, 7, 8} so that J ′
and J ′′ are 4-sets and P = P ′ ⊥ P ′′, where P ′ := {x ∈ P |supp(x) ⊆ J ′},
P ′′ := {x ∈ P |supp(x) ⊆ J ′′} and P ′ ∼= P ′′ ∼= BW22

∼= LD4 . ¤

Proposition 8.4. For all d ≥ 2, if t ∈ BRW+(2d) is a nonsplit dirty involution,
then Lε(t) ∼= ssBW2d−2 ⊥ ssBW2d−2.

Proof. If d = 2, this is true by the discussion in 9.15. For d = 3, 4, we use 4.2,
8.3.

Let d ≥ 5. Then there exists a lower dihedral group D ≤ CR(t). Let u, v
be involutions which generate D. Then by 2/4-generation [PO2d], L = L±(u)⊕
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L±(v), all summands are ssBW2d−1 lattices which are t-invariant and on them t
acts like a nonsplit dirty involution. By induction, we know the eigenlattices for
t on each.

Consider L+(u) ⊥ L−(u). The involution v interchanges the summands and
acts trivially on L/L+(u) ⊥ L−(u). The same is therefore true for the actions of
v on L+(u)ε(t) ⊥ L−(u)ε(t) and Lε(t)/L+(u)ε(t) ⊥ L−(u)ε(t).

Since d − 1 ≥ 4, induction implies that each L±(u)ε(t) is the orthogonal sum
of two orthogonally indecomposable lattices. Furthermore, if S is one of these
two indecomposable direct summands of L+(u)ε(t), we deduce that the same is
true for the actions of v on S ⊥ Sv and on Lε(t) ∩ (Q⊗ (S ⊥ Sv))/S ⊥ Sv.

We finish by quoting the uniqueness theorem [PO2d, PO2dcorr], applied to
the containment of S ⊥ Sv in Lε(t) ∩ (Q ⊗ (S ⊥ Sv)), for each S. Note that t
centralizes a natural BRW+(2d−2)-subgroup of BRW+(2d) and that it stabilizes
S and Sv. ¤

The main result 1.7 follows.

9. Appendix: About BRW groups.

This is an updated and corrrected version of Appendix 2 from [PO2d].

Basic theory of extraspecial groups extended upwards by their outer automor-
phism group has been developed in several places. We shall use [GrEx, GrMont,
GrDemp, GrNW, Hup, BRW1, BRW2, B].

Notation 9.1. Let R ∼= 21+2d
ε be an extraspecial group which is a subgroup of

GL(2d,F), for a field F of characteristic 0. Let N := NGL(2d,F)(R) ∼= F×.22dOε(2d, 2).
The Bolt-Room-Wall group is a subgroup of this of the form 21+2d

ε .Ωε(2d, 2). If
d ≥ 3 or d = 2, ε = −, N ′ has this property. For the excluded parameters, we
take a suitable subgroup of such a group for larger d. We denote this group by
BRW 0(2d, ε) or D(d). It is uniquely determined up to conjugacy in GL(2d,F) by
its isomorphism type if d ≥ 3 or d = 2, ε = −. It is conjugate to a subgroup of
GL(2d,Q) if ε = +. Let R = R2d denote O2(G2d). We call R2d the lower group
of BRW 0(2d,+) and call G2d/R2d the upper group of BRW 0(2d,+).

For g ∈ N , define CR mod R′(g) := {x ∈ R|[x, g] ∈ R′}, B(g) := Z(CR mod R′(g))
and let A(g) be some subgroup of CR mod R′(g) which contains R′ and comple-
ments B(g) modulo R′, i.e., CR mod R′(g) = A(g)B(g) and A(g) ∩ B(g) = R′.
Thus, A(g) is extraspecial or cyclic of order 2. Define c(d) := dim(CR/R′(g)),
a(g) := 1

2 |A(g)/R′|, b(g) := 1
2 |B(g)/R′|. Then c(d) = 2a(d) + 2b(d).

Corollary 9.2. Let L be any Z-lattice invariant under H := BRW 0(2d,+).
Then H contains a subgroup K ∼= AGL(d, 2) and L has a linearly independent
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set of vectors {xi|i ∈ Ω} so that there exists an identification of Ω with Fd
2 which

makes the Z-span of {xi|i ∈ Ω} a permutation module for AGL(d, 2) on Ω.

Proof. In H, let E, F be maximal elementary abelian subgroups and let K be
their common normalizer. It satisfies K/R ∼= GL(d, 2). Now, let z generate
Z(R) and let E1 complement 〈z〉 in E and F1 complement 〈z〉 in F . The action
of K on the hyperplanes of E which complement Z(R) satisfies NK(E1)F =
K, NF (E1) = Z(R). Now consider the action of NK(E1) on the hyperplanes
of F which complement Z(R). We have that K1 := NK(E1) ∩ NK(F1) covers
NK(E1)/E. Therefore, K1/Z(R) ∼= GL(d, 2). Let K0 be the subgroup of index
2 which acts trivially on the fixed points on L of E1, a rank 1 lattice. So,
K0

∼= GL(d, 2). Let x be a basis element of this fixed point lattice. Then
the semidirect product F1:K0 is isomorphic to AGL(d, 2) and {xg|g ∈ F1} is a
permutation basis of its Z-span. ¤
Definition 9.3. We use the notation of 9.1. An element x ∈ N is dirty if there
exists g so that [x, g] = xz, where z is an element of order 2 in the center. If g
can be chosen to be of order 2, call x really dirty or extra dirty. If x is not dirty,
call x clean.

Lemma 9.4. Let F2d
2 be equipped with a nondegenerate quadratic form with max-

imal Witt index. The set of maximal totally singular subspaces has two orbits
under Ω+(2d, 2) and these are interchanged by the elements of O+(2d, 2) outside
Ω+(2d, 2).

Proof. This is surely well known. For a proof, see [GrElAb]. ¤
Definition 9.5. An involution in BRW+(2d) has defect k if its commutator space
on the Frattini factor of the lower group has dimension 2k. The defect is an integer
in the range [0, d

2 ]. Note that an automorphism of R2d has even dimensional
commutator space on R2d/Z(R2d) if and only if it is even; see [GrMont], [GrElAb].

Definition 9.6. An involution in BRW+(2d) is split if it centralizes a maximal
elementary abelian subgroup of R2d , and is otherwise nonsplit.

Notation 9.7. Write R = D1 . . . Dd as a central product of dihedral groups, Di

of order 8. The involution αd,r in Aut(BRW+(2d)), defined up to conjugacy, acts
trivially on d−r of the Di and performs an outer automorphism on the other r of
them. When r = 2k is even, αd,2k is represented in BRW+(2d) by an involution
ηd,2k,+ (see 9.13). In case r = 2k < d, we define an involution ηd,2k,− := ηd,2k,+z,
where z is a noncentral involution in the above product of the d− r elementwise
fixed Di.

Theorem 9.8. We use the notation of 9.1, 9.3. Let g ∈ N . Then Tr(g) = 0
if and only if g is dirty. Assume now that g is clean and has finite order. Then
Tr(g) = ±2a(g)+b(g)η, where η is a root of unity. If g ∈ BRW (d, +), we may take
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η = 1. Furthermore, every coset of R in BRW (d, ε) contains a clean element
and if g is clean, the set of clean elements in Rg is just gR ∪ −gR.

Proof. [GrMont]. ¤
Lemma 9.9. Suppose that t, u are involutions in Ω+(2d, 2), for d ≥ 2. Suppose
that their commutators on the natural module W := F2d

2 are totally singular
subspaces of the same dimension, e. Suppose that e < d or that e = d and
that [W, t] and [W,u] are in the same orbit under Ω+(2d, 2). Then t and u are
conjugate.

Proof. Induction on d. ¤
Corollary 9.10. Suppose that t, u are clean involutions in H so that Tr(t) =
Tr(u) 6= 0. Then t and u are conjugate in G2d, if their common defect is less
than d

2 . If the defects are d
2 , then there are two classes.

Proof. We may assume that t, u are noncentral. These involutions are not lower
and have the same dimension of fixed points on R/R′ ∼= F2d

2 . Let T,U ≤ R be
their respective centralizers in R. Since both t, u are clean, [R, t] and [R, u] are
elementary abelian subgroups of T, U , respectively. From 9.9, we deduce that Rt
and Ru are conjugate in G2d if their common defect is less than d

2 and there are
two possible conjugacy classes in case of common defect d

2 . We may assume that
Rt = Ru. Now use 9.8 to deduce that t is R-conjugate to u or −u. The trace
condition implies that t is conjugate to u. ¤
Remark 9.11. The extension 1 → R2d → G2d → Ω+(2d, 2) → 1 is nonsplit for
d ≥ 4. This was proved first in [BRW2], then later in [BE] and in [GrEx] (for both
kinds of extraspecial groups, though with an error for d = 3; see [GrDemp] for
a correction). The article [GrEx] gives a sufficient condition for a subextension
1 → R2d → H → H/R2d → 1 to be split, and there are interesting applications,
e.g. to the centralizer of a 2-central involution in the Monster [Gr72]. A general
discussion of exceptional cohomology in simple group theory is in [GrNW].

Lemma 9.12. Let V = F2d
2 have a nonsingular quadratic form, q, of plus type.

Let W be an isotropic subspace, U := W⊥. Then every nontrivial coset of U
contains singular and nonsingular vectors if d > 1.

Proof. Suppose that v +U is a coset which consists entirely of either singular or
nonsingular vectors. Then for all x, y ∈ v + U , q(x + y) = (x, y) + q(x) + q(y) =
(x, y). Take a, b ∈ U so that a+ b = x+ y. Then (x, y) = q(a+ b) = q(a)+ q(b)+
(a, b). Also (x + a, y + a) = (x, y) implies that 0 = (x, a) + (a, y) = (x + y, a) =
(a + b, a) = (a, b). It follows that for any two elements a, b of U , (a, b) = 0. Since
U is the annihilator of W , U = W . Let Z := {x ∈ W |q(x) = 0}, a subspace of
W of codimension 0 or 1. Suppose d > 1. Let x ∈ V \W . If there is z ∈ Z so



1020 Robert L. Griess Jr.

that (x, z) = 1, then x and x + z have different values under the quadratic form.
If this fails to be so, then dim(Z) = 0, i.e., d = 2 and W contains nonsingular
vectors. Then x annihilates a nonsingular vector, w ∈ W and so x and x + w
have different values under the quadratic form. ¤
Lemma 9.13. Let V = F2d

2 and let g be an involution in Ω+(2d, 2) so that [V, g]
has dimension r > 1 and contains nonsingular vectors. There exists a basis of
singular vectors x1, . . . , xd, y1, . . . yd so that (xi, yj) = δij and g interchanges xi

and yi for i = 1, . . . , r and fixes each xj , yj for j ≥ r + 1.

Proof. Let W be the codimension 1 subspace of [V, g] which contains all the
singular vectors of [V, g]. Take a basis ui, i = 1, . . . , 2k, of [V, g] of nonsingular
vectors. For x ∈ [V, g], let P (x) := {v ∈ V |v(g − 1) = x}, a coset of [V, g]⊥. For
all x, P (x) contains singular vectors (see 9.12). We therefore may take x1 so that
x1(g − 1) = u1 and we define y1 := xg

1. We may use induction on span{x1, y1}⊥.
The only problem might be that we are unable to use 9.12 at the last stage in
case r = d

2 . But then we use the fact that V has plus type and the conclusion is
forced. ¤
Lemma 9.14. (i) Suppose that t is a clean upper involution of G2d. Then the
coset tR2d represents s+1 different conjugacy classes of involutions in G2d, where
s is the number of orbits of CG

2d
(t) on the cosets of [R, t] in CR

2d
(t) which contain

involutions. We have s = 1 if k = d
2 and s = 2 if k < d

2 . This gives respectively
one and two dirty classes of involutions in the coset.

(ii) If t is ηd,2k,± (so is dirty and nonsplit), the coset tR2d represents one class
of involutions if k = d

2 , and two otherwise; all involutions in tR2d are dirty.

Proof. Exercise. ¤
Lemma 9.15. (i) A defect k involution in G2d/R2d

∼= Ω+(2d, 2) is represented in
BRW+(2d) by an involution, specifically, by either a clean involution of defect k,
or the dirty nonsplit involution ηd,2k,+, for a unique integer k ≤ d

2 . Furthermore,
for any d and positive k ≤ d

2 , both cases occur and are mutually exclusive.

(ii) An eigenlattice of η2,2,+ has an orthogonal basis, of norms 2, 4.

Proof. It is clear from a direct construction (or 3.26) and 9.14 that both cases
occur and that they are mutually exclusive. Since G2d contains a natural central
product of k natural BRW+(22) ∼= WF4 subgroups, it suffices to give a direct
construction for the case k = d

2 = 1, which we now do. Notice that for d = 2,
BRW+(22) ∼= WF4 contains two conjugacy classes of reflection (upper and clean,
of defect 1, representing the two classes when k = d

2) and a nonsplit involution.
Note that the product of two reflections for orthogonal roots has trace 0, so is
dirty. There are two orbits of WF4 on orthogonal pairs of roots, distinguished
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by root lengths, but the resulting products of two reflections represent only two
classes: one class (for the pairs of equal length roots) and a second class for the
case of unequal root lengths. The latter gives the upper class. For this case, we
have an orthogonal set of vectors of norms 2 and 4 in a given eigenlattice, M ,
corresponding to orthogonal roots of different lengths. ¤

References

[BW] E. S. Barnes and G. E. Wall, Some extreme forms defined in terms of abelian groups,
JAMS 1 (1959), 47-63.

[BRW1] Beverly Bolt, T. G. Room and G. E. Wall, On the Clifford Collineations, Transform
and Similarity Groups, I. Journal of the Australian Mathematical Society, 2, 1961,
60-79.

[BRW2] Beverly Bolt, T. G. Room and G. E. Wall, On the Clifford Collineations, Transform
and Similarity Groups, II. Journal of the Australian Mathematical Society, 1961, 80-
96.

[B] Beverly Bolt, On the Clifford Collineations, Transform and Similarity Groups, III;
Generators and Relations, Journal of the Australian Mathematical Society, 2 1961/62,
334-343.
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