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On Borel’s Regularization Theorem

Jürgen Rohlfs

Introduction. Let G be a non compact semi simpel real Lie group with
finite center and finitely many connected components. Assume that Γ ⊂ G is an
arithmetic subgroup such that Γ\G is non compact. If M is a finite dimensional
representation of G, then Borel proves that there are natural isomorphisms

Hj(Γ,M) −→ Hj(Ω∗(X, M)Γumg)

for all j, see [B 1, B 2, B 3, B 4]. Here Hj(Γ,M) is the group cohomology
of Γ acting on M and Ω∗(X, M)Γumg is the complex of smooth M–valued Γ–
invariant differential forms of uniform moderate growth on the symmetric space
X attached to G. For the definition of growth conditions, see 1.1 and 2.4.

The main result of this paper, theorem 3.2, says that the above isomorphy
holds if Γ is any discrete subgroup of a reductive Lie group G with finitely many
connected components. Moreover M can be any smooth representation of G on
a Frechet space.

Borel uses in his proof the Borel–Serre compactification of Γ\X and a
tricky spectral–sequence argument to go from moderate growth conditions to uni-
form moderate growth conditions. In this paper we work essentially only on the
symmetric space X. Here the uniform moderate growth conditions for the inverse
map log of the exponential map exp p

∼−→ X are most important, see 2.2 and
2.3. They are used to prove a global version of Poincaré’s lemma with growth
conditions on X, see 2.4.

There are other contributions to Borel’s regularization theorem. J. Franke
gives a different proof of Borel’s result in the adelic context for reductive algebraic
groups, see [F]. U. Bunke and M. Olbrich give an extension of the first version
of Borel’s result with moderate instead of uniform moderate growth conditions
on Ω∗(X, M) to infinite dimensional coefficients M of moderate growth. Their
result also holds for certain non arithmetic subgroups Γ of G, see [B–O].

Received April 21, 2005.



974 Jürgen Rohlfs

§ 1 Growth conditions

We fix our notation and define growth conditions on vectors v ∈ V of
a G–module V by growth conditions for the map ε(v) ∈ C(G,V ) , where
ε(v)(g) = g−1v, g ∈ G.

1.1. Notations. We use standard notation whenever possible.

(i) By G we denote a reductive real Lie group with finitely many connected
components. We assume that G is non compact. We fix a maximal compact
subgroup K of G and a corresponding Cartan involution θ on G. Let g
resp. k denote the Lie algebra of G resp. K. The Cartan involution on g is
also denoted by θ. We choose a connected central R–split torus AG in G. By
X := G/AGK we denote the associated symmetric space. Since K meets all
connected components of G the space X is connected. For most of the paper
the choice of AG is irrelevant. In connection with the theory of automorphic
forms there is a natural choice of AG , see § 3.4.

On the symmetric space Y := G/K we fix a G–left–invariant Riemann
metric, which comes from a non degenerate K–invariant bilinearform B( , ) on
g × g. The corresponding distance of y1, y2 ∈ Y is denoted by d(y1, y2). Let
y0 ∈ Y be the point determined by K. If g ∈ G we define the norm ||g|| of g
by

||g|| = exp(d(gy0, y0)) .

We write g = k⊕ a⊕ p , where a is the Lie algebra of AG and where
p is the orthogonal complement with respect to B of k ⊕ a in g. We identify
g/k = a ⊕ p with the tangent space at y0 of Y. Let x0 ∈ X be the point of
X given by AGK. Then p is identified with the tangent space of x0 of X.
Let exp : g −→ G be the exponential map. If Z ∈ a⊕ p then t 7−→ exp(tZ)y0

is the geodesic in Y starting at y0 with velocity Z. If g = exp(Z)y0 we get
||g|| = exp ||Z||, where ||Z|| is the norm of Z with respect to B.

(ii) In this paper a topological vector space V is a vector space over R or
C. The topology of V is Hausdorff, locally convex and it is defined by a family
S(V ) of semi norms.

If V is a topological vector space and if G is a Lie group we denote by
C∞(G,V ) the vector space of all maps ϕ : G −→ V such that with respect to
local coordinates on G all partial derivatives exist and are continuous. If D ∈ g
and ϕ ∈ C∞(G,V ) then Dϕ(g) := d

ds |s=0ϕ(exp(−sD)g) exists for all g ∈ G
and Dϕ ∈ C∞(G,V ). If D is an element of the enveloping algebra U(g) of g
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then Dϕ is defined and Dϕ ∈ C∞(G,V ). Let | |α ∈ S(V ) be a semi norm and
let C ⊂ G be a compact subset. We define the C∞–topology on C∞(G,V ) by
the family of semi norms q depending on C, p and D where

q(ϕ) = sup
a∈C

|(Dϕ))(a)|α, D ∈ U(g) .

It is well known that in the C∞–topology C∞(G,V ) is complete if V is
complete.

(iii) Let V be a topological vectorspace with a continuous left G–action i.e.
a continuous representation written as (g, v) 7−→ gv. Then we have an injection
of G–modules

ε : V −→ C(G,V )

given by ε(v)(g) = g−1v, g ∈ G, v ∈ V. Here C(G,V ) is the space of continuous
maps from G to V and a ∈ G acts on ϕ ∈ C(G,V ) by (aϕ)(g) = ϕ(a−1g), g ∈ G.
We say that V is a smooth G–module if ε(V ) ⊂ C∞(G,V ) and if the C∞–
topology induces the topology on V. We put V ∞ = ε−1C∞(G,V ) and give V ∞
the topology induced by the C∞–topology on C∞(G,V ). Then V ∞ is a smooth
G–module. An evaluation map µ : C∞(G,V ) −→ V is given by ϕ 7−→ ϕ(e).
The map µ is continuous and as topological vector space (without G–action)
V ∞ is a direct summand of C∞(G,V ).

(iv) Let V be a smooth G–module and ϕ ∈ C∞(G,V ). We say that ϕ is
of moderate growth if for all D ∈ U(g) and all | |α ∈ S(V ) there are constants
0 < N = N(ϕ,D, | |α) and C = C(D, ϕ, | |α) such that

|(Dϕ)(a)|α ≤ ||a||NC

for all a ∈ G. If in this estimate N(D, ϕ, | |α) = N(ϕ, | |α) does not depend
on D, then ϕ is said to be of uniform moderate growth.

We denote by Cmg(G,V ) the subspace of C∞(G,V ) consisting of elements
of moderate growth. On Cmg(G,V ) we take the subspace topology. Then
Cmg(G,V ) is a smooth G–module. We say that a smooth G–module V is of
moderate growth if ε(V ) ⊂ Cmg(G,V ). The G–module Cmg(G,V ) is of moderate
growth. In the obvious way we define Cumg(G,V ) to consist of maps of uniform
moderate growth and call V of uniform moderate growth if ε(V ) ⊂ Cumg(G,V ).
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We recall that a continuous representation V of G is called a Banach
representation if V is a Banach space. The following is well known, see [C: § 1].

1.2. Lemma. Let V be a Banach representation. Then V ∞ is of uniform
moderate growth.

Proof. We have to show that ε : V ∞ −→ C∞(G,V ) maps V ∞ to
C∞(G,V )umg. If v ∈ V ∞, g ∈ G then ε(v)(g) = g−1v := π(g−1)v where
π : G −→ GL(V ) is the given representation. It is well known that there is a
c > 0 and an r > 0 such that ||π(g)|| ≤ c||g||r for all g ∈ G, see [W: example
p. 282]. Here ||π(g)|| is the operator norm of π(g) on V.

If D ∈ g, v ∈ V ∞ then D(ε(v))(g) = d
ds |s=0ε(v)(exp(−sD)g) =

= π(g−1) d
ds |s=0ε(v) exp(−sD) = π(g−1)(Dε(v))(e) = π(g−1) d

dt |t=0π(exp(tD))v =
π(g−1)(Dv). If D = DnDn−1 · D1, Di ∈ g we use induction n and apply the
estimate of ||π(g−1)||. q.e.d.

1.3. The growth conditions of 1.1 depend on the action of g ∈ G on ϕ ∈
C∞(G,V ) by (gϕ)(a) = ϕ(g−1a) for all a ∈ G. We will consider also the actions
of g on ϕ given by (grϕ)(a) = ϕ(ag), called action by right translation, and the
diagonal action given by (gdϕ)(a) = gϕ(ag). The subspaces of moderate resp.
uniform moderate growth of C∞(G,V ) with respect to these actions are denoted
by

Cmg(G,V )r, C
mg(G,V )d resp. Cumg(G,V )r resp. Cumg(G,V )d .

1.4. Proposition. We use the Notation of 1.3. Then:

(i) Cmg(G,V )r, C
umg(G,V )r, C

mg(G,V )d and Cumg(G,V )d are
G–submodules of C∞(G,V ).

(ii) Cmg(G,V ) = Cmg(G,V )r.
(iii) If V is of moderate growth, then Cmg(G,V )r = Cmg(G,V )d.
(iv) If V is of uniform moderate growth, then Cumg(G,V )r = Cumg(G,V )d .

Proof. (i) We consider ϕ ∈ Cmg(G,V )r, a, g ∈ G and D ∈ g. We have to show
that gϕ ∈ Cmg(G,V )r. Since (Drϕ)(a) := d

dt |t=0ϕ(a exp tD) and since the actions
on G by right and left translation commute we get (Dr(gϕ))a = (Drϕ)(g−1a).
If | |α ∈ S(V ) we get
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|Dr(gϕ)(a)| ≤ ||g−1a||N(ϕ,D,| |α)C(ϕ,D, | |α).

By induction on n for DnDn−1D1 ∈ U(g) we see that Cmg(G,V )r and
Cumg(G,V )r are G–submodules of C∞(G,V ).

Assume that ϕ ∈ Cmg(G,V )d. We use the above notation and abbreviate

(Ddϕ)(a) :=
d

dt
|t=0 exp(tD)ϕ(a exp tD) =

d

dt
|t=0 exp(tD)ϕ(a) + (Drϕ)(a) .

If π(g) : V −→ V denotes the action of g ∈ G on V , then d
dt |t=0 exp(tD)v =:

π(D)v, v ∈ V , where π(D) : V −→ V is linear. Let | |α ∈ S(V ) . Then
|π(D)ϕ(g−1a)|α ≤ |ϕ(g−1a)|β for some | |β ∈ S(V ) and all g, a ∈ G. Since ϕ

is of moderate growth we get |π(D)(gϕ)(a)|α ≤ ||g−1a||N(ϕ,D,| |β)C(ϕ,D, | |β).
Since we have estimated |(Dr(gϕ))(a)|α at the beginning of the proof, we get by
induction gϕ ∈ Cmg(G,V )d. If ϕ ∈ Cumg(G,V )d the above proof shows that
gϕ ∈ Cumg(G,V )d. Hence (i) is proved.

To prove (ii) let ϕ ∈ C∞(G,V ), D ∈ g, a ∈ G. Then

(Dϕ)(a) =
d

dt
|t=0ϕ(exp(−Dt)a) = · · ·

· · · d
dt |t=0ϕ(a exp(−tAd(a−1)D)) = ((−Ad(a−1)(D))rϕ)(a).

Let Y 1, . . . , Y t be an R–basis of g. Then there are ϕi ∈ Cumg(G,R) such
that −Ad(a−1)(D) =

∑t
i=1 ϕi(a)Y i. Here we use 1.2. Therefore

(Dϕ)(a) =
t∑

i=1

ϕi(a)(Y i
r ϕ)(a).

Let D = DnDn−1 . . . D1 ∈ U(g). By induction n we see that ϕ ∈ Cmg(G,V )
if ϕ ∈ Cmg(G,V )r. The other inclusion follows in the same way.

To prove (iii) and (iv) we use the notation as in the proof of (i). If
ϕ ∈ C∞(G,V ) then (Ddϕ)(a) = π(D)ϕ(a) + (Drϕ)(a). Since V is of uni-
form moderate growth or of moderate growth we can argue as in (i) and see that
ϕ ∈ Cumg(G,V )d iff ϕ ∈ Cumg(G,V )r and ϕ ∈ Cmg(G,V )d iff ϕ ∈ Cmg(G,V )r.
q.e.d.
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1.5. Remark. Let M be a Frechet space defined by continuous seminorms
S(V ). Assume that G acts continuously on M. Then Casselman calls M a
G–module of moderate growth if for all | |α ∈ S(V ) there is an N > 0 and a
semi norm | |β ∈ S(V ) such that

|gv|α ≤ ||g||N |v|β for all v ∈ V and all g ∈ G

see [C: § 1]. For M = C∞(G,V ) the growth condition of this paper of course
differs from Casselman’s. He shows that a given finitely generated (g,K)–module
occurs as module of K–finite vectors of a representation of moderate growth (in
his sense), see [C § 1].

§ 2 Standard complexes with growth condition

The relative Lie–Algebra cohomology Hj(g, AGK, V ) of a smooth G–module
V is computed as j–th homology of the G–invariants of the complex (Ω∗(X, V ), d)
of smooth V –valued differential forms with exterior differentials d. Here

0 −→ V
ε−→ Ω0(X, V ) −→ . . .

d−→ Ωi(X, V ) d−→
is exact. We define G–modules Ωi(X, V )umg

d consisting of V –valued i–forms
with uniform moderate growth conditions and show that the subcomplex 0 −→
V

ε−→ Ω∗(X, V )umg
d is exact.

2.1. Preliminaries

We use the standard notation of differential geometry on X = G/AGK and
on G as in [He]. In particular if a ∈ G then La(x) = ax, for x ∈ X with
differential dLa : TxX −→ TaxX , where TzX is the tangent space of X at
z. Sometimes we write La∗ = dLa. We use the same notation for the corre-
sponding left translations on G. The natural projection G −→ X is denoted
by π. The tangent space at e of G is identified with the Lie algebra g and
the tangent space Tx0(X) at X at the point x0 given by AGK is identified with p.

(i) Let v ∈ p and u ∈ AGK. Then u acts on p by the adjoint action and we
write uv = Ad(u)(v), v ∈ p. We have a right AGK–action on G× p 3 (g, v) by
(g, v)u = (gu, u−1v). The quotient G×p/AGK is a vector bundle over X and the
bundle is denoted by G

∏
AGK p. A smooth section Y of G

∏
AGK p over X is

a smooth map Y : G −→ p such that Y (gu) = u−1Y (g). We put C∞
AGK(G, p) =

{Y ∈ C∞(G, p)/Y (gu) = u−1Y (g)} and observe that C∞
AGK(G, p) is a sub

G–module of C∞(G, p). In particular Cmg
AGK(G, p) := C∞

AGK(G, p) ∩ Cmg(G, p)
makes sense. We use the corresponding notation if mg is replaced by umg .
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(ii) The map π : G −→ X induces an identification of G–modules

C∞(X,R) ∼−→ C∞
AGK(G,R) .

We write the Cartan decomposition of g ∈ G as g = exp(D(g))u(g) for
u(g) ∈ AGK and D(g) ∈ p. If Y ∈ p we define Y (g) := u(g)−1Y ∈ p, i.e. we
consider Y as element of C∞

AGK(G, p).

Let Ỹ ∈ X (X) be a smooth vectorfield on X. If x = gx0 ∈ X, g ∈
G we put Y (g) := d(Lg−1)(Ỹ |x) ∈ Te(X) = p. We see that Y ∈ C∞

AGK(G, p)
and get a natural isomorphism of G–modules X (X) ∼−→ C∞

AGK(G, p). If Y ∈
C∞

AGK(G, p) and gx0 ∈ X we define θY (x, t) := g exp(tY (g))x0. Then θY (x, t) is
well defined and θY is a global flow on X with corresponding vectorfield Ỹ . In
particular (Y ϕ)(g) is defined by d

dt |t=0ϕ(g exp(tY (g))x0) for ϕ ∈ C∞
AGK(G,R)

and (Y ϕ)(g) = (Ỹ ϕ)(gx0) .

(iii) Let exp : p −→ G be the exponential map. Then exp induces a diffeo-
morphism p

∼−→ X , where v ∈ p is mapped to exp(v)x0. The inverse of this
diffeomorphism is denoted by log : X

∼−→ p. If u ∈ AGK then u exp(v)x0 =
exp(Ad(u)v)ux0 = exp(Ad(u)(v))x0. Hence log(ux) = Ad(u) log(x) = u log(x).
Let g ∈ G. We put log(g) = − log(g−1x0). To motivate the signs we observe that
for g = exp(v), v ∈ p we get g−1x0 = exp(−v)x0 and − log(g−1x0) = v.
We see log(gu) = u−1 log(g). Hence log ∈ C∞

AGK(G, p) determines a vec-

torfield l̃og ∈ X (X) by l̃og|x = dLg(log(g)), for x = gx0. We notice that
l̃og|x = dLexp(log(x))(log(x)), where log(x) ∈ p .

(iv) Let V be a smooth G–module. The i–th exterior power of Ad(u), u ∈ AGK
acts on Y ∈ ∧ip by uY := ∧iAd(u). Then u acts on ϕ ∈ HomR(∧ip, V ) by
(uϕ)(Y ) = uϕ(u−1Y ). We get right action of u an G × Hom(∧ip, V ) 3 (g, ϕ)
by (g, ϕ)u = (gu, u−1ϕ). Hence the vector bundle (G × Hom(∧ip, V ))/AGK =
G

∏
AGK HomR(∧ip, V ) over X is defined with smooth sections

C∞
AGK(G, Hom(∧ip, V )) =: Ωi(X, V ).

(v) Let s ∈ C∞
AGK(G,V ) For a ∈ G define φ(s)(a) = a(s(a)). Then φ induces

an isomorphism φ : C∞
AGK(G,V ) ∼−→ C∞(X, V ). If Y ∈ C∞

AGK(G, p) we view Y

as vectorfield Ỹ on X and define a connection 5 by 5Y s := Ỹ (φ(s)). Then

(5Y s)(g) =
d

dt
|t=0g exp(t(Y (g)))s(g exp(tY (g)))
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and 5 is a flat connection on the bundle G
∏

AGK V. We write Ỹ s instead
of 5Y s. For the exterior differentials d := d5 we get d ◦ d = 0. Hence
(Ωi(X, V ), d) is a complex. We consider the exterior differentials as maps d :
C∞

AGK(G, Hom(∧ip, V )) −→ C∞
AGK(G, Hom(∧i+1p, V )) where for Y0, Y1, . . . , Yi ∈

p we have

(dω)(Y0, . . . , Yi)(g) =
i∑

j=0

(−1)j Ỹj(ω(Y1, . . . , Ŷj , . . . , Yi))(g) .

Here we use (ii) and that [Ỹi, Ỹj ] = 0, since (Ỹi(Ỹjϕ))(x) =
d
dt |t=0

d
ds |s=0ϕ(exp(D(g)) exp (tYi) exp(sYj)x0) and [Yi, Yj ] ∈ k, ϕ ∈ C∞

AGK(G,R),
x = gx0, g ∈ G. Then C∞

AGK(G, Hom(∧ip, V )) is a (g, AGK)–module, where the
g–action comes from the diagonal G–action on C∞(G, Hom(∧ip, V )). Moreover
d commutes with the action of g ∈ G given by left translation on G.

(vi) Let d : Ωi(X, V ) −→ Ωi+1(X, V ) be the exterior differential. Then
Poincaré’s Lemma follows from the existence of linear maps ej+1 : Ωj+1(X, V ) −→
Ωj(X, V ) such that

dej + ej+1d = Id|Ωj(X, V ) .

We need a coordinate free description of the ej considered as maps

ej : C∞
AGK(G, Hom(∧jp, V )) −→ C∞

AGK(G, Hom(∧j−1p, V )).

For this we recall the construction of ej , see [G – H – V].

Put I = [0, 1] and define a vectorfield ∂ on the manifold X × I by ∂|(x,s)f =
d
dt t=s

ϕ(x, t), f ∈ C∞(X×I,R). Let h : X×I −→ X be the retraction to x0 given
by h(x, s) := exp(s log(x))x0 Define js : X −→ X×I by js(x) = (x, s), x ∈ X, s ∈
I. If ω ∈ Ωi(X, V ) then j∗sh∗ω ∈ Ωi(X, V ) is for s ∈ [0, 1] a smooth family of
differential forms. If Z1, . . . , Zi are vector fields on X×I and if ω ∈ Ωi+1(X×I, V )
then i∂η ∈ Ωi(X × I, V ) is defined by (i∂ω)(Z1, . . . , Zi) = ω(∂, Z1, . . . , Zi).
According to [G–H–V]

ei+1 : Ωi+1(X, V ) −→ Ωi(X, V )

is defined by

(ei+1ω)(Z1, . . . , Zi) :=
∫ 1

0
j∗s (i∂(h∗ω)) (Z1, . . . , Zi)ds
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where Zk are vector fields on X for k = 1, 2, . . . , i.

We have j∗s (i∂h∗η)(Z1, . . . , Zj)(x) = η(h∗∂, h∗js∗Z1, . . . , h∗js∗Zj)(h(x, s)). If
ϕ ∈ C∞(X,R) then h∗(∂|x,s)ϕ = ∂(x,s)ϕ ◦ h = d

dt |t=sϕ(exp(s log(x))) =
d
dt |t=0ϕ(exp (s log(x)) · exp(t log(x))). Hence

h∗(∂|(x, s)) = (Lexp(s log(x)))∗ log(x) = l̃og|h(x,s).

If Z is a vectorfield on X and ϕ ∈ C∞(X,R) we get (h∗js∗Z|x)ϕ =
d
dt |t=0ϕ(exp(s log(g exp(tZ(g))x0))x0). Put c(t) := s log(g exp(tZ(g))x0). Then
d
dt |t=0c(t) = d

dt |t=0 log(g exp(stZ(g))x0). Here we identify as usual all tangent
spaces to p with p. Hence h∗js∗(Z|x) = sZ|h(x,s).

We put h(g, t) := exp(t log(g)) and get: If ω ∈ C∞
AGK(G, Hom(∧i+1p, V )) and

if

(ei+1ω)(g) :=
∫ 1

0
ti(ilogω)(h(g, t))dt

then dei + ei+1d = Id on C∞
AGK(G, Hom(∧ip, V )). Here e0 : C∞

AGK(G,V ) −→ V

is defined by e◦(f) = f(e) and log ∈ C∞
AGK(G,V ).

2.2. Proposition. The vector field log ∈ C∞
AGK(G, p) is of uniform moder-

ate growth.

Proof. We will need some standard results on the structure of G . In order
to fix the notation we recall them briefly. A reference is for example [He: VI 3.6,
X 1.16].

Let θ be the Cartan involution corresponding to K on G. Then g = k⊕a⊕p
and θ|p + a = −Id, θ|k = Id . We choose a maximal abelian subalgebra y ⊂ p
such that all adH, H ∈ y are semi simple. Let t be the centralizer of y in k
with respect to the adjoint action. Write gC = g⊗R C and gC = kC ⊕ aC ⊕ pC
in obvious notation. Then h := tC ⊕ aC ⊕ yC is a Cartan subalgebra h of
gC . Denote by Xα ∈ gC a root vector corresponding to a root α of h and
choose a system R+ of positive roots. We have α(y) ⊂ R . We can write
pC = yC ⊕α∈R+ C(Xα − θ(Xα)) , kC = tC ⊕

⊕
α∈R+

C(Xα + θXα)

We put A = exp y and A′ = exp y′, y′ = {H ∈ y|α(H) 6= 0, α ∈ R+} . Then
A′ is open in A . Let T be the centralizer of y in K with respect to the adjoint
action. Then LieT = t . We have an injection m : K/T × y′ −→ X with open
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image X ′ ⊂ X = G/AGK given by m(k0T, H0) = k0 exp(H0)x0 .

Let g ∈ G. There are k1, k2 ∈ K, a ∈ AG and an H ∈ y such that
g = k1 exp(H)k2a. Then log(g) = − log(g−1x0) = − log(k−1

2 exp(−H)k−1
1 x0) =

− log(k−1
2 exp(−H)x0) = − log(exp(Ad(k−1

2 )(−H))x0) = ad(k−1
2 )H. Since ||g|| ≥

exp ||(H)|| we see || log(g)|| ≤ log(||g||).

Let D ∈ g, g ∈ G. We compute (D log)(g) = d
ds |s=0 log(exp(−sD)g) =

d
ds |s=0−log(g−1 exp(sD)x0). This depends only on the image of D in g/a⊕k = p.
Hence we assume D ∈ p. We define γ : K/T × y′ −→ p by γ(k0T,H0) =
Ad(k0)(H0). Then log ◦m = γ and on X ′ we have (log)∗ = γ∗ ◦ (m∗)−1. We
compute γ∗ and m−1∗ on X ′. The explicite formula for log∗ |X ′ then will
extended by continuity to a formula for log∗ on X.

Let (U,H) ∈ k⊕ y. Then (U,H) determines by left translation a tan-

gent vector at (a0T0,H) ∈ K/T × y′. For ϕ ∈ C∞((K/T ) × y′,R) it acts by

(U,H)|(k0T,H0)ϕ = d
ds |s=0ϕ(k0 exp(sU)T,H0 + sH). Put a0 = exp H0. If f ∈

C∞(X ′,R) we get m∗(U,H)|(koT,H0)f = d
ds |s=0f(k0 exp(sU) exp(H0 + sH)x0) =

d
ds |s=0f(k0a0 exp(sAd(a−1

0 )U) exp(sH)x0) = d
ds |s=0f(k0a0 exp(sAd(a−1

0 )U)x0)+
d
ds |s=0f(k0a0 exp(sH)x0) = Ad(a−1

0 )U |a0k0x0f+H|k0a0x0f. Since γ∗|(k0T,H0)(Xα+

θ(Xα)) = −Ad(k0)(α(H0)(Xα−θ(Xα)) , we get d logx |k0a0x0(Xα−θ(xα)+H) =

γ∗◦m−1∗ ((Xα−θ(Xα))+H)|k0a0x0 = Ad(k0)
( −α(H0)

e−α(H0)−e+α(H0) (Xα − θ(Xα)) + H
)
∈

p,

where H0 = log(a0) ∈ y′. Now ϕ(x) = x
ex−e−x is defined for all x ∈ R and it

is together with all its derivatives bounded. By continuity the above formula is
valid for all H0 ∈ y. We get

d log |k0a0x0(D) = Ad(k0)(ψ(a0)D),

where ψ(a0) : p −→ p is linear and can be diagonalized with diagonal coeffi-
cients which are together with all their derivatives bounded as functions in a0.
Recall that log(k0a0x0) = Ad(k0)(H0), exp(H0) = a0. Hence the above argument
can be applied to Ad(k0)(ψ(a0)D). If D1 . . . Dn ∈ g we get inductively



On Borel’s Regularization Theorem 983

||(Dn · . . . ·D1 log)(k0a0x0)|| ≤ Cn||Dn|| . . . ||D1||

where Cn depends on n and not on k0a0x0. qed.

We have log ∈ C∞
AGK(G, p) ⊂ C∞(G, p). On ϕ ∈ C∞(G, p) we let

a ∈ G act by right–translation i.e. (arϕ)(g) = ϕ(ga) for all g ∈ G.

2.3. Corollary. Consider log ∈ C∞(G, p). Then log is of uniform moderate
growth with respect to right translation.

Proof. Let D ∈ g and g ∈ G. Then (Dr log)(g) := d
ds |s=0 log(g exp sD) =

d
ds |s=0(− log(exp(−sD)g−1x0)). Since we can write g−1 = exp(D1)x0, D1 ∈ p, it
suffices to estimate

d
ds |s=0 log(exp(−sD) exp(D1)x0) = d

ds |s=0 log(exp(ead(−sD)(D1)) exp(−sD)x0) =
−[D, D1]0 + d

ds |s=0 log(exp(D1) exp(−sD)x0) =

−[D, D1]0 + (D log)(g−1x0),

where [D, D1]0 is the p–component of [D, D1] ∈ g. We use 2.2 and induction to
estimate ((Dn · . . . ·D1)r log)(g) and get the desired result. qed.

We put Ωi(X, V )umg
d := Cumg

AGK(G, Hom(∧ip, V ))d := C∞
AGK(G, Hom(∧ip, V ))∩

Cumg(G, Hom(∧ip, V ))d. These are G–modules by 1.4 (iv). Since log ∈ C∞
AGK(G, p)

is of uniform moderate growth with respect to the action of G by right translation
we see that ei+1 maps Cumg

AGK(G, Hom(∧i+1, V ))d to Cumg
AGK(G, Hom(∧ip, V ))d.

Here we use that integration over a compact path in the Frechet space C∞
AGK(G,

Hom(∧ip, V )) preserves uniform moderate growth. We observe that ε : V −→
C∞

AGK(G,V ) has image in Cumg
AGK(G,V ))d = Ω0(X, V )umg

d . Therefore we get

2.4. Proposition. Let n = dim X.

The sequence of G–modules

0 −→ V
ε−→ Ω0(X, V )umg

d
d−→ . . .

d−→ Ωn(X, V )umg
d −→ 0

is exact.

§ 3 The main result
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We apply Prop. 2.4 to get the main result. It implies Borel’s regularization
theorem for arithmetic groups and gives an extension of his result to reductive
algebraic group, discrete subgroups instead of arithmetic subgroups and infinite
dimensional coefficients. We also represent an adelic version of the main result.

3.1. If ω ∈ C∞
AGK(G, Hom(∧ip, V )), a ∈ G,Y ∈ ∧ip we consider ω as element

of HomAGK(∧ip, C∞(G,V )) where ω(Y )(a) := ω(a)(Y ). If Γ ⊂ G is a discrete
subgroup, we see

C∞
AGK(G, Hom(∧ip, V ))Γ = HomAGK(∧ip, C∞(Γ\G,V )) .

If ϕ ∈ C∞(Γ\G,V ), a, g ∈ G we put (gdϕ)(a) = gϕ(ag). Then C∞(Γ\G,V )
is a G–module and hence a (g, AGK)–module.

We know that (HomAGK(∧∗p, C∞(Γ\G,V )), d) is a complex. By defini-
tion of the Lie–algebra cohomology the i–th Homology of the complex is denoted
by H i(g, AGK, C∞(Γ\G,V )) and it is well know that H i(g, AGK, C∞(Γ\G,V )) =
H i(Γ, V ). Here H i(Γ, V ) is the group cohomology of the action of Γ ⊂ G on
V and Γ ∩AG = {e}. For all this see [B–W].

3.2. Theorem. Let M be a Frechet space with continuous G–action. Let
V be the G–module of smooth vectors of M Assume that Γ ∩AG = {e}. Then

H i(Γ, V ) = H i(g, AGK, Cumg(Γ\G,V )d) for all i ∈ N

Proof. The cohomology Hj(Γ, V ) is computed as j–th homology of the
Γ–invariants of the complex

C∞
AGK(G Hom(∧∗p, V )) = Ω∗(X, V )

By 2.4 the complex 0 −→ V −→ Ω∗(X, V )umg
d is exact. If we show that

Hj(Γ,Ωi(X, V )umg
d ) = 0 for all j ≥ 1 and all i ≥ 0 then Hj(Γ, V ) can be com-

puted from the Γ–invariants of the complex Ω∗(X, V )umg
d , i.e. the theorem holds.

For short we write M := Hom(∧ip, V ) and recall that M is a (g, AGK)–
module. By a switch of variables we have an isomorphism of (g, AGK)–modules

s : C∞(Γ\G,Cumg
AGK(G,M)d)

∼−→ Cumg
AGK(G,C∞(Γ\G,M))d
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where

Cumg
AGK(G,C∞(Γ\G,M))d = Cumg(G,C∞(G,M))d ∩ C∞

AGK(G,C∞(Γ\G,M))

and where the growth condition is with respect to the diagonal G–action which
is given on G by right translation and on M = Hom(∧ip, V ) by the G–action
on V. We use 2.1 (iv) and see maps:

HomAGK(∧j+1p, Cumg
AGK(G,C∞(Γ\G,M))d) · · ·

· · · ej+1−→ HomAGK(∧jp, Cumg
AGK(G,C∞(Γ\G,M))d) .

As in the proof of 2.4 we get Hj(g, AGK, Cumg
AGK(G,C∞(Γ\G,M))d) = 0 if

j ≥ 1. Hence the theorem holds. q.e.d.

3.3. Remark. If V is of uniform moderate growth we apply 1.4 (iv) and get
H i(Γ, V ) = H i(g, AGK,Cumg(Γ\G,V )r). The growth conditions with respect to
the right translation on G are the ones Borel uses.

Let G0/Q be a connected reductive algebraic group which is defined
over Q. Denote by A = R × Af the ring of adeles over Q. This is a lo-
cally compact ring. We have G0(A) = G0(R) × G0(Af ) with the topology
induced by the topology on A = R × Af . If V is a smooth G–module we put
C∞(G0(Af ), V ) = {ϕ : G0(Af ) −→ V |ϕ is continuous and there is an open and
compact subgroup Kf ⊂ G0(Af ) such that ϕ(ak) = ϕ(a) for all a ∈ G0(Af )
and all k ∈ Kf}. Put C∞(G0(A), V ) = C∞(G0(R), C∞(G0(Af ), V ). If V is
quasi complete, then C∞(G0(A), V ) is quasi complete, see [B–W: Chap. X, 1.3].
In particular a continuous map c : [0, 1] −→ C∞(G0(A), V ) can be integrated.
Let C∞(G(A), V )umg

d = Cumg(G0(R), C∞(G(Af , V ))d. Now G0(Q) ⊂ G0(A)
acts by left translation on C∞(G0(A), V )umg

d and the fixpoint set of this action
is C∞(G0(Q)\G0(A), V )umg

d . We can view G0(Q) also as subgroup of G0(Af ).
Hence G0(Q) acts on C∞(G0(Af ), V ) by left translation and the j-th group
cohomology Hj(G0(Q), C∞(G0(Af ), V )) is defined. Let AG be the connected
component of 1 of the real points of the maximal Q–split central torus of G0.
Then AG ∩G0(Q) = {e}. We get

3.4. Corollary. With the above notation one has natural isomorphisms

Hj(G0(Q), C∞(G0(Af ), V )) ∼−→ Hj(g, AGK, C∞(G0(Q)\G0(A), V ))
∼−→ Hj(g, AGK, C∞(G0(Q)\G0(A), V )umg

d ).
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Proof. Let Kf be an open and compact subgroup of G0(Af ) Since cohomology
commutes with direct limits it and since taking Kf–invariants is an exact functor
suffices to prove a corresponding claim, where G0(Af ) is replaced by G0(Af )/Kf

and G0(A) is replaced by G0(A)/Kf . By the finiteness of the class number of
G0/Q there are ai ∈ G0(Af ) such that G0(Af ) =

⋃h
i=1 G0(Q)aiKf as disjoint

union. Put Γi = G0(Q)∩ aiKfa−1
i . Then C∞(G0(Af )/Kf ,M) = ⊕h

i=1IndG
Γi

(V )
and by Shapiro’s lemma we have Hj(G0(Q), C∞(G0(Af )/Kf ,M)) =

⊕h
i=1 Hj(Γi,

V ). In the same way C∞(G0(Q)\G0(A)/Kf , V ) =
⊕h

i=1 C∞(Γi\G0(R), V ). Hence

Hj(g, AGK, C∞(G0(Q)\G0(A)/Kf , V ) =
h⊕

i=1

Hj(g, AGK, C∞(Γi\G0(R), V ))

and the corresponding formula holds if the index umg is attached. We now
apply 3.2. and our claim holds. qed.

3.5. Remark. Let M be a finite dimensional representation of G. Borel
uses his result to show that the inclusion Ω∗cusp(Γ\X)⊗M −→ Ω∗(Γ\X)mg ⊗M
induces an inclusion of the cuspidal cohomology H∗

cusp(Γ,M) to H∗(Γ,M).
A. Deitmar and J. Hilgert observe that the generalisation of this to an infinite
dimensional M of moderate growth is false in general, see [D–H]. Hence it is
desirable, to find a cohomologically useful version of Langland’s decomposition
theorem with infinite dimensional coefficients and growth conditions, see [B–L–S:
2.4].
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