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Abstract: We derive general Novikov-Morse type inequalities in a Con-
ley type framework for flows carrying cocycles, therefore generalizing our
results in [FJ2] derived for integral cocycle. The condition of carrying a
cocycle expresses the nontriviality of integrals of that cocycle on flow lines.
Gradient-like flows are distinguished from general flows carrying a cocycle
by boundedness conditions on these integrals.

1. Introduction

In the 80’s, S. P. Novikov [No1, No2] considered Morse type inequalities relating
the zeros of a closed Morse 1-form ω to the topology of the underlying space X.

Let p be a zero point of a closed 1-form ω, then near p, one has ω = dfp, where
fp is unique up to a constant. The Morse index of ω at p is defined as the Morse
index of fp at p. p is said to be non-degenerate if fp is non-degenerate at p. ω
is called a closed Morse 1-form if each zero point p of ω is non-degenerate. Let
Si(ω) be the set of the zero points of ω with index i. Define

ci := #Si(ω)

Then the Morse type inequalities are

ci ≥bi([ω])
i∑

j=0

(−1)i−jcj ≥
i∑

j=0

(−1)i−jbj([ω])(1.1)

Received March 26, 2005.
The first author is partially supported by Research Fund for Returned Overseas Chinese Scholars
20010107 and the Partner Group of the Max-Planck-Institute for Mathematics in the Sciences
in Leipzig at the Chinese Academy of Sciences.



940 Huijun Fan and Jürgen Jost

for i = 0, 1 · · · ,m. Here the Novikov numbers bi([ω]) are determined only by X
and the cohomology class [ω]. These Morse type inequalities involving Novikov
numbers are called Novikov inequalities.

Novikov inequalities were obtained by constructing the Novikov complex (C∗, ∂)
with respect to the closed Morse 1-form ω. If [ω] is an integral cohomology class,
then each Ci is a free Z((t))-module generated by the set of all the zeros of ω with
index i. Here Z((t)) := Z[[t]][t−1] is the Novikov ring. For the detailed construc-
tion of the boundary operators and some of their properties, see the discussion
in [BF], [Pa], [Ra] and the references there.

M. Farber and A.A. Ranicki [FR] have used a noncommutative localization
method to construct a universal complex for a rank 1 Morse closed 1-form. Sub-
sequently, M. Farber [Fa2] applied the method to the general case, which can
induce many kinds of Novikov complexes. In a series of papers [Fo1, Fo2, Fo3],
R. Forman developed the discrete Morse theory and Novikov theory in a combina-
torial category. Those Novikov-Morse inequalities are proved also by constructing
certain combinatory Morse(Novikov) complexes, e.g., using the Witten deforma-
tion technique. In order to use the techniques from the smooth category, he
introduced combinatorial vector fields and differential forms.

Novikov theory for closed 1-forms is very important, since many functionals,
such as the symplectic action functional, the Chern-Simons functional and many
Hamiltonian systems from electromagnetism and fluid mechanics are multi-valued
functionals. Though these are multi-valued functionals in infinite dimensional
spaces, people hope that the Novikov theory in finite dimension can provide a
model for the infinite dimensional case, and that it can provide a strong topolog-
ical method to find the critical points of the multi-valued functionals.

Though Novikov theory for closed 1-forms has been studied for many years,
the various proofs of Novikov inequalities were all based on constructing various
(analytic or topological )Novikov complexes. Hence the closed 1-form needs some
non-degeneracy assumptions. One could not handle the case if the closed 1-form
ω has general degenerate zero points ( zero locus). On the other hand, the
behavior of the dynamical systems generated by a closed 1-form has not been
carefully studied. For instance, the previous research was limited to the smooth
category. Though there should be an analogue in the continuous category (i.e.,
for continuous dynamical systems), if so, then comes the natural question, what
is the relation between this analogue and the well-known gradient-like dynamical
systems?

In [FJ2], we introduced a concept of “flow carrying a cocycle α (α-flow and gen-
eralized α-flow)”, where α is a 1-dimensional cocycle in the bounded Alexander-
Spanier cohomology (see i.e., [Sp]). This is the analogue of the flow generated by
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a closed 1-form. Actually, as shown in [FJ2], (generalized) α-flows characterize
most important dynamical systems, in particular the following:

• The gradient flow of a Morse function f is a df -flow.
• The gradient flow of a closed Morse 1-form ω is an ω-flow and certain

perturbation flows are also ω-flows.
• If an α-flow has no fixed point, then this flow is a flow “carrying a coho-

mology class” as introduced in [Ch].
• An α-Morse-Smale flow as defined in [FJ2] which is a generalization of

the famous Morse-Smale flow; the generalization here essentially consists
in allowing the existence of ”cycles”

• If α is a coboundary, then this flow is a gradient-like flow. Conversely, if a
flow is a gradient-like flow ,then this flow carries a coboundary δg where
g is a Lyapunov function.

A flow carrying a cocycle α has a π-Morse decomposition (Theorem 3.4.4 in
[FJ2]). If α is an integral cocycle, we can obtain the Novikov-Morse type in-
equalities, Theorem 4.4.1 in [FJ2]. This theorem uses the Conley index to get
the “local” topological information of the isolated invariant sets.

Those inequalities in [FJ2] are a generalization of the Novikov inequalities for
an integral closed Morse 1-form. Starting from these inequalities, we can recover
many Novikov type inequalities found before. For example, we can recover the
Novikov inequalities for an integral closed 1-form ω having Bott type nondegen-
erate zero sets, which was given in [Fa2]. In addition, our theory has some new
features:

• Novikov inequalities now hold in the continuous category (i.e.for (gener-
alized) α-flows).

• New Novikov inequalities (Theorem 4.4.1 in [FJ2]) for a general closed 1-
form without any non-degeneracy requirement (However we have to point
out here that we need some extra regularity assumption to the zero locus
of the closed 1-form in Theorem 4.4.1 in [FJ2], which will be shown in
this paper).

• New Novikov inequalities for α-Morse Smale flows.
• Vanishing of the Novikov numbers bi([α]), if the manifold allows the ex-

istence of a flow carrying a cohomology class α.

However, [FJ2] is mainly focused on the explanation of the flow carrying a
cocycle α, and on the proof of the Novikov-Morse inequalities for this flow under
the assumption that α is an integral cocycle.

This paper is the second one. There are two aims. The first aim is to give
a sufficient and necessary description of the relation between α-flows and the
gradient-like flows. This will be given in section 3. The second aim is to generalize
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the Novikov-Morse inequalities for integral cocycles α to the analogous results for
higher rank cocycles α. This is discussed in sections 4,5. To do this, one should
prove an analogue of Theorem 4.2.1 in [FJ2]. This is a nontrivial generalization,
since the exit set of the lifting flow becomes more complicated when compared
with the integral cocycle case. One should handle carefully the deformation
complex in the corners. As long as we have the analogous theorem, we can easily
generalize those theorems in [FJ2] by following proofs in [FJ2].

In section 2, we recollect some basic definitions and examples of flows carrying
a cocycle α.

Recently, M. Farber [Fa3](2001) also proposed the concept:”Lyapunov one-
form” ω for a pair (Φ, Y ), where Φ is a continuous flow and Y is a closed invariant
set in Φ. Since a flow Φ allowing the existence of a Lyapunov one-form ω is
actually a flow carrying a cocycle ω introduced in [FJ2], our definition seems more
general than his. In [Fa3, Fa4], Farber constructed the corresponding Ljusternik-
Schnirelman theory. In [FKLZ], the authors discussed the existence of ”Lyapunov
one-forms”.

The results presented in this paper were obtained in 2000 and circulated in
preliminary preprint form in [FJ1].

2. Review of flows carrying a cocycle

In [FJ2], we have defined the dynamical systems, flows carrying a cocycle.
In this section we will recollect some facts about such dynamical systems.

Let v be a flow defined on the compact metric space (X, d) with metric d.
We always assume in this paper that A is an isolated invariant set of v hav-
ing finitely many connected components. Denote its connected components by
Ai, i = 1, 2, · · · , n.

Let Ai ⊂ A be a component with an isolating neighborhood Ui, then for any
given closed neighborhood Vi of Ai in Ui, we can define the thickening stable and
unstable sets of Ai in Vi as follows:

A+
i (Vi, r) := {x ∈ Vi|there is a t ≥ 0.s.t.x · [0, t] ⊂ Vi andx · [0, t] ∩ cl(Br(Ai)) 6= ∅}

A−i (Vi, r) := {x ∈ Vi|there is a t ≤ 0.s.t.x · [t, 0] ⊂ Vi andx · [t, 0] ∩ cl(Br(Ai)) 6= ∅}.

The compact set Ai(Vi, r) := A+
i (Vi, r)∪A−i (Vi, r) becomes an isolating neigh-

borhood of Ai, which is called the flow neighborhood of Ai. If r is small enough,
then (A−i (Vi, r), Ai(Vi, r)) forms an index pair for Ai (see [FJ2] for detail). Some-
times we will denote the flow neighborhood Ai(Vi, r) simply by Ai(r) if we don’t
emphasize the neighborhood Vi of Ai.

When restricted to the open space X \∪n
i=1Ai(r), all the connected trajectories

of the flow v can be classified into three types:
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(1) trajectories with domain (a, b),−∞ < a < b < +∞;
(2) trajectories with domain (a,+∞) or (−∞, b),−∞ < a, b < +∞;
(3) (−∞,+∞).

We denote the sets of three type trajectories by ΓA1 (r),ΓA2 (r) and ΓA3 (r), re-
spectively. If Ai is a point pi in X for i = 1, · · · , n, then we denote ΓAγ (r) by
Γγ(r), γ = 1, 2, 3.

In [FJ2], we have defined the continuous 1-cocycle α in bounded Alexander-
Spanier cohomology theory and its integration along a chain (the integration of
1-cocycle along a curve was already defined in [Ch]).

If [α]|A = 0 for a closed set A ⊂ X, then by the continuity of Alexander-Spanier
cohomology theory there is a continuous function β such that α = δβ. Define
Iα(x, y) := β(y)− β(x), for x, y ∈ A. It is obvious that Iα(x, y) depends only on
[α].

Definition 2.1 Let α be a continuous 1-cocycle on the compact metric space
(X, d). The flow v defined on X is said to be a generalized α−flow with respect
to an isolated invariant set A consisting of connected components {An, · · · , A1},
if there exist a small r > 0 and a T0 > 0 such that for some ρ > 0 and 0 ≤ λ < 1,
the following conditions are satisfied:

(1) [α]|Ai = 0, max(x,y)∈Ai(r)×Ai(r) |Iα(x, y)| ≤ λρ, for 1 ≤ i ≤ n.
(2) for any trajectory γ ∈ ΓA1 (r),

∫

γ
α ≥ ρ

(3) if γT0 denotes any sub-trajectory of γ ∈ ΓA2 (r) ∪ ΓA3 (r) with time interval
T0, then ∫

γT0

α ≥ ρ

Remark 2.1 In fact, we can take the constant ρ in condition (3) to be different
from the one in conditions (1) and (2). This broader assumption will not change
any proofs and conclusions in [FJ2]. Since α is a continuous cocycle, the three
conditions in Definition 2.1 also hold for r′ sufficiently close to r.

Definition 2.2 If the set A in the definition of a generalized α-flow v consists
only of points, then v is called an α-flow. If v is an α-flow or generalized α-flow,
we simply call it a flow carrying a cocycle α.

Some interesting and important (generalized) α-flows are given below, more
examples can be found in [FJ2].
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Example 2.1 In classical Novikov theory, the closed Morse 1-forms or the Bott-
type closed 1-form were considered frequently. Now in the present example, we
consider a closed 1-form ω with no Bott-type non-degenerate restriction to its zero
locus A. We only assume that each connected component Ai ⊂ A, i = 1, · · · , n,
is a Lipschitz submanifold. So each Ai has naturally a tubular neighborhood Ui

such that Ai is the deformation retract of Ui.

Let V be the flow generated by the closed 1-form ω and a Riemannian structure.
We want to show that V is a generalized ω-flow w.r.t. its zero locus A.

Firstly we show that any A ∈ A is an isolated invariant set. Let U be a
tubular neighborhood of A and π : U → A be the projection. We want to show
I(U) = A. Let p ∈ I(U), then for any t0, t1, t0 < t1,

∫ t1

t0

|ω(p · t)|2dt =
∫

[p·t0,p·t1]
ω =

∫

[p·t0,π(p·t0)]
ω

+
∫

[π(p·t0),π(p·t1)]
ω +

∫

[π(p·t1),p·t1]
ω

≤ C

We use the facts that the integration of ω is only dependent on the relative ho-
motopy class of [p · t0, p · t1] and the integration

∫
γ w is bounded from above by

a constant depending on the length of the Lipschitz continuous curve γ.
The above inequality implies that there exist sequences t0k → −∞ and t1k →

+∞ such that |ω(p · t0k)| → 0 and |ω(p · t1k)| → 0 as k → ∞. Now the above
formula forces |ω(p · t)| = 0,∀t ∈ R. This proves that p ∈ A.

From the above conclusion, we can take a closed neighborhood Vi of Ai con-
tained in an isolating neighborhood Ui s.t. d(∂Vi, ∂Ui) > r0,minx∈Ui−Vi

|ω(x)| ≥
ε0. Now take the flow neighborhood Ai(r) := Ai(B2r(Ai), r) for small r. Since
any γ ∈ ΓA1 (r) has to go across Ui − Vi for some i, we have

∫

γ
ω =

∫ b

a
|ω(γ(t))|2 dt

≥ min
1≤i≤n

( min
x∈Ui−Vi

|ω(x)| · d(∂Vi, ∂Ui)) ≥ r0ε0

Now if we take r sufficiently small, then (1) and (2) in Definition 2.1 holds.
To prove (3) in Definition 2.1, we fix r and then choose T0 sufficiently large

such that ∀γ ∈ ΓA2 (r) ∪ ΓA3 (r),
∫

γ(T0)
ω =

∫
|ω(γ(t))|2 dt ≥ min

x∈X−Br(Ai)
|ω(x)|2T0.

Therefore we have proved that V is a generalized ω-flow w.r.t. its zero locus.
As a direct corollary, the flow generated by a closed 1-form with Bott-type non-
degenerate zero sets is a generalized ω-flow w.r.t. its zero locus.
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Example 2.2 A flow v on a manifold M is called a Morse-Smale flow (af-
ter [Sm]) if it satisfies:

(1) The chain recurrent set of v consists of a finite number of hyperbolic closed
orbits and hyperbolic fixed points .

(2) The unstable manifold of any closed orbit or fixed point has transversal
intersection with the stable manifold of any closed orbit or fixed point.

Smale [Sm] proved that such flows have “global” gradient-like structures and
have a Morse decomposition which induces the Morse inequalities.

However, in some cases, although the nonwandering set of the flow contains
only the hyperbolic periodic orbits and the hyperbolic fixed points, the flow is not
a Morse-Smale flow because of the existence of “cycles” which consist of some or-
bits “connecting” different invariant sets and form a closed curve. We can give a
definition of such flows when restricted to the category of flows carrying a cocycle.

α-Morse-Smale flow Let v be a generalized α-flow with respect to an iso-
lated invariant set A = {An, · · · , A1}. If A contains only the hyperbolic orbits or
hyperbolic fixed points, then v is called an α-Morse-Smale flow.

Example 3.3.9 in [FJ2] provides concrete α-Morse-Smale flows.

Example 2.3 (Flows carrying a cohomology class) We consider an ex-
treme case namely that A is empty in the definition of an α-flow v. In this case,
the set Γ1(r) ∪ Γ2(r) = ∅ and the only condition that makes v an α-flow is that
there exist constants ρ > 0 and T0 > 0 such that for any trajectory γ(T0) with
time interval T0, we have

∫

γ(T0)
α ≥ ρ

Now the α-flow v becomes a so called “flow carrying a cohomology class” as
introduced by R.C.Churchill [Ch]. The reason that the flow is called “carrying a
cohomology class” is that the above condition is independent of the choice of the
representative in the cohomology class [α]. In fact, if α1 ∈ [α] is another cocycle,
then there exists a coboundary δβ, such that

α1 − α ' δβ

and so
∫

γ(kT0)
α1 =

∫

γ(kT0)
α + β(e(γ(kT0)))− β(s(γ(kT0)))

≥ kρ− 2Mβ
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where s(γ) and e(γ) are the start point and the end point of the trajectory γ,
and Mβ is the bound of β. Hence if we choose k > [2Mβ+ρ

ρ ] + 1, then we have
∫

γ(kT0)
α1 ≥ ρ.

The existence of a flow carrying a cohomology class in a manifold will induce
the vanishing of the Novikov numbers. This result will be given in the last section.

3. α-flows and gradient-like flows

After defining the α-flows, it is natural to find the relation between α-flows and
the well-known gradient-like flows. It seems that an α-flow for α being a non-
trivial cocycle should be a nongradient-like flow. However the following simple
example shows that this is not true.

Example 3.1 Let S1 be the unit circle with the standard metric. Let ϕ1

and ϕ2 be two strictly monotonically increasing functions in the interval [0, π]
satisfying the following conditions

ϕ1(0) = 0, ϕ′1(0) = 0; ϕ1(π) = 3π, ϕ′1(π) = 0

ϕ2(0) = 0, ϕ′2(0) = 0; ϕ2(π) = π, ϕ′2(π) = 0.

Define a C1-smooth circle-valued function

f(x) =
{

eiϕ1(x) 0 ≤ x ≤ π

eiϕ2(2π−x) π ≤ x ≤ 2π.

Consequently, f(x) induces a cocycle α(x, y) := J(f)(x, y) : S1 × S1 → R such
that if y lies in a small neighborhood of x, then∫

[x,y]
α = argf(y)− argf(x).

Here the map J is defined in proposition 3.1.1 of [FJ2]. This cocycle is a nontrivial
cocycle. Since if we let γ be the oriented curve starting from the point θ = 0 and
then going around the circle in the anticlockwise direction, then for any integer
l, we have ∫

lγ
α = 2πl.

Now we consider the gradient-like flow v on S1 that has two fixed points at
θ = 0, π, and flows from the point θ = 0 to the point θ = π. Then it is easy
to check that v carries the cocycle α, if we let r sufficiently small and take the
parameters λ = 1/2, ρ = 1 and Γ2(r) ∪ Γ3(r) = ∅ in the definition 2.1.

Thus, this example demonstrates that a gradient-like flow can carry a nontriv-
ial cocycle.



Conley Index Theory and Novikov-Morse Theory 947

Remark 3.1 It is easy to see that for any x ∈ S1, and t > 0,
∫
[x,x·t] α > 0.

Hence the pull-back form f∗(dθ) is a Lyapunov 1-form for the pair (−v, θ = 0, π),
which is defined in [Fa3, Fa4]. Though the smooth closed 1-form f∗(dθ) is a
nontrivial smooth closed 1-form, −v is a gradient-like flow.

We will give a series of theorems and examples to formulate the relation be-
tween α-flows and gradient-like flows. The following theorem is already given in
[FJ2].

Theorem 3.1 Let v be an α-flow on the compact metric space (X, d). If α
is a trivial cocycle, then v is a gradient-like flow. Conversely, if v is a gradient-
like flow, then v is a δg-flow for some continuous function g.

We will give necessary and sufficient conditions to distinguish α-flows and gradient-
like flows.

In this part we assume that v is a gradient-like flow with finitely many fixed
points {pj ; j = 1, 2, · · · , n}. We can choose an associated Lyapunov function g
and ε0 > 0 such that for small r, there are dist(g(Br(pj)), g(Br(pi))) ≥ ε0 for
i 6= j, and oscBr(x) g(y) ≤ ε0

4 for any x. Firstly we study the local structure of
the gradient-like flow v.

Local structure of gradient-like flows Let p be a fixed point of the gradient-
like flow v. Let 0 < s < r

2 and let B r
2
(p) be a closed ball centered at p with radius

r
2 . Define two sets on the sphere ∂Br(p),

B+
r,s(p) = {x ∈ ∂Br(p)|[x, x · t] ∩ ∂Bs(p) 6= ∅ for some t > 0}

B−
r,s(p) = {x ∈ ∂Br(p)|[x · t, x] ∩ ∂Bs(p) 6= ∅ for some t < 0}

For any point x ∈ B+
r,s(p), let tx denotes the reach time of the trajectory

[x, x · t](t > 0) to the sphere ∂B r
2
(p). We have the following lemma.

Lemma 3.1 There exists a r0 > 0, such that ∀r ∈ (0, r0) the following hold:
(1) B±

r,s(p) are closed sets on ∂Br(p).
(2) tx is a lower semicontinuous function on B+

r,s(p).

Proof. B±
r,s(p) are actually the boundaries of the flow neighborhoods A±(Br, s)

defined at the beginning of section 2 (or see [FJ2] for detail). Hence they are
closed if s is small enough. Here we prove that it is true for s < r/2.

To prove (1), we need only to prove that the set ∂Br(p) − B+
r,s(p) is open in

∂Br(p). Since any x ∈ ∂Br(p)−B+
r,s(p) will finally drop into another fixed point
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q, by the choice of g(x), we can choose a < b satisfying for smaller r

(3.1) Br(p) ⊂ g−1([b, +∞]); Br(q) ⊂ g−1((−∞, a])

Since x · t(t > 0) drops into q, there exists a Tx > 0 such that x · Tx is in
the interior of Br(q). Therefore there is a closed ball Dδ(x) such that for any
y ∈ Dδ(x)∩∂Br(p), y ·Tx is in the interior of Br(q). We can choose δ small enough
such that the set Dδ(x) · [0, Tx] ∩ ∂Bs(p) = ∅. Since y · Tx ∈ g−1((−∞, a]), y ·
[Tx,+∞) ∈ g−1((−∞, a]). Therefore Dδ(x) · [0,+∞] ∩ ∂Bs(p) = ∅ in view of
(3.1). This shows that ∂Br(p)−B+

r,s(p) is open in ∂Br(p).

To prove (2), let x ∈ B+
r,s(p) and let tx < +∞ be the arrival time. We need

only to prove that for any small ε > 0, there exists a neighborhood Dδ(x) of x
such that for any y ∈ Dδ(x) ∩B+

r,s(p),

(3.2) ty ≥ tx − ε

Since tx is the arrival time of the trajectory x · t(t > 0) to ∂B r
2
(p), x · [0, tx − ε]

has a positive distance to ∂B r
2
(p). By the continuity of the flow v, there is a

neighborhood Dx such that D̄x · [0, tx − ε] has a positive distance to ∂B r
2
(p) as

well. Hence for y ∈ Dx ∩B+
r,s(p), (3.2) is true. ¤

Since the Lyapunov function g(x) is strictly decreased along any nonconstant
trajectory, there exists a δx > 0 such that g(x) − g(x · tx) = 2δx. By lemma
3.1, (2) and the property of g(x), the function g(y) − g(y · ty) is lower semicon-
tinuous with respect to y on B+

r,s(p). Hence δ+
r,s(p) := minx∈B+

r,s(p) δx is positive
and ∀x ∈ B+

r,s(p), g(x) − g(x · tx) > δ+
r,s(p). In the same way, we can obtain a

δ−r,s(p) > 0 such that ∀x ∈ B−
r,s(p), there is g(x · (−tx))− g(x) > δ−r,s(p).

Let 0 < s1 < s2 < r
2 , then we have the following conclusions:

(1) B+
r,s1

(p) ⊂ B+
r,s2

(p);B−
r,s1

(p) ⊂ B−
r,s2

(p)

(2) δ±r,s2
(p) ≤ δ±r,s1

(p)

(3) There exists s0 > 0, such that for any 0 < s < s0, B+
r,s(p) ∩B−

r,s(p) = ∅
The first two conclusions are obvious. For (3), we can choose s0 > 0 satisfying
oscx∈Bs0 (p) g(x) < min δ±r,s0

(p). If there is a s ∈ (0, s0) such that B+
r,s(p)∩B−

r,s(p) 6=
∅, then this means that there is a trajectory in B̄r(p) which has non empty in-
tersection with ∂Br(p) and ∂Bs(p). But this is absurd, because g(x) is strictly
decreacing along any trajectory. After travelling from ∂Bs(p) to ∂Br(p), then
back to ∂Bs(p), the value of g(x) will decrease at least δ+

r,s(p) + δ−r,s(p) which
contradicts the fact that oscx∈Bs(p) g(x) ≤ oscx∈Bs0 (p) g(x) < min δ±r,s(p). Hence
for 0 < s < s0, (3) holds.
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Integration of cocycles in a gradient-like flow Let α be a cocycle on
X. Then for sufficiently small r, there is an associated r-covering U(r)(covering
consisting of radius r-balls) such that when restricted to the closure of each open
ball in U(r), α is a coboundary δβ, where β is a bounded function.

Define δ0(r) = min1≤j≤n δ±r, r
4
(pj). Since g(x) is uniformly continuous, there

exists s0 ≤ r
4 satisfying oscBs0 (x) g(y) < 1

3δ0(r) for any x ∈ X. By our choice and
in view of the analysis of the local structure of gradient-like flows, it is easy to
see that the following inequality holds:

(3.3) 3 max
x

oscy∈Bs0 (x) g(y) < δ0(r) < δ±r, r
4
(pj) ≤ δ±r,s0

(pj)

for j = 1, 2, · · · , n.

Theorem 3.2 Let v be a gradient-like flow with finitely many fixed points.
α is a cocycle with an associated r-covering. Let U(s) be an s-covering with
s < s0 < r

4 for some s0 satisfying (3.3). Then there exist M > 0 and T (s0) > 0
depending on r, n, α but not on s such that for any (U(s), T (s0))-chain γ̃, we have

(3.4)
∣∣∣
∫

γ̃
α
∣∣∣ ≤ M

Recall that a (U(s), T )-chain from x to x′ is a sequence {x = x1, · · · , xn+1 =
x′|t1, · · · , tn} such that ti ≥ T and each pair (xi · ti, xi+1)(i = 1, · · · , n) belongs
to a ball with radius s in the covering U .

Proof Firstly we will prove that given any s ≤ r, for any trajectory γ ∈ Γ1(s)
with domain [a, b], there exists a constant T (s) satisfying b− a ≤ T (s).

Let x ∈ ∂Bs(pj), then either the trajectory x · t or x · (−t) for t ≥ 0 will flow
into some different fixed point of v. (There does not exist any trajectory joining
one point to itself.) Without loss of generality, we assume that (x · t)(t ≥ 0)
flows into the point pk for k 6= j. (It is possible that the trajectory may pass
through some ball Bs(pl), but this does not influence the result below.) Hence
there exists a Tx > 0 such that x · Tx ∩ B s

2
(pk) 6= ∅. By the continuity of the

flow, there exists a small closed ball Dsx(x) which satisfies that for any point
y ∈ Dsx(x) ∩ ∂Bs(pj), the trajectory [y, y · Tx] ∩ ∂Bs(pk) 6= ∅. This shows that
for any trajectories starting from Dsx(x) ∩ ∂Bs(pj) their time intervals are not
greater than Tx. Covering the sphere ∂Bs(pj) by finitely such small closed balls,
then it is easy to see that any trajectory in Γ1(s) starting from ∂Bs(pj) has time
interval not greater than a constant Tj(s). Let T (s) = max1≤j≤n Tj(s), then all
the trajectories in Γ1(s) have time interval not greater than T (s).

Let γ = {x0, y0, x1, y1, · · · , xk−1, yk−1, xk|t0, τ0, · · · , tk−1, τk−1} be a chain. It
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B r( Plj)

xj

xj tj

yj

Bs(mj )

yj τ j

B r(

(r, s  )−chain0

Plj+1)

is called an (r, s0)-chain if it satisfies the following conditions:

(1): xj ∈ ∂Br(plj ) for j = 0, 1, · · · , k − 1 and xk ∈ Br(plk);
(2): yj · τj ∈ ∂Br(plj+1

) for j = 0, 1, · · · , k − 1;
(3): the point pair (xj · tj , yj) ∈ Bs(mj), for j = 0, 1, · · · , k−1, where those

Bs(mj)′s are elements in the s-covering U(s) of X.
(4): Bs(plj ), j = 0, 1, · · · , k − 1 are k different balls, hence k ≤ n.
(5): tj , τj ≤ T (s0), where T (s0) is an upper bound for the time interval of

all the trajectories in Γ1(s0).

Now compute the integral of α along a (r, s0)-chain γ.

(3.5)

∣∣∣
∫

γ̄
α
∣∣∣ ≤

k−1∑

j=0

∣∣∣
∫

[xj ,xj ·tj ]
α
∣∣∣ +

k−1∑

j=0

∣∣∣
∫

[yj ,yj ·τj ]
α
∣∣∣

+
k−1∑

j=0

∣∣∣
∫

[xj ·tj ,yj ]
α
∣∣∣ +

k−1∑

j=0

oscx∈Br(plj+1
) βplj+1

= I + II + III + IV

Since 0 < tj , τj ≤ T (s0), applying corollary 3.2.3 in [FJ2],

I + II ≤ 2kC1

where C1 is a constant depending only on max |v̇(t)|, α and r.
Connect the point pair (xj · tj , yj) with a line segment, then its length is at

most 2s. Using proposition 3.2.2 in [FJ2], we have

III ≤ kC2
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(1) (5)

B r( Pi0)

x0
x0’ B s(Pi0

)

Here C2 depends only on s0, α and r.
For IV ,

IV ≤ 2kMα(r)
Combining the above estimates, we have

(3.6) |
∫

γ̄
α| ≤ kC ≤ nC

where C depends on r, s0, α and max |v̇(t)|.
Now the proof of the proposition is changed to the problem to reduce each

(U(s), T (s0))-chain to an (r, s0)-chain, while keeping the integral of α invariant.
Let γ̃ = {x0, x1, · · · , xk|t0, · · · , tk−1} be a (U(s), T (s0))-chain. Consider the

following cases.
(1) If the chain γ̃ is contained in a ball B̄r(pi0) for 0 ≤ i0 ≤ n, then

|
∫

γ̃
α| = |βpi0

(xk)− βpi0
(x0)|

≤ oscx∈Br(pi0
) βpio

(x) ≤ 2Mα(r)

(2) There is k0, 1 ≤ k0 ≤ k such that the subchain γ̃0k0 = {x0, x1, · · · , xk0 |t0, · · · ,
tk0−1} is contained in Br(pi0) but [xk0 , xk0 · tk0 ] does not intersect ∪n

j 6=i0
B̄r(pj).

Hence there is a first intersection point x̄0 of [xk0 , xk0 · tk0 ] with ∂Br(pi0). Let
t̄0 satisfy x̄0 · t̄0 = xk0 · tk0 and let ȳ0 = xk0+1. Denote the ball containing the
point pair (x̄0 · t̄0, ȳ0) by Bs(m0). Since tk0 ≥ T (s0) and γ̃0k0 ⊂ Br(pi0), this
implies that xk0 ∈ Bs0(pi0), hence the trajectory [x̄0, x̄0 · t̄0] does not intersect
with Bs0(pi0). Otherwise,[xk0 , xk0 · tk0 ] starts from Bs0(pi0), intersects ∂Br(pi0),
then goes back to Bs0(pi0). This conclusion contradicts (3.3) when we check the
change of the Lyapounov function g(x) along [xk0 , xk0 · tk0 ]. Therefore [x̄0, x̄0 · t̄0]
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B (P 0)ir

B (P 0i )
s0

x0
xk0

xk0
tk0

xk0+1 y
0=

y
0

τ0

B (Pr i )
1

(2)

ΒS0
( Pi0

)

xk0−1

x
k0

x
0

ΒS0
(Pi1

)

(3)

is part of a trajectory in Γ1(s0), and we have t̄0 ≤ T (s0). Since x̄0 · t̄0 = xk0 · tk0

is not in B̄r(pi0), by the choice of s, we know that ȳ0 := xk0+1 /∈ Bs0(pi0). Hence
ȳ0 · tk0+1 meets firstly Bs0(pl1) for some fixed point pl1 . Let ȳ0 · τ̄0 be the last
intersection point of [ȳ0, ȳ0 · tk0+1] with ∂Br(pi1). In the same way, we can prove
that τ̄0 ≤ T (s0). Joining x0 and x̄0 by a curve lx0x̄0 , then the subchain γ̃0k0 is
reduced to a curve lx0x̄0 combined with a chain {x̄0, ȳ0|t̄0, τ̄0} and it is clear that
the reduction keeps the integral of α invariant.

(3) There is a k0, 2 ≤ k0 ≤ k such that the subchain γ̃0,k0−1 = {x0, x1, · · · , xk0−1|t0,
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B r( Pi0 ) B r( Pi1)

xk0

x0 y0
xk0 t k 0=

(4)

t1, · · · , tk0−2} and the trajectory [xk0−1, xk0−1 · tk0−1] is contained in Br(pi0) but
xk0 /∈ Br(pi0). Then we take a point x̄0 ∈ ∂Br(pi0)∩Bs(m0), where Bs(m0) is the
ball containing (xk0−1 · tk0−1, xk0). Since tk0 ≥ T (s0), the trajectory [xk0 , xk0 · tk0 ]
will meet Bs0(pi1). We denote xk0 by ȳ0 and represent the last intersection point
of [xk0 , xk0 ·tk0 ] with ∂Br(pi1) by ȳ0τ̄0 for some τ̄0 > 0. Due to the same argument
as in (2), we know that τ̄0 ≤ T (s0). So γ̃0k0 is reduced to the combination of a
curve lx0x̄0 and a chain {x̄0, ȳ0|0, τ̄0}. It is clear that such inductions also keep
the integral of α invariant. Note that xk0−1 must be in Bs0(pi0).

(4) There is a subchain γ̃0k0 = {x0, x1, · · · , xk0 |t0, · · · , tk0−1} contained in
Br(pi0) and the trajectory [xk0 , xk0 · tk0 ] goes through Bs0(pi1). Let x̄0 = ȳ0 be
the first intersection point of [xk0 , xk0 · tk0 ] with ∂Br(pi0) and let ȳ0 · τ̄0 be the
last intersection point of [xk0 , xk0 · tk0 ] with ∂Br(pi1) before hitting Bs(pi1). Also
we can prove that τ̄0 ≤ T (s0) as in (2) and (3). Then the chain γ̃0k0 followed by
[xk0 , ȳ0 · τ̄0] is reduced to the combination of lx0x̄0 with the chain {x̄0, ȳ0|0, τ̄0},
while the integral of α is invariant under change.

(5) If x0 /∈ ∪n
j=1Br(pj), then [x0, x0 · t0] will firstly meet some Bs(pi0). Let

x′0 = x0 · t′0 be the last intersection point of [x0, x0 · t0] with ∂Br(pi0). In the same
way, we can prove t′0 ≤ T (s0).

Now using the above steps (2)-(5) repeatedly, any (U(s), T (s0))- chain γ̃ =
{x0, x1, · · · , xk|t0, · · · , tk−1} can be reduced to the combination of a curve lx0x̄0 (
or [x0, x0 · t′0] in case (5)) with an (r, s0)-chain γ̄ = {x̄0, ȳ0, · · · , x̄l|t̄0, τ̄0, · · · , τ̄l−1}
if we can prove that (4) in the definition of a (r, s0)-chain holds.

If (4) is not true, then there exists an (r, s0)-cycle γ̄c = {x̄i0 , ȳi0 , · · · , ȳil , x̄i0 |t̄i0 ,
τ̄i0 , · · · , τ̄il} where the point pair (ȳil · τ̄il , x̄i0) ∈ ∂Br(pi0).
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Consider the change of the function g(x) along γ̃c. On one hand, since the two
ends of γ̃c are xi0 and ȳil · τil , by (3.3)

∣∣∣
∫

γ̃c

δg
∣∣∣ ≤ oscx∈Bs0 (pi0

) g(x) <
1
3
δ0(r) <

1
12

ε0,

where ε0 is from the requirement to the Lyapunov function g. On the other hand,
we have∫

γ̃c

δg ≥kε0 − k max
j

oscy∈Br(pj) g(y)− k max
j

oscy∈Bs(mj) g(y) > ε0/2

This is absurd. The contradiction shows that the chain γ̄ we get from a (U(s), T (s0))-
chain γ̃ is indeed an (r, s0)-chain. Let γ̄ = {x̄0, ȳ0, · · · , x̄l|t̄0, τ̄0, · · · , τ̄l−1}. There-
fore applying the estimate (3.6) and the fact that the reduction from γ̃ to γ̄ keeps
the integral of α, we have

∣∣∣
∫

γ̃
α
∣∣∣ =

∣∣∣
∫

γ̄
α
∣∣∣ ≤ C.

where C depends on r, s0, α and max |v̇(t)|. Theorem 3.2 now is proved. ¤

Theorem 3.3 Let v be an α-flow with a nontrivial cocycle α on a compact
metric space (X, d). Assume that the sequence {si} → 0 as i → ∞. If for any
M > 0 and T > 0, there is a i0 ∈ N such that there exists a (U(si), T )-chain γ̃i

for each i ≥ i0 satisfying ∣∣∣∣
∫

γ̃i

α

∣∣∣∣ ≥ M,(3.7)

then v is not a gradient-like flow. Furthermore, if it is Known that for any
M > 0, there is a trajectory γ̃ satisfying (3.7) or there is an oriented cycle γ̃0

consisting of some orbits joining fixed points where the direction is determined by
the forward direction of the flow v such that∣∣∣∣

∫

γ̃
α

∣∣∣∣ ≥ 1,(3.8)

then v is not a gradient-like flow.

Proof. The first conclusion is a direct corollary of Theorem 3.2 and the third
one is obvious. We only consider the second case. It is easy to see that if the
time intervals of the trajectories have an upper bound, then for any cocycles on
X the absolute value of the integral, | ∫γ̃ α| has a uniform bound. Therefore the
trajectory γ̃ with respect to the arbitrary large M has arbitrary large time inter-
val and it is the chain needed for the hypothesis in the first conclusion. ¤

Theorem 3.4 Let v be an α-flow with a nontrivial cocycle α on a compact
metric space (X, d). Assume that the sequence {si} → 0 as i → ∞. If v is not
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a gradient-like flow, then for any M > 0 and T > 0, there is a i0 ∈ N such that
there exists a (U(si), T )-chain γ̃i for each i ≥ i0 satisfying

∣∣∣∣
∫

γ̃i

α

∣∣∣∣ ≥ M.(3.9)

Proof Firstly by the same argument as in the proof of Theorem 3.2, we can
obtain a upper bound T ( r

4) for the time interval of any trajectory γ ∈ Γ1( r
4).

If v is not a gradient-like flow, then there is a non fixed point x0 in the chain
recurrent set of v. Therefore for any si and T > 2T ( r

4) there is a (U(si), T )-chain
γ̃i = {x0, · · · , xk = x0|t0, · · · , tk−1}.

Now we consider two possibilities:
(1). If there exists xi such that for any t0 > 0 xi · t 6∈ ∪n

i=1pi( r
4) for some t > t0,

where pi(r) := Ai(Vi, r) is the flow neighborhood of pi.
There are two cases. The first case is that after time τ , xi · t becomes a flow

line in Γ2( r
4) ∪ Γ3( r

4). Then
∫

[xi,xi·t]
α ≥ [

t− τ

T0
]ρ− C,

where τ, C > 0 are constants. Hence we can take the trajectory [xi, xi · t] as the
required (U(si), T )-chain for T arbitrary large. The second case is that xi · t can
meet infinitely many flow neighborhoods {pi0(r), · · · , pij (r), · · · }, then

∫

[xi,xi·t]
α ≥

l(t)−1∑

k=0

∫

[xi,xi·t]k
α−

l(t)−1∑

k=1

oscx∈plk
(r) βplk

(x),

where l(t) is an integer representing the number of flow neighborhoods that [xi, xi·
t] has met and [xi, xi · t]k ∈ Γ1(r) is a trajectory of [xi, xi · t] between pik(r) and
pik+1

(r). We have ∫

[xi,xi·t]
α ≥ l(t)(1− λ)ρ.

If t is large enough, this integral is larger than any given number. Hence we can
take [xi, xi · t] as the required chain.

(2). For any i, there exists a t0 > 0 such that xi · t ∈ ∪n
i=1pi( r

4) for t > t0.
Consider the homeomorphism ϕT ( r

4
) : X → X which maps x to x · T ( r

4). Let
Bs be any balls in U(s), then by compactness the upper bound of the diameter
of ϕt(Bs),∀t ∈ [0, T ( r

4)], will be less than a uniform constant Cs < r
4 if s is small

enough.

Since [x0, x0 · t0] will meet the first flow neighborhood pi0(
r
4), we can replace

x0 by x0 · t0, since x0 · t0 is also a point in the chain recurrent set of the flow
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v. So we assume that x0 ∈ pi0(
r
4). Now we want to modify the (U(si), T )-

chain γ̃i = {x0, · · · , xk = x0|t0, · · · , tk−1} to another (U(r), T ( r
4))-chain γ′i =

{x′0, · · · , x′k = x′0|t′0, · · · , t′k−1} satisfying that the pair (x′j · t′j , x′j+1) ∈ pij+1(r)
for j = 0, 1, · · · , k − 1. If Bsi(m1) is contained in some pi1(r), then we are done.
Assume that Bsi(m1) is not contained in any pi(r). By the choice of T ( r

4), the
flow line [x1, x1 ·T ( r

4)] will intersect some flow neighborhood pi1(
r
4) at some point

x′1 = x1 · τ1 ∈ B r
4
(pi1). If si is small enough, then (x0 · (t0 + τ1) ∈ B r

2
(pi1)), hence

in pi1(r). Let x′0 = x0, x′1 = x1 ·τ1, t′0 = t0 +τ1 and t′1 = t1−τ1. Hence we get the
modified chain {x′0, x′1, x2, ·, xk|t′0, t′1, t2, · · · }. Now x′1 ∈ pi1(

r
4), we can continue

this operation until we get the modified chain γ′i. So if si is small, we have
∫

γ̃i

α =
∫

γ′i
α ≥

k−1∑

j=0

(
∫

[x′j ,x′j ·t′j ]
− oscx∈pij

(r) βpij
(x)) ≥ k(1− λ)ρ > 0.

Here the first equality is because the integration of a only depends on the relative
cohomology class of the path. So if n is large enough, the integral of α along nγ̃i

will be larger than any given number. Hence (3.9) holds. ¤

In view of Theorem 3.2-3.4, the following corollary is obvious.

Corollary 3.5 Let v be an α-flow on the compact metric space (X, d). If
for any chain γ̃, ∣∣∣∣

∫

γ̃
α

∣∣∣∣ ≤ M

for some M > 0, then v is a gradient-like flow.

Example 3.2 Let v be a flow on S1 which has three fixed points at θ = 0, 2π
3 , 4π

3 ,
and the forward direction of the flow is the anticlockwise direction. It is easy to
see that v carries a nontrivial cocycle and is a non gradient-like flow.

4. An algebraic theorem relative to π-Morse decomposition

In this section, we let X be an m-dimensional compact polyhedron with met-
ric. Let v be a α-flow on X, where α is a nontrivial cocycle with higher rank.

By Theorem 3.4.4 in [FJ2], the flow v has a π-Morse decomposition, where
π is the deck transformation group on the covering space X̄ determined by the
cocycle α. Assume that π is spanned by G+ := {l1, · · · , ls}, where s is the rank
of α. By the proof of Theorem 3.4.3 in [FJ2], we can get s pair cross sections N±

i
that satisfy the relations:

li ·N−
i = N+

i , i = 1, · · · , s.

The union ∪s
i=1(N

+
i ∪ N−

i ) forms the boundary of a fundamental domain X0.
Since X is a compact polyhedron, we can take an m− 1-dimensional polyhedron
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Figure 1. Cell decomposition

approximating the cross sections N−
i for i = 1, · · · , s such that the intersections

N−
α = N−

i1
∩N−

i2
∩ · · ·N−

ir
, α = {i1 · · · , ir} are polyhedra with codimension r. So

without loss of generality, we can assume the cross sections N±
i and their inter-

sections are polyhedra. For convenience, we denote N−
i = Ni.

Cell decomposition of the fundamental domain We can retract N+
i a

small distance ε into the inner part of the fundamental domain to get a home-
omorphic codimension 1 polyhedron (see Figure 1. for s = 2 case). We denote
the obtained polyhedron as Ri. Let ij,+ : Rj → X0, j = 1, · · · , s be the inclusion
and ij,− : Rj → Nj be the homeomorphism.

Let Is = (0, 1) be the 1-dimensional cell in the s − th direction. Firstly
we delete R1 × εI1 and get a polyhedron N0,1. Denote X0,1 = N0,1/N

+
1 . We

call G1 = (X0,1, N0,1, R1, i1,±) to be the first gluing data. Assume after r-th
excision, one has the gluing data Gr = (X0,r, N0,r, R1, · · · , Rr, i1,±, · · · , ir,±).
Now deleting Rr+1 × εIr+1 from N0,r, we get the polyhedron N0,r+1. Define
X0,r+1 = N0,r+1 − ∪r+1

i=1 N+
i . Hence after r + 1-th excision, one has the glu-

ing data Gr+1. Continue this process until we get the s-th gluing data Gs =
(X0,s, N0,s, R1, · · · , Rs, i1,±, · · · , is,±). Gi is called the i-th gluing data because
starting from these data, one can reconstruct and give a compatible cell de-
composition to the fundamental domain X0 through i times inverse attaching
operations.

Now we want to construct a compatible regular cell decomposition of X0.
Firstly we chose an arbitrary cell decomposition of ∪s

i=1(R
◦
i ∩X0,s), where R◦

i is
the interior part of Ri. Then the homeomorphisms ij,−, j = 1, · · · , s provide a
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cell decomposition of the other half part of the boundary of X0,s. In the interior
of X0,s, we choose an arbitrary compatible regular cell decomposition. Then we
get a cell decomposition of X0,s. Now the action of the group provides a cell
decomposition of N0,s. At this moment, we can use our gluing data to add the
cylindrical cells to N0,s. We add firstly the cell e× εIs for e ∈ Rs ∩N0,s to N0,s

by the inclusion map is,+ and by identifying the end e× ε{1} to ls · is,−(e). So we
obtain a cell decomposition of N0,s−1 with the gluing data Gs−1. Continuing this
process, we can obtain a compatible regular cell decomposition (i.e., each closed
sets appeared here are all cell subcomplexes) of X0.

Since N0,s is a cell complex, we can choose arbitrary orientation of a cell
e ∈ Cq(N0,s). Hence fixing the incidence coefficients appearing in the boundary
operator of the cell chain complex. For the orientation of the cylindrical cells
e× Ii1 × · · · Iik , we choose the natural orientation, i.e., the order i1 < i2 · · · < ik
defines the positive orientation. The orientation of the product cell e×Ii1×· · · Iik

is uniquely determined by the orientation of the factor cells. So the incidence co-
efficients of the boundary operator of C∗(X0) are uniquely determined.

Deformation of cell chain complexes Let α ∈ Cq(X0), then there is a
unique decomposition

α = (−1)q−1(i1,+)∗(α1)× εI1 + α′1.

Define β1(α) = α1, β′1(α) = α′1 and θ1(α1) = (−1)q−1(i1,+)∗(α1)× εI1. We have
the relation

(θ1, 1)
(

β1

β′1

)
= Id.

Similarly, for α ∈ Cq(N0,k−1) we have the decomposition

α = (−1)q−1(ik,+)∗(αk)× εIk + α′k.

Let βk(α) := αk ∈ Cq−1(Rk − ∪k−1
i=1 Ri × Ii) , β′k(α) := α′k ∈ Cq(N0,k) and

θk(αk) := (−1)q−1(ik,+)∗(αk)× εIk. We have the equalities

(4.1) (θk, 1)
(

βk

β′k

)
= Id, i = 2, · · · , s

Lemma 4.1 θk, βk, β
′
k are maps satisfying the following equalities:

(1) dN0,k−1
◦ θk + θk ◦ dRk

= lk · (ik,−)∗ − (ik,+)∗
(2) βk ◦ dN0,k−1

+ dRk
◦ βk = 0

(3) β′k ◦ dN0,k−1
− dN0,k

◦ β′k = (lk · (ik,−)∗ − (ik,+)∗) ◦ βk

The above relations can also be written in matrix form:
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(4)

dN0,k−1
◦ (θk, 1) = (θk, 1)

(−dRk
0

fk dN0,k

)

(5) (
βk

β′k

)
◦ dN0,k−1

=
(−dRk

0
fk dN0,k

)(
βk

β′k

)

Here fk := lk · (ik,−)∗ − (ik,+)∗.

Proof

(1) Let α ∈ Cq−1(Rk − ∪k−1
i=1 Ri × Ii), then

dN0,k−1
◦ θk(α) = dN0,k−1

((−1)q−1(ik,+)∗(α)× εIk)

= (−1)q−1(ik,+)∗(dRk
α)× εIk + (lk · (ik,−)∗ − (ik,+)∗)(α)

= −θk ◦ dRk
α + (lk · (ik,−)∗ − (ik,+)∗)(α)

(2) Assume α ∈ Cq−1(N0,k−1) has the form

α = (−)q−2(ik,+)∗(e1)× εIk + e2,

where e1 ∈ Cq−2(Rk − ∪k−1
i=1 Ri × εIi) and e2 ∈ Cq−1(N0,k). Then

dN0,k−1
α = (−)q−2(ik,+)∗(dRk

e1)× εIk + (lk · (ik,−)∗ − (ik,+)∗)(e1) + dN0,k
e2,

hence
βk ◦ dN0,k−1

α = −dRk
◦ βk(α),

and

β′k ◦ dN0,k−1
α = (lk · (ik,−)∗ − (ik,+)∗) ◦ βk(α) + dN0,k

◦ β′k(α)

¤

Lemma 4.2 Let fk := lk · (ik,−)∗ − (ik,+)∗, k = 1, · · · , s be the chain map
from C∗−1(Rk − ∪k−1

i=1 Ri × Ii) to C∗−1(N0,k). Then (θk, 1) is a chain isomor-
phism from the cone con(fk) := (C∗−1(Rk − ∪k−1

i=1 Ri × Ii) ⊕ C∗−1(N0,k), dk
c ) to

(C∗(N0,k−1), dN0,k−1
), where the differential of the algebraic cone is

dk
c :=

(−dRk
0

fk dN0,k

)

Proof. By equalities (4) and (5) of Lemma 4.1, (θk, 1) and
(

βk

β′k

)
are chain

maps with respect to corresponding cellular chain complexes. Furthermore, we
have

(θk, 1)
(

βk

β′k

)
= Id
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and (
βk

β′k

)
(θk, 1) =

(
1 0
0 1

)
.

Therefore (θk, 1) is a chain isomorphism. ¤

Lemma 4.3 Let

Dk
q = Cq−1(R1)⊕ Cq−1(R2 − (i1,+)(R1)× εI1)⊕ · · ·
⊕Cq−1(Rk − ∪k−1

j=1(ij,+)(Rj)× εIj)⊗ Cq(N0,k)

(4.2) dc,k =




−dR1 · · · 0 0 0
...

. . .
...

...
...

fk
k−1,1 · · · −dRk−1

0 0
fk

k,1 · · · fk
k,k−1 −dRk

0
fk ′

k,1 · · · fk ′
k,k−1 fk ′

k,k dN0,k




Here
fk

m,n = βm ◦ β′m−1 · · ·β′n+1 ◦ fn,

for 1 ≤ n < m ≤ k;
fk ′

k,n = β′k ◦ β′k−1 · · ·β′n+1 ◦ fn,

for 1 ≤ n ≤ k − 1; and
fk ′

k,k = fk.

Then (Dk∗ , dc,k) is a chain complex.

Proof. We prove dc,k ◦ dc,k = 0 by using induction for k. If k = 1, then
D1∗ = C∗−1(R1)⊕ C∗(N0,1) and

dc,1 =
(−dR1 0

f1 dN0,1

)
.

It is obviously a chain complex. Assume that (Dk∗ , dc,k) is a chain complex, we
want to show that (Dk+1∗ , dc,k+1) is a chain complex. Notice that for 1 ≤ n <
m ≤ k, we have

fk+1
m,n = fk

m,n.

Therefore dc,k and dc,k+1 can be expressed by block matrices:

dc,k =
(

d̃k 0
f̃k dN0,k

)

and

dc,k+1 =




d̃k 0 0
βk+1 · f̃k −dRk+1

0
β′k+1 · f̃k fk+1 dN0,k+1



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According to the assumption, we have the relations:

d̃k ◦ d̃k = 0,

and

f̃kd̃k + dN0,k
f̃k = 0.

Let βk+1 and β′k+1 act on the above equality and using the formulas (2) and (3)
in Lemma 4.1, we obtain

βk+1 · f̃k · d̃k − dRk+1
· βk+1 · f̃k = 0,

and

β′k+1 · f̃k · d̃k + dN0,k+1
· β′k+1 · f̃k + fk+1 · βk+1f̃k = 0.

combining the above two relations, the fact that d̃k ◦ d̃k = 0 and Lemma 4.2, we
can deduce dc,k+1 · dc,k+1 = 0. ¤

Lemma 4.4 ∀k = 1, · · · , s, the cellular chain complex (Dk∗ , dc,k) is chain iso-
morphic to (C∗(X0), dX0).

Proof. Firstly we will show the following map



1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 θk+1 1




(k+1)×(k+2)

: Cq−1(R1)⊕ Cq−1(R2 − (i1,+)(R1)× εI1)⊕ · · ·

⊕ Cq−1(Rk+1 − ∪k
j=1(ij,+)× εIj)⊗ Cq(N0,k+1) →

Cq−1(R1)⊕ Cq−1(R2 − (i1,+)(R1)× εI1)⊕ · · · ⊕ Cq−1(Rk − ∪k−1
j=1(ij,+)

×εIj)⊗ Cq(N0,k)

is a chain map, i.e., it should satisfy the commutation relation:



1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 θk+1 1


 ◦ dc,k+1 = dc,k ◦




1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 θk+1 1


 .

This is equivalent to the following equality:
(

d̃k 0 0
θk+1βk+1f̃k + β′k+1 · f̃k −θk+1dRk+1

+ fk+1 dN0,k+1

)
=

(
d̃k 0 0
f̃k dN0,k

θk+1 dN0,k

)
,
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where f̃k, d̃k are defined in Lemma 4.3. Now this is true by Lemma 4.1 and the
fact dN0,k

|N0,k+1
= dN0,k+1

. Thus we proved
(

Id 0 0
0 θk+1 1

)

is a chain map. It is also an isomorphism, since it has an inverse chain map:


Id 0
0 βk+1

0 β′k+1


 .

Therefore we proved (Dk+1∗ , dc,k+1) is chain isomorphic to (Dk∗ , dc,k) for any
k = 1, · · · , s. Note the k = 1 case was already proved in Proposition 4.1.1 in
[FJ2]. ¤

Define π+ as the monoid constructed by (G+, e) with the group action from
π. Let ρe : π1(X) → π be the extension of π by the normal group π1(X̄). Since
π+ is a monoid in π, the set ρ−1

e (π+) is also a monoid of π1(X). We denote
ρ−1

e (π+) by π1(X)+. Zπ1(X)+ is a subring of Zπ1(X).

Tensor (Dk∗ , dc,k) with the ring Zπ1(X)+, then we have the Zπ1(X)+-module
chain complex (Zπ1(X)+ ⊗Dk∗ , I ⊗ dc,k).

On the other hand, we can lift the related quantities (subcomplexes, or maps)
to the universal covering space X̃ such that they become π1(X)+-equivariant.
For instance, we can lift the m− 1-dimensional polyhedra ∪g∈π+g ·Ri to X̃ such
that the obtained polyhedra R̃i is π1(X)+-equivariant. If F is a map (βk, β

′
k, fk,

etc.), then the action of the lifted map F̃ is defined as: F̃ (g · e) = g · F̃ (e). Thus
we can get a Zπ1(X)+-module cellular chain complexes (D̃k∗ , d̃c,k), where

D̃k
q := Cq−1(R̃1)⊕ Cq−1(R̃2 − (̃i1,+)(R̃1)× εI1)⊕ · · ·

⊕Cq−1(R̃k − ∪k−1
j=1 (̃ij,+)× εIj)⊕ Cq(Ñ0,k)

and d̃c,k is defined by the same form of the matrix (4.2), and the difference is
that the entries of (4.2) are replaced by their lifting homomorphisms.

It is easy to see that the two Zπ1(X)+-module chain complexes (Zπ1(X)+ ⊗
Dk∗ , I ⊗ dc,k) and (D̃k∗ , d̃c,k) are chain equivalent.

Let X̃+ = ∪g∈π1(X)+g·X̃0. By Lemma 4.4, it is obvious that the following holds.

Proposition 4.5 The two Zπ1(X)+-module chain complexes (C∗(X̃+), dX̃+
) and

(D̃s∗, d̃c,s) are chain equivalent.

Monodromy representations and Novikov numbers In this part, we will
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generalize the crucial theorem, Theorem 4.2.1 in [FJ2] for an integral cocycle α
to a higher rank cocycle α. To get such a theorem, one needs also to study the
monodromy representation and the evaluation representation as in [FJ2].

Since π is a commutative group with rank s, we obtain a group homomorphism

ρπ1 : π1(X)
ρe−→ π

ρA−→ Zs.

Here ρA(la1
1 · · · las

s ) := (a1, · · · , as). Thus we have a ring homomorphism

ρπ1 : Z[π1(X)] −→ Z[Zs].

This ring homomorphism can induce another ring homomorphism

ρq : Z[π1(X)] → Qs = Z[ti, t−1
i ; i = 1, 2, · · · , s]

defined as, for g =
∑

zj(l
aj1
1 · lajs

s ) ∈ Z[π],

ρq(g) =
∑

zjt
aj1
1 · · · tajs

s .

In fact, ρq is fully determined by the group π and its representation. Restricting
ρq to the subring Z[π1(X)+], we can get a ring homomorphism

ρP = ρq|Z[π1(X)+] : Z[π1(X)+] −→ Ps = Z[t1, · · · , ts]

Let Ẽ be a local system of free abelian groups on the compact polyhedron X,
then Ẽ is determined by its monodromy representation ρẼ :

ρẼ : π1(X, x0) −→ Aut(Ẽ0) = GL(k,Z)

where Ẽ0 is the fibre of the free abelian group at x0 and k = rank(Ẽ0). Let
E = Ẽ ⊗ C, then E is a complex flat vector bundle with the holonomy ρE

ρE : π1(X, x0) −→ GL(k;Z)⊗ C
Now the tensor product of the representations ρq ⊗ ρẼ gives a representation

of a Z[π1(X)]-ring to the linear space (Qs)k, where Qs is the polynomial space
with s variables over Z.

Since ρẼ is an anti-homomorphism, i.e., ∀g, g′ ∈ Z[π1(X)], ρE(g · g′) = ρE(g′) ·
ρE(g), hence ρP ⊗ ρẼ gives a right Z[π1(X)]+-module structure on P k

s . With the
Ps-module structure of itself, P k

s becomes a (Ps,Z[π1(X)+])-bimodule.
Define D∗ = P k

s ⊗Z[π1(X)]+ C∗(X̃+), then D∗ is a Ps-module chain complex.

Evaluation representations Take any complex s-vector a = (a1, · · · , as) ∈
Cs. The complex number field C can be given a Ps-module structure, whose mod-
ule structure is provided by the action: for a polynomial P (t1, · · · , ts), P (t1, · · · , ts)·
x = P (a1, · · · , as) · x = P (a) · x for x ∈ C. We denote the Ps-module of C evalu-
ated at t = a by Ca. Similarly for any a ∈ (C∗)s, C can be viewed as a Qs-module.
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If p is a prime number, then the field Zp also has a Ps-module structure which
is given by the evaluation at t = 0. We consider the complexes Ca ⊗Ps D∗ and
Zp⊗Ps D∗. The following theorem is the generalization of Theorem 4.2.1 in [FJ2]
for higher rank α.

Theorem 4.6 Assume rankπ = s ≥ 1. Let D∗ = P k
s ⊗Z[π1(X)+] C∗(X̃+) be

defined by the above argument. We have

(1) For any nonzero complex vector a ∈ (C∗)s, the homology H∗(Ca ⊗Ps D∗)
is isomorphic to H∗(X, aα ⊗ E), which is viewed as the homology of the
presheaf aα ⊗ E on X, where the presheaf aα on X is given by the mon-
odromy representation ρP : Z[π1(X)+] → Ps(a) = Z[a1, · · · , as].

(2) Let p be a prime number and let Zp have the Ps-module structure which
is provided by the evaluation at t = (t1, · · · , ts) = 0. Then the homol-
ogy H∗(Zp ⊗Ps D∗) is isomorphic to H∗(X0,s,∪s

j=1(ij,+)(Rj); Zp ⊗ P ∗
π Ẽ),

where Ẽ is a local system on X and P ∗
πE is the pull-back local system on

X0,s by the projection Pπ : X̄ −→ X.

(3) H∗(C0 ⊗Ps D∗) is isomorphic to H∗(X0,s,∪s
j=1(ij,+)(Rj); P ∗

πE).

Proof. Since the proof of (3) is the same as that of (2), we only give the proofs
of (1) and (2).

(1). Since the Z[π1(X)+]-basis of C∗(X̃+) is finite, all the complexes related
to C∗(X̃+) are finitely generated, and hence all the homology groups are finitely
generated.

For a ∈ (C∗)s, we have the isomorphism

Ca ⊗Ps D∗ ∼=Ca ⊗Ps ((Ps)k ⊗Z[π1(X)+] C∗(X̃+))
∼=(Ca ⊗Q(s) (Qs)k)⊗Z[π1(X)] (Z[π1(X)]⊗Z[π1(X)+] C∗(X̃+))
∼=(Ca ⊗Z Zk)⊗Z[π1(X)] C∗(X̃)
∼=Ck ⊗Z[π1(X)] C∗(X̃).

Here the representation of Z[π1(X)] is given by

g −→ ρP (a)(g)⊗ ρE(g).

Hence the homology of Ck ⊗Z[π1(X)] C∗(X̃) is the same as the homology of the
presheaf aπ⊗E on X that corresponds to the flat vector bundle produced by the
above holonomy representation. (1) is proved.
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(2)

Zp ⊗Ps D∗ ∼= Zp ⊗Ps (P k
s ⊗Z[π1(X)+] C∗(X̃+)) ∼= Zk

p ⊗Z[π1(X)+] C∗(X̃+).

Here the representation of Z[π1(X)+] on Zk
p is

(4.3) g −→ ρP (0)(g)⊗ ρE(g).

Since ρP (0)(g) = ρP (0) · ρAρe(g), except in the case that g ∈ Z[π1(X)+] satisfies
ρe(g) = 1, the evaluation representation will make the final representation vanish.
Hence (4.3) becomes

g −→ ρE(g), if ρe(g) = 1

g −→ 0, if ρe(g) 6= 1.

By Proposition 4.5, in order to prove (2), we need to prove that Zk
p ⊗Z[π1(X)+] D̃

s∗
is equivalent to (Zp ⊗ P ∗

π Ẽ)⊗ C∗(X0,s,∪s
j=1(ij,+)(Rj)). Now we have

Zk
p ⊗Z[π1(X)+] D̃s

q = (Zk
p ⊗Z[π1(X)+] Cq−1(R̃1))⊕ · · · (Zk

p ⊗Z[π1(X)+] ⊕Cq(Ñ0,s)).

If we take Ẽ⊗C∗(Rt−∪t−1
j=1(ij,+)(Rj)× εIj , N+) as the complexes with twisted

coefficients Ẽ, then Zk
p⊗Z[π1(X)+]C∗(R̃t−∪t−1

j=1(̃ij,+)(R̃j)×εIj) ∼= Zp⊗(Ẽ⊗C∗(Rt−
∪t−1

j=1(ij,+)(Rj)× εIj , N+)) (Notice that the evaluation map at t = 0 makes the
cell lying in N+ vanishing). Similarly Zk

p ⊗Z[π1(X)+] C∗(Ñ0,t) ∼= Zp ⊗ (P ∗
π Ẽ ⊗

C∗(X0,t)). Therefore

Zk
p ⊗Z[π1(X)+] D̃s

∗ ∼= (Zp ⊗ (Ẽ ⊗ C∗−1(R1, N
+)))⊕ · · · ⊕ (Zp ⊗ (P ∗

π Ẽ ⊗ C∗(X0,s))

Denote this complex by Ds,0
∗ . Its differential becomes

(4.4) ds,0
c =




−dR1 · · · 0 0 0
...

. . .
...

...
...

iss−1,1 · · · −dRs−1 0 0
iss,1 · · · iss,s−1 −dRs 0
is′s,1 · · · is′s,s−1 is′s,s dN0,s




Here
ism,n = −βm ◦ β′m−1 · · ·β′n+1 ◦ in,+,

for 1 ≤ n < m ≤ s,
is′s,n = −β′s ◦ β′s−1 · · ·β′n+1 ◦ in,+,

for 1 ≤ n ≤ s− 1, and
is′s,s = −is,+.

Now for convenience, we assume the coefficient ring is the integer ring.
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Define maps

I1 := (is2,1, · · · , iss,1, i
s′
s,1) : C∗(R1, N

+) →
Ds,1
∗ := C∗−1(R2 − (i1,+)(R1)× εI1, N+)⊕ · · · ⊕ C∗(X0,s),

and

P1 := Ds,1
∗ → D̄s,1

∗ := C∗−1(R2 − (i1,+)(R1)× I1, R1 ∪N+)⊕ · · · ⊕ C∗(X0,s, R1)

to be the quotient map. Let ds,1
c be the matrix obtained from (4.4) by deleting

the first row and the first column. We have ds,1
c ◦ ds,1

c = 0. Hence (Ds,1
∗ , ds,1

c ) is a
chain complex. It induces the quotient chain complex (D̄s,1, d̄s,1

c ). The following
is a short exact sequence.

(4.5) 0 → C∗(R1)
I1−→ Ds,1

∗
P1−→ D̄s,1

∗ → 0

To see this, we have to show the following three points:

(i) P1 ◦ I1 = 0
(ii) kerP1 ⊂ imI1

(iii) I1, P1 are chain maps.

(i) is obvious. Assume P1(α2, · · · , αs, α
′
s) = 0, i.e., ∀j = 2, · · · , s,

αj ∈ R1 ∩Rj − ∪j−1
t=1Rt × εIt −N+

and
α′s ∈ X0,s − ∪s

j=2Rj .

Let

α = −(
s∑

j=2

θj(αj) + α′s).

Then we have I1(α) = (α2, · · · , αs, α
′
s). Hence (ii) is proved. To prove (iii), one

need only to check the commutative diagram:

Cq(R1)
I1−−−−→ Ds,1

qydR1

yds,1
c

Cq−1(R1)
I1−−−−→ Ds,1

q−1

i.e., check the equality:ds,1
c · I1 = I1 · dR1 . This holds in view of the relation

ds,0 · ds,0 = 0. Hence (iii) is proved.

From the short exact sequence (4.5), we obtain the long exact sequence:

· · · → Hq(R1)
I1−→ Hq(Ds,1

∗ ) → Hq(D̄s,1
∗ ) →

→ Hq−1(R1)
I1−→ Hq−1(Ds,1

∗ ) → · · ·(4.6)
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Similarly, from the short exact sequence

0 → C∗(Ds,1
∗ ) → C∗(Ds,0

∗ ) → (C∗−1(R1),−dR1) → 0

we get the long exact sequence

· · · → Hq(R1)
I1−→ Hq(Ds,1

∗ ) → Hq(Ds,0
∗ ) → Hq−1(R1)

I1−→ Hq−1(Ds,1
∗ ) → · · ·

The two long exact sequences yield the following two short exact sequences

0 → Coker(I1 : Hq(R1) → Hq(Ds,1
∗ )) →Hq(D̄s,1

∗ ) →
→Ker(I1 : Hq−1(R1) → Hq−1(Ds,1

∗ )) → 0

and

0 → Coker(I1 : Hq(R1) → Hq(Ds,1
∗ )) →Hq(Ds,0

∗ ) →
→Ker(I1 : Hq−1(R1) → Hq−1(Ds,1

∗ )) → 0

Using the Five-Lemma, we get for any q ≥ 0

Hq(D̄s,1
∗ ) ∼= Hq(Ds,0

∗ ).

Continuing our operation, finally we get

Hq(Ds,0
∗ ) ∼= Hq(D̄s,s

∗ ) = Hq(X0,s,∪s
j=1Rj).

Hence we finally proved the second conclusion of this theorem. ¤

Novikov numbers In Theorem 4.4, we have considered the complex D∗ = P k
s

⊗Z[π1(X)+]C∗(X̃+). In this part, we always let the vector bundle E that appears
in Theorem 4.6 be a trivial line bundle. Then the complex D∗ there has the
form D∗ = Ps ⊗Z[π1(X)+] C∗(X̃+). Since the representation of Z[π1(X)+] in Ps

is completely determined by the cohomology class [α], we denote the homology
group H∗(Ca ⊗Ps D∗) as H∗(X, aα), or in other words, view the homology group
H∗(Ca⊗Ps D∗) as the homology group of the presheaf aα on X which is given by
the monodromy representation ρP : Z[π1(X)+] → Ps = Z[t1, · · · , ts].

The following is essentially given in [No3].

Proposition 4.7 Let X be a compact polyhedron. Define a function for fixed i
to be

a ∈ (C∗)s −→ dimCHi(X, aα),
then it has the following properties:

(1) It is generically constant, more precisely, except on a proper algebraic sub-
variety L in (C∗)s, the dimension dimCHi(X, aα) is constant and this constant
is just the Novikov number bi([α]) we defined above.

(2) For any point â ∈ L,

dimCHi(X, âα) > bi([α])
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Definition bi([α]) := rank(Hi(D∗)) for i = 0, 1, · · · ,m are called the Novikov
numbers.

Remark If s = 1 and X is a closed manifold, then it was proved in [Fa5]
that the Novikov number we defined here is the same as the Novikov number
which is defined as the dimension of the homology group of the Novikov complex.

5. Novikov-Morse type inequalities for higher rank α

Theorem 4.6 is crucial in the proof of Novikov-Morse type inequalities. As
long as we obtain theorem 4.6 for flows carrying a higher rank cocycle α, we
can follow the same line as in the proof in [FJ2] to get the expected analogous
inequalities. We omit the similar proof as in section 4.4 and 4.5 of [FJ2], and
only list the results.

Ideals Let Ps = Z[t1, · · · , ts] be the polynomial ring with s variables over
the integers Z. Let 〈t1, · · · , ts〉 be the ideal generated by t1, · · · , ts. Define
I = {t ∈ Cs ; 1 + 〈t1, · · · , ts〉 = 0}. Let a ∈ (C∗)s be not in I. Define Ia to
be the prime ideal in the polynomial ring Ps consisting of the polynomials van-
ishing at a. By the choice of a, the free terms of all the polynomials f(t) ∈ Ia

are divisible by some prime number p. Therefore we obtain

Ia ⊂ Ip = 〈p〉+ 〈t1, · · · , ts〉

Theorem 5.1 Let X be a compact polyhedron with a metric d. Let α be an
continuous cocycle and v be a generalized α-flow w.r.t. an isolated invariant
set A = {A1, · · · , An}. Let Ẽ be a local system of free abelian groups and let
E = C ⊗ Ẽ. If a ∈ C∗ and a 6∈ I = 1 + 〈t1, · · · , ts〉 ⊂ Ps, then there is a prime
number p relative to a such that

∑

Ai∈A
p(h(Ai); t,Zp ⊗ J∗Ai

E) = p(X; t, aα ⊗ E)

+ (1 + t)Q1(Ia, Ip; t) + (1 + t)Q2(Ip; t)(5.1)

where JAi is the inclusion map from the isolating neighborhood of an isolated
invariant set Ai to X, and Q1(Ia, Ip; t) and Q2(Ip; t) are all polynomials with
nonnegative integer coefficients.

Corollary 5.2 (Euler-Poincaré formula) Under the hypothesis of Theorem
5.1,

∑

A∈A
p(h(A) ; −1 , Zp ⊗ J∗AE) = p(X , −1 , aα ⊗ E)(5.2)
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In particular, if E is a trivial line bundle, then
∑

A∈A
p(h(A) ; −1 , Zp) = χ(X)(5.3)

for any prime number p. Here χ(X) is the Euler characteristic number of the
compact polyhedron.

As explained in [FJ2], if the cocycle α is a trivial cocycle, then the above
Novikov-Morse type inequalities will induce the Conley-Morse type inequalities
given in [CZ]. If ω is a closed 1-form with higher rank, then Theorem 5.1 gener-
alizes the rank one case which is proved in [FJ2]. We have

Theorem 5.3 Let ω be a closed 1-form with critical set A consisting of fi-
nitely many connected components. Each component is assumed to be Lipschitz
submanifold. Let Ẽ be a local system of free abelian groups and E = C ⊗ Ẽ.
Assume that a ∈ C∗ and a 6∈ I = 1 + 〈t1, · · · , ts〉 ⊂ Ps. Then there is a prime p
such that

∑

A∈A
p(h(A); t,Zp ⊗ J∗AE)

= p(X, t; aω ⊗ E) + (1 + t)Q(E, t)

where Q(E, t) is a polynomial with nonnegative coefficients.

If the closed 1-form ω in Theorem 5.3 has only non-degenerate isolated zero
points or Bott type non-degenerate zero locus, then the above theorem reduces
to the theorems proven by M. Farber [Fa1, Fa2](The reader can also see [FJ2] for
a complete description of those cases).

Corollary 5.4 (Classical Novikov inequality) Let X be an oriented closed
smooth manifold and ω a Morse closed 1-form. Then the numbers cj(ω) of zeros
of ω having index j satisfy

cj(ω) ≥bj([ω])
j∑

i=0

(−1)icj−i(ω) ≥
j∑

i=0

(−1)ibj−i([ω])(5.4)

for j = 0, 1, · · · ,m.

Theorem 5.5 Let v be an α-Morse-Smale flow w.r.t. A = {An, · · · , A1}.
Let cj be the number of hyperbolic fixed points with index j, aj be the number of
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the hyperbolic periodic orbits with index j, and µj = cj + aj + aj+1. Then

µj ≥bj([α])
j∑

i=0

(−1)j−iµi ≥
j∑

i=0

(−1)j−ibj([α])(5.5)

for j = 0, 1, · · · ,m.

Theorem 5.6 (Vanishing theorem) Let X be a compact polyhedron with
a metric d. If there exists a flow carrying a cohomology class [α] on X, then

bi([α]) = 0, ∀i = 0, 1, · · · ,m.

Example 5.1 Let f : X → X be a homeomorphism from the compact polyhe-
dron X to itself, then we can define the mapping torus of f :

Tf := {(x, t)|x ∈ X, t ∈ [0.1]}/(x, 0) ∼ (f(x), 1).

Then the natural projection π : Tf → S1 provides a nontrivial cocycle α = J(π) :
X × X → R (where J is defined in proposition 3.1.1 of [FJ2]). Define the flow
carrying the cohomology class α as: for 0 ≤ s < 1, and ∀t ∈ R,

[x, s] · t := [f [[s+t]](x), (s + t)],

where [[·]] is the function taking the integer part and (·) is the function taking the
decimal part. According to Theorem 5.6, we have

bi([α]) = 0, ∀i.
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