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A Conjecture about the Analytical Behaviour of
Eisenstein Series

Bill Casselman

This paper will formulate and offer evidence for a conjecture on the analytical
behaviour of residual Eisenstein series in the positive Weyl chamber. It should
play a major role in an also conjectural Paley-Wiener theorem about the Schwartz
space of arithmetic quotients. If things work out as I expect, this development
should be logically independent of Chapter 7 of [Langlands:1976], and in the end
one should obtain a new proof of Langlands’ completeness theorem.

Suppose G to be the group of real points on a reductive group defined over Q
and further set

Γ an arithmetic subgroup of G
K a maximal compact subgroup of G
ZG the centre of G

For a rational parabolic subgroup P , set

N = NP its unipotent radical
M = MP its reductive quotient P/NP

ΓM the image of Γ ∩ P in M
AP the maximal Q-split torus in M
δP its modulus character detAdn

If |AP | is the connected component of AP , then M is as an analytic group equal
to the direct product of |AP | with a subgroup of M which contains the image ΓM

of Γ∩P in M . There are unique liftings of both AP and MP to P stable under the
Cartan involution of G determined by the choice of K, which I’ll also call AP and
MP . The group |AP | may then be identified with AP /K ∩ AP . The characters
δQ for Q a proper maximal rational parabolic subgroup containing P make up a
basis of the characters of |AP |/|AG|, considered as a complex vector space. Let
the dual basis in the group |AP |/|AG| be {aQ}, identified with elements of P .
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Let X(P ) be the set of unramified characters of P , those trivial on K ∩ P ,
Γ∩P , and (necessarily) N . Because of well known density results, it is equivalent
to require that such a character factor through projection onto |AP |. The space
X(P ) may be identified with a Euclidean space—if (ai) is an isomorphism of |AP |
with a product of copies of the positive real numbers, then the correspondence
takes (zi) to

∏
azi

i . The space of unitary characters becomes thus a real Euclidean
space; choose a Euclidean norm on it. For any character χ, ‖IM(χ)‖ is the norm
of the unitary character χ/|χ|.
Because G = PK, any unramified character χ of P extends to a unique function
on all of G fixed by right K-multiplication, one which I’ll also express as χ. This
applies in particular to the function δP . The positive cone in the vector space
X(P ) is the subset X++(P ) where all |χ(aQ)| > 1. If

d(χ) =
∏(|χ(aQ)| − 1

)
,

then the boundary of this cone is where d(χ) = 0.

The space A(
N(Γ ∩ P )\G)

of automorphic forms on N(Γ ∩ P )\G is that of all
smooth C-valued functions ϕ on G which are (a) right K-finite; (b)Z(g)-finite; (c)
left ZM -finite; and (d) which satisfy in addition a condition of moderate growth
I won’t specify precisely. This space may be identified with the representation
of G induced from that of P on the space A(ΓM\M). If ϕ is a function in
this space such that ϕ(zg) = χ(z)δ1/2

P (z)ϕ(g) for some unitary character χ of
the centre ZM of MP , then |ϕ|2 lies in the space Ω

(
NP ZM (Γ ∩ P )\G)

of one-
densities on NZM (Γ∩P )\G. Define A2

(
NP (Γ∩P )\G)

to be the space of all such
functions ϕ such that |ϕ|2 is integrable. In particular |ϕ(ag)| = δ1/2(a)|ϕ(g)| for
any function in this space and all a in |AP |. This space is also induced, here from
the automorphic forms on ΓM\M that are square-integrable modulo ZM .

Recall from [Casselman:1989] that the Schwartz space S(Γ\G) is that of all
K-finite functions all of whose U(g)-derivatives decrease more rapidly than any
character on Siegel sets. (This is what [Franke:1998] calls S−∞.) For ϕ in the
space A2

(
NP (Γ ∩ P )\G)

the Eisenstein series

Eϕχ(g) =
∑

Γ∩PΓ

δ
1/2
P (γg)χ(γg)ϕ(γg)

converges in some open cone of X(P ) and extends to a meromorphic function on
all of X(P ). For f in S(Γ\G) the Fourier-Eisenstein integral

f̂ϕ(χ) =
∫

Γ\G
f(g)Eϕχ−1(g) dg

defines a meromorphic function of χ. A Paley-Wiener theorem for Γ\G would
characterize a function in the Schwartz space by such integrals. One fundamental
property in a characterization is laid out in the following:
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Conjecture. Suppose Ω to be any bounded region in the Euclidean space
of real unramified characters of P . There exists a product P (s) of affine
functions on X(P ) and some integer r > 0 such that

Pϕ(s)f̂(χ−1
s ) = O


 1(

1 +
∥∥IM(χ)

∥∥
)N ∥∥d(χ)

∥∥r


 .

for all N > 0 and RE(s) in Ω ∩X++(P ).

The significance of this property will be better understood if one looks at §13 of
[Casselman: 2004]. Roughly speaking, it allows contour motion in the proof of
a Paley-Wiener theorem. The Conjecture is somewhat imprecise, since it does
not specify conditions on an Eisenstein series independent of its pairing with
functions in the Schwartz space. I have such conditions in mind, and I shall in
fact exhibit some later on, but I am not so sure of their general validity as I am
of the assertion above.

The Conjecture has little direct bearing on the location of the singularities of
Eisenstein series. In particular, it says nothing about the square-integrable
residues of Eisenstein series, but only about the Eisenstein series constructed
from such residues. Indeed, I expect the Conjecture to be established without
any explicit information about residues other than square-integrability.

According to the main result of [Franke: 1999], there exists a real polynomial P (s)
with P (s)Eϕχ holomorphic in X++(P ), and this could be used to sharpen the
Conjecture. However, I can’t imagine proving the Conjecture without simulta-
neously providing a new proof of Franke’s theorem. Furthermore, [Franke: 1999]
depends on [Franke: 1998], and since one of my aims is to provide eventually a
new proof of many of Franke’s results in this earlier paper, I hope to establish
the Conjecture independently of them. The Conjecture is also closely related to
results in a series of papers by Werner Müller on the trace class conjecture, but
I can’t see any direct relationship. Again, Müller’s work depends to some extent
on Franke’s, so the same remarks apply to it.

If ϕ lies in the space of cusp forms on N(Γ ∩ P )\G, the Conjecture is implicit
in known theorems, as I shall explain to some extent in the next section. For
some ϕ that are not cusp forms it is probably implicit in the calculations that
have gone into verifying various conjectures of Arthur on the discrete spectrum
of Γ\G. But in the generality I formulate the Conjecture it seems to be new. The
importance of the matter can be judged from the fact that much of the difficulty
of Langlands’ proof of his spectral completeness theorem is caused precisely by
his not knowing much about the analytical behaviour of Eisenstein series con-
structed from residues. Because of this, the contour movements he dealt with
were technically intricate. If the Conjecture is true, I expect that his argument
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can be simplified. Well . . . perhaps not simplified, but at least redone so as
to yield a stronger result, along the lines of the Paley-Wiener theorem demon-
strated for SL2 in my Shalika volume paper. In addition, the argument I have
in mind promises to avoid the peculiar redundancy and occasional cancellation
that afflicts Langlands’ contour movement.

I have tried to make this paper as self-contained as possible. This will undoubt-
edly make it verbose for some, but of course they can skip familiar material.

1. SL2(R)

I start with the simplest case. This should make clear the nature of the Conjecture
as well as some of the problems involved in proving it, and should also suggest a
line of attack on it.

Let G be SL2, P the subgroup of upper triangular matrices, H the upper half
plane. Take Γ to be a discrete subgroup of G with one cusp, located at ∞. Of
course SL2(Z) will fit the description, but it is too special to serve as a good
example. Conjugating if necessary we may assume Γ ∩ N to be the group of
horizontal integral translations. For Y À 1 the region |x| ≤ 1/2, y ≥ Y embeds
into Γ\H with compact complement. Equivalently, if HY is the region where
y > Y , the projection from Γ ∩ N\HY to Γ\H is an embedding. The Schwartz
space S(Γ\H) is that of all smooth functions f such that all ∆kf are more rapidly
decreasing than any 1/yn as y goes to infinity.

If α is the single positive root, the coroot is

α∨ : x 7−→
[
x

1/x

]
.

For s in C, let χs be the character taking α∨(x) to |x|s. The function y1/2+s/2

is an eigenfunction for the Laplacian ∆ with eigenvalue λs = (s2 − 1)/4. The
Eisenstein series we are interested in is the corresponding Γ-invariant function on
H:

Es(z) =
∑

Γ∩P\Γ
y1/2+s/2(γz)

(
y(z) = IM(z)

)
,

which converges for RE(s) > 1. Its constant term specifies its asymptotic behav-
iour as t goes to ∞, and is explicitly

y1/2+s/2 + c(s) y1/2−s/2

for some meromorphic function c(s). When Γ = SL2(Z)

c(s) = Ξ(s) =
ξ(s)

ξ(s + 1)
,



A Conjecture about the Analytical Behaviour of Eisenstein Series 871

where ξ is Riemann’s function

ξ(s) = π−s/2Γ(s/2)ζ(s) .

Most of what happens can be indicated in a single diagram, which shows the case
Γ = SL2(Z):

a simple
pole at

s = 0 s = 1

co
n
ti

n
u
o
u
s

sp
ec

tr
u
m

lots
of
poles

Figure 1. Behaviour of Eisenstein series for SL2(Z)

Here, there is a solitary and simple pole at s = 1 in the region RE(s) ≥ 0, where
the residue of the Eisenstein series is the constant function 1/ξ(2). There will be
a plethora of more interesting poles at all s with ξ(s + 1) = 0, which are located
in the region −1 < RE(s) < 0. This is a region best left unexplored, at least for
now! The continuous spectrum is supported on the imaginary axis RE(s) = 0.

Here are two ways to verify the Conjecture in this case, each with its own virtues.

(1) I follow [Langlands:1966]. Truncate the entire constant term at Y , getting
an orthogonal decomposition

Es = ΛYEs + CYEs .

The first term is square-integrable for all s. Its L2-norm is given by the Maass-
Selberg formula

‖ΛYEs‖2 =
Y σ − |c(s)|2Y −σ

σ
− c(s)Y −it − c(s)Y it

it
(s = σ + it)

for neither σ nor t equal to 0.

Lemma 1.1. In any region where 0 < σ ≤ σ0, t ≥ t0 the c-function is bounded.
In a region where 0 < σ ≤ σ0, t ≤ t0 the product c(s)t is bounded.

One consequence is that c(s) has poles in the region σ > 0 only on (0, 1], and
that those poles are simple. Another is that if those poles are the si and we set
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P (s) =
∏

(s− si), for some N

‖ΛYP (s)Es‖ = O

( |t|N√
σ

)

on regions where σ > 0 is bounded.

Proof. The expression in the Maass-Selberg formula must be non-negative. Hence:

(
Y σ − |c(s)|2Y −σ

)≥ σ

it

(
c(s)Y −it − c(s)Y it

)

Y 2σ ≥ |c(s)|2 +
σ

it

(
c(s)Y σ−it − c(s)Y σ+it

)

ZZ ≥ cc +
σ

t

(
cZ/i + cZ/i

)
(Z = Y σ−it)

ZZ

(
1 +

σ2

t2

)
≥ cc +

σ

t

(
cZ/i + cZ/i

)
+ ZZ

σ2

t2

|Z|
∣∣∣1 +

σ

it

∣∣∣≥
∣∣∣c +

σ

it
Z

∣∣∣
∣∣∣1 +

σ

it

∣∣∣≥
∣∣∣ c

Z
+

σ

it

∣∣∣

=
∣∣∣
( c

Z
− 1

)
+ 1 +

σ

it

∣∣∣ =
∣∣∣
(
1− c

Z

)
−

(
1 +

σ

it

)∣∣∣
∣∣∣1− c

Z

∣∣∣≤ 2
∣∣∣1 +

σ

it

∣∣∣ .

In a region 0 < σ ≤ σ0, t ≥ t0 the quotient σ/t is bounded, hence so is c/Z, But
|Z| = Y σ will also be bounded, hence c is bounded.

The last equation can be rewritten∣∣∣∣t−
tc

Z

∣∣∣∣ ≤ 2
∣∣∣1 +

σ

i

∣∣∣

and from this it follows that in a region 0 < σ ≤ σ0, 0 < t ≤ t0 the product tc is
bounded. ¤

Now if we take f in the Schwartz space we have

〈∆kf,Es〉= λk
s〈f,Es〉

〈f,Es〉= 〈f,ΛYEs〉+ 〈f, CYEs〉
≤ ‖f‖ ‖ΛYEs‖+

∫ ∞

Y
f0(y)

(
y1/2+s/2 + c(s)y1/2−s/2

) dy

y2
.

Here f0(y) is the constant term of f . The second term in the last equation is
just a one-dimensional transform, hence of rapid decrease in s. For the first, we
apply the Lemma and derive the Conjecture with an explicit value r = 1/2. ¤
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(2) Here I recall one of the standard ways (explained most clearly in[Colin de
Verdière:1983]) to construct Eisenstein series in at least a part of the region
outside of where the series converge.

Let ρ(y) be 1 for y ≥ Y + 1, 0 for y ≤ Y .

Y Y + 1

Figure 2. The smooth truncation function ρ(y)

We may identify ρ(y)ys with a function E1,s(y) on Γ\H. Let E0,s = Es − E1,s,
λs = (s2/4 − 1/4). The function E1,s is defined for all s,a nd E0,s, which is
square-integrable, is defined at first only for RE(s) > 1. Since ∆Es = λsEs

(∆− λs)E0,s = −(∆− λs)E1,s = (say) Fs .

The function Fs has compact support on Γ\H, and is defined for all s. But now
whenever RE(s) > 0 and s does not lie in the real interval (0, 1], λs will be in
the resolvent set of ∆, so that (∆− λs)−1Fs is a well defined smooth function in
L2(Γ\H) that agrees with E0,s for RE(s) > 1. I’ll continue to call it E0,s. The
definition of Es may thus be continued into this region if we set

Es = E0,s + E1,s

Thus we have an analytic continuation of Es to that region as well. Furthermore,
the spectral theorem allows us to deduce an L2-norm for E1,s in terms of one of
Fs, and since

∆ρ(y)yr = y2 ∂2ρ(y)yr

∂y2

= ρ′′(y)yr+2 + 2rρ′(y)yr+1 + r(r − 1)ρ(y)yr

(
∆− r(r − 1)

)
ρ(y)yr = ρ′′(y)yr+2 + 2rρ′(y)yr+1

the L2-norm of Fs is O(|s|) when RE(s) is bounded. As in the first argument, this
finishes off the proof of the Conjecture in this case. ¤

The first argument uses the full standard truncation, the second only a partial
and smooth one. The first argument will go through with little modification for
Eisenstein series associated to cusp forms for a maximal proper rational parabolic
subgroup, and Arthur’s analogue of the Maass-Selberg formula for Eisenstein
series associated to cusp forms will allow the Conjecture to be verified for that
case.



874 Bill Casselman

The second argument was applied to the same Eisenstein series in [Müller: 1989],
who also extended Colin de Verdière’s proof of the full meromorphic continuation
of Eisenstein series to that case. The virtue of this argument is that useful partial
truncations can be applied to Eisenstein series associated to arbitrary square-
integrable forms. I’ll say something more about this later on. In any case, the
one basic idea that both arguments illustrate is that of applying some kind of
truncation to an Eisenstein series and looking at the pairing of f in S(Γ\G) with
each component separately.

2. Unramified Eisenstein series

From now on, I’ll assume that G is split over Q and that Γ is the full integral
group G(Z). This will simplify things a lot, and in inessential ways. My only aim
is to explain a few basic ideas, after all.

Fix a Borel subgroup P∅ = A∅N∅ in G. Set

∆ the corresponding set of simple roots
Σ the complete set of roots
Σ+ the positive roots
W the associated Weyl group

For every Θ ⊂ ∆, let

PΘ = MΘNΘ the corresponding standard parabolic subgroup containing P∅
Σ+(Θ) the linear span of Θ in Σ+

Under my assumption on Γ, every rational parabolic subgroup of G is conjugate
to a unique PΘ.

An unramified character of A is an analytic homomorphism from A to C× that’s
trivial on K ∩A. An unramified character of P = P∅ is one that factors through
an unramified character of A and the canonical surjection P → A. If χ is an
unramified character of AP and λ is in X∗(A) = Homalg(R×, A), then

χ
(
λ(x)

)
= |x|sλ

for a uniquely determined complex number sλ. This allows us to identify the
space of unramified analytic characters of P with elements in the complex vector
space

X∗
C(A) = Hom(X∗(A),C) .

In these terms, for s in X∗
C(A)

sλ = 〈s, λ∨〉 .



A Conjecture about the Analytical Behaviour of Eisenstein Series 875

The lattice of weights X∗(A) = Hom(X∗(A),Z) embeds canonically into this
space. The space of unramified characters X∗

Θ of PΘ may be identified with those
linear functions in X∗

C(A) that are trivial on the coroots α∨ for α in Θ. The cone
X++

Θ is the subset of X∗
Θ where sα > 0 for α in the complement of Θ.

From now on, I’ll work only with functions on G fixed on the right by K—in
effect functions on the symmetric space G/K.

As I have already remarked, if χ is an unramified character of P∅ it extends to
a unique function on all of G right-invariant under K and left-invariant under
N∅(Γ ∩ P∅). If χ = χs then the associated Eisenstein series is the function

Es(g) =
∑

Γ∩P∅\Γ
χs(γg)δ1/2

∅ (γg) .

on Γ\G/K. This converges whenever

RE(sα) > 1

for all α in ∆, and is then an automorphic form. The function Es continues
meromorphically to all s, with a simple pole along each of the affine subsets
sα = 1 (α in ∆), as well as lots of other singularities. If G is semi-simple, this
intersection is the single point χ = δ

1/2
∅ and the residue of the Eisenstein series at

that point, which is just a constant function in this case, is known from Langlands’
work on the Tamagawa number to be the inverse of the volume of the quotient
Γ\G. More generally, the Laurent expansions at singularities of the Eisenstein
series give rise to automorphic forms on Γ\G. Some of these forms are square-
integrable modulo the centre of G, as is the residue for δ

1/2
∅ . The principal result

of Langlands’ work on Eisenstein series is that the entire L2-spectrum of Γ\G
is constructed from the Eisenstein series associated to cusp forms on parabolic
quotients, residues of these, and Eisenstein series built up in turn from such
residues.

The Eisenstein series construction is transitive, as is the construction of repre-
sentations induced from parabolic subgroups. I’ll be interested in just one case
of this. On the one hand, consider the constant functions of MΘ, which are gen-
erated by the residue of the Eisenstein series associated to the image of P∅ in
MΘ for the character δ

1/2
∅ δ

−1/2
Θ of A∅. Let ρΘ be the corresponding element of

XC(P ). It is characterized by these properties: (a) ρΘ lies in the linear span of
∆ − Θ; (b) 〈ρΘ, α∨〉 = 1 for α in Θ. This residue is also the Eisenstein series
associated to PΘ and ρΘ on G. Thus

The residue of the Eisenstein series on G associated to P∅ along the whole
affine subspace where sα = 1 for α in Θ agrees with the residual Eisenstein
series induced by the space of constant functions from PΘ to G.
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I now want to explore more precisely what my Conjecture means for these residual
Eisenstein series.

If Φ is any function on Γ\G, its constant term with respect to the rational
parabolic subgroup P is the function

ΠP Φ(g) =
∫

Γ∩NP \NP

Φ(ng) dn

on NP (Γ ∩ P )\G. Since G = PK, the symmetric space G/K may be identified
with P/K ∩ P and since N\P = M this quotient may in turn be identified with
ΓM\M/KM where KM is the image of K ∩ P in M . Thus the constant term of
an automorphic form on Γ\G/K may be identified with an automorphic form on
ΓM\M/KM .

The map from Φ to ΠP Φ is in some sense adjoint to the Eisenstein series con-
struction from functions on NP (Γ ∩ P )\G to those on Γ\G. For us there is one
practical meaning to this. If f lies in the Schwartz space of N(Γ∩P )\G then the
‘pseudo-Eisenstein series’

Ef (g) =
∑

Γ∩P\Γ
f(γg)

defines a function in the Schwartz space of G. The adjoint relation between
Eisenstein series and constant term means that

〈Ef , Eϕ〉 =
∫

N(Γ∩P )\G
f(x)Eϕ,P dg .

This also says that an Eisenstein series is determined as a distribution by its con-
stant term, since the image of pseudo-Eisenstein series from all rational parabolic
subgroups is dense in the Schwartz space.

The constant term of Es for generic s with respect to P∅ is

δ1/2(g)
∑

W

wχs(g)
∏

λ>0,wλ<0

ξ(sλ)
ξ(sλ + 1)

= δ1/2(g)
∑

W

wχs(g)
∏

λ>0,wλ<0

Ξ(sλ) .

Recall that sλ = 〈s, λ∨〉. The constant term of a residue is the residue of the
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constant term. Thus, for example, when χ = δ
1/2
∅ and σ = sχ the residues of all

the terms in this sum vanish except for w = w`, the longest element in W , and
then we get ∏

λ>0,λ/∈∆ ξ(σλ)∏
λ>0 ξ(σλ + 1)

.

One of the ingredients in Langlands’ identification of the Tamagawa number is a
well known theorem of[Kostant: 1959] that asserts some curious cancellations to
take place in this quotient to make it

1∏r
1 ξ(ai)

where r = card ∆ and the ai are the degrees of the polynomial ring of invariants
of W in Rr. This has subsequently been proven by many means (see for example
§3.20 of [Humphries: 1990]), but Kostant’s original proof is still of interest.

3. SL3(R)

Because pseudo-Eisenstein series are in the Schwartz space, the Conjecture re-
quires that the constant term of residues of Eisenstein series satisfy a certain
growth condition in the positive cone X++(P ). In this section and the next, I
shall verify and comment on this in the cases where G has rational rank two. The
results themselves are also implied by the principal result of [Franke: 1999], but
there is nonetheless some point in bringing them up here. The growth condition
amounts to a combinatorial cancellation of terms in the numerators and denomi-
nators in the constant term, generalizations of Kostant’s cancellation. These are
of independent interest, since they are presumably closely related to conjectures
of Arthur’s about the discrete spectrum of L2(Γ\G). Such things have been ob-
served before in, for example, work of Moeglin and Waldspurger, but I am not
aware that the general phenomenon has been explained completely satisfactorily
nor even fully recognized.

Now let G = SL3(R), Γ = SL3(Z). The group A∅ can be taken to be the group of
diagonal matrices of determinant 1, P∅ the subgroup of upper triangular matrices.
Here W has six elements, and there are three positive roots α, β, and α + β.
Suppose that the root α takes (ai) to a1/a2, β takes it to a2/a3. Then

α∨ : x 7−→



x
1/x

1




β∨ : x 7−→



1
x

1/x



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αβ

α + β

Figure 3. The root system for SL3

How the Weyl group acts can be pictured nicely.

s

rαs

rβs

rαrβs

rβrαs

rαrβrαs

Figure 4. The Weyl group action for SL3

For each w in W let Rw be the set of positive roots λ such that wλ < 0. If
`(xy) = `(x) + `(y) we have Rxy = y−1Rx ∪ Ry. Since (α + β)∨ = α∨ + β∨, the
expansion of the constant term is given in this table:
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w Rw coefficient of wχs

1 ∅ 1

rα α ξ(sα)
ξ(sα+1)

rβ β
ξ(sβ)

ξ(sβ+1)

rαrβ β, α + β
ξ(sβ)

ξ(sβ+1)
ξ(sα+sβ)

ξ(sα+sβ+1)

rαrβ β, α + β ξ(sα)
ξ(sα+1)

ξ(sα+sβ)
ξ(sα+sβ+1)

rαrβrα = rβrαrβ α, β, α + β ξ(sα)
ξ(sα+1)

ξ(sβ)
ξ(sβ+1)

ξ(sα+sβ)
ξ(sα+sβ+1)

The table can be summarized in a diagram.

1
ξ(sα)

ξ(sα + 1) ξ(sβ)

ξ(sβ + 1)

ξ(sβ)ξ(sα + sβ)

ξ(sβ + 1)ξ(sα + sβ + 1)

ξ(sα)ξ(sα + sβ)

ξ(sα + 1)ξ(sα + sβ + 1)

ξ(sα)ξ(sβ)ξ(sα + sβ)

ξ(sα + 1)ξ(sβ + 1)ξ(sα + sβ + 1)

Figure 5. Coefficients for the constant term of Es

As I have already remarked, the behaviour of an Eisenstein series is essentially
determined by that of its constant term. The constant term in the case at hand
has poles where the numerator ξ(sα)ξ(sβ)ξ(sα + sβ) does, but also where the
denominator

ξ(sα + 1)ξ(sβ + 1)ξ(sα + sβ + 1)
has zeroes. You can anticipate the problem—conjecturally we know some very
severe restrictions on the location of these zeroes, but in practice we can only
say that they are located in the regions −1 < RE(sα) < 0, −1 < RE(sβ) < 0,
−1 < RE(sα + sα) < 0. The general idea is that Eisenstein series behave badly as
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we exit the positive cone. The Eisenstein series induced from P∅ really do behave
badly, too. Among other things, we can see directly now that the two-dimensional
residue of the constant term of Es at s = ρ∆ is the constant function

ξ(2)
ξ(2)ξ(2)ξ(3)

=
1

ξ(2)ξ(3)
.

The Eisenstein series and its constant term also have simple poles along the lines
sα = 1 and sβ = 1. Since these are equivalent under automorphism, we may just
look at one, say the first. The residue of the constant term is the sum of the
residues of the individual terms. The residue vanishes unless wα < 0. Thus this
table gives the constant terms along sα = 1:

w Rw coefficient of wχs

rα α 1
ξ(2)

rβrα α, α + β 1
ξ(2)

ξ(sβ)
ξ(sβ+1)

rαrβrα = rβrαrβ α, β, α + β 1
ξ(2)

ξ(sβ)
ξ(sβ+1)

ξ(sβ+1)
ξ(sβ+2)

From now on I am going to leave out the constant ξ(2) in the denominator, which
amounts to normalizing the Eisenstein series by a factor of ξ(2).

It is the last coefficient which interests us, since (taking into account my normal-
ization) it can be simplified:

ξ(sβ)
ξ(sβ + 1)

ξ(sβ + 1)
ξ(sβ + 2)

=
ξ(sβ)

ξ(sβ + 2)
.

This cancellation is in fact required by the Conjecture. It is also required, inci-
dentally, by the principal Theorem of [Franke: 1992], which is that all the poles
in the positive cone must be real.

According to what I have said earlier, these representations make up the residue
of the Eisenstein series Es on the complex line sα = 1. This is because the
Eisenstein series constructed from P∅ to G can be built in two stages, first from
P∅ to P{α} and then from P{α} to G. The first is an extension of that from P∅∩M
to M , and the character χs is a residue of that along sα = 1.
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1

ξ(sβ + 1)

ξ(sβ + 2)

ξ(sβ + 1)

ξ(sβ + 2)

ξ(sβ)

ξ(sβ + 1)

s β
=
−

1/
2

s

rαs

rβrαs

rαrβrαs

Figure 6. A diagram of the constant terms of the residual Eisenstein

series. The endpoints of the rays mark the real part of the L2-spectrum.

The coordinate sβ is that of the original point at which the residue is

taken, so the term with ξ(sβ + 1) in its denominator has a potential

problem when the ray exits the positive chamber. The obtuse cone at

the bottom is the region in which constant terms are square-integrable.

The bar on the one ray marks the region sβ < 0 of potential

trouble.

What’s going on here? Suppose again, for the moment, that G is an arbitrary
split group, P = PΘ, and that we are looking at the residue along the subspace
sα = 1 for α in Θ. The constant term of the residue along the affine space sα = 1
for α in Θ is

δ
1/2
Θ

∑

wΘ<0

wχs

( ∏
λ>0,wλ<0,λ/∈Θ ξ(sλ)∏
λ>0,wλ<0 ξ(sλ + 1)

)
.

Here, if λ∨ =
∑

Θ nαα∨ +
∑

∆−Θ nαα∨ then

〈s, λ∨〉 =
∑

Θ

mα +
∑

∆−Θ

nαsα .
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If λ lies in Σ+(Θ) then these terms are constants, and we can normalize the
Eisenstein series so as to get rid of them. The constant term then becomes

δ
1/2
Θ

∑

wΘ<0

wχs

∏
λ>0,wλ<0

λ/∈Σ+(Θ)

ξ(sλ)
ξ(sλ + 1)

.

The denominator ξ(sλ+1) will cause trouble if 〈ρΘ, λ∨〉 < 0, and then in that case,
according to the Conjecture (or according to [Franke:1989]) it must be canceled
out by a term in the numerator.

We have therefore this combinatorial result:

Suppose wΘ < 0. The expressions sλ + 1 with (a) λ > 0, (b) wλ < 0,
(c)λ /∈ Σ+(Θ) and (d) 〈ρΘ, λ∨〉 < 0 are matched by expressions sµ with µ
satisfying (a)–(c).

This is intriguingly related to Kostant’s cancellation theorem, and it ought not to
be too hard to prove directly. Of course it is only the simplest case of a much more
general conjecture that applies to residues more complicated than the constant
functions on the rational parabolic subgroups. But since in general we know so
little about the coefficients that appear in constant terms, we must find a way
to understand the situation in a different way. There is in fact an interesting
geometric interpretation of these cancellations that we shall come back to in the
last section.

4. Other rank two groups

The situation for the other semi-simple groups of rank two can be deduced from
tables and diagrams.

• The root system C2

α

β
α + β 2α + β

Figure 7. The root system C2
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The coroots are α∨, β∨, α∨ + β∨, α∨ + 2β∨.

w R∨
w (coroots associated to Rw)

1 ∅
rα α∨
rβ β∨
rβrα α∨, α∨ + β∨
rαrβ β∨, α∨ + 2β∨
rαrβrα α∨, α∨ + β∨, α∨ + 2β∨
rβrαrβ β∨, α∨ + 2β∨, α∨ + β∨
rβrαrβrα = rαrβrαrβ α∨, α∨ + β∨, α∨ + 2β∨, β∨

Coefficients for the residue along sα = 1:

w coefficient of wχs

rα 1

rβrα
ξ(sβ+1)
ξ(sβ+2)

rαrβrα
ξ(sβ+1)
ξ(sβ+2)

ξ(2sβ+1)
ξ(2sβ+2)

rβrαrβrα
ξ(sβ+1)
ξ(sβ+2)

ξ(2sβ+1)
ξ(2sβ+2)

ξ(sβ)
ξ(sβ+1)

Since 〈σα, β∨〉 = −1/2, the dangerous term is ξ(sβ +1), which is indeed cancelled.

rα

rβrα

rαrβrα

rβrαrβrα

s β
=
−

1
/2

Figure 8. Constant terms for the

residue along sα = 1. The poten-

tially singular region is marked by a

bar.

Coefficients for the residue along sβ = 1:
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w coefficient of wχs

rβ 1

rαrβ
ξ(sα+2)
ξ(sα+3)

rβrαrβ
ξ(sα+2)
ξ(sα+3)

ξ(sα+1)
ξ(sα+2)

rαrβrαrβ
ξ(sα+2)
ξ(sα+3)

ξ(sα+1)
ξ(sα+2)

ξ(sα)
ξ(sα+1)

Since 〈σβ, α∨〉 = −1, the dangerous term is again ξ(sα + 1), which is cancelled.

rβ

rαrβ

rβrαrβrαrβrαrβ

s
α

=
−

1

Figure 9. Constant term for the

residue along sβ = 1

• The root system G2

α

β α + β 2α + β 3α + β

3α + 2β

Figure 10. The root system G2

The coroots are α∨, β∨, α∨ + β∨, α∨ + 2β∨, α∨ + 3β∨, 2α∨ + 3β∨.
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w R∨
w

1 ∅
rα α∨
rβ β∨
rβrα α∨, α∨ + β∨
rαrβ β∨, α∨ + 3β∨
rαrβrα α∨, α∨ + β∨, 2α∨ + 3β∨
rβrαrβ β∨, α∨ + 3β∨, α∨ + 2β∨
rβrαrβrα α∨, α∨ + β∨, 2α∨ + 3β∨, α∨ + 2β∨
rαrβrαrβ β∨, α∨ + 3β∨, α∨ + 2β∨, 2α∨ + 3β∨
rαrβrαrβrα α∨, α∨ + β∨, 2α∨ + 3β∨, α∨ + 2β∨, α∨ + 3β∨
rβrαrβrαrβ β∨, α∨ + 3β∨, α∨ + 2β∨, 2α∨ + 3β∨, α∨ + β∨
rβrαrβrαrβrα = rαrβrαrβrαrβ β∨, α∨ + 3β∨, α∨ + 2β∨, 2α∨ + 3β∨, α∨ + β∨, α∨

Coefficients for the residue along sα = 1:

w coefficient of wχs

rα 1
rβrα

ξ(sβ+1)
ξ(sβ+2)

rαrβrα
ξ(sβ+1)
ξ(sβ+2)

ξ(3sβ+2)
ξ(3sβ+3)

rβrαrβrα
ξ(sβ+1)
ξ(sβ+2)

ξ(3sβ+2)
ξ(3sβ+3)

ξ(2sβ+1)
ξ(2sβ+2)

rαrβrαrβrα
ξ(sβ+1)
ξ(sβ+2)

ξ(3sβ+2)
ξ(3sβ+3)

ξ(2sβ+1)
ξ(2sβ+2)

ξ(3sβ+1)
ξ(3sβ+2)

rβrαrβrαrβrα
ξ(sβ+1)
ξ(sβ+2)

ξ(3sβ+2)
ξ(3sβ+3)

ξ(2sβ+1)
ξ(2sβ+2)

ξ(3sβ+1)
ξ(3sβ+2)

ξ(sβ)
ξ(sβ+1)

Since 〈σα, β∨〉 = −1/2, the terms sβ + 1 and 3sβ + 2 ought to be—and are—
cancelled.

rα

rβ
rα

r
α r

β r
α

r
β r

α r
β r

αrα
rβ

rα
rβ

rα

rβrαrβrαrβrα

s β
=
−

1
/2

Figure 11. Constant term for
the residue along sα = 1
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Coefficients for the residue along sβ = 1:

w coefficient of wχs

rβ 1

rαrβ
ξ(sα+3)
ξ(sα+4)

rβrαrβ
ξ(sα+3)
ξ(sα+4)

ξ(sα+2)
ξ(sα+3)

rαrβrαrβ
ξ(sα+3)
ξ(sα+4)

ξ(sα+2)
ξ(sα+3)

ξ(2sα+3)
ξ(2sα+4)

rβrαrβrαrβ
ξ(sα+3)
ξ(sα+4)

ξ(sα+2)
ξ(sα+3)

ξ(2sα+3)
ξ(2sα+4)

ξ(sα+1)
ξ(sα+2)

rαrβrαrβrαrβ
ξ(sα+3)
ξ(sα+4)

ξ(sα+2)
ξ(sα+3)

ξ(2sα+3)
ξ(2sα+4)

ξ(sα+1)
ξ(sα+2)

ξ(sα)
ξ(sα+1)

rβrαrβ

rβrαrβrαrβrαrβ

rβrαrβrαrβ rαrβrαrβrαrβ

s α
=
−

3
/
2

Figure 12. Constant term for
the residue along sβ = 1

Here 〈α, β∨〉 = −3/2. The dangerous range is sα = 0 to −3/2. The dangerous
terms are sα + 1 and sα + 2, which are cancelled.

I have marked by bars in all these diagrams the regions on the spectrum of
the constant terms where singularities would occur if cancellation didn’t occur.
As I shall explain in the next section, it is significant that these barred segments
all lie inside the obtuse cone signifying square-integrability.

5. How to prove the conjecture?

I have in mind a two-step process for proving the conjecture. The first is to prove
it for Eisenstein series associated to maximal rational parabolic subgroups, the
case in which the Eisenstein series form a one-parameter family. The second is
to go on from this to higher rank situations.
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Both steps use Arthur’s truncation operators. The second step looks almost
straightforward—one can in principle find a formula for the inner product of
truncations of arbitrary Eisenstein series, generalizing Arthur’s formula for those
associated to cusp forms. The coefficients in the formula will involve products of
intertwining operators asssociated to maximal parabolic subgroups, so that if one
has dealt with that case one should be in good shape—one can then use the last
part of the first method of §1 to conclude. In this step, the hard part is finding
an inner product formula explicit enough to work with. I am not so sure how
difficult this will be, but it doesn’t seem too bad. In particular, although I’ll not
do it here, one can use the cancellations observed earlier in this paper to prove
the conjecture for all groups of rational rank two.

The more interesting step is the first. What I think will work for this is an exten-
sion of the technique explained in [Colin de Verdière:1983] to construct Eisenstein
series for SL2(Z). Here is the basic idea: suppose that E is an automorphic form
on X = G/K that can be written as a sum E0 + E1, with E0 square-integrable.
The Ei in practice will be obtained by a kind of truncation, and will not be
smooth. We can find ϕ in C∞(K\G/K) (of arbitrarily small support) such that
RϕE = E. Then also

E = RϕE = RϕE0 + RϕE1 .

The components E0 and E1 might not be smooth, but both RϕE0 and RϕE1 will
be. The function RϕE0 will in fact lie in L2,∞(Γ\X). If ∆E = λE then, since Rϕ

and ∆ commute,

0 = (∆− λ)E
= (∆− λ)RϕE0 + (∆− λ)RϕE1

(∆− λ)RϕE0 =−(∆− λ)RϕE1

=−Rϕ(∆− λ)E1

= (say) F .

Here (∆− λ)E1 is a distribution. If λ does not lie in the spectrum σ∆ of ∆,

RϕE0 = −(∆− λ)−1F, ‖RϕE0‖ ≤ ‖F‖
distance from λ to σ∆

.

In the case that Colin de Verdière used this, F has compact support and ‖F‖
remains bounded near the interval (0, 1]. The spectral theorem then implies that
the poles on (0, 1] of Es as a function of s are simple. However, for the group G2

there is a well known example to be found in Appendix III of [Langlands:1976]
of a case where the pole is not simple. Werner Müller in [Müller:1989] deduces
from this that the method of Colin de Verdière cannot be applied in general to
derive properties of Eisenstein series associated to square-integrable automorphic
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forms, but his deduction is fallacious. It is neither to be expected, nor necessary,
nor even desired that F have compact support or that ‖F‖ remain bounded near
the real s-axis. One can get by with a lot less. The important point is that:

One should be able to perform a partial truncation of Eisenstein series by
chopping away parts of the constant terms that one knows to behave well,
leaving behind parts that are not known to behave well but which are square-
integrable.

For the groups of rank two that we have looked at earlier in this paper, this
amounts to the observation that I have already made, that the bars in
my diagrams, as well as certain reflections of them, lie in the domain of square-
integrability. Whether this idea remains viable for all Eisenstein series associated
to square-integrable residues seems to involve a complicated problem in geometric
combinatorics, one I have verified by computer in many cases.+
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