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Remarks on the Satake Compactifications

Adam Korányi

Abstract: This article has three independent parts. The first one is a
simplification, using some old results of the author, of a construction of
the compactifications recently given by A. Borel and L. Ji. The second
one is another construction by directly describing the relative neighborhood
systems of the boundary points . The third is a realization of the space and
its compactification as a bounded domain and its closure in a vector space.

Introduction

This article is about various constructions and realizations of the Satake com-
pactifications of Riemannian symmetric spaces. After a section on preliminaries,
it consists of three logically independent parts.

The first part (Section 2) is inspired by the article of A. Borel and L. Ji on
a uniform method of constructing all the known compactifications. Basic to
this part are the following two observations. First, the “generalized Siegel sets”
introduced and used in [1] are almost the same as the “admissible domains”
introduced earlier in [10] in connection with boundary convergence of Poisson
integrals on a symmetric space. Second, the proof of the “strong separation
theorem” which plays an essential role in [1] can be considerably simplified by
making use of the Bruhat Lemma. Based on these observations, Section 2 contains
a modification of the Borel-Ji construction, making it simpler and exploiting its
connections with the ideas of [10] where the possibility of a similar construction
had already been sketched.

The construction of Section 2 starts with an intrinsic definition of the admis-
sible domains, which are generalizations of non-tangential neighborhoods of the
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boundary points of the unit disc, then proceeds to the definition of the bound-
ary points, and finally to the definition of the topology of the extended space.
The question naturally arises whether it is possible to avoid the admisisble do-
mains and start with giving a definition of the relative neighborhood systems of
the prospective boundary points. Section 3 is devoted to showing that this can
be done and leads fairly easily to a full independent construction of the Satake
compactifications.

The last part, Section 4, gives realizations of symmetric spaces as bounded
domains in a vector space in such a way that the ordinary closures are just
the Satake compactifications. The Harish-Chandra realization of a Hermitian
symmetric space is a special instance of this. The possibility of such realizations
in the general case was suggested to me by the articles of L. Ji [9] and W.
Casselman [3] where similar realizations are given for the maximal flat subspaces
of a symmetric space. But actually the proofs in Section 4 are largely independent
of [9] and [3].

I want to express my thanks to J. Faraut for his permission to use an important
idea of his (for details see Section 4), and to L. Ji for many useful discussions and
for the invitation to write this article.

1. Preliminaries and Notation

Since many of the definitions and ideas in this paper are from [10] our notations
will be compatible with those of [10]. This section contains matters (sometimes
slightly differently worded) that can also be found in [10]; much of this is com-
pletely standard. Some further details and references are in [10], but the present
paper can be read independently.

X ∼= G/K will be a Riemannian symmetric space of non-compact type with
G connected, semi-simple and having finite center. We denote the base point of
X, stabilized by K, by o. In G, we denote conjugation as gh = hgh−1 (note the
difference with [1]). We will use the self-explanatory notations Uh, UV for sets
U, V .

g = k + p will be a fixed Cartan decomposition, θ the Cartan involution, a a
maximal abelian subspace in p. By roots we will always mean a - roots, gλ will
denote the root space corresponding to the root λ. We choose an ordering and
denote by Π the system of simple roots.

For any subset E ⊆ Π, we define the subalgebras a(E) = {H ∈ a : λ(H) =
0,∀λ ∈ E} and n(E) =

∑
gλ with the sum over those λ > 0 that do not vanish

on a(E). We define nE =
∑

gλ with those λ > 0 that vanish on a(E), and write
aE for the orthogonal complement of a(E) in a with respect to the Killing form.
We set n̄(E) = θn(E), n̄E = θnE and we write n, n̄ for n(∅), n̄(∅). The analytic
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subgroups of G corresponding to all these subalgebras will be denoted by the
corresponding Roman capitals. They are all closed. We note that N = NEN(E)
is a semidirect product.

We let MK(E) be the centralizer of a(E) in K. Then M(E) = MK(E)AENE

(also = MK(E)AEN̄E) is a reductive subgroup of G given in its Iwasawa decom-
position. B(E), the normalizer of N(E) (and of itself) is a parabolic subgroup,
B(E) = M(E)A(E)N(E) is its Langlands decomposition. Conjugates of B(E)
(E ⊆ Π) give all the parabolic subgroups of G. The Lie algebras of the subgroups
here introduced will be denoted mK(E), m(E), b(E). There is an induced Cartan
decomposition m(E) = mK(E) + pE .

By the Iwasawa decomposition we have X = G ·o = N̄A ·o, and the expression
n̄a·o (n̄ ∈ N̄ , a ∈ A) of a point is unique. (There is also a unique expression an̄′ ·o,
here n̄′ = n̄a−1

but a is the same.) Similarly we have XE = M(E) ·o = N̄EAE ·o,
a totally geodesic subspace of X. Now, X = N̄(E)A(E) ·XE is again a unique
decomposition.

We denote by a+ the open positive Weyl chamber in a and we set a(E)+ =
{H ∈ a(E) : λ(H) > 0,∀λ ∈ Π \ E} (a face of the chamber a+). For T ∈ a(E)
we set

A(E)T = (exp T )A(E)
+
,

where A(E)+ = exp a(E)+. This set can also be written {a ∈ A(E) : log a ≥ T}
where log a ≥ T means λ(log a) ≥ λ(T ) for all λ ∈ Π \ E. We say “T is large in
a(E)”, “log a →∞ in a(E)” if λ(T ) is large, resp. λ(log a) →∞ for all λ ∈ Π\E.

Given T ∈ a(E)+, for an element g or a subset U of G we will write in short,
gT , UT for the sets of conjugates AA(E)T

, UA(E)T
, and will write g−T , U−T for

the sets g(A(E)T )−1
, U (A(E)T )−1

. It is an obvious but important fact that if U is
compact in N̄(E) then for large T in a(E) the set UT is small (it is contained
in any given neighborhood of e in N̄(E) provided T is large enough). If U is
compact in N(E), the same is true for U−T .

For any E ⊆ Π, XE is the direct product of irreducible spaces XEi , the
subsets Ei are called the components of E. Let E0 ⊆ Π be such that E0 contains
no component of Π. The following construction depends on E0, which we now
consider fixed.

A set E ⊆ Π is said to be E0-connected if no component of E is contained
in E0. For such E, we define E′′ as the set of all λ ∈ E0 such that E ∪ {λ} is
not E0-connected, and we set E′ = E ∪ E′′. Then, E is the unique maximal E0-
connected subset of E′ and E′ is the unique maximal subset of Π with the latter
property. E and E′′ are disjoint, both are unions of components of E′. There
is a corresponding direct product decomposition XE′ = XE × XE′′ . We have
M(E′) = M(E)M(E′′) and M(E′) preserves the product structure of XE′ . So,
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M(E′) acts on XE by projecting its action on XE′ . The stabilizer for this action
is MK(E)M(E′′). The group B(E′) = M(E′)A(E′)N(E′) can also be made to act
on XE by defining the action of A(E′)N(E′) to be trivial. We denote the stabilizer
of o for this action by Bst(E′). We have Bst(E′) = MK(E)M(E′′)A(E′)N(E′).
This is the same group as in Remark 3 on page 22 of [10]; it will play an important
role later on.

To each one of the subsets E0 there belongs a Satake compactification X̄(E0).
These have axiomatic characterizations due to Satake ([13], or rewritten in our
present notations, [10, pp. 21-22]). There are a number of ways of constructing
them, i.e. to prove their existence (e.g. [13], [12], [6], [9], [1]). The present paper
will add a few more.

2. A construction of the compactifications

In order to avoid many repetitions we make the following conventions. For
any subgroup H ⊆ G or any one of the spaces XE , the notations VH , VXE

will automatically mean compact neighborhoods of e in H, resp. of o in XE .
Similarly, UH , UXE will mean compact subsets of H or XE .

Throughout this section we will be in the situation described in Section 1. A
subset E0 ⊆ Π will be given once and for all, E will always stand for an E0 -
connected set, E′, E′′ etc. will be as in Section 1.

Definition 2.1. For T ∈ a(E′), U = UN̄(E′), C = UM(E′′), V = VM(E′) we set

(2.1) ΓT,V
U,C = A(E′)T UCV · o.

These sets were introduced in [10] and were called admissible domains. they
are generalizations of non-tangential angular neighborhoods of the point 1 in the
complex unit disc, U and C playing the role of the opening angle. They and their
translates by elements of G are used in [10] to prove a generalization of Fatou’s
theorem about non-tangential limits of harmonic functions.

Since U, C, V are compact and all elements of G are isometries, ΓT,V
U,C is a set

of points within a bounded distance of A(E′)T · o (which is a polyhedral cone in
the flat subspace A(E′) · o of X, “far out at infinity” if T is large). This is also
the crucial feature of the generalized Siegel sets Sε,T,V introduced by Borel and
Ji [1]. What we want to show is that the Borel-Ji construction can be simplified
by replacing the Sε,T,V by the ΓT,V

U,C and using some new arguments along part of
the way.

The following is a slight strengthening of [10, Lemma 2.1].
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Lemma 2.2. Let Ũ = UBst(E′) be given. Then for any U, C as above there exists
U1, C1 such that for any T1, V1 there can be found T, V with the property ŨΓT,V

U,C ⊆
ΓT1,V1

U1,C1

Proof. It suffices to consider the four cases Ũ ⊆ A(E′), Ũ ⊆ M(E′′), Ũ ⊆ MK(E),
Ũ ⊆ N(E′). The first case is trivial: we may take U1 = U , C1 = C, and then
V = V1, T = T 1 +T0 where −T0 is a “lower bound” for Ũ , that is, Ũ ⊆ A(E′)−T0 .
In the second case

ŨΓT,V
U,C = A(E′)T U Ũ (ŨC)V · o,

so U1 = U Ũ , C1 = ŨC will work (with T = T1, V = V1). In the third case,

ŨΓT,V
U,C = A(E′)T U ŨCŨV Ũ · o

and the situation is again clear.

Finally, if Ũ ⊆ N(E′), first we fix some T̃ and Ṽ . For large T , Ũ−T UCV · o
is a small neighborhood in Xof the set UCV · o. Therefore (using ŨA(E′)T =
A(E′)T Ũ−T ) we can fix U1, C1 so that

ŨΓT,V
U,C ⊆ ŨΓT̃ ,Ṽ

U1,C1

holds for all sufficiently large T and small V . With this U1, C1, the assertion of
the Lemma holds: for any V1 there is T large enough so that Ũ−T UCV · o ⊆
U1C1V1 · o. ¤

The following is our version of the “strong separation” property, essential in
the Borel-Ji construction. We will consider two E0- connected sets E, E1 and
corresponding admissible domains. Sets without subscripts correspond to E, sets
with subscript 1 to E1

Proposition 2.3. If E 6= E1 or if E = E1 and g 6∈ Bst(E′), then for any U ,
C, U1, C1, there exist T , V , T1, V1 and VG such that gΓT,V

U,C and VGΓT1,V1

U1,C1
are

disjoint.

Proof. First we note that instead of VG it is enough to find VN̄(E′1)VM(E′1) with
the same property. In fact, we can fix an (arbitrary) Ṽ = VBst(E′1) and by Lemma
2.2 find U2 ⊃ U1, C2 ⊃ C1 so that Ṽ ΓT2,V2

U2,C2
⊆ ΓT1,V1

U1,C1
for large T2 and small V2.

Then VG = Ṽ VN̄(E′1)VM(E′1) will have the required property.

We express g with the aid of the Bruhat decomposition G = ∪wN̄(E′)wM(E′)A(E′)N(E′);
here w ∈ W/WE′ with WE′ denoting the subgroup of the Weyl group W gener-
ated by reflections coming from M(E′). w is represented by an element of M ′,
the normalizer of a in K. Again, by Lemma 2.2, the A(E′)N(E′)- part of g will



856 Adam Korányi

be irrelevant for our statement, so we may assume that g = n̄wm (n̄ ∈ N̄(E′)),
m ∈ M(E′)). Now we have

(2.2) gΓT,V
U,C = n̄

(
A(E′)T

)w
UwmCwmV wmwm · o

and the claim is that for appropriate choices this is disjoint from

(2.3) VN̄(E′1)VM(E′1)A(E′
1)

T1U1C1V1 · o = VN̄(E′1)A(E′
1)

T1Ũ1VM(E′1)C1V1 · o
where Ũ1 is still in N̄(E′

1), since M(E′
1) normalizes N(E′

1). In both sets we write
the points in the form n̄a·o using the unique decomposition X = N̄A·o. The first
step in this is to write the points of UwmCwmV wmwm ·o and of Ũ1VM(E′1)C1V1 ·o
in such a form. These sets being compact, the A - components we obtain are
bounded. If E 6= E1, or w 6= e, the Weyl chamber faces (a(E′)+)w and a(E)+ are
different. Hence taking T and T1 large we can make sure that the A-components
of all elements of (2.2) and (2.3) are different, so these sets are disjoint.

If E = E1 and w = e, but n̄ 6= e then in (2.2) and (2.3) we have Uwm ⊆ N̄(E′),
furthermore, CmwV mwmw · o and VM(E′1)C1V1 · o are in XE′ . If we write the
elements of (2.2), (2.3) in the decomposition X = N̄(E′)A(E′) ·XE′ , the N̄(E′)
component will be in n̄(Uwm)T , resp. in VN̄(E′1)Ũ

T1
1 So, when n̄ 6∈ VN̄(E′1) and

T, T1 are large, the two sets are disjoint.

Finally, if E = E1, w = e and n̄ = e, then the hypothesis implies g = m 6∈
MK(E)M(E′′). Taking VM(E′1) such that e 6∈ VM(E′1), (2.2) and (2.3) will again
be disjoint for large T, T1 and small V, V1. ¤

In order to compare with the Borel-Ji article we reformulate and slightly extend
the fundamental Proposition 2.4 of [1] in our language:

If E 6= E1 or E = E1 and g 6∈ B(E), then for any UX , gA(E)T · UX and
VGA(E1)T1 · UX are disjoint for large T, T1, provided g−1VG is disjoint from
B(E).

Our argument above, with unessential modifications, proves this statement.
It also proves Proposition 4.1 in [1], which is a complement to Proposition 2.4
dealing with the case E = E1, g ∈ B(E). Our argument can be said to be simpler
since it does not make use of Satake’s idea of imbedding X into a projective
space; it is also shorter. As a curiosity we might mention that there is yet
another possible approach to this question: One can use the results of [10] about
convergence of the Poisson integral along the sets ΓT,V

U,C to any given continuous
boundary function to prove the desired separation. Such a proof, in the last
analysis, is based on the Furstenberg-Moore embedding [5], [12] of X into a space
of probability measures, just as the proof in [1] is based on Satake’s imbedding.

In any case, having proposed an alternative proof of Propositions 2.4 and 4.1
of [1], we could say that the rest of the construction proceeds as in [1]. But we
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want to make some further remarks about combining the ideas of [1] with those
of [10] in order to arrive at a construction which is perhaps the most natural one.

As in [10], for fixed E, U, C we consider the filter FE
U,C generated by all ΓT,V

U,C .

We denote by gFE
U,C the filter of the g-translates gΓT,V

U,C and by gF̃E the family of
all filters gFE

U,C . We say that two families are equivalent if for every filter in one
of the families there is a rougher one in the other. (This means that if a sequence
converges along some filter in one family then it also converges along some filter
in the other; in the present case this is generalized non-tangential convergence.)
The points of the compactification X̄(E0) will now be the equivalence classes of
filters gF̃E . In this way the points to be attached to X appear together with
ways to tend towards them from the interior.

Lemma 2.2 and Proposition 2.3 show that gF̃E is equivalent to F̃E if and only
if g ∈ Bst(E′). One can write g · ιE(o) for gF̃E and define the imbedding ιE of
XE into X̄(E0) by ιE(m · o) = m · ιE(o) for m ∈ M(E). Then X̄(E0) is disjoint
union of “boundary components” g · ιE(XE), and one has a complete description
of X̄(E0) as a G-set.

It remains to define the topology of X̄(E0) and prove its properties. At this
point we can say that the construction proceeds as in [1], by describing the class
of convergent sequences and verifying the required properties. We should remark
here also that a convenient neighborhood basis of ιE(o) can be obtained as follows.
A basis of relative neighborhoods with respect to X of ιE(o) is formed by the sets

VGMK(E′′)A(E)T ′ · o
with T ′ ∈ a(E′). (T ′ is restricted to the subset a(E′) of a(E).) It is not hard
to see that this description is equivalent to the one given in Section 5 of [1].
Similarly, full neighborhoods of ιE(o) are unions over E0-connected sets D ⊃ E:

VGMK(E′′)
( ∪AD(E)T ′D · ιD(o)

)

where T ′D ∈ a(D′).

3. Another Construction

In this section, which is independent of the preceding one, we describe another
construction of the Satake compactifications. This will still be “from inside”, that
is, by attaching points to X, but without the use of Siegel domains or admissible
domains. We will directly define the system of relative neighborhoods of the
points to be attached, thus obtaining X̄(E0) as a set. Then we will define the
action of G, show that the relative closures of the relative neighborhoods give
the full neighborhood system of a topology, and then verify that what we have
constructed is a really the Satake compactification.
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In order not to get too lengthy and complicated, we will carry this out in detail
only for the maximal compactification X̄ = X̄(∅). We will then briefly sketch the
modifications and additional arguments necessary for the general case.

Definition 3.1. For E ⊆ Π, let FE be the filter generated by the sets VGA(E)T ·o
(VG ⊂ G, T ∈ a(E)).

Remark 1. The filters FE
U of Section 2 (now without C, and with E′ = E, since

E0 = ∅) are all finer than FE . In fact, given VG and T , for any U there exist
T̃ , V such that ΓT̃ ,V

U = A(E)T̃ UV · o = U T̃ V A(E)T̃ · o ⊆ VGA(E)T · o.
Lemma 3.2. The sets VN̄(E)A(E)T · VXE or VN̄AEA(E)T · o also generate FE.

Proof. The sets written are the same by N̄ = N̄(E)N̄E and XE = N̄EAE · o.
We must show that for given ṼN̄(E)A(E)T̃ · VXE there exists some VGA(E)T · o
contained in it. We look for VG in the form

VG = VN̄(E)VN(E)VA(E)VM(E).

We choose VN(E) and VA(E) arbitrarily and VM(E), VN̄(E) such that

ṼXE = VM(E) · o b VXE .

VN̄(E) b ṼN̄(E).

(The notation b means “contained in the interior of”.) We take T0 ∈ a+(E) such
that VA(E) ⊆ A(E)−T0 .

For any choice of ˜̃VN̄(E) we will have, for sufficiently large T ,

V
−(T−T0)
N(E) · ṼXE ⊂ VA(E)

˜̃VN̄(E) · VXE

because the right hand side is a neighborhood in X of the compact set ṼXE .

It follows that for sufficiently large T ,

VN̄(E)VN(E)VA(E)VM(E)A(E)T · o ⊆ VN̄(E)A(E)T−T0V
−(T−T0)
N(E) ṼXE

⊆ VN̄(E)
˜̃V T−2T0

N̄(E)
A(E)T−2T0 · VXE

⊆ ṼN̄(E)A(E)T̃ · VXE

finishing the proof. ¤

Lemma 3.3. Given U = UBst(E) and any ṼG, T̃ ∈ a(E), there exist VG, T such
that

(3.1) UVGA(E)T · o ⊂ ṼGA(E)T̃ · o
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Proof. It suffices to fix some ˜̃VG b ṼG and find T such that

(3.2) UA(E)T · o ⊆ ˜̃VGA(E)T̃ · o

because then we can always find VG such that V U
G

˜̃VG ⊆ ṼG, and (3.1) follows.

To prove (3.2) we distinguish cases. When U ⊆ MK(E), the statement is
trivial since MK(E) commutes with A(E) and fixes o. The case U ⊆ A(E) is also
trivial: then UA(E)T ⊆ A(E)T+T0 with some T0 ∈ a(E). When U ⊆ N(E), we
choose some VN̄(E)VM(E) ⊆ ˜̃VG and some arbitrary VA(E). For large T we have

U−T · o ⊆ VN̄(E)VM(E)VA(E) · o
since the right side is a neighborhood of o in X. So, for large T ,

UA(E)T · o = A(E)T U−T · o
⊆A(E)T VN̄(E)VM(E)VA(E) · o
= V T

N̄(E)VM(E)A(E)T VA(E) · o
⊆ ˜̃VGA(E)T̃ · o

as was to be shown. ¤

One consequence of this Lemma is that gFE = FE if g ∈ Bst(E). (By gFE we
mean the filter formed by the sets gS, S ∈ FE .) Writing the generators of FE as
in Lemma 3.2 it is immediate that this is actually “if and only if”. We can now
define X̄ = X̄(∅) as a set by attaching all filters gFE (g ∈ G, E ⊆ Π) to X; more
intuitively we can say that the filter gFE determines a point g·ιE(o) of X̄. We can
define the imbedding ιE : XE → X̄ consistently by setting ιE(m · o) = m · ιE(o)
for m ∈ M(E). It is then easy to see that each orbit G · ιE(o) is the disjoint
union of boundary components of the form g · ιE(XE), the family of these being
parametrized by G/B(E).

To complete the construction of X̄ we must define its topology. We want this
to be such that gFE is exactly the system of relative X-neighborhoods of g ·ιB(o).
The full neighborhoods then must include the closures of the elements of gFE .

The closure of an element N ∈ FE must contain the relative accumulation
points, that is, those g · ιD(o) ∈ X̄ for which every element of gFD meets N . We
proceed to determine these for a family of generators of FE .

We denote by prD the projection of a(E) onto aD(E) (which is the joint 0-space
of E in aD) along the decomposition aD(E)⊕ a(D).

Proposition 3.4. The relative accumulation points of N = VN̄AEA(E)T · o are
the points g · ιD(o) with D ⊃ E, g ∈ VN̄AEAD(E)prDT .
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Proof. For any D ⊆ Π we have

G = ∪w∈W/W DN̄(D)wB(D)

by the Bruhat Lemma. Together with Lemma 3.3 this shows that all the points of
X̄ = X̄(∅) can be uniquely written as g · ιD(o) with g = n̄Dwn̄DaD (n̄D ∈ N̄(D),
w ∈ W/WD, n̄D ∈ N̄D, aD ∈ AD). We must determine for which ones of these
does gÑ = gṼN̄ADA(D)T̃ · o meet N for all ṼN̄AD and all T̃ ∈ a(D).

We consider first the case where w = e. If E 6⊆ D, there is a root λ ∈ E \D.
For n̄a · o ∈ gÑ (with n̄ ∈ N̄ , a ∈ A), then λ(log a) will be very large for large T̃

while λ(log a) is bounded on N . So, N can’t meet every gÑ .

Suppose now that D ⊃ E. Then we can rewrite g as g = n̄aEaD
E (with

n̄ = n̄Dn̄D, aD = aEaD
E ) using the decomposition AD = AEAD(E).

If g ∈ VN̄AEAD(E)prDT · o then n̄aE ∈ VN̄AE and log aD
E ≥ prDT in aD(E).

Taking any Ñ , the set gÑ contains n̄aEaD
E ãD · o for all suffciently large ãD

in A(D). But among these there are points which are also in N . Indeed, for
λ ∈ D \ E we have λ(log(aD

E ãD)) = λ(log aD
E ) ≥ λ(prDT ) = λ(T ), and for

λ ∈ Π \ D, λ(log(aD
E ãD)) = λ(log aD

E ) + λ(log ãD) will be larger than λ(T ) for
large ãD, showing that aD

E ãD ∈ A(E)T .

In the contrary case either n̄aE 6∈ VN̄AE or log aD
E 6≥ prDT . In either case, for

sufficiently small ṼN̄AD , gÑ will be disjoint from N , as can be seen by looking
at the N̄AE - part resp. the AD(E) - part in the unique representation of X as
N̄A · 0.

Now we consider the case where w 6= e in W/WD. So, now g = n̄Dwn̄DaD

(w 6∈ WD) and we ask the question: Is there such a g with the property that for
all ṼG, T̃ , the set gÑ = gṼGA(D)T̃ · o meets N ?

Since gṼG = Ṽ g
Gg the question amounts to whether gA(D)T̃ ·o meets

(
Ṽ g

G

)−1N
for all ṼG, T̃ . The first one of these sets can be written as n̄D(A(D)T̃ )wUN̄A · o.
For the second set we can use Lemma 3.3 to see that, for small ṼG, it is contained
in some ŨÑAA(E)

˜̃T ·o. Writing the points of X in the form n̄a ·o (n̄ ∈ N̄ , a ∈ A)
we see that on the second set λ(log a) is bounded below for every λ ∈ Π. Since
w 6∈ WD, some λ will be negative on (a(D)+)w. Hence for large T̃ , λ(log a) will
be negative with large absolute value on the first set. It follows that for large T̃
there is no intersection. ¤

By this Proposition if we attach to N its relative accumulation points, we
obtain the set

(3.3) VN̄AE ·
( ∪D⊃E ιD(AD(E)prDT · o)).
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Every neighborhood of ιE(0) in the topology we are trying to construct must
contain such a set. Now it is possible to check that these sets and their translates
by elements of G already form the basis of a topology which we then define to be
the topology of X̄(∅). One way to do this checking is to verify that the “closure”
S̄ of sets S ⊆ X̄(∅) determined by our prospective neighborhoods (3.3) (and their
translates) satisfies the Kuratowski axioms: ∅̄ = ∅, S ⊆ S̄, ¯̄S = S̄, S ∪ T = S̄∪ T̄ .

It is immediate that in (3.3) we can replace VN̄AE by VG. The continuity of
the G-action follows from Lemma 3.3. From the axiomatic characterization of
the compactification ([13], or rewritten in the present notation [10, pp. 22-23])
it is clear that the topology we have constructed is indeed the Satake topology.
This can also be seen by comparing (3.3) with the neighborhood basis given in
Section 4 of [1].

Now, to finish, we describe the modifications required for the general case,
that is, for constructing the Satake compactifications X̄(E0). In this case, we
take only E0-connected sets E, and define FE to be the filter generated by the
sets

VGMK(E′′)A(E)T ′ · o
for all VG and all T ′ ∈ a(E′). (Note the restriction on T ′.) The general version of
Lemma 3.2 says now that FE is also generated by the sets VN̄(E′)N̄EAEMK(E′′)
A(E)T ′ · o or VN̄(E′)MK(E′′)A(E)T ′ · VXE . Lemma 3.3 remains true with U =
UBst(E′) for the generators of FE ; in the proof one has to split the A(E)T ′-
component into factors in A(E′) and AE′′ and use the Cartan decomposition
of MK(E′′). One defines the set X̄(E0) and imbeddings ιE as in the special
case E0 = ∅. Proposition 3.4 now says that the relative accumulation points of
N = V MK(E′′)A(E)T ′ , where V = VN̄(E′)N̄EAE will be the points g · ιD(o) with

E0-connected D ⊃ E and g ∈ V MK(E′′)AD(E)prDT ′ . The construction of the
topology then proceeds as in the case E0 = ∅.

4. Bounded domain realizations

In this section, which is independent of the preceding two, we will give real-
izations of X ∼= G/K as bounded domains in p in such a way that the Satake
compactifications can be obtained by taking the ordinary closure in p. Many of
the elements needed for this result are in [9], [3], [6, Ch. 3], one could try to prove
it by combining the results of [9] with the extension theorem of equivariant maps
in [11]. We take here a different approach using much more elementary meth-
ods than [9] and getting some explicit information about the boundary structure
along the way.

My original idea was to prove Proposition 4.1 by use of a monotonicity property
of Ψ and then use [11] to extend Ψ from a to p. This got essentially simplified
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by J. Faraut’s observation that Ψ is the gradient of ϕ and therefore it is possible
to use the method of [4, Prop 1.3.4] (which is a reproduction of a proof in [14]).
This observation also makes [11] almost superfluous: we will need only a very
small part of the argument of [11].

In the following we fix a set E0 ⊆ Π as in Section 1 and an element H0 ∈
a(E0)+. The condition (assumed) that E0 contains no component of Π means
that the orbit W ·H0 spans a as a linear space. We denote by Ca the convex hull

of W ·H0, by
◦

Ca its interior. Similarly, Cp will be the convex hull of K ·H0 and
◦

Cp its interior. We use the inner product (·|·) given on p (and a) by the Killing
form. We denote by ∇p, ∇a the gradient with respect to it on p resp. on a.

On a we define the function ϕ by

(4.1) ϕ(H) =
∑

s∈W

e(sH0|H)

and we define the map Ψ : a → a by Ψ = ∇a log ϕ, i.e.

(4.2) Ψ(H) =
1∑

s∈W e(sH0|H)

∑

s∈W

e(sH0|H)sH0.

(Ψ is a direct explicit expression for the moment map also used by Ji [9].) Clearly,
ϕ is real analytic and W -invariant. By a version of Chevalley’s theorem it extends
to a K-invariant real analytic function ϕ̃ on p. The gradient Ψ of log ϕ is then
W -equivariant; similarly Ψ̃ = ∇p log ϕ̃ is K-equivariant as a map p → p. At
points of a, ∇p log ϕ̃ is the same as ∇a log ϕ because log ϕ̃ is constant on K-orbits
and those are orthogonal to a. (With more detail this is in [11]; it is the only
part of [11] we have to use.) So, we have Ψ̃|a = Ψ, i.e. Ψ̃ is an extension of Ψ.

Proposition 4.1. Ψ is a real analytic diffeomorphism of a onto
◦

Ca.

Proof. Let H ′ ∈
◦

Ca. We show that it is the image of a unique H ∈ a by showing
that the function

f(H) = log ϕ(H)− (H ′|H)

is (i) strictly convex, and (ii) tends to ∞ as H →∞ in a. (Then it has a unique
minimum, so there is a unique H where Ψ(H)−H ′ = ∇f(H) = 0.)

Writing DH1 for the directional derivative we have for any H1 ∈ a,

D2
H1

f(H) =
1

ϕ(H)2
(
ϕ(H)D2

H1
ϕ(H)− (DH1ϕ(H))2

)

=
1

ϕ(H)2
( ∑

s∈W

e(sH0|H)
∑

s∈W

e(sH0|H)(sH0|H1)2 −
( ∑

s∈W

e(sH0|H)(sH0|H1)
)2

)
.
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By the Schwarz inequality this is positive since the (sH0|H1) (s ∈ W ) cannot be
independent of s. This proves (i).

For (ii), when H 6= 0 and t ∈ R we can write

f(tH) = log
∑

s∈W

et
(
(sH0|H)−(H′|H)

)
.

Since H ′ is a strict convex combination of the sH0 (s ∈ W ), there is some s such
that (sH0|H)− (H ′|H) > 0. Therefore, limt→∞ f(tH) = ∞, proving (ii).

Finally we note that image of Ψ must be contained in
◦

Ca by (4.2). ¤
Remark 2. Ψ maps a(E) to a(E) and a(E)+ to a(E)+ for every E ⊆ Π.

Proof. Writing WE for the subgroup of W generated by the reflections in the
roots λ ∈ E, the fixed set of WE is exactly a(E). So, for H ∈ a(E), Ψ(H) =
Ψ(sH) = sΨ(H) is in a(E). Since it preserves each a(E), Ψ maps Weyl chambers
to Weyl chambers. If the defining element H0 of ΨH0 = Ψ is in a+, then (4.2)
shows that Ψ(tH0) is near H0 for large t, by (H0|H0) > (sH0|H0), (s 6= e).
So Ψ preserves a+. Otherwise, we write H0 = lim Hn with Hn ∈ a+. Then
Ψ = lim ΨHn maps chambers to chambers and each ΨHn preserves a+. So, Ψ
again preserves a+. But then it also preserves the faces a(E)+. ¤

Proposition 4.2. Ψ̃ is a real analytic diffeomorphism of p onto
◦

Cp= K·
◦

Ca

Proof. ā+ is a fundamental domain for W in a and is the disjoint union of the
a(E)+, (E ⊆ Π). So, every point of p has a representation k ·expH with a unique
H in some a(E)+ and with k ∈ K unique modulo MK(E). From the preceding

Remark it is then immediate that Ψ̃ is one-to-one onto its image K·
◦

Ca.

To see that K·
◦

Ca=
◦

Cp we note that W · H0 ⊆ K · H0, implies Ca ⊆ Cp and

hence K·
◦

Ca⊆
◦

Cp. Conversely, if k ·H ∈ Cp, then H ∈ Cp, so H =
∫
K k ·H0dµ(k)

with some probability measure. Hence H = praH =
∫
K pra(k ·H0)dµ(k), where

pra denotes orthogonal projection onto a. By the easy part of Kostant’s convexity
theorem (see [7, p. 473]), pra(k · H0) ∈ Ca. So, H ∈ Ca, k · H ∈ K · Ca, and
Cp ⊆ K · Ca. ¤

Next we give a description of the boundary structure of Ca. Detailed proofs of
our statements are in [3, Thm. 3.1], the proofs can also be based on [7, Lemma
8.3, p. 459] and the standard properties of root systems (e.g. [2, pp. 277 - 284]).

a+ is a polyhedral cone whose open faces are the a(E)+ (E ⊆ Π). We denote
by +a the open dual cone, i.e. the set {H ∈ a|(H ′|H) > 0,∀H ′ ∈ a+}. In each
subalgebra aE we similarly define aE+ and +aE . The open faces of +a are the
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+aE ; +āE is the convex cone spanned by the Hλ (λ ∈ E), where Hλ denotes the
element of a such that λ(H) = (Hλ|H), ∀H ∈ a. Each closed face of Ca that
meets ā+ is contained in H0−+āE for some E (for a short proof see [7, p. 459]).

Let now E be E0 - connected. We write H0 = H0,E + HE
0 following the

decomposition a = a(E)+aE . We have WE ·H0 = H0,E +WE ·HE
0 , and WE ·HE

0

spans aE (since every component of E contains some λ ∈ Π with λ(HE
0 ) 6= 0 due

to the E0-connectedness of E). Note that by WE′ = WE ×WE′′ we also have
H0,E ∈ a(E′) and WE′ ·H0 = WE ·H0.

We denote by CE
a the convex hull of WE · HE

0 ; this is a closed domain in
the subspace aE . The supporting hyperplane of Ca orthogonal to HE

0 meets Ca

exactly in H0,E + CE
a . So the H0,E+

◦
CE

a are just the open faces of Ca meeting
ā+; the other faces are W - images of these.

We proceed to the boundary structure of Cp. First we note that Proposition
4.1 and 4.2 also hold for the symmetric space XE ∼= M(E)/MK(E) in place of X.

So, for each E0-connected E there is an analytic diffeomorphism ΨE : aE →
◦

CE
a

which extends to Ψ̃E : pE →
◦

CE
p where

◦
CE

p denotes the relative interior of the
convex hull CE

p of MK(E) · HE
0 . This is a domain in pE , and we also have

CE
p = MK(E) · CE

a .

Using the decomposition H0 = H0,E +HE
0 and the fact that MK(E) is a group

of orthogonal linear transformations fixing H0,E it follows that the convex hull
of MK(E) ·H0 is H0,E + CE

p and that this is a closed face of Cp. The boundary

of Cp is partitioned into open faces which are of the form k · (H0+
◦

CE
p ) with

E0-connected E and k ∈ K unique modulo MK(E′).

After these remarks we can prove the main result of this Section.

Theorem 4.3. The map expZ · o 7→ Ψ̃(Z) of X onto
◦

Cp extends by continuity
to a K-equivariant homeomorphism of X̄(E0) onto Cp. This extension maps
the boundary components onto the open faces of Cp and is explicitly given by
k · ιE(expY · o) 7→ k · (H0,E + Ψ̃E(Y )), (k ∈ K,Y ∈ pE).

Proof. We take an arbitrary sequence {xn} in X tending to a boundary point in
X̄(E0), i.e. we take xn = kn expHn · o (kn ∈ K, Hn ∈ ā+) converging to some
k·ιE(expHE ·o). Here kn can be chosen so that lim kn = k, and by K-equivariance
we may assume k = e. The convergence means that lim λ(Hn) = λ(H) for λ ∈ E,
and limλ(Hn) = ∞ for λ ∈ Π− E′ (cf. the Satake axioms).

The image of xn is knΨ(Hn), we have to show that this converges to H0,E +
ΨE(HE). For this we decompose Hn as Hn,E+HE

n and look at the expression (4.2)
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of Ψ(Hn). The coefficients are of the form e(sH0|Hn,E)e(sH0|HE
n ). The second factor

is bounded, since limHE
n = HE . The first factor, for s ∈ WE′ , is independent

of s. For s 6∈ WE′ it is of smaller order of magnitude than e(H0|Hn) as n → ∞:
In fact, H0 − s0H0 =

∑
Π pλHλ with pλ ≥ 0 since it is in +a. It is not in aE , so

pλ > 0 for some λ 6∈ E′. This implies that lim(H0 − sH0|Hn) = ∞.

So, in the limit all terms with s 6∈ WE′ drop out and the factor e(H0|Hn,E)

cancels giving

1∑
s∈W E′ e(sHE

0 |HE)

∑

s∈W E′
e(sHE

0 |HE)
(
H0,E + sHE

0

)
.

Since WE′ = WE×WE′′ and WE′′ fixes HE
0 , the value of this expression remains

the same if we take the sums over WE . This proves that lim knΨ(Hn) = H0,E +
ΨE(HE).

To complete the proof of the continuity of the extension of Ψ̃ we also have
to consider convergent sequences contained in the boundary X̄(E0) and their
images under the extended map. This can be done by looking at sequences in
one boundary component at a time, and making use of the hereditary structure
of the compactification (a boundary component of a boundary component of X
is again a boundary component of X). For a sequence xn contained in k · ιD(XD)
and converging to a point in k′ · ιE(XE), the same argument works as above. We
omit the details.

At this point we have a continuous K-equivariant extension of our map. It is

onto Cp because Cp is the disjoint union of
◦
Cp and its open faces k · (H0,E+

◦
CE

p )
and all points of these arise in the form k′·(H0,E+ΨE(HE)). It is also one - to - one
because Ψ̃E is by (the analogue of) Proposition 4.2 and because the components

k · ιE(XE) and the faces k · (H0,E

◦
CE

p ) (k ∈ K/ME(E′)) correspond to each other
in a one - to - one way. Therefore, by compactness, it is a homeomorphism. ¤

Remark 3. The Harish-Chandra embedding of Hermitian symmetric spaces as
bounded domains in Cn is a special instance of our realizations

◦
Cp. In fact,

assuming as we may that X is irreducible Hermitian symmetric, we see from
[8, Thm. 4.10, p. 460] that a has an orthonormal basis Hi (1 ≤ i ≤ `) such
that H =

∑
tiHi is in a+ iff t1 > t2 > · · · > t` > 0, and W consists of all

signed permutations of the Hi. (We write Hi for Hγi of [8].) We take H0 on the
edge t1 = t2 = · · · = t` of ā+; up to an unessential homothety we may assume
H0 =

∑
Hi. Now the W - orbit of H0 consists of all

∑
εiHi with εi = ±1. So,

ϕ(H) =
∑

e
P

εiti =
∏(

eti + e−ti
)

= 2`
∏

cosh ti
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and
Ψ(H) = ∇ log ϕ(H) =

∑
(tanh ti)Hi.

Comparing with [8, pp. 454 - 5] we see that Ψ̃ coincides with the Harish-Chandra
imbedding.

References

[1] A. Borel and L. Ji, Compactifications of symmetric and locally symmetric spaces, Math.
Research Letters 9 (2002), 725 - 739.
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