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Special Skew Shapes and Type A
Affine Hecke Algebras

Jun Hu

Abstract: Let l ∈ N, l ≥ m ∈ N. In this paper, we introduce the notions
of l-special skew shapes (resp. (l, m)-special skew shapes) and study their
properties. Applications of these objects in the representation theory of type
A affine Hecke algebras Haff

n with parameter q ∈ K are given, where q = l
√

1;
or q = 1 and charK = l. Using Young’s seminormal construction, we show
that, for each l-special skew shape λ/µ with Stdl(λ, µ) 6= ∅ (see Section 1 for
definition of Stdl(λ, µ)), there is an indecomposable representation of Haff

n ;
while for each (l, m)-special skew shape, there is an irreducible representation
of Haff

n . Our notion of (l, m)-special skew shape generalizes the notion of
(l, m)-special partition in earlier work of O. Mathieu (see [M]) and of H.
Wenzl (see [W]).

1. Introduction

Let n be a positive integer. Let Sn be the symmetric group on n letters. Let
K be a field and q ∈ K×. The Iwahori-Hecke algebra Hq(Sn) of Sn is the unital
K-algebra with generators T1, · · · , Tn−1 and relations
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(Ti + 1)(Ti − q) = 0, for 1 ≤ i < n,
TiTi+1Ti = Ti+1TiTi+1, for 1 ≤ i < n− 1,
TiTj = TjTi, for 1 ≤ i < j − 1 < n− 1.

Note that if q = 1, one recovers the group algebra of Sn over K.

Let l be the smallest positive integer such that 1 + q + q2 + · · · + ql−1 = 0
in K; l = ∞ if no such integer exists. It is well-known that Hq(Sn) is (split)
semi-simple if and only if l > n. Much more interesting is the case when l ≤ n,
i.e., the modular case. For each partition λ = (λ1, λ2, · · · ) of n, there is a Specht
module Sλ for Hq(Sn). If l > n, then Sλ is irreducible, and as λ varies over
the partitions of n, the Specht module varies over the pairwise non-isomorphic
(absolutely) irreducible modules for Hq(Sn). In general, Sλ is not necessarily
irreducible, but the dimension of Sλ is independent of K and could be given by
an explicit combinatorial formula depending only on λ. If λ is l-restricted, i.e.,
λi − λi+1 < l for any i, then Sλ has a unique top composition factor Dλ, and
as λ varies over the l-restricted partitions of n, the Dλ varies over the pairwise
non-isomorphic (absolutely) irreducible modules for Hq(Sn).

There are two most important outstanding problems in modular representation
theory for Hq(Sn), namely,

(i) determine the multiplicities of each irreducible module in a given Specht
module;

(ii) determine the dimension of each irreducible module, or more generally, of
each indecomposable module.

If q 6= 1 and K has characteristic 0, then the work of Lascoux-Leclerc-Thibon
and Ariki yields a complete solution to Problem (i), using the theory of canonical
bases for quantum groups (see [A] and [LLT]). In general (still q 6= 1), there is a
James’ Conjecture (see [J]); while Problem (ii) remains open. To the best of our
knowledge, there is not even a conjectured formula.

In [M], a partial solution to Problem (ii) in the case where q = 1 was found by
O. Mathieu, who computed the dimension of some irreducible representations of
Sn in characteristic l > 0 (in particular, here l is a prime number). The repre-
sentations considered in his paper are associated with partitions λ = (λ1, λ2, · · · )
such that `(λ) ≤ m and λ1 − λm ≤ l −m for a given positive integer m (called
(l, m)-special partition). His formula is based on Schur-Weyl duality and a vari-
ant of Verlinde’s formula which computes some tensor product multiplicities of
indecomposable tilting modules in n-tensor space. In general those tensor prod-
uct multiplicities are unknown. In [W], in his study of Hecke algebras Hq(Sn) at
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a primitive l-th root of unity, H. Wenzl also considered Hecke modules parame-
terized by partitions satisfying the same condition.

The modules considered by Mathieu are in fact the same1 as the modules
considered by Wenzl. This is the motivation of the present paper. We generalize
the notion of (l, m)-special partition to the notion of (l, m)-special skew shape.
Furthermore, we propose the notion of l-special skew shape, which is new even
in the case of partition. Note that the representation of type A Iwahori-Hecke
algebra is a part of the representation of the type A affine Hecke algebra. It turns
out that our new combinatorial objects have applications in the representation
theory of type A affine Hecke algebras.

We use Young’s seminormal construction (see [Ho], [AK], [HaR], [R1–4]) in
these applications2. We obtain a family of indecomposable modules as well as
a family of irreducible modules. Note that Ram ([R4]) developed calibrated ir-
reducible representation theory for affine Hecke algebras of general type. The
irreducible modules we obtained are the irreducible calibrated representations
(in type A) obtained by Ram. But we do not know if every irreducible cali-
brated representation in type A is isomorphic to one of the irreducible modules
we obtained. We index those irreducible modules by (l, m)-special skew shape,
while Ram indexed irreducible calibrated representations by skew local regions.
Note that when l = ∞, the skew local regions (in the case of type A) correspond
exactly to usual skew shapes. In general, they correspond to certain l-periodic
configuration of boxes. 3

To state the main result of this paper, we need some combinatorial notations.
Let n be a positive integer. Let K, q, l be defined as before. A partition of n is a
sequence λ = (λ1, λ2, · · · ) of non-negative integers such that λ1 ≥ λ2 ≥ · · · and
n = |λ| :=

∑
i≥1 λi. If λ is a partition of n, we write λ ` n and denote by `(λ)

the largest integer j such that λj 6= 0. The Young diagram of λ is defined as
[λ] :=

{
(a, b)

∣∣ 1 ≤ b ≤ λa

}
. The elements of [λ] are called nodes. We shall often

identify a partition with its Young diagram. If λ and µ are partitions such that
µi ≤ λi for all i we write µ ⊆ λ, in that case we use λ/µ to denote the diagram
which consists of all nodes of [λ] which are not in [µ], and we call ν = λ/µ a skew
shape.

1This seems to be known to some experts. But since we can not find suitable references
anywhere, a proof for this will be given (Theorem 1.3).

2For applications of Young’s seminormal construction in modular representations of cyclo-
tomic Hecke algebras, see [Hu1] and [Hu2].

3As the referee said, if a skew shape is (l, m)-special then one can stick two copies of it
together such that the two copies differ by m rows and l diagonals, the resulting shape is skew
again. Repeating this process one obtains a skew local region. On the other hand if a skew local
region is given, such that the shape is repeated every m rows upwards, one get an (l, m)-special
skew shape taking m consecutive rows of the configuration.
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A partition λ = (λ1, λ2, · · · ) is called an l-special partition if `(λ) ≤ l and
λ1−λ`(λ) ≤ l− `(λ). Let µ be an l-special partition. A skew shape ν is called an
l-special skew shape with respect to µ if ν = λ/µ for some l-special partition
λ. For each l-special skew shape ν = λ/µ, we denote by Stdl(λ, µ) the set of all
the l-special standard ν-tableaux with respect to µ (see 2.8 for definitions of l-
special standard tableaux). After proving a number of properties about l-special
standard ν-tableaux, we get the first main result of this paper.

Theorem 1.1. Let ν = λ/µ be an l-special skew shape with respect to µ. Suppose
that [ν] contains n nodes. If Stdl(λ, µ) 6= ∅, then there is an indecomposable
representation I(λ, µ) of Haff

n such that dim I(λ, µ) is equal to #Stdl(λ, µ), i.e.,
the number of all the l-special standard ν-tableaux with respect to µ.

Actually we shall construct I(λ, µ) with a basis labelled by all the l-special
standard ν-tableaux with respect to µ, and the action of each generator of Haff

n

on such a basis is defined by the standard Young’s seminormal construction.

Let m be a fixed positive integer with m ≤ l. A partition λ is called an
(l, m)-special partition if `(λ) ≤ m and λ1 − λm ≤ l −m. Let µ be an (l, m)-
special partition. A skew shape ν is called an (l, m)-special skew shape with
respect to µ if ν = λ/µ for some (l, m)-special partition λ. For each (l, m)-special
skew shape ν = λ/µ, we denote by Std(l,m)(λ, µ) the set of all the (l, m)-special
standard ν-tableaux with respect to µ (see 2.9 for definitions of (l, m)-special
standard tableaux). After proving a number of properties about (l, m)-special
standard ν-tableaux, we get the second main result of this paper.

Theorem 1.2. Let ν = λ/µ be an (l, m)-special skew shape with respect to
µ. Suppose that [ν] contains n nodes. Then Std(l,m)(λ, µ) 6= ∅, and there is
an irreducible representation D(λ, µ) of Haff

n such that dimD(λ, µ) is equal to
#Std(l,m)(λ, µ), i.e., the number of (l, m)-special standard ν-tableaux with re-
spect to µ.

Actually we shall construct D(λ, µ) with a basis labelled by all the (l, m)-special
standard ν-tableaux with respect to µ, and the action of each generator of Haff

n

on such a basis is also defined by the standard Young’s seminormal construction.

Note that our (l, m)-special skew shapes with respect to ∅ are just those par-
titions considered in [M] and [W]. For each (l, m)-special partition (i.e., (l, m)-
special skew shapes with respect to ∅) λ, we write D(λ) instead of D(λ, ∅). Let
Dλ be the irreducible Hq(Sn)-module, which is the unique top irreducible com-
position factor of the Specht module Sλ. We have that

Theorem 1.3. For each (l, m)-special partition λ, we have that D(λ) ∼= Dλ.
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In particular, this proves that the irreducible modules D(λ) = D(λ, ∅) we
studied here coincide with those studied in [M], hence in that case Theorem 1.2
reduces to the result of [M] and of [W].

2. Preliminaries

Let n be a positive integer. The symmetric group Sn acts on {1, 2, · · · , n}
from the right. For each 1 ≤ i < n, let si := (i, i + 1). Then s1, · · · , sn−1 are the
standard Coxeter generators of Sn. Let w ∈ Sn. A word w = si1 · · · sik for w is
a reduced expression for w if k is minimal; in this case we say that w has length
k and write `(w) = k.

Let K be a field and let q be an invertible element in K. Hereafter we shall
assume that l is the smallest positive integer such that 1+ q + q2 + · · ·+ ql−1 = 0
in K. If q = 1, this amounts to say that the field K has characteristic l > 0. Let
Hq(Sn) be the Hecke algebra of Sn as defined in Section 1. If q = 1, we shall
use the generator si instead of Ti for 1 ≤ i < n.

Definition 2.1. The affine Hecke algebra Haff
n is the K-algebra, which as a

K-linear space is isomorphic to

Hq(Sn)⊗K K[X±1
1 , · · · , X±1

n ].

The algebra structure is given by requiring that Hq(Sn) and K[X±1
1 , · · · , X±1

n ]
are subalgebras and that

(2.2) Tif − sifTi = (q − 1)
f − sif

1−XiX
−1
i+1

, ∀ f ∈ K[X±1
1 , · · · , X±1

n ],

if q 6= 1; or

(2.3) sif − sifsi =
f − sif

Xi+1 −Xi
, ∀ f ∈ K[X±1

1 , · · · , X±1
n ],

if q = 1. Here si ∈ Sn acts on K[X±1
1 , · · · , X±1

n ] by permuting Xi and Xi+1.

Note that the relation (2.2) is equivalent to

TiXiTi = qXi+1, ∀ i with 1 ≤ i < n,
TiXj = XjTi, ∀ j 6∈ {i, i + 1},(2.4)

while the relation (2.3) is equivalent to

Xi+1 = siXisi + si, ∀ i with 1 ≤ i < n,
siXj = Xjsi, ∀ j 6∈ {i, i + 1}.(2.5)

Let a be a positive integer and let λ be a partition of a. A λ-tableau t is
obtained from the Young diagram [λ] by replacing each node by one of the integers
1, 2, · · · , a, allowing no repeats. We write Shape(t) = λ. t is standard if the entries
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increase from left to right in each row and from top to bottom down each column.
Let t be a standard λ-tableau. For any integer i with 1 ≤ i ≤ a, we denote by
t ↓i the tableau obtained by removing all nodes with entry greater than i. It is
easy to see that Shape(t ↓i) is again a partition.

A node γ on the boundary of [λ] is called a removable node if [λ]−{γ} is again
a Young diagram of a partition, in that case γ is also called an addable node
of [λ] − {γ}. For any partition µ, we write µ → λ if [λ] = [µ] ∪ {γ} for some
removable node γ ∈ [λ]. Let λ be a partition of n. We define a standard λ-chain
to be a chain C = (C(1) → C(2) → · · · → C(n)) of partitions such that C(i) ` i
for each i and C(n) = λ.

Lemma 2.6 For any partition λ of n, the map which sends each standard
λ-tableau t to the standard λ-chain

(
Shape(t ↓1) → Shape(t ↓2) → · · · → Shape(t ↓n) = λ

)

defines a bijection between the set of standard λ-tableaux and the set of standard
λ-chains.

The above result allows a generalization in the following sense. For any two
partitions λ, µ with µ ⊆ λ. Let n = |λ| − |µ|. A chain C = (C(0) → C(1) →
· · · → C(n)) of partitions such that C(i) ` (|µ| + i) for each i, C(0) = µ and
C(n) = λ, will be called a standard λ-chain starting from µ. Recall our
definition of skew shape in Section 1. Let ν = λ/µ be a skew shape with n nodes,
where µ ` k and λ ` (n + k). A standard ν-tableau is a filling of the nodes in
the skew shape ν with the numbers 1, 2, · · · , n such that the numbers increase
from left to right in each row and from top to bottom down each column. Let t
be a standard ν-tableau. For any integer i with 1 ≤ i ≤ n, we denote by t ↓i the
tableau obtained by removing all nodes with entry greater than i. It is easy to
see that Shape(t ↓i) is again a skew shape.

Lemma 2.7 With the above notations, the map which sends each standard
ν-tableau t to the chain

(
[µ] → [µ] ∪ Shape(t ↓1) → [µ] ∪ Shape(t ↓2) → · · · → [µ] ∪ Shape(t ↓n) = [λ]

)

defines a bijection between the set of standard ν-tableaux and the set of standard
λ-chains starting from µ.

Recall our definition of l-special partitions (resp. l-special skew shape) in
Section 1.

Definition 2.8 Let µ be an l-special partition. Let ν = λ/µ be an l-special
skew shape with respect to µ, where µ ` k and λ ` (n + k) for some positive
integers k, n. A standard ν-tableau t is called an l-special standard ν-tableau
with respect to µ if for each 1 ≤ j ≤ n, [µ]∪ Shape(t ↓j) is an l-special partition.
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Recall also our definition of (l, m)-special partitions (resp. (l, m)-special skew
shape) in Section 1.

Definition 2.9 Let µ be an (l, m)-special partition. Let ν = λ/µ be an
(l, m)-special skew shape with respect to µ, where µ ` k and λ ` (n + k) for
some positive integers k, n. A standard ν-tableau t is called an (l, m)-special
standard ν-tableau with respect to µ if for each 1 ≤ j ≤ n, [µ]∪ Shape(t ↓j) is
an (l, m)-special partition.

Example 2.10 Suppose that n = 5,m = 5, l = 8, and λ = (4, 32, 12), µ =
(3, 2, 12), Then ν := λ/µ is an (8, 5)-special skew shape with respect to µ.

In this case, among the following two standard ν-tableaux,

1

3 5

4

2

5

3 4

2

1

the first one is an(8, 5)-special standard ν-tableau with respect to µ, while the
second one is not an (8, 5)-special standard ν-tableau with respect to µ.

Remark 2.11 1) By definition, an l-special partition λ is automatically an
(l, `(λ))-special partition.

2) Let m ≤ l be two fixed positive integers. For any partition λ with `(λ) ≤ m,
λ is an (l, m)-special partition only if λ is an l-special partition.

3) Let m ≤ l be two fixed positive integers. Let ν = λ/µ be an (l, m)-special
skew shape with respect to µ and t be a standard ν-tableau. Then t is (l, m)-
special standard with respect to µ only if t is an l-special standard with respect
to µ.

Let ν be a skew shape. Among all the partition λ such that ν = λ/µ for
some partition µ, there is a unique minimal one (under the dominance order E)
which will be denoted by λν , then ν = λν/µν , for some partition µν (which is
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also uniquely determined by ν), and λν ⊆ λ, µν ⊆ µ. In particular, both the first
row and the first column of [λν ] contain nodes of ν. Note that our definitions of
l-special (resp. (l, m)-special) skew shapes and standard tableaux depend on a
first choice of µ. However, they are compatible with inclusion relations. That is,
if ν = λ̃/µ̃ = λ/µ is a skew shape such that λ ⊆ λ̃, µ ⊆ µ̃, then l-special (resp.
(l, m)-special) skew shapes and standard tableaux with respect to µ̃ remain l-
special (resp. (l, m)-special) with respect to µ. As a result, if ν = λ/µ is an
l-special skew shape with respect to µ and t is an l-special standard tableau
with respect to µ, for each 1 ≤ j ≤ n, let ν(j) := Shape(t ↓j), then ν(j) is an
l-special skew shape with respect to µν(j), and t ↓j is an l-special standard ν(j)-
tableau with respect to µν(j). The same is true for (l, m)-special skew shapes and
(l, m)-special standard tableaux. To simplify notations, hereafter, we make the
following conventions: whenever we write “λ/µ is l-special (resp. (l, m)-special),
or an l-special (resp. (l, m)-special) skew shape λ/µ, or an l-special (resp. (l, m)-
special) standard λ/µ-tableau”, we always mean that they are defined with respect
to µ.

Example 2.12 Suppose that n = 6, l = 8, and λ = (6, 42, 2), µ = (5, 3, 2),
Then ν := λ/µ is an 8-special skew shape but not an (8,m)-special skew shape
whenever m ≥ 5.

In this case, among the following two standard ν-tableaux,

1 2

3 5

4

6

1 3

4 6

5

2

the first one is an 8-special standard ν-tableau with respect to µ, while the
second one is not an 8-special standard ν-tableau with respect to µ.

Remark 2.13 For any (l, m)-special skew shape ν = λ/µ with n nodes, let tν
be the standard ν-tableau in which the number 1, 2, · · · , n appear in order (i.e.,
from top to bottom) along successive columns. It is easy to see that tν is an
(l, m)-special standard λ/µ-tableau. In particular, Std(l,m)(λ, µ) 6= ∅. However,
for an l-special skew shape ν = λ/µ, it may happen that Stdl(λ, µ) = ∅. For
example, if n = 8, l = 5, ν := (8, 5)/(5). Then Std5((8, 5), (5)) = ∅.
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Let λ be a partition of n. If γ = (a, b) and γ′ = (a′, b′) are two nodes of [λ], we
say that γ is below γ′, or γ′ is above γ if a > a′. For any γ = (a, b) ∈ [λ], we define
Res(γ) := b − a ∈ Z. For any skew shape ν = λ/µ, we define (for each γ ∈ [ν])
Res(γ) by regarding γ as a node in [λ]. Note that our definition of the Young
diagram [µ] already enable us to identify [µ] with a subset of Z2, or equivalently,
to fix a coordinate plane. By parallel translation, one can get new identification
and hence new coordinate plane. Therefore one can define new Res function.
However, the difference between the Res values of any two nodes in [ν] does not
change in the new coordinate plane obtained by parallel translation. Note that
the second condition for λ being l-special (resp., (l, m)-special) is equivalent to
Res(γ1) − Res(γ2) ≤ l − 1, where γ1 = (1, λ1), γ2 = (`(λ), λ`(λ)) (resp., γ2 =
(m,λm)). This value is the axial distance of these two nodes. Removing one
node from a special partition produces a non-special partition only if the axial
distance is equal to l−1 and the removed node is γ2 (see Lemma 2.17 and Lemma
2.19). 4 For any standard ν-tableau t, and for any integer k with 1 ≤ k ≤ n, we
use Rest(k) to denote Res(γ) if γ ∈ [ν] is occupied by k in t.

Lemma 2.14 Let λ be an l-special partition with n nodes. Let γ 6= γ′ be two
removable nodes of [λ]. Then we have that

0 <
∣∣ Res(γ)− Res(γ′)

∣∣< l.

Moreover, the same is true if one replaces “l-special” by “(l, m)-special”.

Proof. Suppose that γ = (a, b), γ′ = (a′, b′). Without loss of generality we can
assume that γ is above γ′, then

1 ≤ a < a′ ≤ `(λ), λ`(λ) ≤ b′ < b ≤ λ1,

and (as λ is l-special) λ1 − λ`(λ) ≤ l − `(λ). Hence

1 < Res(γ)− Res(γ′) = (b− a)− (b′ − a′) ≤ λ1 − λ`(λ) + `(λ)− 1
≤ l − 1

as required. By remark 2.11, it is easy to see that the same is true if one replaces
“l-special” by “(l, m)-special”.

Lemma 2.15 Let ν = λ/µ be an l-special skew shape with n nodes. Let t be
an l-special standard λ/µ-tableau. For any integers k with 1 ≤ k < n, we have
that

0 <
∣∣ Rest(k)− Rest(k + 1)

∣∣< l,

and |Rest(k) − Rest(k + 1)| = 1 if and only if k, k + 1 lie in the same row or
the same column of t. Moreover, the same is true if one replaces “l-special” by
“(l, m)-special”.

4We thank the referee for pointing out this.
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Proof. Let γ = (a, b) ∈ [λ] be the node occupied by k in t, and let γ′ =
(a′, b′) ∈ [λ] be the node occupied by k + 1 in t. Let [µ̃] := [µ] ∪ Shape (t ↓k+1).
By definition, µ̃ is an l-special partition and γ′ is a removable node of µ̃.

If γ, γ′ lie in the same row or the same column of λ, the conclusion is clear (as
l > 1); otherwise γ would also be a removable node of µ̃. Then we can apply
Lemma 2.14, and the lemma follows.

For any skew shape ν = λ/µ (with n nodes) and any node γ ∈ [ν], we define

res(γ) := Res(γ) + lZ ∈ Z/lZ.

For any standard ν-tableau t and any integer k with 1 ≤ k ≤ n, we define
rest(k) := res(γ) if γ is occupied by k in t.

Lemma 2.16 Let ν = λ/µ be an l-special skew shape. For any l-special stan-
dard λ/µ-tableaux s, t, if ress(k) = rest(k),∀ 1 ≤ k ≤ n, then s = t. Moreover,
the same is true if one replaces “l-special” by “(l, m)-special”.

Proof. Let γ = (a, b) ∈ [λ] be the node occupied by 1 in s, and let γ′ = (a′, b′) ∈
[λ] be the node occupied by 1 in t. Then both γ and γ′ are addable nodes of µ.
By assumption, res(γ) = res(γ′). We claim that γ = γ′.

Suppose that γ 6= γ′. Without loss of generality, we can assume that γ is above
γ′. Suppose that γ′ is occupied by j > 1 in s. Let [µ̃] := [µ] ∪ Shape (s ↓j). By
definition, µ̃ is an l-special partition and γ′ is a removable node of µ̃. We have
that

1 ≤ a < a′ ≤ `(µ̃), µ̃`(eµ) ≤ b′ < b ≤ µ̃1,

and (as µ̃ is l-special) µ̃1 − µ̃`(eµ) ≤ l − `(µ̃). Hence

1 < Res(γ)− Res(γ′) = (b− a)− (b′ − a′) ≤ µ̃1 − µ̃`(eµ) + `(µ̃)− 1
≤ l − 1,

which is a contradiction.

Now use induction on n, our claim follows immediately. By remark 2.11, it is
easy to see that the same is true if one replaces “l-special” by “(l, m)-special”.

Let ν = λ/µ be an (l, m)-special skew shape (with respect to µ) with n nodes.
The symmetric group Sn acts from right on the set of ν-tableaux. Given an
(l, m)-special standard λ/µ-tableau t, we remark that even if tsi (where 1 ≤ i <
n) is a standard tableau, tsi does not necessarily have to be an (l, m)-special
standard λ/µ-tableau. For example, let t be the first (8, 5)-special standard
(4, 32, 12)/(3, 2, 12)-tableau in Example 2.10,
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2

3 5

4

1

ts
1
 =

is not a (8, 5)-special standard (4, 32, 12)/(3, 2, 12)-tableau. But we have

Lemma 2.17 Let ν = λ/µ be an (l, m)-special skew shape with n nodes. Let
t be an (l, m)-special standard λ/µ-tableau. Let k be an integer with 1 ≤ k < n,
and [λ̃] = [µ] ∪ Shape(t ↓k+1). Let γ (resp. γ′) be the node in [ν] occupied by
k (resp. by k + 1) in t. Suppose that tsk is a standard but not an (l, m)-special
standard λ/µ-tableau. Then m = `(λ̃) = `(λ), and

γ = (m, λ̃m), γ′ = (1, λ̃1), Rest(k)− Rest(k + 1) = −l + 1.

Proof. Since tsk is a standard tableau, it follows that γ and γ′ can not be
in the same row or the same column of [λ]. In particular, both γ and γ′ are
removable nodes of [λ̃]. Write γ = (a, b), γ′ = (a′, b′). By definition, λ̃ is an
(l, m)-special partition. Since tsk is not (l, m)-special standard with respect to
µ, it follows that m = `(λ̃) = `(λ), and either γ = (m, λ̃m), γ′ = (1, λ̃1) or
γ = (1, λ̃1), γ′ = (m, λ̃m).

Suppose that γ = (1, λ̃1), γ′ = (m, λ̃m). Since [µ] ∪ Shape(t ↓k) is an (l, m)-
special partition, we have λ̃1 − (λ̃m − 1) ≤ l−m. In particular, (λ̃1 − 1)− λ̃m ≤
l−m−2 < l−m, which contradicts to the fact that tsk is not (l, m)-special with
respect to µ. Therefore, γ = (m, λ̃m), and γ′ = (1, λ̃1).

Since t is (l, m)-special standard with respect to µ, we have λ̃1 − λ̃m ≤ l −m.
On the other hand, as tsk is not (l, m)-special standard with respect to µ, we
have λ̃1 − (λ̃m − 1) > l − m. It follows that λ̃1 − λ̃m = l − m. In particular,
Rest(k)− Rest(k + 1) = (λ̃m −m)− (λ̃1 − 1) = −l + 1, as required.

Lemma 2.18 Let ν = λ/µ be an (l, m)-special skew shape with n nodes. Let
t be an (l, m)-special standard λ/µ-tableau. Let k be an integer with 1 ≤ k < n.
Let γ (resp. γ′) be the node in [ν] occupied by k (resp. by k + 1) in t. Suppose
that tsk is an (l, m)-special standard λ/µ-tableau. Then

|Rest(k)− Rest(k + 1)| 6∈ {0, 1, l − 1}.

Proof. Write γ = (a, b), γ′ = (a′, b′). By Lemma 2.15, it suffices to show that
|Rest(k)− Rest(k + 1)| 6= l − 1.
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Let [λ̃] = [µ] ∪ Shape(t ↓k+1). As tsk is standard, we know that both γ, γ′ are
removable nodes of [λ̃]. Since tsk is an (l, m)-special standard λ/µ-tableau, it
follows that 1 < `(λ̃) ≤ m, and λ̃1 − λ̃m ≤ l −m. Hence

0 < |Res(γ)− Res(γ′)| ≤ λ̃1 − λ̃m + m− 1 ≤ l − 1,

with equality holds only when `(λ̃) = m, {γ, γ′} = {(1, λ̃1), (m, λ̃m)}, λ̃1 − λ̃m =
l −m.

Case 1. γ′ = (1, λ̃1), γ = (m, λ̃m).

If λ̃m > 1, then as [µ] ∪ Shape(tsk ↓k) is an (l, m)-special partition, it follows
that λ̃1 − (λ̃m − 1) ≤ l − m, which contradicts to fact that λ̃1 − λ̃m = l − m.
Hence λ̃m = 1. As [µ]∪ Shape(tsk ↓k) is an (l, m)-special partition, we have that
λ̃1 = λ̃1 − 0 ≤ l −m, which again contradicts to fact that λ̃1 − λ̃m = l −m.

Case 2. γ = (1, λ̃1), γ′ = (m, λ̃m).

If λ̃m > 1, then as [µ] ∪ Shape(t ↓k) is an (l, m)-special partition, it follows
that λ̃1 − (λ̃m − 1) ≤ l − m, which contradicts to fact that λ̃1 − λ̃m = l − m.
Hence λ̃m = 1. As [µ] ∪ Shape(t ↓k) is an (l, m)-special partition, we have that
λ̃1 = λ̃1 − 0 ≤ l−m, which again contradicts to fact that λ̃1 − λ̃m = l−m. This
completes the proof of the lemma.

Lemma 2.19 Let ν = λ/µ be an l-special skew shape with n nodes. Let t
be an l-special standard λ/µ-tableau. Let k be an integer with 1 ≤ k < n, and
[λ̃] = [µ] ∪ Shape(t ↓k+1). Let γ (resp. γ′) be the node in [ν] occupied by k
(resp. by k+1) in t. Suppose that tsk is a standard but not an l-special standard
λ/µ-tableau. Then

γ = (`(λ̃), λ̃
`(eλ)

), γ′ = (1, λ̃1), λ̃
`(eλ)

> 1,

and Rest(k)− Rest(k + 1) = −l + 1.

Proof. Since tsk is a standard tableau, it follows that γ and γ′ can not be
in the same row or the same column of [λ]. In particular, both γ and γ′ are
removable nodes of [λ̃]. Write γ = (a, b), γ′ = (a′, b′). By definition, λ̃ is an
l-special partition. Since tsk is not l-special standard with respect to µ, it follows
that either γ = (`(λ̃), λ̃

`(eλ)
), γ′ = (1, λ̃1) or γ = (1, λ̃1), γ′ = (`(λ̃), λ̃

`(eλ)
).

Suppose that γ = (1, λ̃1), γ′ = (`(λ̃), λ̃
`(eλ)

). If λ̃
`(eλ)

> 1, then as [µ]∪Shape(t ↓k

) is an l-special partition, we have λ̃1 − (λ̃
`(eλ)

− 1) ≤ l − `(λ̃). In particular,

(λ̃1 − 1)− λ
`(eλ)

≤ l − `(λ̃)− 2 < l − `(λ̃), which contradicts to the fact that tsk

is not l-special with respect to µ; If λ̃
`(eλ)

= 1, then as λ̃ is l-special, we have
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that λ̃1 − 1 ≤ l − `(λ̃). In this case, λ̃1 − 1 − λ̃
`(eλ)

= λ̃1 − 2 < l − `(λ̃), which
still contradicts to the fact that tsk is not l-special with respect to µ; Therefore,
γ = (`(λ̃), λ̃

`(eλ)
), γ′ = (1, λ̃1).

Since λ̃ is l-special, we have λ̃1 − λ̃
`(eλ)

≤ l − `(λ̃). If λ̃
`(eλ)

= 1, then λ̃1 −
1 ≤ l − `(λ̃). But as tsk is not l-special with respect to µ, we also have that
λ̃1 − λ̃

`(eλ)−1
> l− (`(λ̃)− 1). It follows that λ̃1 − 1 ≥ λ̃1 − λ̃

`(eλ)−1
> l− `(λ̃) + 1,

which is impossible. Hence λ̃
`(eλ)

> 1. As tsk is not l-special with respect to µ, we

have λ̃1− (λ̃
`(eλ)

−1) > l−`(λ̃). It follows that λ̃1− λ̃
`(eλ)

= l−`(λ̃). In particular,

Rest(k)− Rest(k + 1) = (λ̃
`(eλ)

− `(λ̃))− (λ̃1 − 1) = −l + 1,

as required.

For any two standard λ-tableaux s, t, it is well-known that there exist inte-
gers 1 ≤ i1, · · · , ik < n, such that ssi1si2 · · · sik = t and for each 1 ≤ j ≤ k,
ssi1si2 · · · sij is a standard tableau. The following two theorems tell us that the
same is true if one replace “partitions” by “l-special or (l, m)-special skew shapes”,
and “standard tableaux” by “l-special or (l, m)-special standard tableaux” respec-
tively.

Theorem 2.20 Let ν = λ/µ be an l-special skew shape with n nodes. Let s, t
be two l-special standard λ/µ-tableaux. Then there exist integers 1 ≤ i1, · · · , ik <
n, such that for j = 1, · · · , k, t0 = s, tj = tj−1sij , tk = t, and each tj is an l-special
standard λ/µ-tableau.

Proof. We use induction on n. If n = 1, there is nothing to prove. Suppose
that the conclusion is true for n− 1. We want to prove that it is also true for n.
Let ν = λ/µ be an l-special skew shape (with respect to µ) with n nodes. Let
s, t be two l-special standard λ/µ-tableaux. Let γ be the node which is occupied
by n in s, and let γ′ be the node which is occupied by n in t. If γ = γ′, then
the theorem follows immediately from induction hypothesis. Now suppose that
γ 6= γ′.

Without loss of generality, we can assume that γ′ is above γ. In particular,
`(λ) > 1. Suppose that γ′ is the node occupied by k in s. Then 1 ≤ k ≤ n − 1.
Let γ1 be the node occupied by k + 1 in s. As γ′ is a removable node of [λ] and
s is a standard tableau, γ1 is not in the same row or the same column as γ′. In
particular, t1 := ssk is a standard tableau. We claim that t1 must be l-special
with respect to µ.

Suppose that t1 is not l-special with respect to µ. By Lemma 2.19, we know
that γ1 is above γ′ and Res(γ′)− Res(γ1) = −l + 1.
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We write γ1 = (a, b), γ′ = (a′, b′), and [λ̃] = [µ] ∪ Shape(t ↓n−1). Then λ̃ is
l-special and we have that λ̃1− λ̃

`(eλ)
≤ l− `(λ̃). Note that γ′ is occupied by n in

t. It follows that

1 ≤ a, a′ ≤ `(λ̃), λ̃
`(eλ)

< b, b′ ≤ λ̃1.

Hence

0 < Res(γ1)− Res(γ′) < λ̃1 − λ̃
`(eλ)

− 1 + `(λ̃) ≤ l − 1,

which is a contradiction. This proves our claim.

Now γ′ is occupied by k + 1 in t1. Repeating the use of Lemma 2.19, it is easy
to see that there exist integers 1 ≤ i1, · · · , ik < n, such that for j = 1, · · · , k,
t0 = s, tj = tj−1sij , tk = u, and each tj is an l-special standard λ/µ-tableau and
γ′ is occupied by n in u.

Now note that in either of the two l-special standard λ/µ-tableaux u, t, γ′ is
occupied by n. Hence we can use induction hypothesis, and the theorem follows
immediately.

Theorem 2.21 Let ν = λ/µ be an (l, m)-special skew shape with n nodes.
Let s, t be two (l, m)-special standard λ/µ-tableaux. Then there exist integers
1 ≤ i1, · · · , ik < n, such that for j = 1, · · · , k, t0 = s, tj = tj−1sij , tk = t are all
standard ν-tableaux, and

∣∣ Restj−1(ij)− Restj−1(ij + 1)
∣∣ 6∈ {

0, 1, l − 1
}
.

In particular (by Lemma 2.17), for each 0 ≤ j ≤ k, each tj is an (l, m)-special
standard λ/µ-tableau.

Proof. We use induction on n. If n = 1, there is nothing to prove. Suppose
that the conclusion is true for n− 1. We want to prove that it is also true for n.
Let ν = λ/µ be an (l, m)-special skew shape (with respect to µ) with n nodes.
Let s, t be two (l, m)-special standard λ/µ-tableaux. Let γ be the node which is
occupied by n in s, and let γ′ be the node which is occupied by n in t. If γ = γ′,
then the theorem follows immediately from induction hypothesis. Now suppose
that γ 6= γ′.

Without loss of generality, we can assume that γ′ is above γ. In particular,
`(λ) > 1. Write γ = (a, b), γ′ = (a′, b′). Then

1 ≤ a′ < a ≤ `(λ), λ`(λ) ≤ b < b′ ≤ λ1.

Suppose that γ′ is the node occupied by k in s. Then 1 ≤ k ≤ n−1. Let γ1 be the
node occupied by k + 1 in s. As γ′ is a removable node of [λ] and s is a standard
tableau, γ1 is not in the same row or the same column as γ′. In particular,
t1 := ssk is a standard tableau. Since λ is (l, m)-special (and hence l-special), we
have `(λ) ≤ m and λ1−λ`(λ) ≤ l− `(λ). In particular, a′ < m. Applying Lemma
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2.17 and Lemma 2.18, it is easy to see that t1 is also (l, m)-special standard with
respect to µ, and ∣∣ Ress(k)− Ress(k + 1)

∣∣ 6∈ {
0, 1, l − 1

}
.

Now note that γ′ = (a′, b′) (with a′ < m) is occupied by k + 1 in t1. Repeating
the use of Lemma 2.17 and Lemma 2.18, it is easy to see that there exists integers
1 ≤ i1, · · · , in−k < n, such that for j = 1, · · · , n− k, t0 = s, tj = tj−1sij , tn−k = u

are all (l, m)-special standard (with respect to µ), and∣∣ Restj−1(ij)− Restj−1(ij + 1)
∣∣ 6∈ {

0, 1, l − 1
}
.

Now note that in either of the two (l, m)-special standard λ/µ-tableaux u, t,
γ′ is occupied by n. Hence we can use induction hypothesis, and the theorem
follows immediately.

3. The indecomposable module I(λ, µ)

Let K, q, l be defined as before. In this section, we shall construct, for each
l-special skew shape λ/µ, an indecomposable module I(λ, µ) over the affine Hecke
algebra Haff

n explicitly. Our constructions are based on the Young seminormal
representations for the affine Hecke algebras (see [Ho], [AK], [HaR], [R1–4]).

Let ν = λ/µ be an l-special skew shape with respect to µ. We use our definition
of Young diagram to fix a coordinate plane.5 We define I(λ, µ) to be a K-linear
space with a basis labelled by all the l-special standard λ/µ-tableaux, that is

(3.1) I(λ, µ) := K-span
{

vt

∣∣∣ t is an l-special standard λ/µ-tableau
}

.

Recall the definition of the affine Hecke algebra Haff
n in 2.1. For each integer i, j

with 1 ≤ i < n, 1 ≤ j ≤ n, and for each l-special standard λ/µ-tableau t, we
define

vtTi =
q − 1

1− qrest(i)−rest(i+1)
vt +

(
1 +

q − 1
1− qrest(i)−rest(i+1)

)
vtsi ,

vtXj = qrest(j)vt,(3.2)

if q 6= 1; or

vtsi =
1

rest(i + 1)− rest(i)
vt +

(
1 +

1
rest(i + 1)− rest(i)

)
vtsi ,

vtXj = rest(j)vt,(3.3)

5If we use a new coordinate plane obtained by parallel translation and define Res, res functions
with respect to that new coordinate plane, then the same procedure in this section will give rise
to a new family indecomposable modules. They are in fact the twist of the old ones by certain
automorphism of Haff

n . The same remark applies to our construction in Section 4.
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if q = 1,where if tsi is not an l-special standard λ/µ-tableau, then we define
vtsi = 0. By Lemma 2.15, both (3.2) and (3.3) are well-defined.

Theorem 3.4 The above action extends to a well-defined action of Haff
n on

the I(λ, µ).

Proof. This can be verified by case by case arguments as in [R2].

Theorem 3.6 For each l-special skew shape ν = λ/µ (with respect to µ),
I(λ, µ) is an indecomposable module over the affine Hecke algebra Haff

n .

Proof. It is easy to see that for each 2-special skew shapes ν, there is only
one 2-special standard ν-tableau. In that case the conclusion is obvious. So
we can assume that l > 2. Let ν = λ/µ be an l-special skew shape. Recall
that Stdl(λ, µ) =

{
t

∣∣ t is an l-special standard λ/µ-tableau
}
. For any l-special

standard λ/µ-tableau t, we define

(3.7) Θt :=
n∏

i=1

∏
u∈Stdl(λ,µ)

resu(i) 6=rest(i)

Xi − qresu(i)

qrest(i) − qresu(i)
,

if q 6= 1; or

(3.8) Θt :=
n∏

i=1

∏
u∈Stdl(λ,µ)

resu(i) 6=rest(i)

Xi − resu(i)
rest(i)− resu(i)

,

if q = 1.

By Lemma 2.16, for any l-special standard λ/µ-tableaux u 6= v, there exists
an integer k with 1 ≤ k ≤ n, such that resu(k) 6= resv(k). It follows that
vvΘu = δu,vvv.

For any 0 6= v ∈ I(λ, µ), we write v =
∑

t∈Stdl(λ,µ) atvt. Applying the operator
Θt, it is easy to see that at 6= 0 implies that vt ∈ vHaff

n . In particular, this proves
that every submodule of I(λ, µ) is spanned by the base elements it contains.

Now let t be an l-special standard λ/µ-tableau, and let k be an integer with
1 ≤ k < n such that tsk is also an l-special standard λ/µ-tableau. We have

Case 1.
∣∣ Rest(k)− Rest(k + 1)

∣∣ 6∈ {
1, l − 1

}
.

Since

vtTk = q−1
1−qrest(k)−rest(k+1) vt +

(
q−qrest(k)−rest(k+1)

1−qrest(k)−rest(k+1)

)
vtsk

,

vtsk
Tk = q−1

1−qrest(k+1)−rest(k) vtsk
+

(
q−qrest(k+1)−rest(k)

1−qrest(k+1)−rest(k)

)
vt,
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if q 6= 1; or

vtsk = 1
rest(k+1)−rest(k)vt +

(
1+rest(k+1)−rest(k)
rest(k+1)−rest(k)

)
vtsk

,

vtsk
sk = 1

rest(k)−rest(k+1)vtsk
+

(
1+rest(k)−rest(k+1)
rest(k)−rest(k+1)

)
vt,

if q = 1, It follows that vtsk
∈ vtHaff

n and vt ∈ vtsk
Haff

n .

Case 2. rest(k)− rest(k + 1) = 1.

It follows (as above) that vt ∈ vtsk
Haff

n .

Case 3. rest(k)− rest(k + 1) = l − 1.

It follows (as above) that vtsk
∈ vtHaff

n .

Now applying Theorem 2.20, and noting that each submodule of I(λ, µ) is
spanned by the base elements it contains, the theorem follows immediately.

Note that the proof of the above theorem also yields a combinatorial way to
determine the composition series for each indecomposable module I(λ, µ).

Example 3.9 Suppose n = 3, l = 4, ν = (3, 1)/(1). The following are all the
4-special standard λ/µ-tableaux.

1

2 3
s =

3

1 2
t =

2

1 3
u =

The subspace spanned by vs, vu is a 2-dimensional irreducible module over Haff
n ,

and the quotient space I(λ, µ)/(Kvs⊕Kvu) is an 1-dimesional irreducible module.

4. The irreducible module D(λ, µ)

Let K, q, l, m be defined as before. In this section, we shall construct, for each
(l, m)-special skew shape ν = λ/µ, an irreducible module D(λ, µ) over the affine
Hecke algebra Haff

n explicitly. Our constructions are also based on the Young
seminormal representations for the affine Hecke algebras (see [Ho], [AK], [HaR],
[R1–4]).

Let ν = λ/µ be an (l, m)-special skew shape with respect to µ. We use our
definition of Young diagram to fix a coordinate plane. We define D(λ, µ) to be
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a K-linear space with a basis labelled by all the (l, m)-special standard λ/µ-
tableaux, that is

(4.1) D(λ, µ) := K-span
{

vt

∣∣∣ t is an (l, m)-special standard λ/µ-tableau
}

.

Recall the definition of the affine Hecke algebra Haff
n in 2.1. For each integer i, j

with 1 ≤ i < n, 1 ≤ j ≤ n, and for each (l, m)-special standard ν-tableau t, we
define

vtTi =
q − 1

1− qrest(i)−rest(i+1)
vt +

(
1 +

q − 1
1− qrest(i)−rest(i+1)

)
vtsi ,

vtXj = qrest(j)vt,(4.2)

if q 6= 1; or

vtsi =
1

rest(i + 1)− rest(i)
vt +

(
1 +

1
rest(i + 1)− rest(i)

)
vtsi ,

vtXj = rest(j)vt,(4.3)

if q = 1, where if tsi is not an (l, m)-special standard λ/µ-tableau, then we define
vtsi = 0. By Lemma 2.15, both (4.2) and (4.3) are well-defined.

Theorem 4.4 The above action extends to a well-defined action of Haff
n on

the D(λ, µ).

Proof. This can be verified by case by case arguments as in [R2].

Theorem 4.5 For each (l, m)-special skew shape ν = λ/µ with n nodes,
D(λ, µ) is an irreducible Haff

n -module.

Lemma 4.6 Let λ, λ′ be two (l, m)-special partitions of n (with respect to ∅),
s (resp. t) be an (l, m)-special standard λ-tableau (resp. (l, m)-special standard
λ′-tableau) (with respect to ∅). If ress(k) = rest(k),∀ 1 ≤ k ≤ n, then λ = λ′ and
s = t.

Proof. We use induction on n. The case where n = 1 is obvious. Suppose that
the conclusion is true for n− 1. We want to prove that it is also true for n. Let
λ, λ′ be two (l, m)-special partitions of n. Let s (resp. t) be an (l, m)-special
standard λ-tableau (resp. (l, m)-special standard λ′-tableau) such that for any
integer k with 1 ≤ k ≤ n, ress(k) = rest(k). Let s̃ := s ↓n−1, [λ̃] := Shape(s̃),
t̃ := t ↓n−1, [λ̃′] := Shape(̃t). By induction hypothesis, we know that λ̃ = λ̃′ and
s̃ = t̃.

Let γ be the node which is occupied by n in s, and γ′ be the node which is
occupied by n in t. Then both γ, γ′ are addable nodes of [λ̃]. It suffices to show
that γ = γ′. Suppose that γ 6= γ′. Without loss of generality, we can assume
that γ is above γ′.
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Case 1. both γ and γ′ are below the first row of [λ̃] and not below the last
(nonzero) row of [λ̃].

Let γ = (a, b), γ′ = (a′, b′), then 1 ≤ a < a′ ≤ `(λ̃), λ̃
`(eλ)

≤ b′ < b ≤ λ̃1. Since

λ̃ is (l, m)-special, it follows that `(λ̃) ≤ m and λ̃1 − λ̃
`(eλ)

≤ l − `(λ̃). Hence

0 < Res(γ)− Res(γ′) = (b− a)− (b′ − a′)

≤ λ̃1 − λ̃
`(eλ)

+ `(λ̃)− 1 ≤ l − 1,

which implies that res(γ) 6= res(γ′), a contradiction.

Case 2. γ is in the first row of [λ̃], while γ′ is below the first row of [λ̃] and not
below the last (nonzero) row of [λ̃]. Then γ = (1, λ̃1 + 1), γ′ = (a′, b′), where

1 ≤ a′ ≤ `(λ̃), λ̃
`(eλ)

≤ b′ ≤ λ̃1.

Since λ is (l, m)-special, it follows that `(λ̃) ≤ m and λ̃1 + 1 − λ̃m ≤ l − m.
Hence

0 < Res(γ)− Res(γ′) = (λ̃1 + 1− 1)− (b′ − a′)

≤ l −m− 1 + λ̃m − λ̃
`(eλ)

+ `(λ̃) ≤ l − 1,

which implies that res(γ) 6= res(γ′), a contradiction.

Case 3. γ is in the first row of [λ̃], while γ′ is in the (`(λ̃) + 1)-th row of [λ̃].
Then γ = (1, λ̃1 + 1), γ′ = (`(λ̃) + 1, 1).

Since λ′ is (l, m)-special, it follows that `(λ̃) + 1 ≤ m. In particular `(λ̃) < m,
hence λ̃m = 0. Since λ is (l, m)-special, it follows that λ̃1 + 1 ≤ l −m. Hence

0 < Res(γ)− Res(γ′) = (λ̃1 + 1− 1)− (1− `(λ̃)− 1)

≤ l −m− 1 + `(λ̃) < l − 1,

which implies that res(γ) 6= res(γ′), a contradiction.

Case 4. γ is below the first row of [λ̃] and not below the last (nonzero) row of
[λ̃], while γ′ is in the (`(λ̃) + 1)-th row of [λ̃]. Then γ = (a, b), γ′ = (`(λ̃) + 1, 1),
where

1 ≤ a ≤ `(λ̃), λ̃
`(eλ)

≤ b ≤ λ̃1.

Since λ′ is (l, m)-special, it follows that `(λ̃) + 1 ≤ m and λ̃1 − 1 ≤ l − m.
Hence

0 < Res(γ)− Res(γ′) = (b− a)− (1− `(λ̃)− 1)

≤ λ̃1 − 1 + `(λ̃) ≤ l −m + m− 1 = l − 1,
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which implies that res(γ) 6= res(γ′), a contradiction. This completes the proof of
the lemma.

Corollary 4.7 Let λ/µ and λ′/µ be two (l, m)-special skew shapes (with
respect to µ), where µ ` k and λ, λ′ ` (n + k) for some positive integers k, n.
Let s (resp. t) be an (l, m)-special standard λ/µ-tableau (resp. (l, m)-special
standard λ′/µ-tableau) (with respect to µ). If ress(k) = rest(k),∀ 1 ≤ k ≤ n,
then λ = λ′ and s = t.

Proof. Let tµ be the standard µ-tableau in which the number −k, · · · ,−2,−1
appear in order (from top to bottom) along successive columns. We define ŝ :=
tµ ∪ s, t̂ := tµ ∪ t. It is clear that both ŝ and t̂ are (l, m)-special standard tableau
with respect to µ. Now applying Lemma 4.6, we get our corollary.

Theorem 4.8 Let λ/µ and λ′/µ be two (l, m)-special skew shapes (with respect
to µ). Suppose that λ 6= λ′, where µ ` k and λ, λ′ ` (n + k) for some positive
integers k, n. then D(λ, µ) 6∼= D(λ′, µ) as Haff

n -modules.

Proof. For each (l, m)-special standard λ/µ-tableau t, we define

(4.9) Θ̃t :=
∏

µ⊆λ`n+k
λ is (l, m)-special

n∏

i=1

∏
u∈Stdl,m(λ,µ)

resu(i) 6=rest(i)

Xi − qresu(i)

qrest(i) − qresu(i)
,

if q 6= 1; or

(4.10) Θ̃t :=
∏

µ⊆λ`n+k
λ is (l, m)-special

n∏

i=1

∏
u∈Stdl,m(λ,µ)

resu(i) 6=rest(i)

Xi − resu(i)
rest(i)− resu(i)

,

if q = 1.

Now suppose that λ/µ, λ′/µ are two (l, m)-special skew shapes (with respect
to µ) such that there is a Haff

n -module isomorphism ϕ : D(λ, µ) ∼= D(λ′, µ). Let
t be an (l, m)-special standard λ/µ-tableau, and write

(4.11) ϕ(vt) =
∑

u∈Stdl,m(λ′,µ)

auvu.

By Corollary 4.7, for any two (l, m)-special standard tableaux (with respect
to µ) u and v, vvΘ̃u = δu,vvv. Since ϕ is a Haff

n -module homomorphism, we have
ϕ(vt) = ϕ(vtΘ̃t) = ϕ(vt)Θ̃t. From this and Corollary 4.7 it is easy to see that
λ = λ′, as required.
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5. Identifying D(λ) with Dλ

Let K, q, l, m be defined as before. Let n be a positive integer. A composition
of n is a sequence µ = (µ1, · · · , µk) of non-negative integers such that n = |µ| :=∑k

i=1 µi. Let µ be a composition of n, then we have an obvious embedding

Haff
µ := Haff

µ1
⊗ · · · ⊗ Haff

µk
↪→ Haff

n .

We call Haff
µ a Young subalgebra of Haff

n . Following [K2], we give

Definition 5.1 An irreducible Haff
n -module D is called completely splittable

if and only if the restriction D ↓Haff
µ

to any Young subalgebra Haff
µ ⊆ Haff

n is
semi-simple.

Theorem 5.2 For any (l, m)-special skew shape λ/µ, the irreducible represen-
tation D(λ, µ) is completely splittable.

Proof. This follows directly from our construction of D(λ, µ).

Let ν = λ/µ be an (l, m)-special skew shape with n nodes. It is easy to see
that

(5.3) D(λ, µ) ↓Haff
n−1

∼=
⊕

ρ→ν
ρ=λ′/µ,λ′⊂λ

λ′/µ is (l,m)-special with respect to µ

D(λ′, µ),

where ρ → ν means that [ρ] is obtained from [ν] by removing a removable node
in [ν].

Let Hq(Sn) be the Hecke algebra of Sn. Let w ∈ Sn. Given a reduced
expression si1 · · · sik for w, we write Tw = Ti1 · · ·Tik . The braid relations ensure
that Tw is independent of the choice of reduced expression. For any partition λ
of n, we denote by tλ (resp. tλ) the standard λ-tableau in which the numbers
1, 2, · · · , n appear in order along successive rows (resp. columns). Let wλ ∈ Sn

be such that tλwλ = tλ. Following [DJ1], we define

xλ :=
∑

w∈Sn

Tw, yλ :=
∑

w∈Sn

(−q)−`(w)Tw, zλ := xλTwλ
yλt ,

where λt is the conjugate partition of λ. Let Sλ be the Specht module (see [DJ1])
for Hq(Sn). By definition, Sλ = zλHq(Sn).

It is well-known that the map which sends (for each 1 ≤ i < n) Ti to Ti, and
sends X1 to 1 if q 6= 1; or sends X1 to 0 if q = 1, extends naturally to a surjective
algebra homomorphism from Haff

n to Hq(Sn). In this way, any irreducible module
over Hq(Sn) can be naturally regarded as an irreducible module over Haff

n .

Let λ be an l-restricted partition. Then Dλ := Sλ/ radSλ 6= 0. By [K2], Dλ

is completely splittable if and only if λ is (l, m)-special for some given positive



848 Jun Hu

integer m ≤ l. Note also that an (l, m)-special partition is automatically an
l-restricted partition.

Let M be a finite dimensional Haff
n -module. Following [Gr] (see also [K1] and

[V]), for each integer i with 1 ≤ i ≤ n, we define eiM to be the generalized
eigenspace of Xn− qi in M if q 6= 1; or the generalized eigenspace of Xn− i in M
if q = 1. We regard eiM as a module over Haff

n−1. For any l-restricted partition λ
of n, by [K1, (0.5)] , [B, (2.6)] and [LLT], we have

(5.4) Dλ ↓Haff
n−1

∼=
n⊕

i=1

eiD
λ, soc(eiD

λ) ∼=
⊕

µ is an l-restricted

partition of n− 1, µ
i→ λ

Dµ,

where µ
i→ λ means that µ is obtained from λ by removing a removable node γ

with res(γ) = i.

Now let λ be an (l, m)-special partition. Then λ is an l-restricted partition,
and both D(λ) and Dλ are completely splittable. In particular, for any 1 ≤ i ≤ n,

soc(eiD(λ)) = eiD(λ), soc(eiD
λ) = eiD

λ.

By Lemma 2.14, we know that there are no two different removable nodes of
[λ] which have the same res values. On the other hand, for any two irreducible
Haff

n -modules L,M , if soc(eiL) ∼= soc(eiM) 6= 0 for some 1 ≤ i ≤ n, then (by [V,
5.8(3)]) L ∼= M . In view of this and the decomposition (5.3), (5.4), we get (by
using induction on n) that

Theorem 5.5 For each (l, m)-special partition λ, we have that D(λ) ∼= Dλ.

Note that for each (l, m)-special partition λ, tλ is an (l, m)-special standard
tableau. We have

Corollary 5.6 For each (l, m)-special partition λ, the map ϕ which sends zλ

to vtλ extends naturally to a Haff
n -module isomorphism Dλ ∼= D(λ).

Proof. For each integer a with 1 ≤ a ≤ n, we define

La :=
{

0, if a = 1,
q1−aT(1,a) + q2−aT(2,a) + · · ·+ q−1T(a−1,a), if 2 ≤ a ≤ n,

L̃a :=
{

1, if a = 1,
q1−aTa−1 · · ·T1T1 · · ·Ta−1. if 2 ≤ a ≤ n,

It is well-known ([DJ3, (4.2)]) that L̃a = 1 + (q− 1)La. By [DJ2, (3.14)], zλLa =
(1 + q + · · ·+ qj−i−1)zλ, if a is in position (i, j) in tλ. Hence zλL̃a = qj−izλ, if a
is in position (i, j) in tλ.
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Let ϕ : Dλ ∼= D(λ) be the isomorphism given by Theorem 5.5. Write

ϕ(zλ) =
∑

u∈Stdl,m(λ,∅)
auvu.

By the construction of the surjective homomorphism from Haff
n to Hq(Sn), it is

easy to see that (for each 1 ≤ a ≤ n)

zλXa = qrestλ
(a)zλ

if q 6= 1; or
zλXa = restλ(a)zλ

if q = 1.

Now recall the definition of the operator Θ̃t in (4.9) and (4.10). Using the fact
that ϕ(zλΘ̃tλ) = ϕ(zλ)Θ̃tλ , and applying Lemma 4.6, it is easy to see that au 6= 0
only if u = tλ, as required.

References

[A] S. Ariki, On the decomposition numbers of the Hecke algebra of G(m, 1, n), J. Math. Kyoto
Univ. 36 (1996), 789–808.

[AK] S. Ariki and K. Koike, A Hecke algebra of (Z/rZ) oSn and construction of its representa-
tions, Adv. Math. 106 (1994) 216–243.

[B] J. Brundan, Modular branching rules and the Mullineux map for Hecke algebras of type A,
Proc. London. Math. Soc. (3) 77 (1998), 551–581.

[DJ1] R. Dipper and G. D. James, Representations of Hecke algebras of general linear groups,
Proc. London. Math. Soc. (3) 52 (1986), 20–52.

[DJ2] R. Dipper and G. D. James, Blocks and idempotents of Hecke algebras of general linear
groups, Proc. London. Math. Soc. (3) 54 (1987), 57–82.

[DJ3] R. Dipper and G. D. James, Representations of Hecke algebras of type Bn, J. Alg. 146
(1992), 454–481.

[Gr] I. Grojnowski, Affine bsl` controls the modular representation theory of the symmetric group
and related Hecke algebras, preprints.

[HaR] T. Halverson and A. Ram, Murnaghan-Nakayama rules characters of Iwahori-Hecke al-
gebras of the complex reflection groups G(r, p, n), Can. J. Math. (1) 50 (1997), 167–192.

[Ho] P.N. Hoefsmit, Representations of Hecke algebras of finite groups with BN -pairs of classical
type, PhD thesis, University of British Columbia, 1974.

[Hu1] J. Hu, A Morita equivalence theorem for Hecke algebras of type Dn when n is even,
Manuscripta Math. 108 (2002), 409–430.

[Hu2] J. Hu, Modular representations of Hecke algebras of type G(p, p, n), J. Alg. (2) 274 (2004),
446–490.

[J] G. D. James, The decomposition matrices of GLn(q) for n ≤ 10, Proc. London. Math. Soc.
60 (1990), 225–265.

[K1] A. Kleshchev, Branching rules for modular representations of symmetric groups, J. reine.
angew. Math. 459 (1995), 163–212.

[K2] A. Kleshchev, Completely splittable representations of symmetric groups, J. Alg. 181
(1996), 584–592.



850 Jun Hu

[LLT] A. Lascoux, B. Leclerc and J.-Y. Thibon, Hecke algebras at roots of unity and crystal
bases quantum affine algebras, Comm. math. Phys. 181 (1996), 205–263.

[M] O. Mathieu, On the dimension of some modular irreducible representations of the symmetric
group, Lett. Math. Phys. (1) 38 (1996), 23–32.

[R1] A. Ram, Seminormal representations of Weyl groups and Iwahori-Hecke algebras, Proc.
London. Math. Soc. (3) 75 (1997), 99–133.

[R2] A. Ram, Calibrated representations of affine Hecke algebras, preprint 1998.
[R3] A. Ram, Skew shape representations are irreducible, in: Combinatorial and Geometric

representation theory, S.-J. Kang and K.-H. Lee eds., Contemp. Math. 325 Amer. Math.
Soc. 2003, 161–189.

[R4] A. Ram, Affine Hecke algebras and generalized standard Young tableaux, J. Alg. 260
(2003), 367–415.

[W] H. Wenzl, Hecke algebras of type An and subfactors, Invent. Math. (2) 92 (1988), 349–383.
[V] M. Vazirani, Irreducible modules over the affine Hecke algebra: a strong multiplicity one

result, Ph. D. thesis, University of California at Berkeley, 1998.

Jun Hu
Department of Applied Mathematics
Beijing Institute of Technology
Beijing, 100081, P. R. China
E-mail: junhu303@yahoo.com.cn


