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1. Introduction

In this paper, we prove two results about the unitary dual of graded affine
Iwahori-Hecke algebras. The first one, theorem 2.4, is in the case of the Hecke
algebra with equal parameters which arises from split p-adic groups. It says that
multiplicities of W-types in irreducible spherical modules are constant over the
faces of root hyperplane arrangements. This result is the basis for an algorithm
to compute the spherical dual of the graded affine Iwahori-Hecke algebra.

The second result is in the case of graded Iwahori-Hecke algebras with unequal
parameters of type B/C. We determine all the irreducible principal series which
are unitary.

These results have consequences for the determination of the spherical unitary
dual of p-adic groups, as well as real groups. An example is in section 4.

The starting point is Borel and Casselman’s theorem establishing an equiva-
lence of categories between the category of Iwahori-spherical representations and
finite dimensional representations of the Iwahori-Hecke algebra.

1.1. Let F be a p-adic field. Let G be the F-rational points of a connected linear
algebraic reductive group defined over F. We assume that G is split. Denote
by A a maximal split torus, and fix a Borel subgroup with Levi decomposition
B = AN. Let

R = {x ∈ F : |x| ≤ 1}, P = {x ∈ F : |x| < 1},

Ω = {x ∈ F : |x| = 1}.
(1.1.1)
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Then G has a maximal compact subgroup K = G(R), and there is an exact
sequence

1 −→ K1 −→ K −→ G(R/P) ∼= G(Fq) −→ 1. (1.1.2)

A character ν ∈ Â is called unramified, if its restriction to A∩K is trivial. The
principal series I(ν) is the Harish-Chandra induced module from the character
ν. It is normalized so that I(ν) is unitary whenever ν is unitary. Fix a Borel
subgroup in G(Fq). Then its inverse image is an open compact subgroup called the
Iwahori subgroup and denoted by I. The space of compactly supported biinvariant
functions H := H(I\G/I) is an algebra under convolution

(f ? g)(x) :=
∫

G
f(xy−1)g(y) dy, (1.1.3)

and is called the Iwahori-Hecke algebra. It has a ∗ operation, as follows: for
f ∈ H,

f∗(x) := f(x−1). (1.1.4)

If (π, V ) is an admissible module for G, consider

V I = {v ∈ V : π(x)v = v, for all x ∈ I}. (1.1.5)

H acts on V I by the formula

π(f)v :=
∫

G
f(x)π(x)v dx. (1.1.6)

Let

C(I) = the category of admissible finite length representations so that
all their subquotients are generated by their Iwahori fixed vectors,

(1.1.7)

C(H) = the category of finite dimensional representations of H.

The study of I(ν) and its composition factors is important for harmonic analy-
sis and automorphic forms. The following theorem, due to A. Borel, is fundamen-
tal for the study of the unramified principal series, and its composition factors.

Theorem. ([B])

(1) The functor V 7→ V I is an equivalence of categories from C(I) to C(H).
The inverse is given by W 7→ H(G/I) ⊗ W, where H(G/I) is the alge-
bra (under convolution) of smooth compactly supported right I-invariant
functions.

(2) An irreducible representation π is in C(I) if and only if it is a subquotient
of an I(ν) with ν unramified.
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This result was also proved independently by Casselman, and had a profound
influence on the representation theory of p-adic groups. The work of [BK] and
[HM] uses this idea as the basis for their classification of irreducible admissible
modules of GL(n). The general strategy is to prove a far reaching generalization of
theorem 1.1, namely that the category of admissible representations decomposes
into blocks with the following properties. Each block is parametrized by a pair
(J , σ), where σ is an irreducible representation of a compact open subgroup J .
An irreducible representation (π, V ) belongs to the block parametrized by (J , σ)
if and only if HomJ [π, σ] 6= 0. One of the goals is then to show that the analogue
of theorem 1.1 holds. The Iwahori-Hecke algebra H is replaced by H(σ\G/σ),
compactly supported vector valued functions which transform according to σ on
the left and right. Further work in this direction has been done by [K], [Y], and
others (see references therein).

Since H has a star operation, it makes sense to talk about Hermitian and
unitary modules. It is more or less clear that an admissible representation V ∈
C(I) of G is Hermitian if and only if V I is Hermitian. It is also clear that if V is
unitary, then so is V I . However the converse is not so trivial. It was conjectured
some time ago by Borel and Casselman, as well as others. The subject of two
papers [BM1] and [BM2] is to prove this conjecture. The result is summarized in
the next result.

Proposition ([BM1], [BM2]). An irreducible representation in C(I) is unitary
if and only if V I is unitary.

The idea of the proof is to combine the results of [KL], [L2], [L4] and [L5], which
give a precise classification of the irreducible modules in C(H), with techniques
from the real groups, in [V1], on signatures of the Hermitian forms of irreducible
modules.

This paper is organized as follows. In sections 2.1 and 2.2 we review the
graded affine Hecke algebra, and the classification of irreducible modules due to
Kazhdan and Lusztig. Sections 2.3 and 2.4 apply these results to the spherical
case. Theorem 2.4 has been known to the authors for some time. It is basic for
establishing an algorithm for determining the spherical unitary dual of any Hecke
algebra with equal parameters. More details are in the Remark in section 2.12.
We have implemented this algorithm using mathematica, and it played a role in
our determination of the spherical unitary dual of all Iwahori-Hecke algebras of
exceptional types. The results for type F4 are in [C], while for type E, they are
in [BC]. The algorithm was also implemented by J. Adams, J.-K. Yu, and J.
Stembridge. More information can be found at atlas.math.umd.edu.
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Sections 2.6-2.12 recall results about the ∗ operation for graded affine algebras,
the Langlands classification and its relation to the Kazhdan-Lusztig classification.
Sections 2.11 and 2.12 are particularly relevant for the spherical unitary dual.

Sections 3.1-3.3 introduce the graded affine Hecke algebras with unequal pa-
rameters. The main result is theorem 3.2, which says that any generic spherical
module (beginning of section 3.2) is unitary if and only if it is part of a comple-
mentary series. The explicit set of parameters is given in theorem 3.6. The proof
is given in sections 3.3-3.8. Theorems 3.2 and 3.6 generalize results in [Ba2],
where a full description of the spherical unitary dual of the classical groups is
given.

Theorem 3.6 gives necessary conditions for spherical representations to be uni-
tary in the case of p-adic groups of type B/C. But also, as described in [Ba1],
these results have consequences for the unitary dual of the real groups U(p, q).
Such an application is given in section 4.

This material is based upon work supported by NSF grants DMS-9706758, DMS-
0070561 and DMS-03001712.

2. Split Groups

2.1. The Graded Hecke Algebra. The Hecke algebra H can be described by
generators and relations. Denote by LG the (complex) dual group of G, with
maximal torus LA and Borel subgroup LB containing LA. We emphasize that
the root datum of the Hecke algebra is the one for the dual complex group LG,
and that the roots α will be the roots of LG. Let z be an indeterminate (which
can then be specialized to q1/2). Let Π ⊂ R+ ⊂ R be the set of simple coroots,
positive coroots, respectively coroots corresponding to the split Cartan subgroup
A inside the Borel subgroup B from section 1.1. Denote by S the simple root
reflections. Gm = GL(1,F) and X = Y̌ = Hom(Gm, A) be the (algebraic) lattice
of 1-parameter subgroups and Y = X̌ = Hom(A,Gm) the lattice of algebraic
characters. Then H can be characterized as the Hecke algebra over C[z, z−1]
attached to the root datum R = (Y,X , Ř, R, Π̌). The set of generators we will
use is the one first introduced by Bernstein. Let

A = rational functions on C∗ × LA. (2.1.1)
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Then H is generated (over C[z, z−1]) by {Tw}w∈W and {θx}x∈X , subject to the
relations

TwTw′ =Tww′ (l(w) + l(w′) = l(ww′)),
θxθy =θx+y,

T 2
s =(z2 − 1)Ts + z2,

θxTs =Tsθsx + (z2 − 1)
θx − θsx

1− θα
.

(2.1.2)

This realization is very convenient for determining the center of H and thus
computing infinitesimal characters of representations.

Proposition (Bernstein-Lusztig). The center of H is given by the Weyl group
invariants in A.

In particular, infinitesimal characters are parametrized by W -orbits χ = (q, t) ∈
C∗×LA. We always assume that q is real or at least not a root of unity. In partic-
ular, such an infinitesimal character is called real if t is hyperbolic. The subject of
[BM2] is to show that the classification of unitary irreducible modules of H with
infinitesimal character χ corresponding to (q, t) is equivalent to the classification
of the unitary dual for real infinitesimal character. Thus we will assume from
here on that the infinitesimal character is always real. The study of repre-
sentations of H can be simplified by using the graded Hecke algebra introduced
by Lusztig. Let

J = {f ∈ A : f(1, 1) = 0} (2.1.3)
This is an ideal in A and it satisfies HJ = JH. Set Hi = H · J i (the ideal
J i consists of the functions which vanish to order at least i at (1, 1)). We can
introduce the filtration

H = H0 ⊃ · · · ⊃ Hi ⊃ Hi+1 ⊃ . . . , (2.1.4)

and form the graded object H. It can be written as

H = C[r]⊗ C[W ]⊗ A, (2.1.5)

where r ≡ z− 1 (mod J ), and A is the symmetric algebra over a = X ⊗Z C. The
previous relations become

twtw′ =tww′ ,

t2s =1,

tsω =s(ω)ts + 2r〈ω, α̌〉, s = sα, ω ∈ a.

(2.1.6)

The center of H is C[r] ⊗ AW . Let La = Y ⊗Z C be the Cartan subalgebra of
LG. The infinitesimal characters are parametrized by W -orbits of elements χ =
(r, t) ∈ C×La (the indeterminate r for H acts by r). Then χ = (er, et) ∈ C∗×LA
is an infinitesimal character for H. Let Iχ be the kernel of χ on the center of H.
Then H · Iχ is an ideal in H and let Hχ be the corresponding quotient algebra.
Define Hχ similarly.
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Theorem. ([L2]) χ ←→ χ is a matching between real infinitesimal characters χ
of H and infinitesimal characters χ of H and

Hχ
∼= Hχ.

We refer to section 4 in [BM2], in particular formula (4.2), and theorem 4.3
which shows that this algebra isomorphism is analytic in (r, t). As a consequence,
we can fix r = 1 and transfer the study of the representation theory of H to H.
In order to consider unitary representations for H, we also need a ∗ operation.
This will be explained in section 2.6.

2.2. Standard Modules. Let Z(LG) denote the center of LG. For a set S of
elements in LG and Lg, let CG(S) denote the (common) centralizer in LG of all
elements in S, and AG(S) be the component group of CG(S). ÂG(S) will denote
the set of equivalent classes of irreducible representations of AG(S). When there
is no confusion, we will drop the subscript G.

We parametrize irreducible representations of H as in [KL] by LG conjugacy
classes (t, e, ψ), where t ∈ LG is semisimple, e ∈ Lg is nilpotent such that Ad(t)e =
qe, and certain (ψ, Vψ) ∈ Â(e, t). The ψ must satisfy the additional conditions
that ψ|Z(LG) is trivial, and ψ must appear in the Springer correspondence (see
the details below).

Embed e in a Lie triple {e,H, f}. Write t = t0tH where tH = e
1
2

log qH and
t0 is a semisimple element centralizing the Lie triple. As mentioned earlier, we
assume that t0 is hyperbolic. In this case we may consider representations of H
only. The classification of irreducible representations is then given ([L5]) by LG
conjugacy classes {s, e, ψ} such that s ∈ Lg is semisimple, e ∈ Lg is nilpotent such
that [s, e] = e and ψ ∈ Â(e, s). In view of theorem 2.1 and the remark following
it, we have assumed r acts by 1.

The results in [KL] attach to each (LG conjugacy class) (e, s) a standard module
X(e, s) which decomposes under the action of A(e, s) as

X(e, s) :=
⊕

(ψ,Vψ)∈Â(e,s)

X(e, s, ψ)⊗ Vψ. (2.2.1)

As a C[W ]-module,
X(e, s) ∼= H∗(Be), (2.2.2)

where Be is the variety of Borel subalgebras of Lg containing e. The component
group A(e, s) is naturally a subgroup of A(e) because in a connected algebraic
group, the centralizer of a torus is connected. The group A(e) acts on the right
hand side of (2.2.2), and the action of A(e, s) on the left hand side is compatible
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with the inclusion and the isomorphism. Let LO be the LG orbit of e in Lg. For
φ ∈ Â(e), let H∗(Be)φ be the φ-isotypic component,

H∗(Be)φ = HomA(e)[φ : H∗(Be)]. (2.2.3)

According to the Springer correspondence,

H∗(Be) =
⊕

φ∈dA(e)

H∗(Be)φ ⊗ Vφ. (2.2.4)

Furthermore, Htop(Be)φ is an irreducible representation of W . It is denoted
σ(LO, φ), and each representation of W is uniquely of the form σ(LO, φ). The
correspondence is normalized so that if e is the principal nilpotent element, and φ
is trivial, then σ(LO, φ) = sgn. Comparing with (2.2.1) and (2.2.2), we conclude
that

HomW [σ(LO, φ) : X(e, s, ψ)] = [φ |A(e,s) : ψ]. (2.2.5)

Furthermore, the σ(LO′, φ) occuring in H∗(Be) all correspond to LO′ such that
LO ⊂ LO′.

Consider the case when s = H/2, for a triple e,H, f . The results in [KL]
imply that the modules X(e, s, ψ) are irreducible, and come from the Iwahori-
fixed vectors of tempered representations of the p-adic group, so in particular,
they are unitary. Furthermore, the multiplicity of σ(LO, ψ) in X(e, s, ψ) is 1.

Definition. The modules X(e, s, ψ) with s = H/2 will be called tempered irre-
ducible.

According to [KL], whenever s is antidominant, X(e, s, ψ) has a unique ir-
reducible submodule X(e, s, ψ). When s is dominant, X(e, s, ψ) has a unique
irreducible quotient.

The analogous formula to (2.2.4) holds whenever the data (e, s) factor through
a Levi component LM :

X(e, s) = H⊗HM
XM (e, s),

H⊗HM
XM (e, s, τ) =

⊕
[ψ|AM (e,s) : τ ] X(e, s, ψ)

(2.2.6)

We write IndG
M [π] for the module H⊗HM

π.

Suppose LM is the centralizer of ν, and LP = LMLN is such that 〈ν, α〉 > 0
for all roots α ∈ ∆(Ln). Write LM = LM0

LA, where LA is the center. Then
AM (e, s) = AG(e, s). This is because the centralizer of e is of the form LU with
U connected unipotent, and L the centralizer of e and H. It follows that every
component of AG(e, s) meets L, and therefore

AG(e, s) = AG(e,H, ν) = AM (e,H) = AM (e, s). (2.2.7)
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For τ ∈ ̂AM (e, s) = ÂM0(e),

XM (e, s, τ) = XM0(e,H/2, τ)⊗ Cν . (2.2.8)

The representation XM0(e,H/2, τ) is a tempered irreducible module, and if ψ
is the representation τ of AM (e, s) viewed as a representation of AG(e, s), then
X(e, s, ψ) = H ⊗HM

XM (e, s, τ). The usual Langlands classification implies that
X(e, s, ψ) has a unique irreducible quotient. It coincides with X(e, s, ψ).

2.3. Spherical modules. We apply these ideas to the case when LO is the
trivial orbit. In this case, A(e) is trivial, and X(e, s) is the full induced module,

X(e, s) = H⊗A Cν , (2.3.1)

where Cν is the character of A corresponding to s (ν ∈ La dominant). We
abbreviate it as X(s), and write X(s) for its spherical subquotient. Since ν is
dominant, this coincides with the Langlands quotient. According to [BM2], X(s)
is also obtained as follows. There is a unique orbit of maximal dimension, which
we denote as LO(s), such that [s, e(s)] = e(s) (recall that we set r = 1 earlier)
for some e(s) ∈ LO(s).

The Iwahori-Matsumoto involution IM is defined on the generators of H by
the formulas

IM(tw) := (−1)`(w)tw, w ∈ W,

IM(ω) := −ω, ω ∈ a.
(2.3.2)

It takes X(s) to X(e(s), s, triv). In turn this equals X(e(s), s, triv) because any
factor would have to have as parameter an orbit of strictly larger dimension.
Write again s = H/2 + ν ′ where H is the middle element of the triple containing
e(s). By the above discussion, X(e(s), s, triv) is also induced irreducibly from
XM (e(s), s, triv), where LM is determined by ν ′ as defined right before formula
(2.2.7). Applying IM, we get

X(s) = IndG
M [XM (s)].

Unitary representations. One of the main features of Proposition 1.1 is that
it implies that IM preserves unitarity. A special case of the representations
X(e(s), s, triv) is when in fact (s, e(s)) can be made into a Lie triple, i.e. there
is f such that [s, e(s)] = e(s), [s, f ] = −f, [e(s), f ] = s. Then X(e(s), s, triv)
consists of the I-fixed vectors of a tempered representation, therefore it is unitary.
These are special cases of Arthur parameters.
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2.4. We call a face a set in the dominant chamber determined by the positive
roots of LG being = 0, = 1, < 1, or > 1. Fix such a face F .

Theorem. The multiplicities of the W-types in the spherical irreducible module
X(s) are constant as s ranges over the face F .

Proof. The orbit LO(s) can be characterized in the following way. Let

Lgi := { X ∈ Lg : [s,X] = iX }. (2.4.1)

Then LO(s) is the unique orbit such that LO(s)∩Lg1 is dense in Lg1 ([BM2]). This
intersection is also a single orbit under CG(s), the centralizer of s in LG. The set of
roots equal to zero, and equal to one, on s do not change as s varies over the face
F . Thus the orbit LO(s) does not change, nor does CG(s). Up to conjugation,
we can write the parameter as s = H/2+ν, and X(s) = IndG

M (σ⊗Cν). Here σ is
anti-tempered, i.e. it is IM of a tempered module. In fact IM(σ) has (Kazhdan-
Lusztig) parameter (e,H/2, triv). Up to conjugation there are only finitely many
possible (LM, σ).

Fix such a data, and let ν range over the center of LM. The only way that
the W-structure of X(s) can change is if AG(e, s) differs from AM (e, s). Consider
the centralizer CG(e). The one parameter group exp(tH) acts on CG(e), and by
[BV], proposition 2.4, its component group coincides with the component group
of CG(e,H). But s commutes with H and stabilizes CG(e). The fixed points of s
in CG(e) also have an action of exp(tH), and the argument in [BV] proposition
2.4, shows that all the components meet the centralizer of H in CG(e, s), which
is also the centralizer of ν in CG(e, s). Thus every component of CG(e, s) meets
CM (e, s), so the only way the multiplicities of X(s) can change is if the centralizer
of ν becomes larger.

Let ν0 be such a point, and assume there are νi → ν0 such that H/2 + νi

are conjugate by a single w ∈ W to points in F for all i ≥ 0. Assume that the
centralizer in Lg of all the νi for i > 0 is m′, while the centralizer of ν0 is m(ν0).
Then m′  m(ν0), is a Levi component. Since the zero subspace of s cannot
change in F , H cannot have any kernel on m(ν0). There is a decomposition
m(ν0) = n′ + m′ + n′. The Lie triple is in m′, so the corresponding sl(2) acts on
both n′, n′. Since it has no eigenvalues of zero, all the eigenvalues of H/2 are
half-integers. But the component group A(e) in any semisimple Lie algebra l is
the same as the component group in A(e,H), so it is the same as A(e, exp(iπH)).
The Lie algebra of the centralizer of exp(iπH) is formed of even eigenspaces of H
only. Applied to l = m(ν0), this implies that the component group with respect
to M ′ and M(ν0) are the same.

The argument implies that a face F is a finite union of closed (in F) sets on
which the W -structure of X(s) does not change. Since F is connected, these



764 D. Barbasch and D. Ciubotaru

sets cannot have empty intersection, and this implies that the W multiplicities
in X(s) are constant for s over F . ¤

2.5. Unequal Parameters. We consider the following modification of the graded
Iwahori-Hecke algebra 2.1. Let

L : R −→ R+ (2.5.1)

be a function which is constant on W-orbits, and write

cα := L(α).

Then replace relations (2.1.6) by

twtw′ =tww′ ,

t2s =1,

tsω =s(ω)ts + cα〈ω, α̌〉, s = sα, ω ∈ a.

(2.5.2)

Many, but not all, of the results for the case cα = 1 extend to this situation
(cf. [L4]-L7). In particular, except when mentioned explicitly, we will not use
any results established only for cα = 1.

2.6. Hermitian Modules. The ∗ operation also transfers to the graded version.
We refer to §5 of [BM2] for the details. Here is a summary of what we need. Let
w0 ∈ W be the longest element and t0 be the corresponding element in C[W ].
Since a = X ⊗Z C, it has a conjugation coming from the complex conjugation on
C. We denote it by . Let ι(ω) = (−1)degωω and ω̃ = w0ι(ω).

Theorem. (§5 in [BM2]) Let ω ∈ A. Then

t∗w =tw−1 ,

ω∗ =t0 · ω̃ · t0.
In particular, if ω ∈ a, then

ω∗ = −ω +
∑

β∈R+

cβ〈ω, β̌〉tsβ
, (2.6.1)

where sβ ∈ W is the reflection about β.

In the case when cα = 1, recall that (e,H, f) is a Lie triple corresponding to e.
Write s = s0 + sH , and recall that s0 is assumed to be hyperbolic. An irreducible
representation admits a Hermitian form if and only if (s, e, ψ) is conjugate to
(s′ = s0sH , e, ψ) (theorem 5.2 in [BM2]).

Fix a (standard) parabolic subgroup LP with Levi decomposition LP = LMLN.
Let HM be the corresponding (graded) Hecke subalgebra (with roots RM ⊂ R)



Spherical Unitary Principal Series 765

and let W (M) ⊂ W be the corresponding Weyl group. Every element a ∈ H can
be written uniquely as

a =
∑

w∈W/W (M)

twmw (2.6.2)

with mw ∈ HM . Thus there is a well defined map

εM : H −→ HM , εM (a) := m1, the component of a in HM . (2.6.3)

Recall the Bruhat order on the elements of W . Write w′ → w if there exists
a reflection sα, for some root α, such that w = w′sα and `(w) > `(w′). Define
w′ < w if there is a sequence w′ = w1 → w2 → · · · → wp = w.

Proposition. Denote by ∗M the map corresponding to the star operation ∗M :
a 7→ a∗ in HM , and denote by ∗G the corresponding map in H. Then

εM (∗Ga) = ∗M εM (a) for all a ∈ H.

Proof. First observe that

εM (tm1atm2) = tm1εM (a)tm2 , for mi ∈ W (M). (2.6.4)

Let ω ∈ A. The longest element w0 decomposes as w0 = wlw
M
0 , where wM

0 is the
longest element in W (M). wl has the property that it is a minimal element (in
the Bruhat order) in w0W (M). Let t0, tl and tM0 be the corresponding elements
in H. Since t−1

0 = t0 and (tM0 )−1 = tM0 , the relation

t0 = tlt
M
0 = tM0 t−1

l (2.6.5)

holds. Then we get

∗G(ω) = t0 · ω̃ · t0 = tlt
M
0 · wM

0 w−1
l (ι(ω)) · tltM0 . (2.6.6)

On the other hand,

wM
0 w−1

l ι(ω)·tl = tl ·w−1
l wM

0 w−1
l ι(ω)+

∑
x<wl

txωx = tl ·wM
0 ι(ω)+

∑
x<wl

txωx, (2.6.7)

where the sum ranges over x ∈ W which are smaller than wl in the Bruhat order.
Combining this with (2.6.6), and the formula for ∗M in theorem 2.6, we get

∗G(ω) = ∗M (ω) +
∑
x<wl

tlt
M
0 txωxtM0 . (2.6.8)

Therefore, using 2.6.4,

ε(∗G(ω)) = ∗M (ω) + tM0 ε(t−1
l tx)ωxtM0 = ∗M (ω) + tM0 ε(tw−1

l x)ωxtM0 . (2.6.9)

To prove the formula in the proposition for a = ω, we must show that ε(tw−1
l x) =

0 for x < wl. But if w−1
l x = m ∈ W (M), then wl = xm−1 with x < wl,

contradicting the minimality property of wl.
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Now consider an element twω such that w /∈ W (M). Then εM (twω) = 0. We
need to show that εM (∗G(ω)tw−1) = 0 as well. For this, write ∗G(ω) = t0 · ω̃ · t0
and decompose

t0 · ω̃ · t0 · tw−1 = t0 · ω̃ · tw0w−1 =
∑

x<w0w−1

tw0xωx, ωx ∈ A. (2.6.10)

To prove the claim we need to show w0x /∈ W (M). Suppose w0x = m. Then
x = w0m, and so w0m < w0w

−1. It follows that w0w
−1 ∈ w0W (M), because

w0 is the long element. But this implies w−1 ∈ W (M), a contradiction. Thus
εM (∗G(ω)tw−1) = 0 as claimed. ¤

If W is a module for HM , then we can form the induced module

IndG
M (W) := H⊗HM

W. (2.6.11)

This has a basis {tx ⊗ v} where v ∈ W and x ∈ W/W (M). We will denote by
Wh the Hermitian dual of the module W.

Corollary. The Hermitian dual of IndG
M (W) is IndG

M (Wh) = H⊗HM
Wh. More

precisely, let tx⊗vx ∈ IndG
M (W), ty⊗vy ∈ IndG

M (Wh), and 〈 , 〉M be the pairing
of W with Wh. Then the pairing between IndG

M (W) and IndG
M (Wh) is given by

〈tx ⊗ vx, ty ⊗ vy〉 := 〈εM (t∗ytx)vx, vy〉M .

Proof. First observe that these spaces are finite dimensional, so it is sufficient to
construct an injection

H⊗HM
Wh −→ [H⊗HM

W]h. (2.6.12)

The pairing 〈 , 〉 gives such an injection with the required properties by propo-
sition 2.6. ¤

2.7. Langlands Classification. In order to simplify the notation, we will drop
the superscript L in the notation of Levi components M . Note however that all
Levi components are still in the dual group. The reference for the Langlands
classification, in the context of graded Hecke algebras, is [E]. See also [KR] for
additional results.

Suppose a is an isomorphism between two root data R1 and R2. This induces
an isomorphism of the corresponding Hecke algebras,

a : H2 −→ H1. (2.7.1)

In particular, let M1, M2 be two Levi components of standard parabolic sub-
groups. Suppose w ∈ W satisfies wM1w

−1 = M2 and is minimal in its double
coset W (M2)wW (M1). Then the above discussion gives an isomorphism

aw : HM2 −→ HM1 (2.7.2)

which we use to transfer representations V of HM1 to wV of HM2 .
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If V is a (finite dimensional) irreducible H-module, then V has a generalized
weight space decomposition with respect to the abelian subalgebra A:

V =
⊕

λ∈La

Vλ. (2.7.3)

The set of λ in the decomposition are the weights of V . Let ωi ∈ a denote the
fundamental weight corresponding to the simple coroot α̌i ∈ La.

Definition. Let V be an irreducible H-module. V is called tempered if all its
weights λ have the property that 〈Reλ, ωi〉 ≤ 0, for all fundamental weights ωi.

It follows from the definition that, if W is a tempered module, then Wh is also
tempered.

For cα = 1, definition 2.7 agrees with definition 2.2 ([KL]). In [L6], Lusztig
gives a geometric classification of the tempered H-modules for some particular
families of (unequal) parameters cα, which correspond to unipotent representa-
tions of split p-adic groups ([L4],[L5],[L7]). In these cases, the situation is the
same as for equal parameters. For arbitrary parameters cα, the results needed
about the unitarity of tempered representations are still lacking. See [O] for
results in this direction.

According to the (classical version of the) Langlands classification, every irre-
ducible module can be realized as the unique irreducible quotient L(M,W, ν) of
a standard module

X(M,W, ν) := H⊗HM
[W ⊗ 11ν ], (2.7.4)

where

W is tempered irreducible (definition 2.7) and

〈Re ν, α〉 > 0, for all α ∈ R+ −R+
M (2.7.5)

The module X(M,W, ν) of course coincides with IndG
M (W⊗11ν), but we use the

notation (2.7.4) to emphasize that it satisfies (2.7.5). Two Langlands quotients
L(M,W, ν) and L(M ′,W ′, ν ′) are isomorphic if and only if there is w ∈ W such
that

w(M,W, ν) = (M ′,W ′, ν ′). (2.7.6)
If on the other hand 〈Re ν, α〉 < 0, then the module IndG

M (W⊗11ν) has a unique
irreducible submodule, namely L(wmM, wmW, wmν), where wm is the minimal
element in W (w0M)w0W (M).

In the case cα = 1, the module X(M,W, ν) corresponds to data (e, s, ψ), where
(e, ψ) determine the tempered representation W (see section 2.2), and s can be
written as s = sM + ν, where sM is the tempered part of the parameter. A
factor of X(M,W, ν) has Langlands parameter (M ′,W ′, ν ′) with ||ν ′|| ≤ ||ν||,



768 D. Barbasch and D. Ciubotaru

with equality if and only if (M ′,W ′, ν ′) = (M,W, ν). This follows from lemma
2.8. in chapter XI of [BW]. Therefore, all factors of an X(e, s, ψ) other than
X(e, s, ψ) correspond to LO′ satisfying

LO′ ⊃ LO, LO′ 6= LO.

In particular, in the notation of section 2.1, X(e, s, ψ) is characterized by the
fact that it contains the Weyl group representation σ(LO, φ) with multiplicity
[φ |A(e,s) : ψ].

Proposition. The Hermitian dual of L(M,W, ν) is L(w0M, wmWh,−w0ν). In
particular, L is Hermitian if and only if there is an element w such that

w · (M,W, ν) = (M,Wh,−ν).

Proof. The Hermitian dual of X(M,W, ν) is IndG
M (Wh ⊗ 11−ν). This is not a

standard module because −ν fails to satisfy (2.7.5). However 〈−Re ν, α̌〉 < 0, so
IndG

M (Wh ⊗ 11−ν) has L(w0M, wmWh,−w0ν) as unique irreducible submodule.
Thus

L(M,W, ν)h ∼= L(w0M, wmWh,−w0ν) (2.7.7)
as claimed. ¤

For cα = 1, all tempered irreducible modules are known to be unitary, and
therefore Hermitian, so the Hermitian condition in the proposition becomes w ·
(M,W, ν) = (M,W,−ν). For arbitrary cα, we will only consider, in this paper,
the case of spherical modules with real infinitesimal character. In the Langlands
classification, they correspond to M = A (the maximal split torus), W = Triv,
and ν dominant. Thus, the condition in proposition 2.7 is equivalent to the
requirement that wν = −ν, for some Weyl element w. In types B/C (and ν real
dominant), w0ν = −ν, and therefore all spherical modules are Hermitian.

2.8. Intertwining operators. We use the notation of sections 2.6 and 2.7.
Suppose that wM1w

−1 = M2 is minimal in its double coset W (M2)wW (M1) (or
rather the LM ’s). Given a simple reflection sα, we can form the element rα ∈ H,

rα := tsαα− cα. (2.8.1)

Lemma. The elements rα satisfy ωrα = rαs(ω). Let w = sα1 ·· · ··sαk
be a reduced

decomposition. Then rw =
∏

rαi does not depend on the reduced decomposition
of w.

Proof. The first relation is a simple application of the defining relations for H :
ω(tsαα− cα) = (tsαs(ω) + cα〈ω, α̌〉)α− cαω =

= (tsαα− cα)s(ω) + cα(s(ω)− ω) + cα〈ω, α̌〉α = (tsαα− cα)s(ω).
(2.8.2)
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More generally if f is a rational function in one variable, then

f(ω)rα = rαf(sαω).

Recall from [L2] (proposition 5.2) that

τα = tsα

α

α + cα
− cα

α + cα
=

1
−α + cα

rα, (2.8.3)

and that τw =
∏

τ i is well defined (independent of the reduced decomposition).
Write

Rw = {α1, s1α2, . . . , s1s2 . . . sk−1αk} = {β > 0 : w−1β < 0}. (2.8.4)

Then substituting (2.8.3) for each ri and applying (2.8.2) repeatedly we get
∏

ri =
∏

(−αi + cα)τ i = (
∏

β∈Rw

(−β + cα))
∏

τ i = (
∏

β∈Rw

(−β + cα))τw.

(2.8.5)
The claim follows. ¤

Proposition. Let V be a representation of HM1 . Then the operator Aw : IndG
M1

(V) −→
IndG

M2
(wV) defined by

Aw(tx ⊗HM1
v) := txrw ⊗HM2

v

is an intertwining operator.

Proof. We need to check that Aw is well defined, i.e. it satisfies

ωrw = rww−1(ω), tsαrw = rwtw−1α, α ∈ ∆(M1) a simple root. (2.8.6)

The first relation follows from a repeated application of lemma 2.8. For the
second relation, rαrw = rwrw−1α holds. We verify that αrw = rww−1α. It is
sufficient to check for w = sβ, a simple reflection.

α(tsβ
β − cα) = αtsβ

β − cαα = (tsβ
sβ(α) + cα〈β̌, α〉)β − cαα

= tsβ
βsβ(α)− cα(α− 〈β̌, α〉β) = (tsβ

β − cα)sβ(α).
(2.8.7)

Substituting rα = tsαα − cα and using αrw = rww−1α, we get the second
relation. The fact that the map is an intertwining operator follows from the
nature of the action of H which is by multiplication on the left. ¤
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2.9. We apply the results in 2.8 to the Langlands classification. Recall wm the
minimal element in the double coset W (M)w0W (w0M). Then multiplication on
the right by rm := rwm is an intertwining operator

Am : X(M,W, ν) −→ IndG
w0M (wmW ⊗ 11w0ν). (2.9.1)

This is identically zero precisely when rm ⊗ [v11ν ] = 0 for all v ∈ W. When it is
not identically zero, the image is precisely L(M,W, ν) because this submodule is
generated by any vector whose generalized eigenvalue under A projects onto ν.
On the other hand, observe that the leading term of rm is tm

∏
(α,ν)>0 α. But

(
∏

(α,ν)>0

α) · v11ν =
∏

(α,ν)>0

(α, ν + χ) v11ν , (2.9.2)

where χ is the infinitesimal character ofW. This is because
∏

(α,ν)>0 α is invariant
under W (M) therefore in the center of HM . Thus Am is not identically zero as a
function of ν. For a full principal series (2.9.2) implies that Am is not identically
zero for any ν satisfying (2.7.5). But for more general induced representations
Am could be zero for certain values of ν. On the other hand, it follows from the
theory of intertwining operators on the p-adic group, that there exists a family
of intertwining operators Bm(ν)

Bm : X(M,W, ν) −→ IndG
wmM (wmW ⊗ 11wmν) (2.9.3)

which is analytic as a function of ν and whose image is L(M,W, ν) for all ν
satisfying (2.7.5). We claim that there is a meromorphic function f(ν) such
that f(ν)Am = Bm(ν). This goes as follows. Recall (section 2.2) that X has a
lowest K-type µ occuring with multiplicity 1. Then there are analytic functions
g and h such that for any vector v ∈ X transforming according to µ, we have
Am(v) = g(ν)v and Bmv = h(ν)v. Then f = hg−1.

We will not need this refinement.

2.10. Suppose W is Hermitian tempered, and that L(M,W, ν) is Hermitian with
ν real. Let w be such that w(M,W, ν) = (M,W,−ν), minimal in its double coset
W (M)wW (M). This double coset is also W (M)w0W (M). This is because both
wν and w0ν are antidominant (so w0ν = wν = −ν) and RM = {α ∈ R :
〈α, ν〉 = 0}. Recall the isomorphism aw from (2.7.2), and denote by τ : W −→W
an isomorphism (unique up to a scalar) satisfying τ(h · v) = aw(h) · τ(v). Recall
that we can decompose M = 0M · A, where A is the (split part of the) center
of M. Then we can write any element m ∈ HM as m =

∑
miai with mi ∈ H 0M

and ai ∈ A. Thus it makes sense to evaluate m ∈ HM at ν. We write this as m(ν).
With this notation

∑
miai(v11ν) =

∑
miai(ν)v11v = (m(ν)v)11ν . (2.10.1)
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Corollary. Suppose W is Hermitian tempered and that X(M,W, ν) is Hermitian
irreducible with ν is real. Then up to a nonzero scalar the inner product is given
by the formula

〈tx ⊗ vx11ν , ty ⊗ vy11ν〉 = 〈ε(t∗ytxrw)(ν)τ(vx), vy〉M .

Proof. This follows from sections 2.3-2.9. ¤

2.11. Let M be a proper Levi component, and σ be a tempered module of HM .
Assume that ν is such that 〈ν, γ〉 = 0 for γ ∈ RM , but 〈ν, α〉 > 0 for some simple
root α. This is always the case, unless ν is antidominant. Let Mα be the Levi
component generated by M and the root vectors corresponding to ±α. Then
there is a shortest Weyl group element wα ∈ W (Mα) so that wαν is nonpositive
on the roots in RMα . By using a reduced decomposition for wα, we can construct
an intertwining operator

Aα(ν) : H⊗M σ11ν −→ H⊗wα(M) wα(σ)11wα(ν), (2.11.1)

which is induced from the corresponding intertwining operator for HMα . The
data (wα(M), wα(σ)) are similar to (M, σ). But wα(ν) is positive on fewer roots
than ν. Furthermore, M and wα(M) are Levi components of maximal parabolic
subgroups of Mα.

Apply this idea repeatedly to a Langlands parameter (M, σ, ν) (with ν positive
on roots not in RM ). We find that the element wm (notation as in section 2.9)
decomposes into

wm =
∏

wαi , `(wm) =
∑

`(wαi). (2.11.2)

As before, write wi = wαk−i+1
. . . wαk

. The intertwining operator Am decomposes
accordingly into a product

Am(ν) =
∏

Ai(wi(M), wi(σ), wi(ν)). (2.11.3)

Each Ai is induced from a similar operator on a Levi component, and there are
no poles when (M, σ, ν) is the parameter of a standard module.

We will use this decomposition in the spherical case, when σ is the IM of a
tempered module.

2.12. We specialize to the spherical case. With notation as in 2.10, M = A,
W = Triv, and w0 the long Weyl group element. Let ν ∈ La and assume that
w0ν = −ν. Formula (2.9.1) becomes

A(ν) : X(ν) −→ IndG
A(11w0ν), x⊗ 11ν 7→ xrw0 ⊗ 11−ν . (2.12.1)

If w0 = sα1 . . . sαk
is a reduced decomposition, let wi = sαk−i+1

. . . sαk
. Then

write
rw0(ν) =

∏
(−tsαi

〈αi, wiν〉 − cα). (2.12.2)
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The operator A(ν) is rewritten as

x⊗ 11ν 7→ xrw0(ν)⊗ 11−ν . (2.12.3)

Taking into account that X(ν) ∼= C[W ] =
∑

Vσ ⊗ Vσ∗ , A(ν) induces an operator

a(σ, ν) : Vσ∗ −→ Vσ∗ ,
∏

(−σ∗(tsαi
)〈αi, wiν〉 − cα). (2.12.4)

When σ = Triv, this operator is the scalar
∏

(−〈αi, ν〉 − cα). (2.12.5)

This scalar is never zero if ν is dominant. We divide A(ν) by it. This new
operator gives rise to an a(σ, ν) with the property that a(triv, ν) = Id. More
general, for any i and any ν, define ai(σ, ν) by the relations

ai(σ, ν) =

{
1 on the (+1)-eigenspace of sαi on σ∗
cα−〈αi,ν〉
cα+〈αi,ν〉 on the (–1)-eigenspace of sαi on σ∗

(2.12.6)

If w = s1 . . . sk is a reduced decomposition, and wi = sk−i+1 . . . sk, define

aw(σ, ν) =
∏

ai(σ,wiν). (2.12.7)

Then aw0(σ, ν) = a(σ, ν) from before. Choose a positive definite W -invariant
inner product on each V ∗

σ . Because w0 = w−1
0 , the operator a(σ, ν) is Hermitian

(w0ν = −ν).

Proposition. X(ν) is unitary if and only if a(σ, ν) is positive semidefinite for
all σ ∈ Ŵ .

Proof. This follows from the previous discussion. ¤

Remark. Proposition 2.12 implies that for determining unitarity of any given
parameter, it is enough to compute the signatures of the A(σ, ν). Theorem 2.4 is
crucial for implementing this calculation by computer; divide the (−1)-eigenspace
of w0 in the dominant chamber into faces according to whether the positive roots
are 0 or 1. Then X(ν) is unitary if and only if it is unitary for any other ν on
that face. Thus, it is sufficient to choose a sample point on each face of the root
hyperplane arrangement, and calculate the signature of a(σ, ν) for all σ ∈ Ŵ .

3. Type B/C with Unequal Parameters

3.1. We will consider the particular case when the root system is of type Bn,
and

cα =

{
c if α is short,
1 if α is long.

(3.1.1)
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We call this algebra Hc(Bn). The general case reduces to (3.1.1) by rescaling the
parameters. In particular, c = 1 is the case of Iwahori-Hecke algebra of type
B, while c = 1/2 is identical to the case of the Iwahori-Hecke algebra of type C
with cα = 1. Aside from the p-adic case, these Hecke algebras are related to the
spherical unitary dual of U(p, q) [Ba1].

We emphasize again, that since we only deal with the spherical unitary dual,
the explicit determination of the tempered representations as defined in 2.7 is
not necessary. For example, the reduction to real infinitesimal character has an
elementary proof. Let ν = Re ν +

√−1 Im ν be a parameter such that

〈Re ν, α〉 ≥ 0. (3.1.2)

Define the standard parabolic subgroup P = MN with Lie algebra p = m + n so
that

Rn = {α : 〈Re ν, α〉 > 0}, Rm = {α : 〈Re ν, α〉 = 0}. (3.1.3)

Then the standard module X(ν) has a unique irreducible quotient L(ν), and
the corresponding objects XM (ν) and LM (ν) on M have the same properties. In
addition, up to the unitary character Im ν, LM (ν) has real infinitesimal character.

Proposition.
L(ν) = IndG

P [LM (ν)].
In particular, L(ν) is unitary if and only if LM (ν) is unitary.

Proof. The Weyl group element satisfying wν = −ν fixes Im ν, so belongs to
W (M). Thus the intertwining operator Aw(ν) is induced from the corresponding
AM,w(ν) on M. The result follows; we omit further details. ¤

We use the realization of the roots in a ∼= Rn (Π ⊂ R+ ⊂ a) given by

R+ = {−εi + εj , εi + εj , εi 1 ≤ i < j ≤ n},
Π = {ε1, −εi + εi+1}.

(3.1.4)

A dominant parameter s is then represented by

s = (ν1, . . . , νn), 0 ≤ ν1 ≤ · · · ≤ νn. (3.1.5)

3.2. We will focus on the case

〈s, α〉 6= cα, for all α ∈ R+, (3.2.1)

when the standard module X(s) is irreducible. We call it the generic case.

This definition is motivated by the results in [BM3]. For a split p-adic group,
the Iwahori-spherical generic representations (in the sense that they admit Whit-
taker models) are precisely the subquotients of unramified principal series which
contain the Steinberg representation of the maximal compact K. At the level of
Hecke algebras (with cα = 1, for all α), the condition is that the corresponding
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module should contain the sign representation of W . In particular, it is proven
in [BM3] that the generic spherical representations are the irreducible spherical
principal series.

Before we give a version of the main result, we recall the notion of irreducible
deformation of a parameter. Let I(ν) be a finite dimensional module so that the
action depends analytically on the parameter ν. Assume that I(ν) is irreducible
Hermitian in a path connected region C ⊂ Rn. Then the signature is constant in
this region, so determined by its value at a particular ν0. We say that I(ν) can
be deformed irreducibly to ν0, if there is a path connected region C containing
ν, ν0, and satisfying the above conditions. When C ⊂ R, we say that ν can be
deformed upwards to ν0 if ν ≤ ν0, and downwards if ν ≥ ν0. Finally, if ν0 ∈ C,

(1) if I(ν0) has a nonunitary factor, then I(ν) is not unitary,
(2) if I(ν) is unitary, then every irreducible factor of I(ν0) is unitary.

Theorem. A generic spherical representation is unitary if and only if it is a
complementary series. In other words, X(s) is unitary if and only if s can be
deformed irreducibly to a point such that X(s) is unitarily and irreducibly induced
from a unitary generic spherical parameter on a proper Levi component.

A combinatorial description of the unitary parameters can be found in section
3.6. The proof will be given over several sections.

3.3. Recall that representations of W = W (Cn) = W (Bn) are parametrized by
pairs of partitions (see [L1])

(a)× (b) = (a1, . . . , ap)× (b1, . . . , bp′),
∑

ai +
∑

bj = n. (3.3.1)

The representation σ parametrized by 3.3.1 is obtained as follows. Let k =∑
ai, l =

∑
bj . Recall that W ∼= Sn n Zn

2 . Let ξ be the character of Zn
2 which

is trivial on the first k Z2’s and sign on the remaining l. Its centralizer in Sn

is Sk × Sl. Let σ1 and σ2 be the representations of Sk, Sl corresponding to the
partitions (a) and (b). Then σ is IndW

(Sk×Sl)×Zn
2
[(σ1 ⊗ σ2)⊗ ξ].

In particular, (n) × (0) denotes the trivial representation, (0) × (1n) the sign
representation, and (n−1)× (1) the reflection representation of W on the Cartan
subalgebra.

Recall the setting of section 2.12. The Hermitian matrix associated to a rep-
resentation σ ∈ Ŵ , is

a(σ, ν) =
∏

(σ∗(tsαi
)〈−wiν, αi〉 − cαi)(〈−wiν, αi〉 − cαi)

−1 (3.3.2)
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The individual terms in the product in (3.3.2) can be rewritten as

ai(σ, ν) =

{
1 on the (+1)-eigenspace of sαi on σ∗,
cαi−〈wiν,αi〉
cαi+〈wiν,αi〉 on the (–1)-eigenspace of sαi on σ∗.

(3.3.3)

Note that a(σ, ν) ≡ 1, for σ = (n)× (0).

An open connected component in the complement of the arrangement of hy-
perplanes (3.2.1) will be called region. We prove first that the unbounded (open)
regions are not unitary.

Lemma. If the open region F is unbounded, and ν ∈ F , then the operator a(σ, ν),
for σ = (n− 1)× (1), is not positive definite.

Proof. This result holds in general with σ the reflection representation. We do
not assume that the root system is type B/C, but we do assume that w0 acts by
−Id on the Cartan subalgebra for simplicity. For special values of the parameter
c > 0 (in particular c = 1

2 , 1) this fact follows from the results in [KZ] on the
signature of Hemitian forms for real Lie groups.

Since the operator a(σ, ν) does not change sign inside the open region F , it is
sufficient to prove the statement for one particular ν. The region F is unbounded,
therefore there must exist a simple root α and a point x ∈ F , such that 〈α, x〉 > cα

and {x+νωα : ν > 0} ⊂ F (ωα denotes the fundamental coweight corresponding
to α). Since we assumed w0 = −Id,

w0ωα = −ωα, w0α = −α, w0x = −x.

We use the canonical realization of the reflection representation σ := refl on the
Cartan subalgebra, and compute

〈a(σ, ν)ωα, ωα〉σ.

We will show that this is negative for large enough ν. Let p = m + n be the
subalgebra determined by ωα :

Rm = {β : 〈β, ωα〉 = 0}, Rn = {β : 〈β, ωα〉 > 0}.
The long Weyl group element decomposes w0 = wmwM . Then

a(σ, ν) = awm(σ,wMν)awM (σ, ν).

Let vα ∈ Vσ be the vector corresponding to ωα. Then since 〈ωα, γ〉 = 0, and
therefore sγωα = ωα for all γ ∈ Rm,

a(σ, ν)vα = awm(σ,wMν)vα.

In turn this equals
1∏

β∈Rn
(cβ + 〈ν, β〉) ·

[
ν|Rn|

∏

β∈Rn

〈β, ωα〉twmvα + lower order terms in ν
]
.
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The factor in front is positive, and so is the coefficient of twmvα, because 〈β, ωα〉 >
0, for β ∈ Rn. Since twmvα = tw0vα = −vα, it follows that

〈a(σ, ν)ωα, ωα〉σ < 0

for large enough ν. ¤
Proposition. If νn > max{c, 1}, then the Hermitian form is indefinite on one
of the W-types

(n− 1)× (1), (n− 1, 1)× (0).

Proof. The dimension of the (+1)-eigenspace of any sα on (n−1)×1 is n−1, while
the dimension of the (−1)-eigenspace is 1. The dimension of the representation
σ = (n− 1, 1)× (0) is n− 1. The (+1)-eigenspaces, V

(1)
σ , satisfy

dim(V (1)
σ ) =

{
n− 2 if α is long,

n− 1 if α is short.
(3.3.4)

In particular, we can compute the determinant of a(σ, ν). We get

∏

i<j

1− (−νi + νj)
1 + (−νi + νj)

1− (−νi + νj)
1 + (−νi + νj)

·
∏ c− νi

c + νi
for (n− 1)× (1)

(3.3.5)
∏

i<j

1− (−νi + νj)
1 + (−νi + νj)

1− (−νi + νj)
1 + (−νi + νj)

for (n− 1, 1)× (0).

Thus for X(s) to be unitary, there must be an even number of νi > c. Assume
this is the case.

Assume νn ≥ max{c, 1}. Deform νn upwards. If there is no νi such that
±νi + νn = 1, the region must be unbounded, so by the previous lemma, the
module cannot be unitary, and the form is indefinite on (n − 1) × (1). Thus
deform νn upwards until the first time it is equal to νi + 1 for some i. Consider
the Levi component M of type A1 given by the root −εi + εn. We can conjugate s
so that νi, νn are on the coordinates n− 1 and n respectively. This s determines
a character χ on M so that X(s) is the spherical subquotient of the induced
module

IndG
M (χ) = H⊗HM

χ. (3.3.6)
The character χ ofHM is χ = triv⊗Cν . The module IndG

M (χ) is in fact irreducible
(so equal to X(s)). Its Hermitian dual is IndG

M (χ−1), so the invariant Hermitian
form is given by an intertwining operator of the type defined in section 2.11,
despite the fact that the trivial representation is not tempered. The shortest
element w ∈ W that takes ν to −ν, and fixes the trivial representation of M, can
be decomposed into a product of factors similar to the decomposition (2.11.3).
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There are several types of Aα as in (2.11.1). One type is just an ai(σ, ν) as in
(2.12.6). The second type is induced from an operator on an Mα of type A2, with
M of type A1, and a third one is induced from an Mα of type B2, with M of type
A1(long). We denote the last two as

A1 ⊂ A2, A1(long) ⊂ B2. (3.3.7)

Example. Consider the Hecke algebra of rank 3. The simple roots are {ε1,−ε1+
ε2,−ε2 + ε3}. Let M = A1 be the Levi component corresponding to the root
α2 = −ε1 + ε2 and let σ be the trivial representation. The parameter is s =
(−1/2, 1/2, 0) + ν, where ν = (ν1, ν1, ν2), with 0 ≤ ν1 ≤ ν2. The shortest element
that takes ν to −ν, and fixes the trivial representation of HM is w = s2w0. The
intertwining operator

Am(M, σ, ν) : H⊗HM
σ11ν → H⊗HM

σ11−ν

is given by multiplication with rw. The Weyl group element w decomposes into
a product wα2 · s1 · wα3 · wα1 . In terms of simple reflections wα1 = s1s2s1,
wα3 = s3s2 and wα2 = s2s3. The intertwining operator decomposes accordingly
into a product

Aα2(−ν2,−1/2− ν1, 1/2− ν1) ◦ aα1(ν2,−1/2− ν1, 1/2− ν1)

◦Aα3(−1/2− ν1, 1/2− ν1, ν2) ◦Aα1(−1/2 + ν1, 1/2 + ν1, ν2).
(3.3.8)

The factors Aα2 and Aα3 are induced from A1 ⊂ A2, the factor Aα1 is induced
from A1(long) ⊂ B2, while the factor aα1 corresponds to a single rα1 . ¤

Returning to the general case, we can compute the determinant of the form.
For (n− 1)× (1) we get a product of factors

1− (±νk + νl)
1 + (±νk + νl)

k, l 6= i, n,

c− νk

c + νk
k 6= i, n,

(3.3.9)
c− νi

c + νn
for A1(long) ⊂ B2,

1− (νk − νn)
1− (−νk + νi)

for A1 ⊂ A2.
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These formulas come from direct calculations for the Hecke algebras of rank 2.
See [Ba2] for some more general calculations of this kind. The factor for A1 ⊂ B2

comes from the fact that the restriction of (n− 1)× (1) consists of (1)× (1) and
(2)× (0).

For (n − 1, 1) × (0) we get the same factors, except the one for A1 ⊂ B2 is
missing because the restriction of this representation to B2 consists of (2)×(0) and
(11)× (0), and only the first one occurs in an induced from the trivial character
on an A1(long) ⊂ B2.

Comparing these four determinants, we find that the form has to be indefinite
if we assume c− νn < 0. ¤

3.4. We prove theorem 3.2 in the case when 0 < c ≤ 1. By proposition 3.3,
a necessary condition for unitarity is that νn < 1. Assume that c ≤ νn < 1.
Proceeding as in the proof of proposition 3.3, deform νn upwards until the first
reducibility hyperplane. If this is of the form νn − νi = 1, the argument in 3.3
applies to show that the form is indefinite.

Assume the first reducibility hyperplane is νn + νi = 1. The only difference
between this case and the proof of proposition is that in order for the parameter
s to be in dominant form for the Levi component M of type A1 (given by the
root εi + εn), we need to conjugate νi to −νi. This has the effect that the formula
for the factor A1(long) ⊂ B2 in (3.3.9) becomes c+νi

c+νn
. Comparing as before the

four determinants on (n− 1)× (1) and (1, n− 1)× (0), it follows that
c− νi

c− νn
> 0. (3.4.1)

Since we assumed that νn > c, it implies that also νi > c. The reducibility
hyperplane being νn + νi = 1, necessarily then c < 1/2.

We summarize this discussion in the following proposition.

Proposition. If 1/2 < c ≤ 1, and νn > c, then the Hermitian form is indefinite
on one of the W-types (n− 1)× (1) or (n− 1, 1)× (0).

If 0 < c ≤ 1/2, and νn > c, a necessary condition for unitarity is that there
exists i < n, such that 1− νi+1 < νn < 1− νi and νi > c.

When νn ≤ 1/2, any νi can be deformed to νi+1 without any reducibility
occuring. Then the module is induced irreducible from a Hermitian module on
a Levi component M of type gl(2)× g(n− 2), where g(n− 2) is the Lie algebra
of type B of rank n− 2. The module on gl(2) is a unitary complementary series
for gl(2) with parameter (νi+1, νi+1), while the parameter on g(n−2) is obtained
from s by removing the two coordinates νi, νi+1. Similarly it is possible to deform
ν1 to 0 without any reducibility; the resulting module is unitarily induced from
a parameter on a Levi component of the form gl(1) × g(n − 1). The parameter
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on gl(1) is 0, and on g(n − 1) it is obtained from s by removing ν1. Proceeding
by induction on rank, the result follows.

Now consider the case 1/2 < c ≤ 1. By proposition 3.4, we may as well assume
that

0 < ν1 < · · · < νn < c. (3.4.2)

By the earlier argument, there must be a k such that

0 < ν1 < · · · < νk ≤ 1/2 < νk+1 < · · · < νn < c ≤ 1. (3.4.3)

Otherwise, the earlier argument reduces considerations to a smaller rank algebra.
Suppose s cannot be deformed to a unitarily induced parameter from a smaller
group. Then there must be k1 > k such that

0 < 1− νk1 < ν1, (3.4.4)

and for each 1 ≤ i ≤ k, there must be a k < ki such that

νi < 1− νki
< νi+1. (3.4.5)

Thus k ≤ n − k. On the other hand, if for any i ≥ j, we can deform νi to νi+1

without going through any reducibility point, the resulting module is unitarily
induced irreducible from a Hermitian module on a gl(2)× g(n− 2), such that the
parameter on gl(2) is not unitary. Thus for any j ≥ k there must be kj < k such
that

νj < 1− νkj
< νj+1. (3.4.6)

It follows that k > n− k.

It remains to analyze the case 0 < c < 1/2. If νn < c < 1/2, the previous
argument for νn ≤ 1/2 applies. Assume νn > c. By proposition 3.4 above, the
region must be of the form

0 ≤ ν1 ≤ · · · ≤ νj < c < νj+1 ≤ · · · ≤ νn < 1− νi, or
c < ν1 ≤ · · · ≤ νn < 1− νi,

(3.4.7)

where the essential remark is that, in the first type of regions, i > j (because
νi > c).

We claim that a parameter in any such region can be deformed irreducibly
to a unitarily induced parameter from a smaller algebra. In the first case, since
ν1 + νk < νi + νn < 1, one can deform ν1 irreducibly to 0.

In the second case, the same argument as in (3.4.3)-(3.4.6) works to show that
there exists l such that one can deform νl irreducibly to νl+1.

Note also that if there is an odd number of νl > c, the region cannot be
unitary. By the deformation argument, if this were the case, one would reduce it
to a region in B1 with ν > c, which is not unitary.



780 D. Barbasch and D. Ciubotaru

In summary, we have proved a generalization of theorem 3.2 in [Ba2]. Write
the general parameter as before 0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νn.

Theorem. The complementary series for type Bn with parameter 0 < c ≤ 1 is

1/2 < c ≤ 1 :

0 ≤ ν1 ≤ · · · ≤ νk ≤ 1/2 < νk+1 < νk+2 < · · · < νn < c (3.4.8)

so that νi + νj 6= 1 for i 6= j and there are an even number of νi such that
1− νk+1 < νi < c and an odd number of νi such that 1− νk+j+1 < νi < 1− νk+j .

0 < c ≤ 1/2 :

0 ≤ ν1 ≤ · · · ≤ νj < c < νj+1 ≤ · · · ≤ νn < 1− νj+1, (3.4.9)

where j could be 0 (i.e., all entries could be > c) and

(1) n− j is even (there is an even number of entries > c);
(2) νj+1 ≤ · · · ≤ νk ≤ 1/2 < νk+1 < · · · < νn < 1 satisfy νl + νl′ 6= 1 for j <

l 6= l′ ≤ n and there are an even number of νi such that 1− νk+1 < νi < 1
and an odd number of νi such that 1− νk+l+1 < νi < 1− νk+l. .

Example. In the Hecke algebra of type B2, with 0 < c ≤ 1, the unitary generic
spherical parameters are:

0 < c < 1/2 : 0 ≤ ν1 ≤ ν2 < c and c < ν1 ≤ ν2 < 1− ν1.

1/2 ≤ c ≤ 1 : 0 ≤ ν1 < ν2 < min{c, 1− ν1}. (3.4.10)

3.5. We now consider the case c > 1. Recall s = (ν1, . . . , νn), and because of
section 3.3 we assume that

0 < ν1 < · · · < νn < c. (3.5.1)

Because of the arguments in section 3.4, we may as well assume 1 ≤ νn.

Let x be the half-integer satisfying νn − 1/2 < x ≤ νn. Let

s′ := (ν1, . . . , νn−1). (3.5.2)

Let χ(x, t) be the character on gl(2x) corresponding to the coordinates

χ(x, t) := (x− 1/2− t, . . . ,−x + 1/2− t) (3.5.3)

Denote the induced module

X(s, x, t) := Ind
B(n+2x)
B(n)×gl(2x)[s⊗ χ(x, t)]. (3.5.4)

Proposition.

(1) The module X(s, x, t) is irreducible for 0 ≤ t ≤ x− νn + 1/2.
(2) The module X(s′, x + 1/2, u) is irreducible for 0 < u < νn − x.
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Proof. We prove (1), since (2) is essentially the same statement. We also assume
that x is an integer for simplicity. We will freely use the irreducibility results
about induced modules in type A, as in [Ba2] lemma 3.1. First we show that

Ind
g(x)
gl(x)[χ(x/2, x/2± t)] is irreducible. (3.5.5)

We consider the case

χ(x/2, x/2 + t) = (−1/2− t,−3/2− t, . . . ,−x + 3/2− t,−x + 1/2− t).

The intertwining operator
X(1/2 + t, . . . , x− 3/2 + t, x− 1/2 + t) −→

X(−1/2− t, . . . ,−x + 3/2− t, x− 1/2 + t)
(3.5.6)

is onto the induced module

Ind
g(x)
gl(x−1)×gl(1)[χ(x/2− 1/2,−x/2 + 1/2− t)⊗ χ(1/2, x− 1/2 + t)] (3.5.7)

by induction. Since the intertwining operator
Xgl(x)(−1/2− t, . . . ,−x + 3/2− t, x− 1/2 + t) −→

Xgl(x)(x− 1/2 + t,−1/2− t, . . . ,−x + 3/2− t)
(3.5.8)

is an isomorphism onto

Ind
g(x)
gl(1)×gl(x−1)[χ(1/2, x− 1/2 + t)⊗ χ(x/2− 1/2,−x/2 + 1/2− t)] (3.5.9)

when restricted to the left hand side of (3.5.8), the latter module has a unique
irreducible quotient. Because x− 1/2 + t < c, the intertwining operator

X(x− 1/2 + t,−1/2− t, . . . ,−x + 3/2− t) −→
X(−x + 1/2− t,−1/2− t, . . . ,−x + 3/2− t)

(3.5.10)

maps (3.5.9) onto

Ind
g(x)
gl(1)×gl(x−1)[χ(1/2,−x + 1/2− t)⊗ χ(x/2− 1/2,−x/2 + 1/2− t)]. (3.5.11)

Finally the intertwining operator
X(−x + 1/2− t,−1/2− t, . . . ,−x + 3/2− t) −→

X(−1/2− t, . . . ,−x + 3/2− t,−x + 1/2− t)
(3.5.12)

maps (3.5.11) onto Ind
g(x)
gl(x)[χ(x/2,−x/2− t)]. So this module has a unique irre-

ducible quotient. But by virtue of being embedded in X(−1/2−t, . . . ,−x+3/2−
t,−x+1/2−t), it also has a unique irreducible submodule, so must be irreducible
itself. This immediately implies that (3.5.5) is irreducible as well. The proof for
χ(x/2, x/2− t) is identical.

Next we show that

Ind
g(2x)
gl(2x)[χ(x, t)] is irreducible. (3.5.13)
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The intertwining operator

X(1/2− t, 1/2 + t, . . . , x− 1/2− t, x− 1/2 + t) −→
X(x− 1/2− t, . . . , 1/2− t, x− 1/2 + t, . . . , 1/2 + t)

(3.5.14)

has image

Ind
g(2x)
gl(x)×gl(x)[χ(x/2, x/2 + t)⊗ χ(x/2, x/2− t)]. (3.5.15)

The intertwining operator

X(x− 1/2 + t, . . . , 1/2 + t, x− 1/2− t, . . . , 1/2− t) −→
X(−1/2− t, . . . ,−x + 1/2− t, x− 1/2− t, . . . , 1/2− t)

(3.5.16)

maps (3.5.15) onto

Ind
g(2x)
gl(x)×gl(x)[χ(x/2,−x/2− t)⊗ χ(x/2, x/2− t)]. (3.5.17)

Then the intertwining operator

X(−1/2− t, . . . ,−x + 1/2− t, x− 1/2− t, . . . , 1/2− t) −→
X(x− 1/2− t, . . . ,−x + 1/2− t)

(3.5.18)

maps (3.5.17) onto (3.5.13). Thus (3.5.13) has a unique irreducible quotient. The
fact that it also has a unique irreducible submodule follows in the same way as
the earlier argument. Embed it in

Ind
g(2x)
gl(x)×gl(x)[χ(x/2, x/2− t)⊗ χ(x/2,−x/2− t)]. (3.5.19)

Changing χ(x/2, x/2 − t) to χ(x/2,−x/2 + t) is injective, because of (3.5.5).
Reordering the coordinates in decreasing order is also injective because of the
irreducibility results for gl. The claim follows.

To prove the general case, we use the same technique. Let ν be the parameter
of X(s, x, t) made dominant. Then the intertwining operator

X(ν) −→ X(x− 1/2− t, . . . ,−x + 1/2− t, s) (3.5.20)

has image

Ind
g(2x+n)
gl(2x)×gl(n)[χ(x, t)⊗Xgl(n)(s)]. (3.5.21)

The assumptions on x and t imply that this module is isomorphic to

Ind
g(2x+n)
gl(n)×gl(2x)[Xgl(n)(s)⊗ χ(x, t)]. (3.5.22)

This has X(s, x, t) as a quotient. Thus (3.5.4) has a unique irreducible quotient.
To show that it also has a unique irreducible submodule, embed it in (3.5.21),
use the irreducibility of Ind

g(2x)
gl(2x)[χ(x, t)] to show that it embeds in X(−ν). ¤

Corollary. The parameter s is unitary only if s′ is unitary.
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Proof. Assume X(s) is unitary. Then X(s, x, t) is unitary irreducible for 0 ≤
t ≤ x − νn + 1/2. At x − νn + 1/2 = t, the corresponding X(s, x, t) is also
irreducible unitary, and equal to X(s′, x+1/2, u), with u = νn−x. Then X(s′, x+
1/2, 0) is unitarily induced irreducible from X(s) ⊗ triv. Thus X(s′) is unitary,
as claimed. ¤

3.6. The explicit, combinatorial, description of the unitary generic spherical pa-
rameters is given in the following theorem.

Theorem. The complementary series for type Bn with parameter c > 1 is

0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νm < 1 + ν1 < νm+1 < νm+2 < · · · < νn < c

satifying the conditions:

(1) 0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νm < c satisfy the unitarity conditions in Theorem
3.4 for Bm;

(2) νj+1 − νj > 1 for all j ≥ m + 1;
(3) either νm+1 − νm > 1 or, if 1 − νk+1 < νm < 1 − νk (from Theorem 3.4

k + m is necessarily odd), then 1 + νl < νm+1 < 1 + νl+1, with k ≥ l + 1
and m + l even.

In view of Corollary 3.5, the proof is by induction on n, and will be given in
sections 3.7 and 3.8.

3.7. There are some regions which need to be discussed first. In each B2k there
is a region (ν1, ν2, . . . , ν2k) given by the inequalities:

0 ≤ |ν2k−1 − 1| < ν1 < 1− ν2k−2 < ν2 < · · · < νk−2 < 1− νk+1 < νk−1 <

< ν2k − 1 < νk < 1− νk−1 < νk+1 < 1− νk−2 < νk+2 < · · · < ν2k−2 <

< 1− ν1 < ν2k−1 < 1 + ν1 < · · · < 1 + νk−1 < ν2k < 1 + νk.
(3.7.1)

For example, the region in B4 is

0 ≤ |ν3 − 1| < ν1 < ν4 − 1 < ν2 < 1− ν1 < ν3 < 1 + ν1 < ν4 < 1 + ν2. (3.7.2)

Note that a parameter in a region (3.7.1) with k > 1 cannot be deformed
irreducibly to a unitarily induced irreducible parameter.

Proposition. In Bn, n = 2k, the form on (n−2)×(2), (n−1)×(1), or (n)×(0)
is indefinite in the region (3.7.1).
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Proof. The proof is by induction on k. We do the induction step first. Deform
the pairs (νk−2, νk−1) and (νk+1, νk+2) irreducibly to

0 < ν = 1− νk+1 = νk−1 = νk−2 = 1− νk+2 < 1/2. (3.7.3)

If the generic parameter is unitary, then this spherical parameter is unitary as
well, because this is the first place where the standard module has become re-
ducible. The spherical representation is induced irreducible from a parameter
on B2k−4 × gl(4). The parameter on B2k−4 is obtained from the original one by
removing the above four entries. The parameter on gl(4) is unitary. Thus this
parameter is unitary if and only if the parameter on the B2k−4 is unitary. By
induction, the parameter is not unitary, so the generic one isn’t either. The asser-
tion about the form being indefinite on the specified K-types comes from the fact
that the restriction of a W-type (n−a)× (a) is a sum of W-types (n−4− b)× (b)
with b ≤ a.

The initial step is formed of the cases k = 1 and k = 2. For k = 1, the
parameter is

0 < |ν2 − 1| < ν1 < ν2 < 1 + ν1. (3.7.4)
Deform ν1 upwards to ν2. No reducibility occurs until the endpoint. The resulting
parameter is unitarily induced irreducible from a parameter on gl(2), of the form
(−ν, ν) with ν > 1/2, because ν > |ν − 1|. This not unitary, and the form is
indefinite on the sum of W-types (2) and (11). The claim follows.

For k = 2, the parameter is (3.7.2). Deform ν1 to ν2, and ν3 to ν4 so that no
reducibility occurs in between. If the generic parameter is unitary, then so is the
spherical one at the endpoint. The parameter can be written as

(ν, ν, ν + 1, ν + 1) with 0 < ν < 1/2. (3.7.5)

This parameter is unitarily induced irreducible from gl(4). On gl(4), the parame-
ter is induced from a character on gl(2)× gl(2), but outside the complementary
series. The form is indefinite on the W-types (31) and (22). The claim about the
W-types of the generic representation follows from this fact. ¤

3.8. Proof of theorem 3.6. If νn < 1+ν1, one can deform νn irreducibly until
νn < 1. Then the same arguments from section 3.4 apply.

Assume therefore that νn > 1 + ν1. The parameter is

0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νm < 1 + ν1 < νm+1 < · · · < νn−1 < νn < c. (3.8.1)

Assume it is unitary. By corollary 3.5, the string (ν1, ν2, . . . , νm, . . . , νn−1) sat-
isfies the conditions for unitarity from theorem 3.6. So the parameter for Bn

satisfies conditions (1). We need to check that conditions (2) and (3) are also
satisfied.

There are two cases, m + 1 < n, and m + 1 = n.
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Case 1: m + 1 < n, which also means that νn−1 > 1 + ν1. In this case
conditon (3) is satisfied by the induction hypothesis, we only need to check (2)
for j = n − 1, same as νn > 1 + νn−1. If ν1 can be deformed irreducibly to 0,
the resulting parameter is unitarily induced irreducible from the parameter on
Bn−1 obtained by removing ν1. The induction hypothesis applied to (ν2, . . . , νn)
implies the claim for Bn.

If ν1 cannot be deformed to 0 irreducibly, then νn−1 > 1 + νn−2. Necessarily
νn > 1 + νn−1, so the parameter on Bn satisfies condition (2). This is because
otherwise one could deform νn−1 to νn irreducibly, and the resulting parame-
ter would be unitarily induced from Bn−2 × gl(2), with the parameter on gl(2)
nonunitary.

Case 2: m+1 = n, which also means νn−1 < 1+ ν1. In this case we only need
to check that (3) is satisfied. The parameter is

0 ≤ ν1 ≤ · · · ≤ νn−1 < 1 + ν1 < νn < c.

If we can deform ν1 to 0, the proof follows by unitary induction from Bn−1.
Otherwise, necessarily 0 < |1 − νn−1| < ν1. From the conditions of unitarity of
theorems 3.6 and 3.4 for 0 < ν1 < · · · < νn−1, there exists k, 1 ≤ k ≤ n− 2, such
that νk < 1− νk−1 < νk+1. We can write the inequalities as

0 < |1− νn−1| < ν1 ≤ ν2 ≤ · · · ≤ νk−1 ≤ νk < 1− νk−1 < νk+1 < . . .

· · · < νn−2 < 1− ν1 < νn−1 < 1 + ν1 < · · · < 1 + νl < νn < 1 + νl+1,
(3.8.2)

for some l. If we can deform any νj+1 down to νj with j ≤ k − 1 irreducibly,
the resulting parameter would be unitarily induced irreducible from Bn−2×gl(2)
with a unitary gl(2) parameter. The induction hypothesis for the parameter on
Bn−2 with νj , νj+1 removed, implies that condition (3) holds for Bn. So assume
this is not possible. Then l = k− 1, otherwise we could deform νk down to νk−1.
We are reduced to the case when the inequalities are

0 < |1− νn−1| < ν1 ≤ ν2 ≤ · · · ≤ νk−1 < νn − 1 < νk < 1− νk−1 < νk+1 <

< νn−2 < 1− ν1 < νn−1 < 1 + ν1 < · · · < 1 + νk−1 < νn < 1 + νk.
(3.8.3)

For each pair νj , νj+1, with 1 ≤ j ≤ k− 2 and k + 1 ≤ j ≤ n− 3, there is `j such
that νj < 1−ν`j

< νj+1. For ν1 < ν2 < · · · < νk−1, there are k−2 inequalities and
the possible `j are k +1, . . . , n− 2. This means n− 2− k ≥ k− 2 or, equivalently
n ≥ 2k. For νk+1 < · · · < νn−2, there are n− k − 3 inequalities and the possible
`j are `j = 2, . . . , k − 2. Then k − 3 ≥ n− k − 3, and so n ≤ 2k.

We conclude that n = 2k, and the parameter is as in (3.7.1). The nonunitarity
of such parameters was discussed in section 3.7. Thus to be unitary, the parameter
has to satisfy the condition that it can be deformed irreducibly to one which is
unitarily induced from a proper Levi component, which is the content of the
conditions in theorem 3.6.
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4. The unitary groups

4.1. One of the results in [Ba1], is that the spherical unitary dual of the unitary
quasisplit groups U(n, n) and U(n + 1, n) matches the spherical unitary dual of
the Hecke algebras of type Bn with parameters c = 1/2 and c = 1 respectively.
The results in this paper imply similar results for U(p, q) with |p − q| > 1. Let
c = p−q+1

2 . The spherical parameters for U(p, q) are matched with the spherical
parameters of Hc(Bn) with n = q, the real rank of U(p, q). A spherical represen-
tation of U(p, q) is called generic, if the standard module is irreducible (in the
quasisplit cases, these are the spherical representations with Whittaker models,
cf. [V2]). In coordinates,

νj ± νi /∈ Z>0, νi − c /∈ Z≥0, 1 ≤ i, j ≤ n. (4.1.1)

Theorem. A generic parameter for U(p, q) is unitary only if it is unitary for
Hc(Bn).

Proof. Let ν be a spherical parameter, and denote by M the Levi component
of the minimal real parabolic subgroup of U(p, q). As explained in [Ba1], the
classification of spherical irreducible and Hermitian (g,K) modules for U(p, q)
coincides with that for Hc(Bn). In particular, if (µ, V ) is a K-type, then there is
a Hermitian operator

a(µ, ν) : (V M )∗ −→ (V M )∗ (4.1.2)
with the property that a parameter is unitary if and only if a(µ, ν) is positive
semidefinite. The module (V M )∗ is endowed with a representation of W, call
it σ(µ). In section 4.9 of [Ba1], a set of K-types called relevant is defined. A
relevant K-type has the property that the Hermitian matrix in (4.1.2) coincides
with a(σ(µ), ν) in (3.3.2). Furthermore the σ(µ) occuring contain the list used in
theorem 3.6 to establish which generic parameters are unitary. Thus the generic
parameters for U(p, q) that are unitary, have to be contained in the set of para-
meters which are unitary for Hc(Bn). ¤

For |p − q| > 2, the spherical generic unitary duals of U(p, q) and Hc(Bn) do
not coincide, as seen in the next example. It is likely that for |p − q| = 2, the
unitary duals coincide, but we have not checked the details.

Example. In the case of U(p, 2), the spherical unitary dual is well-known. The
following explicit description can be found for example in [KS].

Theorem ([KS]). The spherical unitary parameters (ν1, ν2), 0 ≤ ν1 ≤ ν2 for
U(p, 2) are:

(1) the triangles ν2 − ν1 ≥ k, ν2 + ν1 ≤ k + 1 for k ≥ 0 with ν2 ≤ p−1
2 ;
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(2) the lines ν2 − ν1 = k for k ≥ 1 with ν2 ≤ p−1
2 .

(3) the point (ν2, ν1) = (p+1
2 , p−1

2 ) (the trivial representation).

On the other hand, the generic spherical unitary dual for the Hecke algebra
Hc(B2) with c = p−1

2 is formed by two triangles ν2+ν1 < 1 and ν2−ν1 > 1, ν2 < c.

The two pictures below illustrate the case p = 8. The figures show the triangle
0 ≤ ν1 ≤ ν2 ≤ p−1

2 = 7
2 (all generic spherical unitary parameters are inside

this triangle) and all the lines of reducibility inside it. The open regions are
green if they parametrize unitary representations and white otherwise. On the
lines, green means that the spherical representation is unitary and red indicates
that is not. Outside this triangle, the only unitary spherical parameter is (9

2 , 7
2),

corresponding to the trivial representation.
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Figure 1. Spherical unitary parameters for Hc(B2) with c = 7/2
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Figure 2. Spherical unitary parameters for U(8, 2)
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