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1. Introduction

Let k > 2 be an even integer and N a prime. Let SN (k) be the space of
holomorphic cuspforms ϕ of weight k for the congruence subgroup Γ0(N), acting
on the upper half plane H. For ϕ ∈ SN (k), we write (ϕ,ϕ) for the Petersson
norm and L(s, ϕ) for the L-function, normalized so that the functional equation
relates s and 1 − s. Let FN (k)new be an orthogonal basis of Hecke-eigenforms
spanning the subspace new forms.

In addition to k and N , we fix the following data throughout the paper: a
primitive quadratic character χ of conductor D < 0 such that (N, D) = 1 and
χ(−N) = 1 and a prime p such that (p,DN) = 1. Let L(s, χ) be the Dirichlet
L-function

∑
n≥1

χ(n)n−s.

The Sato-Tate measure is the measure on the interval [−2, 2] defined by

µ∞ =
1
2π

√
4− x2dx

We define two probability measures µ+(x)dx and µ−(x)dx on [−2, 2] by

µ+ =
p− 1

(p1/2 + p−1/2 − x)2
µ∞

µ− =
p + 1

(p1/2 + p−1/2)2 − x2
µ∞

Let µp be µ+ or µ− according as χ(p) is 1 or −1.

Let dk be the formal degree of the holomorphic discrete series representation Dk

of PGL(2,R) of weight k, defined relative to the Haar measure dg∞ on GL(2,R)
whose push-forward to H is the measure used to define the Petersson norm (ϕ,ϕ).
For the standard measure y−2dxdy, dk = (k − 1)/2. We define the following
constant

ck = 2kdkek
k[(k

2 − 1)!]2

(k − 1)!

where

ek = 1 +

k
2
−2∑

n=0

(
k

2n + 1

)
(−1)

k
2
−n(

k

2
+ n− 1)!(

k

2
− n− 2)!

For ϕ ∈ FN (k)new, let ap(ϕ) denotes the normalized p-Hecke eigenvalue of ϕ,
which is known by Deligne to lie in [−2, 2]. If cp is the usual p-Hecke eigenvalue,
which is an algebraic integer, then ap = cp/p(k−1)/2. Our main result is the
following:



Average Values of Modular L-Series ... 703

Theorem A Let k > 2 be an even integer, χ = χD a quadratic character of
conductor D < 0, N a prime with χ(−N) = 1, and p a prime not dividing ND.
Then for any subinterval J of [−2, 2], we have (∀ε > 0):

∑

ϕ ∈ FN (k)new

ap(ϕ) ∈ J

L(1
2 , ϕ⊗ χ)L(1

2 , ϕ)
(ϕ,ϕ)

= 2ckL(1, χ)µp(J) + O(N−k/2+ε)

Corollary B Let k > 2 be an even integer, χ a quadratic character of conductor
D < 0, and p a prime such that (p,D) = 1. Let J ⊂ [−2, 2] be a non-empty
interval. Then for all sufficiently large primes N not dividing pD, which are
inert in K = Q[

√
D], there exists a holomorphic newform ϕ of weight k for

Γ0(N) such that:

(i) ap(ϕ) ∈ J ; and
(ii) L(1/2, ϕ⊗ χ)L(1/2, ϕ) 6= 0.

In particular, there are cusp forms ϕ of weight k and prime level for which ap

lies arbitrarily close to 2 or −2, and L(1/2, ϕ⊗χ)L(1/2, ϕ) is non-zero. Without
the requirement on the non-vanishing of the L-value, this is a well known result
of Serre ([Se]); see also Sarnak ([Sa]) in the context of Maass forms.

Following a suggestion of Philippe Michel, we observe that the measure µp

can be written in the following form. For x ∈ [−2, 2], let πx be the unramified
representation of PGL2(Qp) whose Satake parameters are {ps, p−s} where x =
ps + p−s. The local factors L(s, πx) and L(1

2 , πx ⊗ χp) are then defined and we
have:

µp =
L(1

2 , πx)L(1
2 , πx ⊗ χp)

L(1, χ)
µ∞

When χ(p) = −1, µp = µ− is the familiar spherical Plancherel measure for
PGL2(Qp). In either case, µp approaches µ∞ as p tends to ∞. Theorem A can
be reformulated in terms of the product

Lp(
1
2
, ϕ⊗ χ)Lp(

1
2
, ϕ)

where Lp is the L-function with the p-Euler factor is removed. In this case, the
measure µp is replaced by µ∞/L(1, χ). We note that, unlike µ− and µ∞, the
measure µ+ has a bias favoring positive x.

When J is the full interval [−2, 2], the measure µp is not needed and the result
of Theorem A has then been known for some time (for k = 2) by the work of
W. Duke ([Du]); see also [Lu]. Our work began with our effort to understand these
papers. It should be mentioned that in ([IwS]), Iwaniec and Sarnak introduce
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a novel program to prove a good lower bound for L(1, χ) from a simultaneous
lower bound, for a family of ϕ, of L(1

2 , ϕ) and L(1
2 , ϕ ⊗ χ). There are other

notable papers dealing with non-vanishing results for modular L-functions and
their derivatives; see for example [KMV].

Our approach makes use of the relative trace formula of H. Jacquet based on
the integral of the GL(2) kernel over the square of the maximal split torus. We
apply the trace formula to a certain factorizable function f on GL(2,A) where
f∞ is a matrix coefficient of Dk. Since the approach taken here requires that f∞
be integrable, we are forced to assume that k > 2. With additional work, the
method can be carried out for k = 2.

Much of the work on this paper was done five years ago, but the explicit nature
of the measure was worked out only recently. One can extend the result without
much trouble to square-free level N with χ(−N) = 1. However, if χ(−N) = −1,
the relevant L-function vanishes at s = 1/2 and in that case one should consider
the derivative. Our method should also be applicable to analogous situations
over totally real fields, even with varying weights ≥ 2 at the different infinite
places, but of the same parity. Similarly, one should be able to treat the case
of Maass forms, but then the infinity type λ will not be fixed, but will lie in
a short interval. We thank Nathaniel Grossman for helpful comments on the
evaluation of an archimedean integral involving the hypergeometric function. The
first author also thanks Bill Duke, Jeff Hoffstein, Hervé Jacquet, Wenzhi Luo,
Philippe Michel, and S. Rallis for interesting conversations. After this paper was
finalized, we heard from P. Michel of a similar work of E. Royer [Ro] involving the
average of the single L-function L(1/2, ϕ), without using representation theory.
Last but not least, we acknowledge with thanks the support from the National
Science Foundation.

2. Relative Trace Formula: the geometric side

2.1. Regularization of the Relative Trace Formula. Let G denote GL(2)/Q
with center Z, and set G̃ = G/Z. Consider the kernel

K(x, y) =
∑

γ∈ eG(Q)

f(x−1γy)

where f is a suitable factorizable, smooth function on G̃(A) (specified in §2.2
below). Let T denote diagonal subgroup of G and set T̃ = T/Z. We make use of
a relative trace formula due to Jacquet ([Ja]) which involves integration of this
kernel over the square of T̃ (A)/T̃ (Q) against a character. Since the integral is
not absolutely convergent. However, rather than truncate the kernel, we shall
regularize the integral by computing it as a limit.
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Let χ be a non-trivial, quadratic character of A∗ where A is the ring of adeles
of Q, and A∗ is the multiplicative group of ideles. For s1, s2 ∈ C and c > 0, define

Ic(f ; s1, s2) =
∫∫ c

Q∗\A∗×Q∗\A∗
K(

(
a 0
0 1

)
,

(
b 0
0 1

)
)χ(a)|a|s1 |b|s2d∗ad∗b

where the superscript c indicates that the integrals are taken over a, b ∈ Q∗\A∗
such that c−1 < |a|, |b| < c. We use the multiplicative Haar measure on A∗ which
is a product of the measures dx/|x| on R∗ (where dx is Lebesgue measure on R)
and the measures on Q∗v, for finite v, assigning measure one to Z∗v.

We will see in §4 that the following limit exists for all s1 and s2:

I(f ; s1, s2) := lim
c→∞ Ic(f ; s1, s2).

Our main object of study is the value at s1 = s2 = 0:

I(f) := I(f ; 0, 0)

2.2. The test function. Let S′ be the set of finite primes q at which χ is
ramified. Fix two distinct primes p,N /∈ S′ and set

S = S′ ∪ {p,N,∞}.
We define a function f on G̃(A) of the form

f = f∞ × fp × fN × fS′ × fS

where fS′ =
∏

v∈S′ fv and fS =
∏

v/∈S fv.

For any prime v, a subscript v denotes localization at v. For example, Fv =
F (Qv), Zv = Z(Qv), etc. As in the introduction, let Dk be the holomorphic
discrete series representation of G̃v = PGL(2,R) of weight k and let dk be its for-
mal degree. We choose the archimedean function f∞ to be dk times the complex
conjugate of the matrix coefficient 〈Dk(g)v, v〉 where v is a unit vector of lowest
weight k. Explicitly:

f∞(g) = dk

(
2
√

det g
)k

(a + d + i(b− c))k
if g =

(
a b
c d

)
and det g > 0

and f∞(g) = 0 if det g < 0.

Put K∞ = SO(2) and for v = p set Kv =GL(2,Zp). Let K̃v the the subgroup
Zv\ZvKv of G̃v. Let Hp be the algebra of compactly supported, bi-K̃v-invariant
functions of G̃(Qp). We take the function fp to be an arbitrary element of Hp.
Let

K0(N) =
{(

a b
c d

)
∈ GL2(ZN ) : c ≡ 0 (mod N)

}
.
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and let K̃0(N) be the subgroup ZN\ZNK0(N) of G̃N . Let VN be the measure of
K̃0(N). Then we take fN to be the characteristic function of K̃0(N) divided by
VN .

We let fS be the characteristic function of
∏

v/∈S K̃v.

Finally let v = q be in S′. If qm is the conductor of χq, denote by X the set of
representatives in q−mZq ⊂ Qq for q−mZq/Zq, which is a finite group isomorphic
to Z/qm. We may view χv as a character of X. Put

fv = g(χv)−1
∑

z∈X

χ1,v(z)fz,v,

where fz,v is the characteristic function of
(

1 z
0 1

)
KvZv, and g(χv) the Gauss sum

g(χv) =
∫

Z∗q
χv(x)ψv(q−mx)d∗x.

Here ψ denotes the additive character of Qq defined as the composite

Qq → Qq/Zq → Q/Z → S1,

with the last arrow on the right being x → e2πix. It is well known that g(χv) has
absolute value qm/2. The global Gauss sum g(χ) is a product of local ones and
since χ is odd,

g(χ) = i|D|1/2

2.3. The Geometric Side. Let T be the diagonal subgroup. Set

T̃ = {ta} where ta =
(

a 0
0 1

)
.

We identify T̃ with T/Z ⊂ G/Z. For δ ∈ G̃, define the subgroup

Cδ = {(t, t′) ∈ T̃ × T̃ : t−1δt′ = zδ for some z ∈ Z}.
We break up the sum over γ defining K(x, y) into sums over T̃ (Q)-double cosets
in the usual way to obtain

Ic(f ; s1, s2) =
∑

{δ}
Ic(δ, f ; s1, s2)

where {δ} is a set of representatives for the double cosets T̃\G̃/T̃ and

Ic(δ, f ; s1, s2) =
∫ c

Cδ(Q)\(eT (A)×eT (A))
f(t−1

a δtb) χ(a)|a|s1 |b|s2 d∗a d∗b
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The superscript c indicates that the integral is taken over c−1 < |a|, |b| < c.
Define the following limit distribution

I(δ, f ; s1, s2) = lim
c→∞ Ic(δ, f ; s1, s2)

When this limit exists, we will say that I(δ, f ; s1, s2) converges conditionally. Set

σ1 = <(s1), σ2 = <(s2)

We will assume from now on that the following conditions hold:

−k

2
+ 1 < σ1 <

k

2
and − k

2
< σ2 <

k

2
− 1 (∗)

Since k is an even integer and k > 2, these conditions hold in particular if
−1 < σ1, σ2 < 1, which is sufficient for our purposes.

Theorem 2.1. Assume that the conditions (*) hold. Then I(δ, f ; s1, s2) con-
verges conditionally for all δ and

∑

{δ}
|I(δ, f ; s1, s2)| < ∞

In particular,
I(f ; s1, s2)) =

∑

{δ}
I(δ, f ; s1, s2)

2.4. Coset representatives and centralizers. We recall some easily verified
facts about the double coset space T̃\G̃/T̃ . Define matrices

ξ(x) =
(

1 x
1 1

)

and

n+ =
(

1 1
0 1

)
, n− =

(
1 0
1 1

)
, ε =

(
0 1
1 0

)

Further let e denote the identity matrix in G.

Lemma 1. The set of matrices

{ξ(x) : x 6= 0, 1} ∪ {
e, ε, n+, εn+, n−, εn−

}

is a set of representatives for the double cosets T̃\G̃/T̃ .

The elements ξ(x) and the orbits they represent will be called regular. The six
remaining representatives and their orbits will be called singular.

We have (
a−1

1

)(
x y
z w

)(
b
1

)
=

(
ba−1x a−1y

bz w

)
.
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Lemma 2. Cδ = {e} if δ is regular or if δ ∈ { n+, εn+, n−, εn−} . On the
other hand,

Ce = {(ta, ta) : a ∈ IQ}
Cε = {(ta, t−1

a ) : a ∈ IQ}.

2.5. Vanishing of the terms attached to e, ε, εn±.

Lemma 3. As χ is non-trivial, for all s1, s2, and all c > 0 we have

Ic(e, f ; s1, s2) = Ic(ε, f ; s1, s2) = 0.

Proof. To treat δ = e, write a typical element of T̃×T̃ as (txta, ta). Then we may
write Ic(e, f) as a double integral∫

Q∗\A∗, c−1<|a|<c

(∫

x∈A∗, c−1<xa<c
f(t−1

x )χ(x) |x|s1 d∗x
)

χ(a) |a|s1+s2d∗a.

Since χ is non-trivial and of finite order, its restriction to I1
Q is also non-trivial.

Consequently its integral over a ∈ Q∗\I1
Q vanishes, showing that Ic(e, f) = 0.

To treat δ = ε, write a typical element of T̃×T̃ as (txta, t
−1
a ). Then we may

write Ic(ε, f) as a double integral∫

Q∗\A∗, c<|a|<c−1

(∫

x∈A∗, c−1<xa<c
f(t−1

x )χ(x) |x|s1 d∗x
)

χ(a) |a|s1−s2d∗a.

Again, the integral of χ over a ∈ Q∗\I1
Q vanishes, implying that Ic(ε, f)) = 0.

¤

The vanishing of Ic(e, f ; s1, s2) and Ic(ε, f ; s1, s2) does not depend on the spe-
cific choice of test function f . The next proposition shows that the terms attached
to εn± also vanish for our particular choice of f .

Proposition 2.1. If δ = εn+ or εn−, then Ic(δ, f ; s1, s2)) = 0 for all s1, s2 and
c > 0.

Proof. For δ = εn+, we have

(1) Ic(εn−, f ; s1, s2)) =
∫∫ c

A∗×A∗
f(

(
0 a
b 1

)
) χ(a)−1|a|−s1 |b|s2 d∗a d∗b

However, the component fN is supported on ZNK0(N), so fN (
(

0 a
b 1

)
) is non-

zero for (a, b) ∈ (Q∗N )2 iff there exists λ ∈ Q∗N such that λ, λa ∈ ZN , λb ∈
NZN and det(λ

(
0 a
b 1

)
) = −λ2ab ∈ Z∗N . These conditions cannot be satisfied

simultaneously, so f in fact vanishes on the domain of the integral in (1).



Average Values of Modular L-Series ... 709

Similarly, for δ = εn−, we have

Ic(εn−, f ; s1, s2)) =
∫∫ c

A∗×A∗
f(

(
ab a
b 0

)
) χ(a)−1|a|−s1 |b|s2 d∗a d∗b

Again, f(
(

ab a
b 0

)
is non-zero only if there exists λ in Q∗N such that λab, λa ∈ ZN ,

λb ∈ NZN and λ2ab ∈ Z∗N , which is impossible. Thus Ic(εn−, f ; s1, s2)) also
vanishes. ¤

2.6. The dominant terms. We have seen that four of the six singular terms
contribute zero to the geometric side of the relative trace formula. It will turn
out that since χ is non-trivial, the terms corresponding to δ = n± are dominant
as the level becomes large. Explicitly, these terms are:

Ic(n+, f, s1, s2) =
∫∫ c

A∗×A∗
f(

(
ab a
0 1

)
) χ(a)−1|a|−s1 |b|s2 d∗a d∗b

=
∫∫ c

A∗×A∗
f(

(
b a
0 1

)
) χ(a)|a|−s1−s2 |b|s2 d∗a d∗b

Ic(n−; s1, s2) =
∫∫ c

A∗×A∗
f(

(
ab 0
b 1

)
) χ(a)−1|a|−s1 |b|s2 d∗a d∗b

=
∫∫ c

A∗×A∗
f(

(
b 0
a 1

)
) χ(ab−1)|a|s1+s2 |b|−s1 d∗a d∗b.

Proposition 2.2. The integrals I(n+, f, s1, s2) and I(n+, f, s1, s2) are condition-
ally convergent and analytic in the region defined by the conditions (*). Further-
more,

(A) I(n+, f, s1, s2) is absolutely convergent if (*) holds and σ1 + σ2 < −1.
(B) I(n−, f, s1, s2) is absolutely convergent if (*) holds and σ1 + σ2 > 1.

To treat the case δ = n+, we define:

g(a) =
∫

A∗
f(

(
b a
0 1

)
) |b|s2 d∗b

Let ĝ be the Fourier transform of g with respect to the additive character ψ fixed
above.

Lemma 4. If −k
2 < σ2 < k

2 − 1, then the integral g(a) converges absolutely for
all a ∈ A. Furthermore,

(A) g(a) is O(|a|σ2−k/2) as |a| → ∞.
(B) ĝ(a) is O(|a|−m) as |a| → ∞ for all m.
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Proof. The function f(
(

b a
0 1

)
) is zero unless af and bf lie in a compact subsets

of Af and A∗f , respectively. So is suffices to estimate the archimedean integral:

g∞(a) =
∫

R∗
f∞(

(
b a
0 1

)
) |b|s2 d∗b = 2kdk

∫ ∞

0

bk/2+s2

(b + 1− ia)k
d∗b

The integral over [0, 1] is O(|a|−k) and

∣∣∣
∫ ∞

1

bk/2+s2

(b + 1− ia)k
d∗b

∣∣∣ <

∫ ∞

1

bk/2+σ2

|b− ia|k d∗b < |a|s2− k
2

∫ ∞

0

bk/2+σ2

|b− i|k d∗b

The integral on the right converges if σ2 < k
2 and Part (A) follows since we

assume σ2 − k
2 > −k. Furthermore, g∞(a) is integrable on R is σ2 < k

2 − 1 and
the same is true of all of its derivatives. Hence ĝ∞(a) decreases faster than |a|m
for all m. ¤

Now recall that if F (a) is any smooth function such that |F (a)| << |a|−λ and
|F̂ (a)| << |a|−µ, then for any non-trivial unitary Hecke character χ, the following
limit exists and is analytic for 1− µ < <(s) < λ:

lim
c→∞

∫ c

A∗
F (a) χ(a)|a|s d∗a

This follows from the Poisson summation formula as in Tate’s thesis. We apply
this remark to g(a) with s = −s1− s2 where −k

2 < σ2 < k
2 − 1. Then, by Lemma

4, may take λ = k
2 − σ2 and µ arbitrary. Hence I(n+, f, s1, s2) is conditionally

convergent if −σ1 − σ2 < k
2 − σ2, that is, if σ1 > −k

2 . The same considerations
apply to of I(n−, f, s1, s2). The convergence conditions are the same, but with
s1 and s2 replaced by −s2 and −s1 repectively. The conditions become:

−k

2
< −σ1 <

k

2
− 1 − σ2 > −k

2

This proves the assertion in Proposition 2.2 about conditional convergence. From
the integral above we find that I(n+, f, s1, s2) (resp. I(n−, f, s1, s2)) converges
absolutely if the conditions of conditional convergence are satisfied and σ1 +σ2 <
−1 (resp. σ1 + σ2 > 1). The completes the proof of Proposition 2.2.

We define the local integrals
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Iv(n+, fv; s1, s2) =
∫∫

Q∗v×Q∗v
f(

(
b a
0 1

)
) χv(a)|a|−s1−s2 |b|s2 d∗a d∗b

Iv(n−, fv; s1, s2) =
∫∫

Q∗v×Q∗v
fv(

(
b 0
a 1

)
) χv(ab−1)|a|s1+s2 |b|−s1 d∗a d∗b.

and we set:

Fv(n+, fv; s1, s2) =
Iv(n+, fv; s1, s2)
L(−s1 − s2, χv)

Fv(n−, fv; s1, s2) =
Iv(n−, fv; s1, s2)
L(s1 + s2, χv)

Proposition 2.3. For all v, Fv(n+, fv; s1, s2) and Fv(n+, fv; s1, s2) are analytic
in the region defined by the conditions (*) and in particular, at s1 = s2 = 0. Let
Fv(n±, fv) = Fv(n±, fv; 0, 0). Then:

(a) If v /∈ {p,N,∞}, then

Fv(n+, fv) = Fv(n−, fv) = g(χv)−1

Note that g(χv) = 1 if χv is unramified.
(b) At v = N , we have Fv(n+, fv) = V −1

N and Fv(n−, fv) = χN (N)V −1
N

(c) At the archimedean place,

F∞(n+, f∞) = −F∞(n−, f∞) = iπck,

where ck is the constant defined in the introduction.

Proof. (a) First let v = q be outside S = S′ ∪ {p,N,∞}, corresponding to a
prime q 6= p,N . By our choice of f , fv is the characteristic function of ZvKv.
Consequently,

(a, b) → fv

(
b a
0 1

)

is simply the characteristic function of Zv × Z∗v. Since χ is unramified at v,

Iv(n+, fv; s1, s2) =
∑

n≥0

χ(q−n)qn(s1+s2) = Lv(−s1 − s2, χv)

Hence Fv(n+, fv; s1, s2) = 1 for all s1, s1, (a) follows in this case. A similar calcu-
lation shows that Iv(n−, fv; s1, s2) = Lv(s1+s2, χv) and hence Fv(n−, fv; s1, s2) =
1.
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Next suppose v = q is in S′, with qm being the conductor of χv. By construc-
tion,

Iv(n+, fv; s1, s2) = g(χv)−1
∑

z∈X

Iz,v(n+),

where

Iz,v(n+) = χv(z)
∫∫

Q∗v×Q∗v
fz,v

(
b a
0 1

)
χv(a)|a|−s1−s2 |b|s2 d∗a d∗b.

Only those z with invertible images in q−mZq/Zq give a non-zero contribution.
So we will restrict our attention to these.

Recall that fv has support on
(

1 z
0 1

)
KvZv, and note that

λ

(
1−z
0 1

)(
b a
0 1

)
=

(
λb λ(a− z)
0 λ

)
.

Then it follows that for fz,v

(
b a
0 1

)
to not vanish, we need b ∈ Z∗q and a− z ∈ Zq.

Thus a lies in q−mZq and has the same image as z in q−mZq/Zq. Consequently,
since χv has conductor qm and thus the pullback of a character of (q−mZq/Zq)∗ '
(Z/qm)∗, we must have χv(z)χv(a−1) = 1. We obtain

Iz,v(n+) = vol(1 + qmZq),

when z has invertible image in Z/qm. The assertion follows once we note:

(i) ϕ(qm)vol(1 + qmZq) equals vol(Z∗q) = 1, and
(ii) L(s, χv) = 1 as χv is ramified.

Now consider the situation when n+ is replaced by n−. We have

Iv(n−, fv; s1, s2) = g(χv)−1
∑

z∈X

Iz,v(n−),

where

Iz,v(n−) = χv(z)
∫∫

Q∗v×Q∗v
fz,v

(
ab 0
b 1

)
χv(a)|a|−s1 |b|s2 d∗a d∗b.

Again, only those z with invertible images in q−mZq/Zq give a non-zero contri-
bution. Write z = q−mu, with u ∈ Z∗q . Note that

λ

(
1−z
0 1

)(
ab 0
b 1

)
=

(
λ(a− z)b λ(−z)

λb λ

)
.

So for fz,v to not vanish on
(

ab 0
b 1

)
, we need

λ2ab ∈ Z∗q , λ ∈ Zq, λz ∈ Zq, λb(a− z) ∈ Zq.
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For these to hold, we must have

a = vq−m, b ∈ q−mZ∗q ,

with v, u having the same image in q−mZq/Zq. This implies again that χv(z)χv(a−1) =
1. The assertion follows as in the n+ case. The two integrals coincide at
s1 = s2 = 0.

(b) At v = N , fN is the characteristic function of ZNK0(N) divided by VN .
Thus

(a, b) → fN

(
b a
0 1

)

is the characteristic function of ZN × Z∗N divided by VN and IN (n+, fN ; s1, s2) =
V −1

N Lv(−s1 − s2, χN ) as in (a). Similarly,

(a, b) → fN

(
a 0
b 1

)

is the characteristic function of Z∗N × NZN divided by VN . Since χ is un-
ramified at N , χ(a−1b) = χ(b) and a change of variables from b to Nb gives
IN (n−, fN ; s1, s2) = χ(N)|N |s1+s2V −1

N Lv(s1 + s2, χN ). Part (b) follows.

(c) Let v = ∞. Recall that χ∞(−1) = −1. By definition,

f∞

((
b a
0 1

))
=

{
2kdk

bk/2

(b+1+ia)k if b > 0
0 if b < 0

Noting that d∗x = dx/|x| on R∗, we obtain

2−kd−1
k I∞(n+, f∞; s1, s2) =

∫ ∞

−∞

∫ ∞

0

bk/2+s2−1|a|−s1−s2−1sgn(a)
(b + 1 + ia)k

dbda

=
∫ ∞

−∞

∫ ∞

0

bk/2+s2−1|a|−s1−s2−1sgn(a)((b + 1)− ia)k

(a2 + (b + 1)2)k
dbda

Appealing to the binomial expansion

((b + 1)− ia)k =
k∑

j=0

(
k
j

)
(−i)k−jak−j(b + 1)j ,

we may write

2−kd−1
k I∞(n+, f∞; s1, s2) =

k∑

j=0

(
k
j

)
(−i)k−jIj ,

where

Ij =
∫ ∞

−∞

∫ ∞

0

bk/2+s2−1|a|k−j−s1−s2−1(a/|a|)1+k−j(b + 1)j

(a2 + (b + 1)2)k
dadb.



714 D.Ramakrishnan and J.Rogawski

If j, and hence k − j, is even, then the integrand is odd in the a-variable and Ij

vanishes. Thus we assume from hereon that j is odd. We have

Ij = 2
∫ ∞

0

∫ ∞

0

bk/2+s2−1ak−j−s1−s2−1(b + 1)j

(a2 + (b + 1)2)k
dadb

= 2
∫ ∞

0

∫ ∞

0

bk/2+s2−1ak−j−s1−s2−1(b + 1)j−2k

((a/(b + 1))2 + 1)k
dadb

= 2
∫ ∞

0

∫ ∞

0

bk/2+s2−1ak−j−s1−s2−1(b + 1)−k−s1−s2

(a2 + 1)k
dadb.

So the integral factors as

(2) Ij = Ij,1Ij,2,

where

Ij,1 = 2
∫ ∞

0

ak−j−s1−s2−1

(a2 + 1)k
da

and

Ij,2 =
∫ ∞

0
bk/2+s2−1(b + 1)−k−s1−s2db.

Note that Ij,2 is in fact independent of j.

By the substitution u = a2, we obtain

Ij,1 =
∫ ∞

0

u(k−j−s1−s2)/2−1

(u + 1)k
du.

Recall that the Beta function B(z, w) = Γ(z)Γ(w)
Γ(z+w) has the following integral rep-

resentations (cf. [A-S], p.258):

(3) B(z, w) =
∫ ∞

0
tz−1(1− t)w−1dt =

∫ ∞

0

tz−1

(1 + t)z+w
dt.

It follows immediately that

(4) Ij,1 = B((k − j − s1 − s2)/2, (k + j + s1 + s2)/2)

Now let v = b/(b + 1) in the expression for Ij,2, so that b = v/(1 − v) and
db = dv/(1− v)2. We obtain:

Ij,2 =
∫ 1

0
vk/2−1+s2(1− v)k/2+s1−1dv.

Applying the first identity of (3) we obtain

(5) Ij,2 = B(k/2 + s2, k/2 + s1).
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Putting (2), (4) and (5) together, and writing everything in terms of the Γ-
function, we finally obtain

Ij =
Γ((k − j − s1 − s2)/2)Γ((k + j + s1 + s2)/2)Γ(k/2 + s2)Γ(k/2 + s1)

Γ(k)Γ(k + s1 + s2)
.

We see that 2−kd−1
k I∞(n+; s1, s2) equals




k∑

j = 0
j ≡ 1(2)

(
k
j

)
(−i)k−jΓ(

k − j − s1 − s2

2
)Γ(

k + j + s1 + s2

2
)




Γ(k
2 + s1)Γ(k

2 + s2)
Γ(k)Γ(k + s1 + s2)

.

Now observe that for any positive integer r,

Γ
(

1 + 2r

2

)
= Γ(

1
2
)(r − 1)! =

√
π(r − 1)!

Let k = 2m, j = 2n+1. Then (−i)k−j = i(−1)m−n and we see that I∞(n+, f∞; 0, 0)
is equal to:

iπ2kdk
(2m)((m− 1)!)2

(2m− 1)!

(
1 +

m−2∑

n=0

(
2m

2n + 1

)
(−1)m−n(m + n− 1)!(m− n− 2)!

)

Thus I∞(n+, f∞; 0, 0) = iπck. Furthermore, since χ∞ = sgn, the local factor
L(s, χ∞) = π−(s+1)/2Γ( s+1

2 ) is regular at s = 0 with value 1. Thus F∞(n+, f∞) =
I∞(n+, f∞; 0, 0) and the assertion for F∞(n+, f∞) follows.

The I∞(n−, f∞; s1, s2) differs from to the expression for I∞(n+, f∞; s1, s2) only
by a change of variables a → −a, which induces a sign change in the integral. In
other words, I∞(n−, f∞; s1, s2) = −I∞(n+, f∞; s1, s2). ¤

The distributions appearing in our global relative trace formula are

I(n±, f) = I(n±, f ; 0, 0)

To evaluate I(n+, f), we observe that I(n+, f ; s1, s2) is analytic in the region
defined by the conditions (*). It is defined by an absolutely convergent integral
both (*) and the condition σ1 + σ2 < −1 are satisfied and in this region, we have
a factorization

I(n+, f ; s1, s2) =
∏
v

Iv(n+, fv; s1, s2) = L(−s1 − s2)
∏
v

Fv(n+, fv; s1, s2)

By Proposition 2.3,

I(n+, f ; s1, s2) = g(χ)−1V −1
N L(−s1 − s2)(−iπck)Fp(n+, fp; s1, s2)

We set s1 = s2 = 0 and use the functional equation

L(0, χ) = π−1|D|1/2L(1, χ) = −iπ−1g(χ)L(1, χ)
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to write:
I(n+, f) = ckL(1, χ)Fp(n+, fp)

Similarly, we obtain
I(n−, f) = ckL(1, χ)Fp(n−, fp)

Note that in passing from n+ to n−, the local integral at v = N changes sign
since χ(N) = −1. This compensates for a similar change of sign at v = ∞.

Corollary 1. We have

I(n+, f) + I(n−, f) = ckV
−1
N L(1, χ)(Fp(n+, fp) + Fp(n−, fp))

2.7. The regular terms. Recall that the regular double cosets are represented
by the matrices {ξ(x)}, with x ∈ P1(Q)−{0, 1,∞}. By abuse of notation we will
write I(x) for I(ξ(x)). At any place v, we have by definition,

Iv(x) =
∫

Q∗v×Q∗v
fv

(
ab ax
b 1

)
χv(a)−1|a|−s1 |b|s2 d∗a d∗b

Set
ρ = k/2− s1, and σ = k/2 + s2.

For ε, δ, ν ∈ {±1}, define

I∞(ε, δ, ν) = (−ε)ρ−σ−1δρ+k−3σ−1νk−σiρ−2σB(σ, k−σ)B(ρ, k−ρ)F (k−σ, ρ; k; 1−εν)

where F = 2F1 is the hypergeometric function.

Proposition 2.4. Let x ∈ P1(Q)− {0, 1,∞}.
(a): Let v = q be a prime not in S. When v(1 − x) > 0, Iv(x) vanishes.

Suppose v(1 − x) = 0, resp. v(1 − x) < 0. Then v(x) ≥ 0, resp. v(x) =
v(1− x), and we have:

Iv(x) =
v(x)∑

n=0

−n∑

m=−v(x)

′ (χ(q)qs1)mq−ns2),

resp.

Iv(x) =
0∑

n=v(x)

−n∑

m=0

′ (χ(q)qs1)mq−ns2 ,

where the prime on the inside sum implies (in either case) that the sum-
mation is taken over m of the same parity as n + v(1− x). In particular,
since vol(Z∗v) = 1,

v(x) = v(1− x) = 0 =⇒ Iv(x) = 1.
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(b): Let v = q be a prime in S′, with qc the conductor of χq. Then if
v(1 − x) > c, Iv(x, f)) vanishes. When v(1 − x) ≤ c, Iv(x, f) is bounded
by qc/2(v(x) + c)2.

(c): Let v = N . Then IN (x) vanishes unless vN (1− x) = 0 and vN (x) ≥ 1,
and in this case,

IN (x) =
vN (x)∑

n=1

−n∑

m=−vN (x)

′ (χ(N)N s1)mN−ns2 .

(d): Let v = p, and fp the characteristic function of ZK

(
pr 0
0 pr′

)
K for

some integers r, r′ such that r ≥ r′. Then Ip(x, f) is zero unless v(1−x) <
r + r′, in which case it is bounded by C(fp)v(x)2, for a positive constant
C(fp).

(e): Let v = ∞. Assume that x > 0 and that σ1, σ2 ∈ (−k/2, k/2). Then,
as χ∞(−1) = −1, if 1− x > 0 we have

I∞(x) = (1− x)k/2
(
I∞(−1, 1, 1)− (−1)kI∞(−1,−1, 1)

)

and if 1− x < 0 then

I∞(x) = (x− 1)k/2
(
I∞(1,−1,−1)− (−1)kI∞(1, 1,−1)

)
,

Proof. (a) Since v = q is a prime outside S, fv is by definition the characteristic
function of ZvKv.

Lemma 5. fv

(
ab ax
b 1

)
is non-zero iff the following conditions are simultaneously

satisfied:

(i) v(1− x) ≤ 0;
(ii) v(x) ≥ v(1− x); in particular, v(x) = v(1− x) when v(1− x) < 0;
(iii) v(1− x)− v(x) ≤ v(a) ≤ min{−v(1− x),−v(b)− v(1− x)};
(iv) max{v(1− x), v(a) + v(1− x)} ≤ v(b) ≤ v(x)− v(1− x);
(v) v(a) + v(b) ≡ v(1− x) (mod 2).

Proof of Lemma. For fv

(
ab ax
b 1

)
to be non-zero, it is necessary and sufficient

that there exists a λ in Q∗v such that λab, λax, λb, λ are in Zv and λ2ab(1− x) is
in Z∗v; in other words, one must have

1) 2v(λ) + v(a) + v(b) + v(1− x) = 0;

2) v(λ) + v(a) + v(b) ≥ 0;
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3) v(λ) + v(a) + v(x) ≥ 0;

4) v(λ) + v(b) ≥ 0;

and

5) v(λ) ≥ 0.

Eliminating v(λ) from these, we arrive at the following system of inequalities,
together with the parity condition

v(a) + v(b) + v(1− x) ≡ 0 (mod 2) :

6) v(a) + v(x)− v(1− x) ≥ 0;

7) v(b)− v(1− x) ≥ 0;

8) v(x)− v(1− x) ≥ 0;

9) v(1− x) ≤ 0;

10) v(a) + v(1− x) ≤ 0;

11) v(b) + v(1− x)− v(x) ≤ 0;

12) v(a) + v(b) + v(1− x) ≤ 0,

and

13) v(b) ≥ v(a) + v(1− x).

To explain, 6) comes from 2) + 3)− 1), while 7) comes from 2) + 4)− 1), 8) from
3) + 4) − 1), 9) from 1) − 2) − 5), 10) from 1) − 4) − 5), 11) from 1) − 3) − 5),
12) from 1)− 2× 5), and 13) from 2× 4)− 1). The assertions of the Lemma now
follows easily.

¤

The first consequence is that Iv(x) vanishes if v(1 − x) is positive. Now let
v(1− x) be zero (resp. negative). Then v(x) ≥ 0 (resp. v(x) = v(1− x)) and the
inequalities (iii), (iv) of the Lemma simplify to yield the conditions

0 ≤ v(b) ≤ v(x), and − v(x) ≤ v(a) ≤ −v(b)

(resp.
v(x) ≤ v(b) ≤ 0 and 1 ≤ v(a) ≤ −v(x).)

The assertion of the Proposition now follows in the case v = q /∈ S.

(b) Here v = q is a prime where χ ramifies. If the conductor of χv is qc, with
c ≥ 1, fv is, by definition, g(χv)−1 times a χ-weighted sum of the characteristic
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functions fz,v of
(

1 z
0 1

)
KvZv, where z has valuation −r with 0 ≤ r ≤ m. We

need the following:

Lemma 6. fz,v

(
ab ax
b 1

)
is non-zero only if the following conditions are simul-

taneously satisfied:

(i) v(1− x) ≤ r;
(ii) v(x) = v(1− x) when v(1− x) < 0, and v(x) = 0 when v(1− x) > 0;
(iii) v(a) ≤ min{−v(1− x),−v(b)− v(1− x)}, v(a + z) + v(ax + z)− v(a) ≥

v(1− x);
(iv) max{v(1−x) + v(a), v(1−x)− v(a + z) + v(a)} ≤ v(b) ≤ v(x)− v(1−x);
(v) v(a) + v(b) ≡ v(1− x) (mod 2).

Proof of Lemma. The statement for r = 0 is just Lemma 5. So we may
assume that 0 < r ≤ c. Then(

1 z
0 1

)(
ab ax
b 1

)
=

(
ab + bz ax + z

b 1

)

So for fr,v

(
ab ax
b 1

)
to be non-zero, it is necessary and sufficient that there exists

a λ in Q∗v such that λ(a + z)b, λ(ax + z), λb, λ are in Zv and λ2ab(1− x) is in Z∗v.
In other words, one must have

1′) 2v(λ) + v(a) + v(b) + v(1− x) = 0;

2′) v(λ) + v(a + z) + v(b) ≥ 0;

3′) v(λ) + v(ax + z)) ≥ 0;

4′) v(λ) + v(b) ≥ 0;

and

5′) v(λ) ≥ 0.

Eliminating v(λ) from these, we arrive at the following system of inequalities,
together with the parity condition

v(a) + v(b) + v(1− x) ≡ 0 (mod 2) :

6′) v(a + z) + v(ax + z)− v(a)− v(1− x) ≥ 0;

7′) v(b) + v(a + z)− v(a)− v(1− x) ≥ 0;

8′) v(ax + z)− v(a)− v(1− x) ≥ 0;
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9′) v(1− x) ≤ v(a + z)− v(a);

10′) v(a) + v(1− x) ≤ 0;

11′) v(b) + v(1− x)− v(x) ≤ 0;

12′) v(a) + v(b) + v(1− x) ≤ 0;

and

13′) v(b) ≥ v(a) + v(1− x).

To explain, 6′) comes from 2′) + 3′)− 1′), while 7′) comes from 2′) + 4′)− 1′), 8′)
from 3′) + 4′) − 1′), 9′) from 1′) − 2′) − 5′), 10′) from 1′) − 4′) − 5′), 11′) from
1′)−3′)−5′), 12′) from 1′)−2×5′), and 13′) from 2×4′)−1′). If v(a) 6= v(z), then
v(a + z) =min{v(a), v(z)}, and so v(a + z)− v(a) ≤ 0, and by 9′), v(1− x) ≤ 0.
On the other hand, if v(a) = v(z) = −r, so 10′) implies that v(1− x) ≤ r. This
gives part (i) of the Lemma. The remaining assertions follow easily.

¤

So the first consequence is that Iv(x) vanishes if v(1−x) is greater than r. We
get from the Lemma:

v(1− x)− r ≤ v(b) ≤ v(x)− v(1− x).

This is clear when v(a) = −r, and if not, v(a + z) − v(a) ≤ 0, which even gives
v(1− x) ≤ v(b). Next observe that when v(1− x) is 0, resp. < 0, resp. > 0, we
have v(x) ≥ 0, resp. v(x) = v(1− x), resp. v(x) = 0. We obtain

−r ≤ v(b) ≤ v(x) and − v(x) ≤ v(a) ≤ 0,

resp.

v(x)− r ≤ v(b) ≤ 0 and 0 ≤ v(a) ≤ −v(x) or v(a) = −r − v(x),

resp.
−r < v(b) < 0 and v(a) = −r

The assertion of the Proposition now follows in the case v = q ∈ S′, once we
recall that |g(χv)| = qc/2.

(c) Let v = N . Here by construction, fN is the characteristic function of

ZNK0(N) divided by VN , the volume of ZNK0(N)/ZN . So for fN (
(

ab ax
b 1

)
) to

be non-zero, it is necessary and sufficient that there exists a λ in Q∗N such that
λab, λax, λ are in ZN , λb is in NZN and λ2ab(1− x) is in Z∗N . The conditions 1)
through 5) above (in the proof of part (a)) remain in force except for 4), which
gets replaced by

4′′) vN (λ) + vN (b) ≥ 1.
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The parity condition is the same as in (a). The only change in the inequalities
6)− 12) is that 7) (resp. 8), resp. 10)) gets replaced by

7′′) vN (b)− vN (1− x) ≥ 1;

8′′) v(x)− v(1− x) ≥ 1;

and

11′′) v(a) + v(1− x) ≤ −1;

We again get the vanishing of IN (x) when vN (1 − x) > 0. Moreover, when
vN (1 − x) < 0, we are forced to have vN (x) = vN (1 − x), which contradicts
7′); thus IN (x) vanishes in this case as well. It remains only to consider when
vN (1−x) = 0, in which case vN (x) ≥ 1 by 8′′). The asserted expression for IN (x)
follows easily.

(d) Of course, when r = r′ = 0, fp is just the characteristic function of
ZpKp, which was treated in detail in part (a). For general r, r′ with r ≥ r′, for

fp

(
ab ax
b 1

)
to be non-zero, it is necessary and sufficient that there exists a λ in

Q∗v such that (
λab λax
λb λ

)
∈ Kp

(
pr 0
0 pr′

)
Kp.

We get analogues of conditions 1) through 12) of part (a), except for replacing
the zeros on the right of those equations. In 1) and 9), replace 0 by r + r′, while
in 2) through 4), replace 0 by r. The assertions of part d) now follow easily.

(e) Let v = ∞. By hypothesis, χ∞ is sgn, the sign character. By the definition
of f∞, we have

f∞

(
ab ax
b 1

)
=

(ab(1− x))k/2

(ax− b + i(ab− 1))k
(resp.0)

if ab(1− x) is > 0 (resp. < 0).

Suppose 1−x > 0. Then the integral is over the first and the third quadrants.
Changing variables in the third quadrant and rearranging, we get

I∞(x) = (1− x)k/2
(
I ′∞(−1, 1, 1)− (−1)kI ′∞(−1,−1, 1)

)
,

where for ε, δ, ν ∈ {±1},

I ′∞(ε, δ, ν) =
∫ ∞

0

∫ ∞

0

ak/2−s1−1bk/2+s2−1dadb

(ax + εb + δi(ab + ν))k
.

Similarly, when 1− x is negative, we have

I∞(x) = (x− 1)k/2
(
I ′∞(1,−1,−1)− (−1)kI ′∞(1, 1,−1)

)
.
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Then part (c) of Proposition 2.4 will follow once we establish the following, which
was shown to us by Nathaniel Grossman. Recall that

ρ = k/2− s1, and σ = k/2 + s2.

Lemma 7. Suppose k > <ρ > 0 and k > <σ > 0. Then we have

I ′∞(ε, δ, ν) = I∞(ε, δ, ν).

with I∞(ε, δ, ν) as defined in Proposition 2.4 (e). This holds in the complex x-
plane with the negative x-axis cut out.

Proof. Fix ε, δ, ν and simply write I ′ for I ′∞(ε, δ, ν). We have

I ′ =
∫ ∞

0
aρ−1da

∫ ∞

0

bσ−1db

((ax + δνi) + b(δia + ε))k

=
∫ ∞

0

aρ−1da

(δia + ε)k

∫ ∞

0

bσ−1db((
ax+δνi
δia+ε

)
+ b

)k

=
∫ ∞

0

aρ−1
(

ax+δνi
δia+ε

)σ
da

(δia + ε)k
(

ax+δνi
δia+ε

)k

∫

L

bσ−1
1 db1

(1 + b1)k
,

where L denotes the half-line defined by the positive real multiples of δia+ε
ax+δνi .

Since k > <σ > 0 by hypothesis, the ray of integration may be rotated back
to R+, and the inner b1-integral becomes

∫ ∞

0

bσ−1
1 db1

(1 + b1)k
= B(σ, k − σ).

Thus

I ′ =
B(σ, k − σ)
xk−σ(δi)σ

J,

where

J =
∫ ∞

0

aρ−1da

(a + δνi/x)k−σ(a− iδε)σ
.
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Since by assumption k > <ρ > 0, the path of integration defining J can be
rotated to the positive imaginary axis, giving

J =
∫ i∞

0

aρ−1da

(a + δνi/x)k−σ(a− iδε)σ

=
∫ ∞

0

(ic)ρ−1d(ic)
(ic + δνi/x)k−σ(ic− iδε)σ

= iρ−σ

∫ ∞

0

cρ−1dc

(c + δν/x)k−σ(c− δε)σ
.

Case (i): δε = −1.

Put u = c
1+c so that c = u

1−u and dc = du
(1−u)2

. We get

J = iρ−σ(δν)k−σxk−σ

∫ 1

0

uρ−1(1− u)k−ρ−1du

(1− u(1− δνx))k−σ
.

Now we appeal to the following well known integral representation for the hyper-
geometric function ([A-S], formula (15.3.1), page 558):

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt,

for <c > <b > 0.

The assertion follows by putting these together.

Case (ii): δε = 1.

In this case,

J = iρ−σ

∫ ∞

0

cρ−1dc

(c + δν/x)k−σ(c− 1)σ
.

We put c = u
u−1 , so that u = c

c−1 and dc = −du
(1−u)2

. We get

J = iρ−σ(δν)k−σxk−σ(−1)ρ−σ−1

∫ 1

0

uρ−1(1− u)k−ρ−1du

(1− u(1 + δνx))k−σ
.

The assertion follows by appealing once again to the integral representation of
the hypergeometric function and combining like terms.

¤

3. A bound for the sum of regular terms

Put
Ireg(f) :=

∑

x∈Q∗−{1}
I(x, f).
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Proposition 3.1. Let ε > 0. Then

Ireg(f) ≤ C

Nk/2−ε
,

for a positive constant C.

Proof. . Put t = 1
1−x . Since x → t is an automorphism of Q∗ − {1},

Ireg(f) :=
∑

t∈Q∗−{1}
I(x, f),

with x = t−1
t . By Proposition 2.4, there is a positive integer M = Dpr such that

for any finite place v,

v(t) < −v(M) =⇒ Iv(x, f) = 0.

In fact, Proposition 2.4 implies that for v = N , Iv(x, f) 6= 0 =⇒ N | (t − 1).
Also, I∞(x, f) = 0 unless x > 0. Putting these together, we see that I(x, f) is
zero unless N | (t− 1) and Mt is an integer 6= 0, 1. Thus

Ireg(f) :=
∑

n6=0,1, N |(n−M)

I(
n−M

n
, f).

Lemma 8. For any n 6= 0,

I(
n−M

n
, f) <<

1
nk/2−ε

,

with the implied constant independent of n,

Proof. By Prop. 2.4, for any (finite) prime q, Iq(n−M
n , f) is 1 for q - n(n −M),

and if q | n(n−M),

Iq(
n−M

n
, f) ≤ Mvq((n−M)/n)2.

We claim that the function

g(n) :=
∏
q

vq(n)

satisfies, for every ε > 0, the bound

g(n) ≤ Cnε,

for a constant C > 0 independent of n.

To see this, first note that g(n) is multiplicative in n (though not strictly). Fix
any ε > 0. Then ∃A > 0 such that for any prime q and positive integer a > 0,

a ≤ qaε if either a > A or q > A.
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Given n > 0 with unique factorization n =
∏

j∈J q
aj

j , where the qj are primes
and aj > 0, we may write n = mk, where m has no prime divisors qj < A with
exponents aj < A. It follows immediately that g(m) ≤ nmε, and k is a product
over primes ≤ A with exponents at most A. We obtain

g(n) = g(m)g(k) ≤ Cne

where C is the maximum of g(k) for the finitely many choices of k.

Hence the claim.

It follows that for any ε > 0,
∏

q|n(n−M)

vq((n−M)/n)2 << nε.

Moreover, thanks to Prop. 2.4, we have

I∞(
n−M

n
, f) <<

1
nk/2

.

In both estimates, the implied constants depends on M , but not on N . This
proves the Lemma.

¤

Consequently,

Ireg(f) <<
∑

n6=0,1, N |n−M

1
nk/2−ε

.

But for any real u > 1,
∑

n6=0,1, N |n−M

1
nu

=
∑

m≥1

1
(mN + M)u

<<
1

Nu
.

The Proposition now follows. ¤

4. The spectral side

Let ρ denote the right regular representation of G̃(A) on the space of cusp
forms on G̃(Q)\G̃(A) and let SN,A(k) be the space of adelic, holomorphic cusp
forms of weight k which are right-invariant under the open compact subgroup
K̃ = K̃0(N)×∏

v 6=N K̃v. Recall that there is identification

G̃(Q)\G̃(A)/K̃ = Γ0(N)\H,

induced by the map g∞× 1 → g∞(i) for g∞ =
(

a b
c d

)
in G̃∞ of positive determi-

nant. This yields an identification ψ ↔ ϕ of the spaces SN,A(k) and SN (k) such
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that
ψ(g∞ × 1) = det(g∞)k/2j(g∞, i)−kϕ(g∞(i))

where j(g∞, z) = cz + d as usual. On SN,A(k) we have the adelic scalar product:

〈ψ1, ψ2〉A =
∫

eG(Q)\ eG(A)

ψ1(g)ψ2(g)dg

We take dg = dg∞ × dg0 where dg∞ is the Haar measure on G̃∞ whose push-
forward to the upper half-plane H coincides with the measure used to define the
Petersson norm on SN (k) (for example, y−2dxdy) and dg0 is the Haar measure
on G̃(Af ) giving measure one to

∏
v 6=∞ K̃v. Then

〈ψ1, ψ2〉A = VN (ϕ1, ϕ2)

where ψi corresponds to ϕi.

Let ρ0 denote the action of G̃(Af ) where Af is the ring of finite adeles. Write
f = f∞ ⊗ f0, where f0 denotes the finite part of f . Recall that f∞ is equal to
dk times the complex conjugate of the matrix coefficient of Dk of weight k and
that f0 is bi-K-invariant. Since k > 2, f∞ is integrable. Therefore it acts as
a projection operator onto the subspace of holomorphic cusp forms of weight k
and the image of ρ0(f) is contained in SN,A(k). It follows that the kernel has the
expression

Kf (x, y) =
∑

j

(ρ0(f0)ψj) (x)ψj(y)
〈ψj , ψj〉A ,

where the sum is over an orthogonal basis of SN,A(k). We may assume that the
ψj are Hecke eigenforms, i.e., generate an admissible representation πj = ⊗πj,v

of GL(2,A) satisfying πj,∞ ' Dk and π
eK
j 6= 0.

From the expression for the kernel in terms of cusp forms, it follows that
the distribution I(f ; s1, s2) converges conditionally for all s1 and s2. The value
I(f) = I(f ; 0, 0) is therefore defined.

Recall that to every x ∈ [−2, 2] there is a unique unramified representation πx

of G̃p with Satake parameters {ps, p−s} defined by x = ps + p−s. For fp ∈ Hp,
let write f∧p (x) for the eigenvalue of fp acting on the K̃p-invariant vector in πx.
As is well-known, f∧p (x) is a polynomial in x. In particular, for each j, πj,p is
the unramified representation πx where x = ap(ϕj) is the normalized p-Hecke
eigenvalue of ϕj .

Proposition 4.1. , We have

I(f) =
1

VN

∑

j

L(1/2, ϕj)L(1/2, ϕj ⊗ χ)
(ϕj , ϕj)

f∧p (ap(ϕj)),
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Proof. Using the expression above for the kernel in conjunction with the definition
of I(f), we obtain

I(f ; s1, s2) =
∑

j

Pj(f, χ, s1)Qj(s2),

where

Pj(f, χ, s1) =
∫

Q∗\A∗
ρ(f)ψj

(
a 0
0 1

)
χ(a)|a|s1d∗a

and

Qj(s2) =
∫

Q∗\A∗
ψj

(
b 0
0 1

)
|a|s2d∗b.

If Wj denotes the Whittaker function of ψj , there is a well-known Fourier expan-
sion (for g ∈ GL(2,A))

ψj(g) =
∑

t∈Q∗
Wj

[(
t 0
0 1

)
g

]
.

Since χ and the adelic absolute value |·| are 1 on Q∗, we can unfold the expression
for Pj as

Pj(f, χ, s1) =
∫

A∗
ρ(f)Wj

(
a 0
0 1

)
χ(a)|a|s1d∗a

Then from the factorizability of Wj , f and χ, we obtain the product expansion

Pj(f, χ, s1) =
∏
v

Pj,v(f, χ, s1),

where v runs over all the places of Q, with

Pj,v(f, χ, s1) =
∫

Q∗v
ρ(fv)Wj,v

(
a 0
0 1

)
χv(a)|a|s1d∗a.

For v 6= p, fv is chosen such that ρ(fv)Wj,v times χv ◦ det is the new vector of
πj,v ⊗ χv, so that by Jacquet-Langlands,

Pj,v(f, χ, s1) = L(s1 + 1/2, πj,v ⊗ χv).

This is clear at any v where χ is unramified. Let us indicate the reason at a v = q
where χ is ramified, say of conductor qm. It follows from the definition of fv, and
the transformation property of the Whittaker function under the left translation
by the maximal unipotent subgroup, that

Pj,v(f, χ, s1) =
1

g(χv)

∑

n∈Z
Wv

(
qn 0
0 1

)
g(χv, ψqn−m)q−n(s1+1/2),
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where ψt(x) = ψ(tx) and ψ the additive character defined in section 2.2. Note
that g(χv) is just g(χv, ψq−m). Since Wj,v has been chosen to be the spherical
vector giving the right L-factor of πv, we have

Wj,v

(
qn 0
0 1

)
= δn≥0 qn/2

(
αn+1 − α−n−1

α− α−1

)
,

where δn≥0 is 1 if n ≥ 0 and is zero otherwise, and {α, α−1} = {qs, q−s} is the
Satake parameter attached to πj,v. So we may take n to be non-negative from
here on. On the other hand, it is well known that g(χv, ψqr) = 0 is r < m. Taking
r = m− n we get vanishing for n > 0. Thus n = 0, and we get (for any s1)

Pj,v(f, χ, s1) = 1,

On the other hand,
L(s, πv ⊗ χv) = 1,

because πv is unramified, while χv is ramified. Note that for v = p, we have

Pj,p(f, χ, s1) = f∧p (ap(ϕj))L(s1 + 1/2, πj,p ⊗ χp)

Similarly, Qj(s2) = L(s2 + 1/2, πj). The main assertion of the Proposition now
follows on setting s1 = s2 = 0. ¤

5. Proof of the Main Theorem

The geometric side of the trace formula gives I(f) as the sum of regular terms
and two singular terms. By Corollary 1, the contribution of the singular terms is
V −1

N ckL(1, χ)S(fp) where

S(fp) = Fp(n+, fp) + Fp(n−, fp)

By Proposition 3.1, the regular terms are O(N−k/2+ε) for all ε > 0. In view of
the expression for the spectral side in Section 4, we obtain for all ε > 0:

∑ L(1
2 , ϕj ⊗ χ)L(1

2 , ϕj)
(ϕj , ϕj)

f∧(ap(ϕj)) = ckL(1, χ)S(fp) + O(N−k/2+ε)

The sum on the left of the formula above runs over newforms of level N and
oldforms which necessarily come from level 1. Since χ(−1) = −1, we see that
the sign of the functional equation of L(s, g ⊗ χ)L(s, g) is −1 for any form of
level 1, implying that L(1/2, g ⊗ χ)L(1/2, g) is zero for any such g. There are
two oldforms of level N associated to g, which, in classical language, are g(z)
and gN (z) := g(Nz). It is immediate that their Mellin transforms are related
by L(s, gN ) = N1−sL(s, g). It follows that L(1/2, gN ⊗ χ)L(1/2, gN ) is also 0.
Therefore, we may restrict the sum to newforms.

In the next section, we prove that S(fp) = 2µp(f∧p ) where µp is the measure
defined in the introduction. Since the map fp → f∧p maps Hp onto the space
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of all polynomials on [−2, 2], it follows easily that we may replace f∧p (x) by the
characteristic function of a subinterval of [−2, 2] (cf. [Se]). This will complete
the proof of Theorem A.

6. The measure

In this section, we write f for fp ∈ Hp and χ for χp.

Proposition 6.1. S(f) = 2µp(f∧)

Let:
ϕ(s) = ϕf (s) = Trace(πs(f))

where πs is the principal series representation unitarily induced from the character(
α 0
0 β

)
→

∣∣∣∣
α

β

∣∣∣∣
s

Then ϕ(s) is a symmetric Laurent polynomial in ps and p−s and

ϕf (s) = f∧(x) where x = ps + p−s

Let fn be the characteristic function of ZK

(
pn 0
0 1

)
K for n = 0, 1, 2, ... and let

ϕn(s) = ϕfn(s). We recall the following well-known computation.

Lemma 9. ϕ0(s) = 1 and for n ≥ 1,

ϕn(s) = pn/2
[
pns+p−ns+

(
1− 1

p

) (
p(n−2)s+p(n−4)s+· · ·+p−(n−4)s)+p−(n−2)s

)]

Proof. The coset K

(
pn 0
0 1

)
K is equal to a union of single cosets gK where g

ranges over the following elements:(
pn t
0 1

)
t ∈ O/(pn)

(
pn−k t

0 pk

)
t ∈

(
O/pn−k

)∗
k = 1, ..., n

Using this we easily calculate the action of fn on the principal series πs and we
find the above formula. ¤

We observe that since f has compact support, the following integral is regular
at s2 = 0:

Ip(n+, s1, s2) =
∫∫

Q∗p×Q∗p
f(

(
b a
0 1

)
) χ(a)|a|−s1−s2 |b|s2 d∗a d∗b.
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Thus we set s2 = 0 and we define:

T (f, n+, s) =
∫∫

Q∗p×Q∗p
f(

(
b a
0 1

)
) χ(a)|a|−s d∗a d∗b.

To evaluate T (fn) for n ≥ 0, note that if
(

b a
0 1

)
∈ ZK

(
pn 0
0 1

)
K

then (
b a
0 1

)
∈ K

(
pn+α 0

0 pα

)
K

for some α. This is not possible unless α ≤ 0 and b = pn+2αu for some unit u.
Furthermore, the gcd of {a, pn+2α, 1} is pα, so we must have n + 2α ≥ α, that is,
α ≥ −n. If 0 > α > −n, then the gcd condition forces a ∈ pαZ∗p. If α = 0, then
we just have a ∈ Zp and if α = −n, we have α ∈ p−nZp.

Set δ = χ(p). For n = 0, we have:

T (f0, n
+, s) =

∫

u∈Z∗p

∫

a∈Zp

χ(a)|a|−s d∗u d∗a = Lp(−s, χ)

For n > 0, T (fn, n+, s) is a sum of three terms:

I =
∫

u∈Z∗p

∫

a∈Zp

f(
(

pnu a
0 1

)
)χ(a)|a|−s d∗u d∗a = Lp(−s, χ)

and

II =
∫

u∈Z∗p

∫

a∈p−nZp

f(
(

p−nu a
0 1

)
)χ(a)|a|−s d∗u d∗a = δ−np−nsLp(−s, χ)

III =
n−1∑

α=1

∫

u∈Z∗p

∫

v∈Z∗p
f(

(
pn−2αu p−αv

0 1

)
)χ(p−α)|p−α|−s d∗u d∗v

=
n−1∑

α=1

χ(p−α)p−αs =
δ−1p−s − δ−np−ns

1− δ−1p−s
=

δ1−np(1−n)s − 1
1− δps

= Lp(−s, χ)(δ1−np(1−n)s − 1)

We obtain:
T (fn, n+, s) = Lp(−s, χ)(δ−np−ns + δ1−np(1−n)s)

and

Fp(, n+, fn) = lim
s→0

T (fn, n+, s)
Lp(−s, χ)

= δ−n(1 + δ)

We observe similarly that Ip(n−, s1, s2) is regular at s1 = 0:
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Ip(n−, s1, s2) =
∫∫

Q∗p×Q∗p
f(

(
b 0
a 1

)
) χ(ab−1) |a|s1+s2 |b|−s1d∗a d∗b.

Thus we set s1 = 0 and define

T (f, n−, s) =
∫∫

Q∗p×Q∗p
f(

(
b 0
a 1

)
) χ(ab−1) |a|sd∗a d∗b.

We evaluate T (fn, n−, s) for n ≥ 0. We first note that if(
b 0
a 1

)
∈ ZK

(
pn 0
0 1

)
K

then (
b 0
a 1

)
=

(
pnu 0
c 1

)
,

(
pn−2αu 0
p−αv 1

)
or

(
p−nu 0
p−nc 1

)

where c ∈ Zp and u, v are units in Z∗p, and 0 ≤ α ≤ n.

For n = 0, we have:

T (f0, n
−, s) =

∫

u∈Z∗p

∫

a∈Zp

χ(a)|a|s d∗u d∗a = Lp(s, χ)

For n > 0, T (fn, n−, s) is a sum of three terms:

I =
∫

u∈Z∗p

∫

c∈Zp

χ(p−nc) |c|sd∗ud∗c = δ−nL(s, χ)

II =
n−1∑

α=1

∫

u∈Z∗p

∫

v∈Z∗p
χ(pα−n) |p−α|sd∗u d∗v

= δ−n
n−1∑

α=1

δα pαs = δ−n δps − δnpns

1− δps
= (δ1−nps − pns)L(s, χ)

III =
∫

u∈Z∗p

∫

a∈Zp

χ(a) |p−na|sd∗u d∗a = pnsL(s, χ)

We see that T (fn, n−, s) = δ−n(1 + δps)L(s, χ) and that Fp(, n−, fn) is equal
to Fp(, n+, fn):

Fp(, n−, fn) = lim
s→0

T (fn, n−, s)
Lp(−s, χ)

= δ−n(1 + δ)

Now assume that δ = χ(p) = −1. Recall that in this case, µp = µ− is the
Plancherel measure on the Hecke algebra Hp, which is defined by the property
µp(f∧0 ) = 1 and µp(f∧n ) = 0 for n > 0. Our computations show that S(f0) = 2
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and S(fn) = 0 for n > 0 and thus S(f) = 2µp(f∧). This proves Proposition 6.1
in the case δ = −1.

To handle the case δ = −1, we first treat δ as an indeterminate and find a
function rational function F (s) of ps such that the functional

Aδ(ϕ) =
log p

2π

∫ π
log p

− π
log p

ϕn(is)F (is) ds

satisfies

Aδ(ϕn) =
{

1 n = 0
δn + δ−n n ≥ 1

For δ = 1, we have A1(ϕn) = Fp(, n+, fn) = Fp(, n−, fn).

Proposition 6.2.

F (s) = 1 +
∞∑

k=1

Ckp
k(s− 1

2
)

where

Ck = δk + δ−k − (p− 1)
(δk−1 − δ−k+1

δ − δ−1

)

Proof. We have

Ck = δk + δ−k − (p− 1)(δk−2 + δk−4 + · · ·+ δ−k+4 + δ−k+2)

Observe that
log p

2π

∫ π
log p

− π
log p

pns pms ds =
{

1 n + m = 0
0 otherwise

Therefore,
∫

ϕn(s)F (s) ds is equal to

Cn + (1− 1
p
)

N∑

j=1

pjCn−2j = δn + δ−n +
N∑

j=1

aj(δn−2j + δ−n+2j)

where N = [k
2 ]. To verify the proposition, we must check that the coefficients aj

are zero:

aj = −(p− 1)−
(

1− 1
p

) [
p(p− 1) + p2(p− 1) + · · ·+ pj(p− 1)− pj

]

= 1− p−
(

1− 1
p

)
(−p) = 0

¤
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To write F (s) as a rational function, we sum the geometric series. Let T =
ps− 1

2 . Then:

F (s) = 1 +
∑

n≥1

[
(δT )n + (δ−1T )n − (p− 1)

δ − δ−1

(
δ−1(δT )n + δ(δ−1T )n

)]

= 1 +
∑

n≥1

(δT )n

δ − δ−1

[
δ − δ−1 − pδ−1 + δ−1

]
+

∑

n≥1

δ−1T )n

δ − δ−1

[
δ − δ−1 + pδ − δ

]

= 1 +
δ − pδ−1

δ − δ−1

∑

n≥1

(δT )n − δ−1 − pδ

δ − δ−1

∑

n≥1

(δ−1T )n

= 1 +
δ − pδ−1

δ − δ−1

δT

1− δT
− δ−1 − pδ

δ − δ−1

δ−1T

1− δ−1T

Using Mathematica, we find the further simplification:

F (s) =
1− pT 2

(T − δ)(T − δ−1)
=

1− p2s

(1− δ−1ps− 1
2 )(1− δps− 1

2 )

Now set δ = 1. Furthermore, since the Satake transforms are invariant under
s → −s, we may replace F (s) by

g(s) =
1
2
(F (s) + F (−s)) =

1
2

(
1− 1

p

)
(2− p2s − p−2s)

(
1 + 1

p − p−
1
2
+s − p−

1
2
−s

)2

It follows that S(f) = 2S0(ϕf ) where

S0(f) =
log p

π

∫ π
log p

0
ϕf (is) g(is)ds

Here is a graph of g(is) for the case p = 2 and δ trivial.

                
  

 

4

p / log 2
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Now we make a change of variables x = pis + p−is = 2 cos(s log p). Then
x2 = 2 + p2s + p−2s and

g(s) =
1
2

(
1− 1

p

)
(4− x2)

(
1 + 1

p − p−
1
2 x

)2

Furthermore,

dx = −2 log(p) sin(s log p) ds = − log(p)
√

4− x2 ds

log(p)
π

g(is)ds = −
( log(p)

π

) 1
2 log(p)

(
1− 1

p

)√
4− x2

(
1 + 1

p − p−
1
2 x

)2 dx

= − 1
2π

(
1− 1

p

)√
4− x2

(
1 + 1

p − p−
1
2 x

)2 dx

and S0(f) =
∫ 2

−2
f∧(x) du+(x). This proves that S(f) = 2µ+(f∧), thus complet-

ing the proof of Proposition 6.1.
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Sup., 4e série, t. 19, 185-229 (1986).

[KMV]: E. Kowalski, P. Michel, J. VanderKam, Non-vanishing of high
derivatives of automorphic L-functions at the center of the critical strip,
J. Reine Angew. Math. 526 1–34 (2000).



Average Values of Modular L-Series ... 735

[Lu]: W. Luo, On the non-vanishing of Rankin-Selberg L-functions, Duke
Math Journal 69, 411–427 (1993).

[Ro]: E. Royer, Facteurs Q-simples de J0(N) de grande dimension et de
grand rang, Bull. Soc. Math. France 128, no. 2, 219–248 (2000).

[Sa]: P. Sarnak, Statistical properties of eigenvalues of the Hecke operators,
in Analytic number theory and Diophantine problems, 321–331, Progr.
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